人教版八年级数学上册 角的相关计算和证明(习题及答案)

合集下载

人教版_部编版八年级数学上册第十一章第二节三角形的外角习题(含答案) (54)

人教版_部编版八年级数学上册第十一章第二节三角形的外角习题(含答案) (54)

人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ;②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由【答案】(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【解析】【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下:由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠ 1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.32.如图,在△ABC 中,∠C =2∠B ,点D 为BC 边上一点,且AD ⊥AB ,点E 是BD 的中点,连接AE ,且AE =DE .求证:∠AEC =∠C .【答案】见解析【解析】【分析】根据直角三角形的性质得到AE BE =,根据三角形的外角性质得到2AEC B ∠=∠,由题意证明即可得出结论.【详解】证明:AD AB ⊥,点E 是BD 的中点,12AE BD BE ∴==, ,2,2,.EAB EBA AEC EAB EBA B C B AEC C ∴∠=∠∴∠=∠+∠=∠∠=∠∴∠=∠【点睛】利用直角三角形中斜边中点的性质和三角形外角的性质,根据题目条件等角代换即可证明结论.33.将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.【答案】(1)FCE ∠与CFE ∠度数之和是定值,为45︒;(2)能,15CFE ∠=︒【解析】【分析】(1)FED ∠是EFC ∆的外角,且45FED ∠=︒可得;(2)根据//FC AB ,且90B ∠=︒且60ACB ∠=︒知30FCE ∠=︒,再根据(1)中的结论可得答案.【详解】解:(1)FCE ∠与CFE ∠度数之和是定值,为45︒;FED ∠是EFC ∆的外角,且45FED ∠=︒,45FCE CFE ∴∠+∠=︒;(2)//FC AB ,且90B ∠=︒,90FCB ∠∴=︒,60ACB ∠=︒,又45FCE CFE ∠+∠=︒,15CFE ∴∠=︒.【点睛】本题主要考查平行线的判定和性质,解题的关键是掌握平行线的判定及三角形外角的性质.34.如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.【答案】(1)62°;(2)28°【解析】【分析】(1)根据三角形的外角的性质求出CBD ∠,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【详解】解:(1)90ACB ∠=︒,34A ∠=︒,BE 是CBD ∠的平分线,1622CBE CBD ∴∠=∠=︒; (2)90ECB ∠=︒,62CBE ∠=︒,28CEB ∴∠=︒,//DF BE ,28F CEB ∴∠=∠=︒.【点睛】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.35.在ABC ∆中,60,B AD ︒∠=是BC 边上的高,画出AB 上的高CE ,若,AD CE 相交于点O ,求AOC ∠的度数.【答案】120AOC ∠=︒【解析】【分析】根据三角形高的定义得出90ADB AEC ︒∠=∠=,然后根据三角形的内角和外角的性质解答即可.【详解】解:画图正确(有垂直符号)所以CE 就是AB 上的高因为AD 是BC 上的高,CE 是AB 上的高(已知),所以90ADB AEC ︒∠=∠=(垂直定义),因为180ADB BAD B ︒∠+∠+∠=(三角形内角和为180°)60B ︒∠=(已知), 所以30BAD ︒∠=(等式性质)因为AOC AEC BAD ∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和)所以120AOC ︒∠=(等式性质)【点睛】本题主要考查了三角形的高,三角形内角和以及三角形外角的性质,结合图形准确的运用三角形外角的性质是解题的关键.36.如图,已知在ABC ∆中,0(210),(3),A x B x ACD ︒∠=+∠=∠是ABC ∆的一个外角,且(610)∠=-︒ACD x ,求A ∠的度数.【答案】50A ∠=︒【解析】【分析】根据三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和,列一元一次方程,求出x ,从而求出∠A 的度数.【详解】解:因为ACD ∠是ABC ∆的一个外角(已知),所以ACD A B ∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和).所以6102103x x x -=++解得20x所以50A ︒∠=【点睛】此题考查的知识点是三角形的外角性质及一元一次方程的应用,关键是先根据三角形的外角性质列一元一次方程,求出x .37.已知直线//AB CD .(1)如图1,直接写出BME E END ∠∠∠,、的数量关系为 ;(2)如图2,BME ∠与CNE ∠的角平分线所在的直线相交于点P ,试探究P ∠与E ∠之间的数量关系,并证明你的结论.【答案】(1)∠E=∠END-∠BME ;(2)∠E+2∠NPM=180°,证明见解析.【解析】【分析】(1)由AB ∥CD ,即可得到∠END=∠EFB ,再根据∠EFB 是△MEF 的外角,即可得出∠E=∠EFB-∠BME=∠END-∠BME;(2)由平行线的性质以及三角形外角性质,即可得到∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,再根据三角形内角和定理,即可得到∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠NGB)=180°,即可得到∠E+2∠NPM=180°.【详解】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB-∠BME=∠END-∠BME,故答案为:∠E=∠END-∠BME;(2)如图2,延长NP交AB于G,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA ,∵MQ 平分∠BME ,PN 平分∠CNE ,∴∠CNE=2∠CNP ,∠FME=2∠BMQ=2∠PMA ,∵AB ∥CD ,∴∠MFE=∠CNE=2∠CNP ,∵△EFM 中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠NGB )=180°, ∴∠E+2∠NPM=180°.【点睛】本题主要考查了平行线的性质和角平分线的定义、三角形外角性质的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.38.(1)如图1,//AB CD ,I N 、分别在AB CD ,上,试说明∠MEN=∠INC+∠IME .(2)如图2,在(1)的条件下,若MG 平分AME ∠,在AB 上有一点F ,连接NF ,使NE 恰好平分CNF ∠,19ENC ∠=︒,且MGN ∠的补角比FNC ∠的3倍多8︒,求AME ∠的度数;(3)如图3,在问题(1)(2)的条件下,若点P 是EM 上一动点(不包含点E 和点M ),连接PN .PQ 平分MPN ∠,NH 平分PNC ∠,过P 作//PR NH ,当点P 在线段EM 上运动时,下列结论:①HNP RPQ ∠+∠的值不变;②RPQ ∠的度数不变,可以证明只有一个是正确的,请你做出正确选择并求值.【答案】(1)见解析;(2)40°;(3)②正确,证明见解析【解析】【分析】(1)在△IEM 中,利用外角∠MEN=∠NIM+∠IME 推导得到;(2)先求出∠CNF 的值,进而得到∠NFM ,然后利用∠FNC 与∠MGN 的关系得到∠MGN 的大小,最后在△FGM 中得出∠FMG 的大小,进而得出∠FME ;(3)求出∠RPQ=∠4-∠NPR=∠4―∠1,然后在△PKN 中,利用内角和180°可算出∠RPQ 为定值.【详解】(1)∵AB ∥CD∴∠MIN=∠INC∵∠MEN=∠MIN+∠IME∴∠MEN=∠INC+∠IME ;(2)∵∠ENC=19°,EN 平分∠FNC∴∠FNC=38°=∠MFN∵MGN ∠的补角比FNC ∠的3倍多8︒∴180°-∠MGN=3×38°+8°∴∠MGN=58°∴AMG=∠MGN-∠MFN=20°∴∠AME=40°;(3)如下图,延长ME交CD于点K,设∠HNP为∠1,∠HNK为∠2,∠MPQ为∠3,∠QPN为∠4∵AB∥CD∴∠AME=∠MKN=40°∵PQ平分∠MPN,NH平分∠PNC∴∠1=∠2,∠3=∠4∵PR∥NH∴∠1=∠NPR∴∠RPQ=∠4-∠NPR=∠4―∠1在△PKN中,∠1+∠2+180°-∠3-∠4+40°=180°∴2(∠4-∠1)=40°∴∠4-∠1=20°∴∠RPQ=20°不变,②正确【点睛】本题考查了平行线的性质、三角形内角和定理、三角形外角的性质,同时还考查了动点问题,解题的关键是将动角转化为不变的角.39.如图,//AB CD ,点,E F 分别在,AB CD 直线上,点M 为两平行线内部一点(1)如图1,,MEB MFD ∠∠角平分线交于点N ,若EMF ∠等于130︒,求ENF ∠的度数(2)如图2,点G 为直线CD 上一点,且MGF EMF ∠=∠,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线,PF EG 相交于点H ,满足11,33PFG MFG BEH BEM ∠=∠∠=∠,设EMF α∠=,求H ∠的度数(用α的代数式表示)【答案】(1)115°;(2)∠H=60°-13α. 【解析】【分析】(1)过M 作ME ∥AB ,利用平行线的性质以及角平分线的定义计算即可.(2)如图②中设∠BEH=x ,∠PFG=y ,则∠BEM=3x ,∠MFG=3y ,设EH 交CD 于K .证明∠H=x-y ,求出x-y 即可解决问题.【详解】解:(1)过M 作ME ∥AB ,∵AB∥CD,∴ME∥CD,∴∠BEM+∠2=∠DFM+∠4=180°,∴∠BEM=180°-∠2,∠DFM=180°-∠4,∵EN,FN分别平分∠MEB和∠DFM,∴∠1=12∠BEM,∠3=12∠DFM,∴∠1+∠3=12(180°-∠2)+12(180°-∠4)=180°-12(∠2+∠4)=180°-12×130°=115°,∴∠ENF=360°-∠1-∠3-∠EMF=360°-115°-130°=115°;(2)如图②中设∠BEH=x,∠PFG=y,则∠BEM=3x,∠MFG=3y,设EH交CD于K.∵AB∥CD,∴∠BEH=∠DKH=x,∵∠PFG=∠HFK=y,∠DKH=∠H+∠HFK,∴∠H=x-y,∵∠EMF=∠MGF=α,∠BQG+∠MGF=180°,∴∠BQG=180°-α,∵∠QMF=∠QME+∠EMF=∠MGF+∠MFG ,∴∠QME=∠MFG=3y ,∵∠BEM=∠QME+∠MQE ,∴3x-3y=180°-α,∴x-y=60°-13α, ∴∠H=60°-13α. 【点睛】此题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理,解题的关键是学会利用参数解决问题.40.探究题.已知:如图//,//AB CD CD EE .求证: 360B BDF F ∠+∠+∠=︒老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是_________.(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线,AB EF 、然后在平行线间画了一点D ,连接BD DF ,后,用鼠标拖动点分,D 别得到了图①②②,小颖发现图②正是上面题目的原型,于是她由上题的结论猜想到图①和③中的B BDF ∠∠、与F ∠之间也可能存在着某种数量关系于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.请你在小颖操作探究的基础上,继续完成下面的问题:①猜想图①中B BDF ∠∠、与F ∠之间的数量关系并加以证明:②补全图③,直接写出B BDF ∠∠、与F ∠之间的数量关系:_______.(3)学以致用:一个小区大门栏杆的平面示意图如图所示,BA 垂直地面AE 于,A CD 平行于地面AE ,若150BCD =∠,则ABC ∠=_______.【答案】(1)两直线平行同旁内角互补;(2)①∠BDF=∠B+∠F .理由见解析;②∠F=∠D+∠F ;(3)120°.【解析】【分析】(1)利用平行线的性质证明即可.(2)①结论:∠BDF=∠B+∠F .如图①中,作DK ∥AB .利用平行线的性质证明即可.②如图③中,结论:∠F=∠D+∠B.(答案不唯一).利用平行线的性质以及三角形的外角的性质证明即可.(3)利用图1中的结论,计算即可.【详解】(1)证明:如图1中,∵AB∥EF,CD∥EF,∴CD∥EF,∴∠B+∠CDB=180°,∠F+∠CDF=180°(两直线平行同旁内角互补),∴∠B+∠CDB+∠CDF+∠F=360°,∴∠B+∠BDF+∠F=360°,故答案为:两直线平行同旁内角互补.(2)解:①结论:∠BDF=∠B+∠F.理由:如图①中,作DK∥AB.∵AB∥DK,AB∥EF,∴DK∥EF,∴∠B=∠BDK,∠F=∠FDK,∴∠BDF=∠BDK+∠FDK=∠B+∠F.②如图③中,结论:∠F=∠D+∠B.(答案不唯一).理由:∵AB∥EF,∴∠1=∠F,∵∠1=∠B+∠D,∴∠F=∠D+∠B.故答案为∠F=∠D+∠F.(3)解:如图2中,∵BA⊥AE,∴∠BAE=90°,∵∠ABC+∠BAE+∠BCD=360°,∠BCD=150°,∴∠ABC=360°-240°=120°,故答案为120°.【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.。

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (97)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (97)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.【答案】(1)见解析;(2)5.【解析】【分析】(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF△△AB′E;(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=13.所在DF=18-13=5.【详解】(1)证明:△四边形ABCD是矩形,△△D=△C=△B′=90°,AD=CB=AB′,△△DAF+△EAF=90°,△B′AE+△EAF=90°,△△DAF=△B′AE,在△ADF和△AB′E中,'''D B AD AB DAF B AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ADF △△AB ′E (ASA ). ∴AE=CF ;(2)解:由折叠性质得FA=FC , 设FA=FC=x ,则DF=DC-FC=18-x , 在Rt △ADF 中,AD 2+DF 2=AF 2, △122+(18-x )2=x 2. 解得x=13.∴DF=18-13=5 【点睛】本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以的运用,解决问题的关键是:设相关线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.62.如图,已知AD 是ABC ∆的一条中线,延长AD 至E ,使得DE AD =,连接BE . 如果5,7AB AC ==,试求AD 的取值范围.【答案】AD 的取值范围是16AD <<.【解析】 【分析】先证明ADC EDB ∆∆≌得到7BE AC ==,然后根据三角形的三边关系得到AE 的取值范围,从而计算出AD 的取值范围。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (18)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (18)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系并说明理由;(2)若∠COF=34°26′,求∠BOD.【答案】解:(1)∠AOC=∠BOD,理由见解析;(2)∠BOD=21°08′.【解析】试题分析:(1)根据对顶角的性质即可判断,∠AOC=∠BOD;(2)根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF-∠COF求出∠AOC,再根据对顶角相等解答.试题解析:(1)∠AOC=∠BOD,理由如下:因为∠AOC与∠BOD是对顶角,根据对顶角相等,所以∠AOC=∠BOD;(2)∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE−∠COF=90°−34°26′=55°34′,∵OF平分∠AOE,∴∠AOF=∠COE=55°34′,∴∠AOC=∠AOF−∠COF=55°34′−34°26′=21°08′,∴∠BOD=∠AOC=21°08′.72.已知:如图,在△ABC中,BD平分∠ABC,交AC于点D,过D作DE∥BC交AB于点E.已知∠A=45°,∠C=105°,求∠EDB的度数.【答案】15°【解析】试题分析:先由三角形的内角和求出∠ABC的度数,再由BD是∠ABC的平分线求出∠DBC的度数,最后由DE∥BC求出∠EDB的度数.试题解析:在ΔABC中,∠A=45°,∠C=105°,∴∠ABC=30°∵BD平分∠ABC∴∠DBC=15°∵DE∥BC∴∠BDE=∠DBC=15°73.如图,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F,求∠ADF的度数.【答案】∠ADF=82°.【解析】试题分析:由在△ABC中,∠B=32°,∠C=48°,根据三角形内角和定理,可求得∠BAC的度数,由AE平分∠BAC,根据角平分线的定义,可求得∠CAE 的度数,由AD⊥BC,根据直角三角形的性质,可求得∠CAD的度数,继而求得∠DAE的度数,则可求得∠ADF的度数.试题解析:在△ABC中,∠B=32°,∠C=48°,∴∠BAC=180°−∠B−∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠CAD=90°−∠C=42°,∴∠DAE=∠CAE−∠CAD=8°,∵DF⊥AE,∴∠ADF=90°−∠DAE=82°.74.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;(2)作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(3)连接DE,求证:△ADE≌△BDE.【答案】(1)作图见解析;(2)作图见解析;(3)证明见解析.【解析】试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,FN长为半径画弧,两弧交于点M,过B、M画射线,再以F、N为圆心,大于12交AC于D,线段BD就是∠B的平分线;(2)分别以A、B为圆心,大于1AB长为半径画弧,两弧交于X、Y,过2X、Y画直线与AB交于点E,点E就是AB的中点;(3)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;(2)作出AB的中点E.(3)证明:∵∠ABD=12×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中,AE BE ED ED AD BD=⎧⎪=⎨⎪=⎩∴△ADE≌△BDE(SSS).75.读句画图并填空:(1)画平角AOB,画射线OC,再分别画∠AOC、∠BOC的角平分线OD、OE;(2)图中,∠∠COE= ∠COB,∠COD= ∠AOC,∠∠DOE=∠COE+∠COD= ∠AOB= ×180°=.【答案】(1)见解析图;(2)12,12,12,12,90°【解析】试题分析:根据基本作图进行作图即可.试题解析:解:(1)如下图所示:(2)∵COE ∠= 12COB ∠,12AOC ∠(角平分线的定义)∵DOE COE COD ∠=∠+∠ 12AOB =∠=1180902⨯︒=(等量代换). 76.已知下列条件,求角的度数。

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (28)

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (28)

人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)已知ABC ∆中,记BAC α∠=,ACB β∠=.(1)如图a ,若AP 平分BAC ∠,BP 、CP 分别是ABC ∆的外角CBM ∠和BCN ∠的平分线,BD AP ⊥,用含α的代数式表示BPC ∠的度数,用含β的代数式表示PBD ∠的度数,并说明理由.(2)如图b ,若点 P 为ABC ∆的三条内角平分线的交点,BD AP ⊥于点 D ,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.BPC ∠= .PBD ∠= .【答案】(1)902BPC α∠=-,902DBP β∠=-;(2)1902α+,12β 【解析】【分析】(1)根据三角形内角和定理可求出180ABC ACB α∠+∠=-,根据邻补角的性质可求出180CBM BCN α∠+∠=+,再根据角平分线的性质可得CBP BCP ∠+∠=90α+,根据三角形内角和定理算出∠BPC .由三角形外角的性质得出12APB β∠=,进而利用直角三角形两锐角互余求出902DBP β∠=-. (2)根据角平分线性质和三角形外角性质可得1=90-2ABP BP BAP D β∠+∠∠=, 1122ACP B CPD AP βα∠=∠+∠=+,进而可得答案. 【详解】(1)解:∵在ABC ∆中,180ABC ACB BAC ∠+∠+∠=,BAC α∠=∴180ABC ACB α∠+∠=-又∵180ABC CBM ∠+∠=,180ACB BCN ∠+∠=∴360(180)180CBM BCN αα∠+∠=--=+∴1()902CBM BCN α∠+∠=+ ∵在PBC ∆中,180CBM BCN BPC ∠+∠+∠=∴902BPC α∠=-∵,,BAC ACB MBC BAC ACB αβ∠+∠=∠∠=∠=∴MBC αβ∠=+又∵BP 平分MBC ∠ ∴11()22MBP MBC αβ∠=∠=+ 同理1122BPA BAC α∠=∠= ∵MBP BAP BPA ∠=∠+∠ ∴1()22APB ααβ+=∠+ ∴12APB β∠= ∵在PBD ∆中,180BDP BPD DBP ∠+∠+∠=,BD DP ⊥ ∴90902DBP BPD β∠=-∠=-(2)如图2,若点P 为ABC ∆的三条内角平分线的交点,BD AP ⊥于点D ,猜想(1)中的两个结论已发生变化∵点P 为ABC ∆的三条内角平分线的交点,∴12BAP CAP α∠=∠=,1C =2A P β∠, 12=A PB B AC ∠∠=11802ACB BAC ︒-∠-∠(),即: 1180=2ABP αβ∠︒--(), ∴111=180=90-222BPD ABP BAP αβαβ∠+∠︒-+=-∠(), 1122ACP B CPD AP βα∠=∠+∠=+, ∴111190902222C BP PD B C PD βαβα∠+∠=++︒-=+∠=︒()(), 1190D 909BD 0=22P BP ββ︒-∠=︒-=︒∠-().故答案为:1902α︒+;12β.【点睛】本题考查了三角形内角和定理,角平分线,三角形外角的性质.注意知识的灵活运用,对角进行代换运算.72.如图,求x和y的值.【答案】x=60,y=50【解析】【分析】根据三角形内角和及外角和定理分别列出方程,求出x,y的值.【详解】解:根据三角形的外角的性质得,x+70=x+x+10,解得,x=60,则x+70=130,,则y=180°-130°=50°,答:x=60,y=50【点睛】本题主要考查三角形内角和及外角和定理进行列式进行计算.73.小明在学习三角形的知识时, 发现如下三个有趣的结论:(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E,则BE、DE的位置关系是;(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是;(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE的位置关系是 . 请你完成命题(3)证明.【答案】(1)BE⊥DE;(2)BE//DF;(3)BE⊥DE.证明见解析.【解析】【分析】(1)由∠A=∠C=90°可以得到∠HDC=∠ABH,设∠HDC=∠ABH=x,可得∠HDG=∠CDG=∠FBH=∠ABF=12x,则有∠CDG+∠CGD=90°,由∠CGD=∠BGE,可得∠BGE+∠FBE=90°,即BE⊥DE;(2) 由∠A=∠C=90°可以得到∠HDC=∠ABH,设∠HDC=∠ABH=x,可得∠EBH=∠ABE=12x,则∠DGE=90°+12x,∠CDM=180°-x,由DF平分∠CDM,则∠CDF=12(180°-x),所以∠CDF+∠HDC=12(180°-x),然后运用同位角相等,即可证明;(3)设∠BFA=∠CFD=x,由∠A=∠C=90°可以得到∠EBC=∠FDN=90°+x,由根据题意可得:∠EDF=∠EBF=12(90°+x);且∠BFD=180°+x,最后用四边形内角和,求出∠BED=90°,完成证明.【详解】解:(1)BE⊥DE,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠ABH设∠HDC=∠ABH=x∵∠ABC的平分线与∠ADC的平分线交于点E∴∠HDG=∠CDG=∠FBH=∠ABF=12 x又∠∠CDG+∠CGD=90°,∠CGD=∠BGE ∴∠BGE+∠FBE=90°,即BE⊥DE;(2)DF∥AB,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA ∴∠HDC=∠ABH∵∠A=∠C=90°,∠DHC=∠BHA ∴∠HDC=∠ABH∵BE平分∠ABH,∴∠EBH=∠ABE=12x∴∠DGE=90°+12x∵∠CDM=180°-x,DF平分∠CDM∴∠CDF=12(180°-x)=90°-12x∴∠HDF=∠CDF+∠CDH=90°-12x+x=90°+12x∴∠DGE=∠HDF ∴DF∥AB (3)BE⊥DE,证明如下:设∠BFA=∠CFD=x,∵∠A=∠C=90°∴∠EBC=∠FDN=90°+x,∵∠ABC的外角平分线与∠ADC的外角平分线交于点E∴∠EDF=∠EBF=12(90°+x)又∵∠BFD=180°-∠AFB=180°-x∴∠BFD=360°-12(90°+x)-12(90°+x)-(180°-x)=90°即BE⊥DE【点睛】本题主要考查了直角三角形和多边形内角和的知识,考查知识点简单,但过程复杂,难度较大,运用方程思想是一个不错的方法.74.问题情境如图1,△ABC 中,沿∠BAC 的平分线AB1 折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重叠部分;如此反复操作,沿∠B n A n C 的平分线A n B n-1折叠,点B n与点C 重合,我们就称∠BAC是△ABC 的正角.以图2 为例,△ABC 中,∠B=70°,∠C=35°,若沿∠BAC 的平分线AB1折叠,则∠AA1B=70°.沿A1B1剪掉重叠部分,在余下的△B1A1C 中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C 的平分线A1B2第二次折叠,则点B1与点C 重合. 此时,我们就称∠BAC 是△ABC 的正角.探究发现(1)△ABC 中,∠B= 2∠C ,则经过两次折叠后,∠BAC 是不是△ABC 的正角?(填“是”或“不是”) .(2)小明经过三次折叠发现∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B >∠C ) 之间的等量关系为.根据以上内容猜想:若经过n 次折叠∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B>∠C ) 之间的等量关系为.应用提升(3)如果一个三角形的最小角是10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是它的正角.【答案】(1)是;(2)∠B = 3∠C ;∠B =n∠C;(3)10°;160°【解析】【分析】(1)仔细分析题意根据折叠的性质及题中“正角”的定义即可作出判断;(2)因为经过三次折叠∠BAC是△ABC的正角,所以第三次折叠的∠A2 B2C=∠C,由∠AB B1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C,由此即可求得结果;(3)因为最小角是10°是△ABC的正角,根据正角定义,则可设另两角分别为10m°,10mn°(其中m、n都是正整数),由题意得10m+10mn+10=180,所以m(n+1)=17,再根据m、n都是正整数可得m与n+1是17的整数因子,从而可以求得结果.【详解】(1)∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵∠AA1B1=∠A1B1C+∠C且∠B= 2∠C∴2∠C=∠A1B1C+∠C,得出∠C=∠A1B1C又∵平分线A1B2∴∠B1 A1 B2 =∠C A1 B2∴∆ B1 A1 B2∠∆ C A1 B2∴将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠BAC是不是△ABC的正角故填:是;(2)折叠的情况如下图:∵根据折叠的性质知:∠B=∠AA1B1,∠A1B1C=∠A1A2B2,∠C=∠A2B2C,∴∠A1A2B2=∠C+∠A2B2C=2∠C;∴∠AA1B1=∠A1B1C+∠C=∠A1A2B2+∠C=2∠C+∠C=3∠C∴∠B=∠AA1B1=3∠C,即∠B=3∠C故填:∠B=3∠C;由折叠1次知,当∠B=∠C时,∠BAC是△ABC的正角;由折叠2次知,当∠B=2∠C时,∠BAC是△ABC的正角;由折叠3次知,当∠B=3∠C时,∠BAC是△ABC的正角;故若经过n次折叠∠BAC是△ABC的正角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C故填:∠B=n∠C;(3)由∠B=n∠C,∠BAC是△ABC的正角,因为最小角是10°是△ABC的正角,根据正角定义,则可设另两角分别为10m°,10mn°(其中m、n都是正整数),由题意,得10m+10mn+10=180,所以m(n+1)=,17,∵m、n都是正整数,所以m与n+1是17的整数因子,∴m=1,n+1=17,∴m=1,n=16,∴10m=10°,10mn=160°,∴该三角形的另外两个角的度数分别为:10°、160°.【点睛】本题主要考查三角形的三角形的外角定理和图形折叠的特性,解题的关键是理解题意,找出∠B=n ∠C 这个规律.三、填空题75.如图,从A 处观测C 处的仰角∠CAD=30°,从B 处观测C 处的仰角∠CBD=45°,从C 处观测A 、B 两处的视角∠ACB =_____【答案】15o【解析】【分析】因为CBD ∠是ABC ∆的外角,所以CBD CAD ACB ∠=∠+∠,则ACB CBD ACB ∠=∠-∠.【详解】解:CBD ∠是ABC ∆的外角,CBD CAD ACB ∴∠=∠+∠,453015ACB CBD ACB ∴∠=∠-∠=︒-︒=︒.故答案为:15°【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键..76.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA ′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.77.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2P CD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).【答案】12nα⎛⎫ ⎪⎝⎭ 【解析】【分析】由∠P 1CD=∠P 1+∠P 1BC ,∠ACD=∠ABC+∠A ,而P 1B 、P 1C 分别平分∠ABC 和∠ACD ,得到∠ACD=2∠P 1CD ,∠ABC=2∠P 1BC ,于是有∠A=2∠P 1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出规律.【详解】解:∵P1B、P1C分别平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=12∠A,同理可得∠P1=2∠P2,∠P2=14A ∠∴∠A=2n∠P n,∴1122n nnP Aα⎛⎫⎛⎫∠=∠=⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质,难度适中.78.若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=50°,则∠BOC=_______度.【答案】65°【解析】【分析】利用三角形内角和定理求得∠ABC+∠ACB=130°,根据三角形外角性质得到∠CBE=∠A+∠ACB,∠BCF=∠A+∠ABC,进而求得∠CBE+∠BCF=230°,根据角平分线定义可知∠1=∠2=12∠CBE,∠3=∠4=12∠BCF,进而求得∠2+∠3=115°,最后利用三角形内角和定理即可解决问题.【详解】∵∠A+∠ABC+∠ACB=180°,∠A=50°,∴∠ABC+∠ACB=130°∵∠CBE、∠BCF是△ABC的外角∴∠CBE=∠A+∠ACB,∠BCF=∠A+∠ABC∴∠CBE+∠BCF=∠A+∠ACB+∠A+∠ABC=230°∵OB、OC分别平分∠CBE、∠BCF∴∠1=∠2=12∠CBE,∠3=∠4=12∠BCF∴∠2+∠3=12(∠CBE+∠BCF)=115°∵∠2+∠3+∠BOC=180°∴∠BOC=65°故答案为:65°【点睛】本题主要考查三角形内角和定理以及三角形外角性质,熟练掌握该知识点是解题关键.79.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为_________【答案】36°【解析】【分析】根据方位角的定义及三角形的外角定理即可求解.【详解】如图,依题意得∠BAC=44°,∠BCD=80°,∴∠ABC=∠BCD-∠BAC=36°,故填:36°.【点睛】此题主要考查角度的求解,解题的关键是熟知方位角的定义及三角形的外角定理.80.如图,在△ABC中,∠C=90°,D是边AC上的一点,若∠DBC=40°,∠A=32°,则∠ABD等于_______度.【答案】18【解析】【分析】根据直角三角形性质可以得知∠BDC=50°,然后利用三角形外角性质:三角形外角等于与其不相邻两内角的和,从而得出答案。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案) (50)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案) (50)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案)在△ABC 中,CA=CB=4,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角∠PCB=α,斜边PN 交AC 于点D .(1)当PN ∥BC 时,∠ACP=_____度.(2)在点P 滑动的过程中,当AP 长度为多少时,△ADP 与△BPC 全等. (3)在点P 的滑动过程中,△PCD 的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的大小.【答案】90【解析】【分析】(1)当PN ∥BC 时,NPM α∠=∠,则1203090ACP ∠=︒︒=︒﹣;(2)根据120ACB ∠=︒,CA CB =,可得30A B ∠=∠=︒,再根据外角的性质可得APD α∠=∠,又AP BC =,可证ADP BPC ≌,即可得出结论.(3)在点P 的滑动过程中,PCD 的形状可以是等腰三角形,分三种情况考虑:当PC PD =;PD CD =;PC CD =,分别求出夹角α的大小即可.【详解】(1)当PN ∥BC 时,30NPM α∠=∠=︒,又∵120ACB ∠=︒,∴1203090ACP ∠=︒-︒=︒,故答案为90︒;(2)当4AP =时,ADP BPC ≌,理由为:∵120ACB ∠=︒,CA CB =,∴30A B ∠=∠=︒,又∵APC ∠是BPC 的一个外角,∴30APC B αα∠=∠+∠=︒+∠,∵30APC DPC APD APD ∠=∠+∠=︒+∠,∴APD α∠=∠,又∵4AP BC ==时,∴()ADP BPC ASA ≌;(3)PCD 的形状可以是等腰三角形,则120PCD α∠=︒-,30CPD ∠=︒,①当PC PD =时,PCD 是等腰三角形, ∴18030752PCD PDC ︒-︒∠=∠==︒,即120α75︒-=︒, ∴45α∠=︒;②当PD CD =时,PCD 是等腰三角形, ∴30PCD CPD ∠=∠=︒,即12030α︒=︒﹣, ∴90α=︒;③当PC CD =时,PCD 是等腰三角形,∴30CDP CPD ∠=∠=︒,∴180230120PCD ∠=︒-⨯︒=︒,即120120α︒-=︒,∴0α=︒,此时点P 与点B 重合,点D 和A 重合,综合所述:当45α=︒或90︒或0︒时,PCD 是等腰三角形.【点睛】本题考查了平行的性质,全等三角形的判定及等腰三角形的性质.解题的关键是选择适当的条件证明全等,在不确定等腰三角形的腰和底边时,注意分类讨论.92.(2016.镇江)如图,AD 、BC 相交于点O ,AD=BC ,∠C=∠D=90°. (1)若∠ABC=35°,求∠CAO 的度数;(2)求证:CO=DO【答案】(1)20°;(2)见解析;【解析】分析:(1)根据HL 证明Rt △ABC △Rt △BAD ;由全等的性质得∠BAD =△ABC ,根据直角三角形两直角互余可求∠BAC =55 º,从而可求出△CAO 的度数;(2)利用全等三角形的性质可得∠BAD =∠ABC ,BC =AD ,从而可证求证CO =DO .详解:∵∠D =∠C =90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,△AD=BC,AB=BA,∴Rt△ABC≌Rt△BAD(HL);∴∠BAD=∠ABC=35°.∵∠ABC=35°,△△BAC=90º-35º=55º,△△CAO=55º-35º=20º.(2)证明:∵Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,BC=AD,∴AO=BO,∴BC-BO=AD-AO,∴CO=DO.点睛:本题考查了直角三角形两个锐角互余,等腰三角形的判定,全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.93.如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.【答案】见解析【解析】分析:(1)此题作法较多,可用平移来作,将△ABC沿射线CB平移,平移距离为BC的长,由此可得所求作的三角形.(2)以AB为公共边为例,作C关于直线AB的对称点C",然后连接AC″和BC″即可.详解:(1)如图①;(2)如图②.点睛:本题主要考查学生动手作图的能力,注意平移和轴对称作图的应用.题目不难,属于中等题型,掌握网格作图的方法并能灵活运用是关键.94.如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【答案】见解析;【解析】【分析】首先根据平行线的性质可得∠ACB=∠DFE ,再根据ASA 定理证明△ABC ≌△DEF 即可.【详解】证明:∵ AC ∥DF ,∴ ∠ACB =∠DFE .在△ABC 和△DEF 中,∠A =∠D ,AC =DF ,∠ACB =∠DFE ,∴ △ABC ≌△DEF .(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.95.已知,如图, ,12AC BD =∠=∠.(1)求证: ABC ∆≌BAD ∆;(2)若2325∠=∠=°,则D ∠= °.【答案】(1)证明见解析;(2)105°【解析】试题分析:(1)利用SAS 证明三角形ABC ∆≌BAD ∆.(2)利用三角形全等的性质.试题解析:(1),12AC BD =∠=∠.,AB=AB ,所以ABC ∆≌BAD ∆.(2)由(1)得∠1=△2,△D =△C ,2325∠=∠=︒,所以△C=180°-25°-25°-25°=105°.故∠D =△C=105°.点睛:证明三角形全等的方法:(1)三组对应边分别相等的两个三角形全等(简称SSS).(2)有两边及其夹角对应相等的两个三角形全等(SAS).(3)有两角及其夹边对应相等的两个三角形全等(ASA) .(4)有两角及一角的对边对应相等的两个三角形全等(AAS).(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) .注:S 是边的英文缩写,A 是角的英文缩写 ,其中证明直角三角形所有5种方法都可以用;一般三角形SSA 不能证明三角形的全等.96.如图,在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 边上的中线,过点C 作AE 的垂线CF ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE=CD ;(2)若,求BD 的长.【答案】(1)证明见解析;(2)2【解析】试题分析:()1根据同角的余角相等,得到D AEC ∠=∠.用AAS 证明DBC △≌ECA △,即可得出AE CD =.()2根据DBC △≌ECA △,得到,BD EC =根据AB =求得4,AC BC ==求出EC 的长度即可求出BD 的长.试题解析:(1)证明:DB BC CF AE ,,⊥⊥∴90DCB D DCB AEC ∠+∠=∠+∠=︒.∴D AEC ∠=∠.又∵90DBC ECA ∠=∠=︒,且BC CA =,在DBC △与ECA △中 90,D AEC DBC ECA BCAC .∠=∠⎧⎪∠=∠=⎨⎪=⎩∴DBC △≌ECA △(AAS ).∴AE CD =.(2)由(1)得DBC △≌ECA △,,BD EC ∴=∵AB =∴4AC BC ==, ∴1122BD EC BC AC ===, ∴2BD =.97.如图,已知点B 、E 、F 、C 在同一条直线上,∠A=∠D ,BE=CF ,且AB ∥CD ,求证:AE=DF .【答案】证明见解析【解析】试题分析:根据AB ∥CD ,得到B C ∠=∠,用ASA 证明ABE △≌DCF ,即可得到AE DF =.试题解析:证明:∵AB ∥CD ,∴B C ∠=∠,在ABE △和DCF 中,∵,A D AB CD B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE △≌DCF (ASA ),∴AE DF =.98.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B 是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B 是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.【答案】第二种情况选C,理由见解析;第三种情况补全图见解析,证明见解析.【解析】【分析】第二种情况选C.画出图形即可判断.第三种情况:先证明△CMA≌△FND,推出AM=DN,推出AB=DE,再证明△ABC≌△DEF即可.【详解】解:第二种情况选C.理由:由题意满足条件的点D有两个,故△ABC和△DEF不一定全等(如图所示)故选C.第三种情况补全图.证明:由△CBM≌△FEN得,CM=FN,BD=EN.在Rt△CMA和Rt△FND中,∵AC DF CM FN=⎧⎨=⎩,∴△CMA≌△FND,∴AM=DN,∴AB=DE.在△ABC和△DEF中,∵AC DF BC EF AB DE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEF.99.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?【答案】(1)DE= 6cm;(2)DE= 12cm.【解析】【分析】(1)由余角的性质,推出∠CBE=∠ECA,再依据全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,结合图形即可推出DE=6cm,(2)根据余角的性质推出∠CBE=∠ACD,再依据全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,结合图形即可推出DE=12cm.解:(1)∵∠ACB=90°,BE⊥CE∴∠BCE+∠CBE=90°,∠BCE+∠ECA=90°,∴∠CBE=∠ECA,∠BEC=∠CDA.在△BEC和△CDA中,∵BEC CDACBE ECABC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△CDA(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴CD=3cm,CE=9cm,∴DE=CE﹣CD=6cm.(2)∵∠ACB=90°,BE⊥CE于E,AD⊥CE于D,∴∠BCE+∠CBE=90°,∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠CBE=∠ACD.在△CBE和△ACD中,∵BEC CDACBE ACDBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴DE=CD+CE=BE+AD=12cm.本题主要考查垂直的性质、全等三角形的判定与性质,关键在于根据相关的判定定理推出相关的三角形全等.100.如图,已知在△ABC 和△ABD 中,AD = BC,∠DAB = ∠CBA,求证:∠C = ∠D.【答案】证明见解析【解析】【分析】根据“SAS”可证明△ADB△△BAC,由全等三角形的性质即可得出结论.【详解】证明:在△ADB和△BAC中,∵AD=BC,△DAB=△CBA,AB=BA,△△ADB△△BAC(SAS),△△C=△D.点睛:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (87)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (87)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:BD=CD.【答案】见解析【解析】【分析】根据角平分线的性质得到DE=DF,通过SAS证明△DEB≌△DFC,即可得到结论.【详解】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.在△DEB和△DFC中,∵DE DFDEB DFCBE FC=⎧⎪∠=∠⎨⎪=⎩,∴△DEB≌△DFC,∴BD=DC.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质定理,解题的关键是正确寻找全等三角形解决问题.62.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,求证:∠EAB=∠EAD.【答案】证明见详解【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”进行分析证明.【详解】解:证明:如图,过点E作EF⊥AD于F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,∴点E在∠BAD的平分线上,∴∠EAB=∠EAD.【点睛】本题考查角平分线性质,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.63.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,△ABC 的面积为36cm 2,AB=18cm ,BC=12cm ,求DE 的长.【答案】125cm 【解析】【分析】由题意作DF ⊥BC 于F ,根据角平分线性质可得DE=DF ,进而利用ABC BCD ABD S S S =+进行分析计算即可求得DE 的长.【详解】解:作DF ⊥BC 于F ,∵BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DF ,∵△ABC 的面积为36cm 2, ∴113622ABC BCD ABD S S S BC DF AB DE =+=+=cm 2, ∵AB=18cm ,BC=12cm ,∴69691536DF DE DE DE DE +=+==,∴5361125DE ==cm. 【点睛】本题考查的是角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.64.如图,已知在ABC ∆中,90C ∠=︒,CA CB =,AD 平分CAB ∠交BC 于D ,DE AB ⊥.(1)说明ADC ADE ∆∆≌的理由;(2)若8AB =,求DEB ∆的周长.【答案】(1)详见解析;(2)8.【解析】【分析】(1)根据角平分线的性质及HL 即可判定Rt Rt ACD AED ∆∆≌;(2)根据全等三角形的性质及周长的定义即可求解.【详解】(1)90C ∠=︒DC AC ∴⊥ AD 平分BAC ∠,DE AB ⊥CD ED ∴=在Rt ACD ∆和Rt AED ∆中CD ED AD AD =⎧⎨=⎩Rt Rt ACD AED ∴∆∆≌(2)∵Rt Rt ACD AED ∆∆≌,CA CB =,CD ED =∴8DEB C DB DE EB BC BE AC BE AE BE AB ∆=++=+=+=+==【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知角平分线的性质定理.65.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B=40°,∠E=30°,求∠BAC 的度数.【答案】∠BAC=100°.【解析】【分析】本题考查了三角形外角性质,角平分线定义的应用,根据三角形外角性质求出∠ECD ,根据角平分线定义求出∠ACD ,根据三角形外角性质求出即可.【详解】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE 是△ABC 的外角∠ACD 的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点睛】本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理66.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.【答案】20°,105°.【解析】【分析】先根据三角形内角和定理计算出∠BAC=180°-∠ABC-∠C=80°,再根据角平分线的性质得到∠CAE=12∠BAC=40°,利用三角形外角性质得∠AED=∠CAE+∠C=70°,进一步求得∠DAE;利用三角形外角的性质得出∠AOB=∠AED+∠CBF进行计算.【详解】∵∠ABC=70°,∠C=30°,∴∠BAC=180°﹣∠ABC﹣∠C=80°,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40°,∠CBF=12∠ABC=35°,∴∠AED=∠CAE+∠C=40°+30°=70°,∵AD ⊥BC ,∴∠DAE =90°﹣∠AED =20°;∵∠AOB =∠AED +∠CBF ,∴∠AOB =70°+35°=105°.【点睛】此题考查三角形内角和定理,三角形外角性质,角平分线的定义,解题关键在于掌握三角形内角和为180°.67.如图,DAB BCD ∠=∠,12180∠+∠=︒,BC 平分ACH ∠.(1)找出图中所有的平行直线,直接写出结论.(2)判断:AD 是GAC ∠的角平分线吗?并说明理由.(3)图中与B 相等的角共有______个.(不包括B )【答案】(1)AB ∥DC ,AD ∥BC ;(2)是,理由见解析;(3)5【解析】【分析】(1)根据平行线的判定解答即可;(2)利用平行线的性质和角平分线的定义解答即可;(3)根据平行线的性质和等量代换解答即可.【详解】(1)∵∠1+∠2=180°,∠2+∠ACD=180°,∴∠1=∠ACD,∴AB∥DC,∴∠DAB+∠ADC=180°,∵∠DAB=∠BCD,∠BCD+∠BCH=180°,∴∠ADC=∠BCH,∴AD∥BC;(2)∵AD∥BC,∴∠DAC=∠ACB,∵AB∥DC,∴∠GAC=∠ACH,∵BC平分∠ACH.∴∠ACB=∠BCH,∴∠GAD=∠DAC,即AD平分∠GAC;(3)∵AB∥DC,∴∠B=∠BCH, ∠DAF=∠ACB.∵AD∥BC,∴∠B=∠GAD, ∠D=∠BCH.∵∠GAD=∠DAC,∴∠B=∠BCH=∠D=∠GAD=∠ACB=∠DAC,∴图中与B相等的角共有5个.【点睛】此题考查平行线的判定和性质,用到的知识点:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.68.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE (1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【答案】(1)OF⊥OD,证明详见解析;(2)∠EOF=60°.【解析】【分析】(1)由OD平分∠BOE、OF平分∠AOE,可得出∠FOE=12∠AOE、∠EOD=12∠EOB,根据邻补角互补可得出∠AOE+∠EOB=180°,进而可得出∠FOD =∠FOE+∠EOD=90°,由此即可证出OF⊥OD;(2)由∠AOC:∠AOD=1:5结合邻补角互补、对顶角相等,可求出∠BOD 的度数,根据OD平分∠BOE、OF平分∠AOE,可得出∠BOE的度数以及∠EOF=12∠AOE,再根据邻补角互补结合∠EOF=12∠AOE,可求出∠EOF的度数.【详解】(1)OF⊥OD.证明:∵OD平分∠BOE,OF平分∠AOE,∴∠FOE=12∠AOE,∠EOD=12∠EOB.∵∠AOE+∠EOB=180°,∴∠FOD=∠FOE+∠EOD=12(∠AOE+∠EOB)=90°.∴OF⊥OD.(2)∵∠AOC:∠AOD=1:5,∠AOC=∠BOD,∴∠BOD:∠AOD=1:5.∵∠AOD+∠BOD=180°,∴∠BOD=30°,∠AOD=150°.∵OD平分∠BOE,OF平分∠AOE,∴∠BOE=2∠BOD=60°,∠EOF=12∠AOE.∵∠AOE+∠BOE=180°,∴∠AOE=120°,∴∠EOF=60°.【点睛】此题考查对顶角,邻补角,角平分线的定义,解题的关键是:(1)根据邻补角互补结合角平分线的定义找出∠FOD=90°;(2)通过比例关系结合邻补角互补求出∠BOD的度数.69.已知DB∥EH,F是两条射线内一点,连接DF、EF.(1)如图1:求证:∠F=∠D+∠E;(2)如图2:连接DE,∠BDE、∠HED的角平分交于点F时,求∠F的度数;(3)在(2)条件下,点A是射线DB上任意一点,连接AF,并延长交EH于点G,求证:AF=FG.【答案】(1)见解析;(2)90 ;(3)见解析.【解析】【分析】(1)过点F作FM∥BD,则FM∥HE,又根据FM∥BD,即可有∠1=∠D,∠2=∠E,则可证明∠F=∠D+∠E;(2)根据角平分线得出∠3=∠5,∠4=∠6,DB∥HE得出∠3+∠5+∠4+∠6=1800,即可证明∠F=900;(3)过F 点作BD的垂线,垂足为K,延长KF交EH于点I;过F点作FJ垂线于点J,根据DA∥EH得出∠AKF=∠GIF=900,由角平分线得出KF=FJ,FI=FJ,所以KF=FI,则可证明△AKF≌△GIF,所以AF=FG.【详解】(1)过点F作FM∥BD,则FM∥HE,∵FM∥BD,FM∥HE∴∠1=∠D,∠2=∠E∵∠F=∠1+∠2∴∠F=∠D+∠E(2)∵DF是角平分线∴∠3=∠5又∵EF是角平分线∴∠4=∠6又∵DB∥HE∴∠3+∠5+∠4+∠6=1800∴∠5+∠6=900∴∠F=900(3)过F 点作BD 的垂线,垂足为K ,延长KF 交EH 于点I ;过F 点作FJ 垂线于点J∵DA ∥EH∴∠AKF =∠GIF =900∵DF 是角平分线∴KF =FJEF 是角平分线∴FI =FJ∴KF =FI在△AKF 和△GIF 中90 KFA IFG AKF GIF KF FI∠∠⎧⎪∠∠⎨⎪⎩==== ∴△AKF ≌△GIF (AAS )∴AF =FG【点睛】本题考查了平行线、角平分线、三角形全等等知识点,综合性较强,熟练掌握各个知识点,并学会综合运用是解题的关键.70.如图,OA BC ⊥,ODC ABO ∠=∠.(1)请判断CD 和AB 位置关系,并说明理由;(2)ADC ∠的平分线DE 与OAB ∠的平分线交于F ,求F ∠的度数.(3)在(2)的条件下,M 是线段AD 上任意一点(不同于A 、D ),作MN OA ⊥交AF 于N ,作ADE ∠与ANM ∠的平分线交于P 点,求P ∠的度数.【答案】(1)CD ⊥AB ,理由见解析;(2)45F ∠=︒;(3)22.5P ∠=︒.【解析】【分析】(1)利用等量代换得出∠ABO +∠OCD =90°,说明CD ⊥AB 即可;(2)利用角平分线的性质,邻补角的意义以及三角形的内角和定理在△AFD 中解决问题即可;(3)利用角平分线的性质,三角形的内角和,四边形的内角和解决问题即可.【详解】CD ⊥AB .如图,延长CD 交AB 于点P ,∵OA BC ⊥∴∠ODC +∠OCD =90°,∵ODC ABO ∠=∠∴∠ABO +∠OCD =90°,∴∠CPB =180°−(∠ABO +∠OCD )=90°∴CD ⊥AB .(2)∵DE 平分∠ADC ,AF 平分∠OAB ,11()22ADE ADC COD OCD ∴∠=∠=∠+∠ 12FAD BAO ∠=∠, OA BC ⊥,90,90,90COD OAB ABO OCD ODC ,11180()13522FDA COD OCD OCD ∴∠=︒-∠+∠=︒-∠ ∵ODC ABO ∠=∠∴OCD OAB ∠=∠,∴在△ADF 中,180()F FDA DAF ∠=︒-∠+∠1118013522OCD OAB ⎛⎫=︒-︒-∠+∠ ⎪⎝⎭180135=-︒︒45=︒(3)∵MN OA ⊥∴90NMD ∠=︒,()360225ADF MNF F NDF ∴∠+∠=︒-∠+∠=︒∵ADE ∠与ANM ∠的平分线交于P 点 ∴11,22PDA EDA PNM ANM ()11()18018067.522PDA PNM EDA ANM ADF MNF ∴∠+∠=∠+∠=-∠+-∠=︒︒︒ 360P F ADF MNF PDA PNM ︒∴∠=-∠-∠-∠-∠-∠360()()22.5F ADF MNF PDA PNM ︒=-∠-∠+∠-∠+∠=︒.【点睛】本题考查三角形内角和定理,垂线,三角形的外角性质,四边形的内角和定理,角平分线的性质.(1)中能正确画出辅助线是解题关键;(2)中能考虑到利用△AFD 的内角和,并正确表示出FDA ∠和FAD ∠是解题关键;(3)中能表示出四边形DNFP 的其它三个角是解题关键.。

八年级全等三角形简单证明题及答案(15道)

八年级全等三角形简单证明题及答案(15道)

1.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.证1=∠2,明:∵∠∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中∠B=∠E AB=AE ∠BAC=∠EAD ,≌(ASA),∴△ABC△AED∴BC=ED.与质.全等三角形的判定性2.如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥A B,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED。

证明:∵MD AB⊥,∠,∴∠MDE=C=90°∥,∵ME BC∠,∴∠B=MED∠∠∠在△ABC与△MED中, ∠B=MED C=EDMDM=AC ,≌(AAS).∴△ABC MED△全等三角形的判定.如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.∥证明:∵AE CF∠,∴∠AED=CFB∵DF=BE,∴DF+EF=BE+EF,即DE=BF,在△ADE和△CBF中,∠∠AE=CF AED=CFBDE=BF ,≌△(SAS).∴△ADE CBF全等三角形的判定.5.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.解:∵AD平分∠BAC,∴∠BAD=CAD∠.∴在△ACD和△ABD中∠∠AB=AC BAD=CADAD=AD ,△≌,∴△ACD ABD∴BD=CD,∠.∴∠DBC=DCB与质全等三角形的判定性.6.已知:如图,点E,A,C在同一直线上,AB ∥CD,AB=CE,AC=CD.求证:BC=ED.∥,证明:∵AB CD∠,∴∠BAC=ECD在△BAC和△ECD中 AB=EC∠∠,BAC=ECD AC=CD≌△(SAS),∴△BAC ECD∴CB=ED.与质全等三角形的判定性.7.如图,D、E分别是AB、AC上的点,且AB=AC,AD=AE.求证:∠B=∠C.在△ABE和△ACD中,∵ AB=AC ∠A=∠A AE=AD ,∴△ABE≌△ACD(SAS),∴∠B=∠C.与质全等三角形的判定性.8.已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.:∵AC平分∠BAD,∠,∴∠BAC=DAC在△ABC和△ADC中,∠∠AB=AD BAC=DACAC=AC ,∴△ABC ADC≌△.全等三角形的判定.9.如图,已知点E,C在线段BF上,BE=C F,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴ ∠B=∠DEF BC=EF∠ACB=∠F , ∴△ABC≌△DEF.线质全等三角形的判定;平行的性.10.已知:如图,E、F在AC上,AD∥CB 且AD=CB,∠D=∠B.求证:AE=CF.证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,∠A=∠C AD=CB ∠D=∠B ,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF+EF=CE+EF,即AE=CF.与质全等三角形的判定性.11.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF;(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中, AE=CFAB=BC ,∴Rt△ABE≌Rt△CBF(HL);直角三角形全等的判定如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.∵∠ABC=∠BAC=45°∴∠ACB=90°,AC=BC∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90°∴∠DAC=∠BCE又∵∠ADC=∠CEB∴△ACD≌△CEB∴BE=CD=2.质直角三角形全等的判定;全等三角形的性.如图,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BAC.解:∵AB=AC,∴∠ABC=∠ACB.∵∠1=∠2,∴∠ABD=∠ACD,BD=CD.∵AB=AC,BD=CD,∴△ABD≌△ACD.∴∠BAD=∠CAD.即AD平分∠BAC.与质全等三角形的判定性.如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.:△BCF≌△CBD.△BHF≌△CHD.△BDA≌△CFA.证明:在△BCF与△CBD中,∵AB=AC.∴∠ABC=∠ACB∵BD、CF是角平分线.∴∠BCF=1 2 ∠ACB,∠CBD=1 2 ∠ABC.∴∠BCF=∠CBD,∴ ∠BCF=∠CBD BC=BC ∠ABC=∠ACB∴△BCF≌△CBD(ASA).全等三角形的判定.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE=Rt△DCF=90°.BD=DC BE=CF ,∴Rt△BDE≌Rt△DCF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.线质与质角平分的性;全等三角形的判定性.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。

八年级数学上册全等三角形证明过程训练(习题及答案)(人教版)

八年级数学上册全等三角形证明过程训练(习题及答案)(人教版)
全在正方形 ABCD中, AB=CB,∠ ABC=90°.E 为正方形内一点,
A
D
BE⊥BF, BE=BF,EF交 BC于点 G.
求证: AE=CF.
【思路分析】 A
D
① 读题标注:
E
E 1
B2 G
C
B
G
C
F
② 梳理思路:
F
要证 AE=CF,可以把它们放在两个三角形中证全等.观察发现,放在△
ABE
和△ CBF中进行证明.
要证全等,需要三组条件,其中必须有一组边相等.
由已知得, AB=CB; BE=BF; 根据条件∠ ABC=90°, BE⊥BF,推理可得∠ 1=∠2.
因此由 SAS可证两三角形全等. 【过程书写】(在演草部分先进行规划,然后书写过程) 证明:如图 ∵ BE⊥BF ∴∠ EBF=90° ∴∠ 2+∠ EBC=90°
△ABD≌△ CDB,那么还需要添加一组条件,
这个条件可以是 _______________,理由是 _____________;这个条件也可以
是_____________,理由是 _____________;这个条件也可以是
_____________,理由是 _____________;这个条件还可以是 _____________,
过程规划: 1.准备不能直接用的条件:
∠ 1=∠ 2 2.证明△ ABE≌△ CBF 3.根据全等性质得, AE=CF
∵∠ ABC=90°
∴∠ 1+∠ EBC=90°
∴∠ 1=∠ 2
在△ ABE和△ CBF中
AB CB 12
BE BF
(已知) (已证) (已知)
∴△ ABE≌△ CBF(SAS)

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (48)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (48)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案)已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F. 求证:BF=AC;【答案】见解析【解析】【分析】根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可.【详解】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵BDF CDAA DFBBD DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDA(AAS),∴BF=AC;【点睛】此题考查三角形内角和定理,全等三角形的判定与性质,解题关键在于掌握判定定理.72.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.求证:△ABE≌△CBD;【答案】见解析【解析】【分析】由已知角相等,利用等式的性质得到夹角相等,利用SAS即可得证.【详解】∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBD(SAS);【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.73.如图,已知点B 、E 、C 、F 在一条直线上,AC ∥DE ,BE=FC ,∠A=∠D ,(1) 求证:AB=DF ;(2)求证:AB ∥DF ;(3)若BC=9,EC=5,求BF 的长.【答案】(1)详见解析;(2)详见解析;(3)13.【解析】【分析】(1)由条件证明△ABC ≌△DFE 即可求得AB=DF ;(2)由(1)可知,∠ABC=∠DFE ,即可判定平行.(3)由全等三角形的性质可得BC=FE ,再利用线段的长和差可求得BF .【详解】证明:(1)∵AC ∥DE∴∠ACB=∠DEF∵BE=FC∴BE+EC=FC+EC∴BC=FE在△ABC 和△DFE 中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DFE (AAS )∴AB DF =AB=DF(2)由(1)可知,△ABC ≌△DFE∴∠ABC=∠DFE∴AB ∥DF(3) 由(1)可知,△ABC ≌△DFE∴BC=FE又∵BC=9,EC=5∴CF=EF-EC=4∴BF=BC+CF=9+4=13.答:BF 的长为13.【点睛】此题考查全等三角形的判定与性质,平行线的判定,解题关键在于掌握判定定理.74.如图,在四边形ABCD 中,AD =DC ,DF 是∠ADC 的平分线,AF ∥BC ,连接AC ,CF .求证:CA 是∠BCF 的平分线.【答案】见解析【解析】【分析】根据SAS 证明△ADF ≌△CDF ,再根据全等三角形的性质证明即可.【详解】证明:∵DF 是∠ADC 的平分线,∴∠CDF =∠ADF .又∵AD =DC ,DF =DF ,在△ADF 与△CDF 中,AD DC CDF ADF DF DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△CDF ,∴AF =CF ,∴∠ACF =∠CAF .∵AF ∥CB ,∴∠CAF =∠ACB ,∴∠ACF =∠ACB ,即CA 平分∠BCF【点睛】本题考查三角形全等的证明以及平行线的性质定理,熟练掌握相关性质定理是解题关键.75.如图,已知在△ABC 中,AB =AC ,∠B =∠C ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使△BPD与△CQP全等?【答案】(1)(12﹣2t)cm;(2)全等,理由详见解析;(3)点Q的运动厘米/秒时,能够使三角形BPD与三角形CQP全等.速度是83【解析】【分析】(1)先表示出BP,然后利用PC=BC﹣BP即可得到答案;(2)利用速度时间与路程的关系,分别求出两个三角形中的边的长度,再利用SAS判定两个三角形全等;(3)根据全等三角形应满足的条件探究边之间的关系,再根据路程公式,先求得P点的运动时间,再求Q得运动速度.【详解】解:(1)BP=2t,则PC=BC﹣BP=12﹣2t;故答案为(12﹣2t)cm.(2)当t=2时,BP=CQ=2×2=4厘米,∵BD=8厘米.又∵PC=BC﹣BP,BC=12厘米,∴PC=12﹣4=8厘米,∴PC=BD,又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,BD PCB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS);③∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=6cm,CQ=BD=8cm,∴点P,点Q运动的时间t=PB2=62=3秒,∴V Q=CQt =83厘米/秒.即点Q的运动速度是83厘米/秒时,能够使三角形BPD与三角形CQP全等.【点睛】本题考查全等三角形的的判定,熟练运用全等三角形的判定与性质是解题关键.76.已知,点P是直角三角形ABC斜边AB上一点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,若AC=BC,CE:AE=1:3,△FBQ的面积等于3,求△AQE的面积;(3)如图3,当点P在线段BA的延长线上时,请画出符合条件的图形.若AC=BC,AE:CE=1:3,△FEQ的面积等于3,求△AQE的面积.【答案】(1)AE∥BF,QE=QF;(2)9;(3)3.4【解析】【分析】(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EA=BD,再证明△AEQ≌△BDQ,所以AE=BD,CE=BF,又因为CE:AE=1:3,从而得BF:BD=1:3,即△FBQ的面积:△DBQ的面积=1:3,计算△DBQ的面积=9,从而求解;(3)方法同(2)证出Rt△AEC≌Rt△CFB,连接CQ, 由AE:CE=1:3,得CF:CE=1:3,再根据高相等的三角形面积比等于底的比得出△CFQ 的面积与△EFQ 的面积面积比,从而求出△CFQ 的面积,然后根据SAS 证明 △QAE ≌△QCF ,从而求解.【详解】解:(1)当点P 与点Q 重合时,AE 与BF 的位置关系是AE ∥BF ,QE 与QF 的数量关系是AE=BF ,理由是:∵Q 为AB 的中点,∴AQ=BQ ,∵AE ⊥CQ ,BF ⊥CQ ,∴AE ∥BF ,∠AEQ=∠BFQ=90°,在△AEQ 和△BFQ 中,AQE BQF AEQ BFQAQ BQ ∠∠⎧⎪∠∠⎨⎪⎩==,=∴△AEQ ≌△BFQ ,∴QE=QF , 故答案为:AE ∥BF ,QE=QF ;(2) 延长EQ 交BF 于D ,如图2:∵由(1)知:AE ∥BF ,∴∠AEQ=∠BDQ ,在△AEQ 和△BDQ 中,AQE BQD AEQ BDQ AQ BQ ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△AEQ ≌△BDQ ,∴AE=BD,∵∠ACE+∠FCB=∠FCB+∠CBF=90°∴∠ACE =∠CBF又∵∠AEC=∠CFB=90°,AC=CB,∴△AEQ ≌△BDQ∴AE=BD ,CE=BF又∵CE :AE =1:3,∴BF:BD=1:3,即△FBQ 的面积:△DBQ 的面积=1:3 又∵△FBQ 的面积等于3,∴△DBQ 的面积=9,∵△AEQ ≌△BDQ ,∴△AEQ 的面积=9;(3)图形如下:连接CQ,方法同(2)可得:Rt △AEC ≌Rt △CFB(一线三等角),∴AE=CF,EC=FB,∠EAC=∠FCB,∵AE:CE=1:3,∴CF:CE=1:3,∴△CFQ的面积:△ECQ的面积=1:3,△CFQ的面积:△EFQ的面积=1:4,△FEQ的面积等于3,即:△CFQ的面积=34,∵Q为斜边AB的中点,AC=BC,∴CQ=AQ,∠QAC=∠QCB=45°,∴∠EAC+∠QAC =∠FCB+∠QCB,即∠QAE=∠QCF∴△QAE≌△QCF (SAS)∴△AQE的面积=△CFQ的面积=34,【点睛】本题考查全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.77.如图,在△ABC中,AB=CB,∠BAC=∠BCA=45°,F为AB延长线上一点,点E在BC上,且BE=BF.∠CAE=30°,求∠ACF的度数.【答案】答案见解析.【解析】【分析】由∠BAC=∠BCA=45°,可得△ABC 为等腰直角三角形,则可得到∠BAE=15°,再根据Rt △ABE ≌Rt △CBF 得到∠BCF=∠BAE=15°,然后根据∠ACF=∠BCF+∠BCA 进行计算.【详解】解:∵∠BAC =∠BCA =45°,∴∠ABC=∠FBC=90°,∴在Rt △ABE 和Rt △CBF 中90AB CB EBA FBC BE BF ⎧⎪∠=∠=︒⎨⎪⎩=,=∴Rt △ABE ≌Rt △CBF ,∵∠CAE=30°,∴∠BAE=45°-30°=15°,∵Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠BCA=15°+45°=60°.【点睛】本题考查全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.78.在ABC ∆中,AB AC =,60A ∠=,点D 在边AB 上,点E 在边AC 上(点D 、点E 不与所在线段端点重合),BD CE =,连接BE ,CD .射线CF AB ∥,延长BE 交射线CF 于点M ,点N 在直线CD 上,且MN CN =.(1)如图1所示,点N 在DC 的延长线上,求BMN ∠的度数.(2)若()090A αα∠=<≤,其它条件不变,当点N 在DC 的延长线上时,BMN ∠=______;当点N 在CD 的延长线上时,BMN ∠=______.(用含α的代数式表示)【答案】(1)120o ;(2)180o -α,α【解析】【分析】(1)先证明△ABE ≌△ACD 得到∠AEB =∠ADC ,再由平行线的性质得到∠A=∠ECM,∠ADC+∠ACD+∠ECM=180o ,∠ADC =∠MCN ,综合可得∠EMN =∠ACD+∠ADC ,再根据三角形内角和即可求得;(2) 当点N 在DC 的延长线上时,求解方法与(1)相同;当点N 在CD 的延长线上时,与(1)方法相同先证明∠ACD =∠EMC ,再由MN CN =可得∠ACD+∠ECM =∠NME+∠EMC ,再代相等的量代入即可得到∠NME =∠A ,即可求得.【详解】(1)∵BD CE =,AB AC =,∴AD =AE ,在△ABE 和△ACD 中AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),∴∠AEB =∠ADC ,又∵∠AEB =∠MEC(对顶角相等),∴∠ADC =∠MEC,∵CF//AB,∠ADC =∠MCN ,∴∠A=∠ECM,∠ADC+∠ACD+∠ECM=180o , ∠ADC =∠MCN , 又∵∠EMC+∠ECM+∠MEC =180o (三角形内角和为180o ), ∴∠ADC+∠ACD =∠EMC+∠MEC ,又∵∠ADC =∠MEC (已证),∴∠ACD =∠EMC ,又∵MN =CN ,∴∠NCM =∠NMC ,又∵∠ADC =∠MCN (已证),∴∠ADC =∠NMC ,又∵∠ACD =∠EMC ,∠EMN =∠ECM+∠NMC ,∴∠EMN=∠ACD+∠ADC,在△ACD中,∠ACD+∠ADC+∠A=180o,∴∠EMN=∠ACD+∠ADC=180o-∠A,又∵∠A=60o,∴∠EMN=180o-60o=120o.即∠BMN=120o;(2) 当点N在DC的延长线上时,如图1所示:由(1)得∠EMN=180o-∠A,又∵()Aαα∠=<≤,090∴∠EMN=180o-α,即∠BMN=180o-α;当点N在CD的延长线上时,如图所示:由(1)可得∠ACD=∠EMC,∵CF//AB,∴∠A=∠ECM,∵NC=MN,∴∠NCM=∠NMC,又∵∠NCM=∠ACD+∠ECM,∠NMC=∠NME+∠EMC,∴∠ACD+∠ECM =∠NME+∠EMC ,∴∠ECM =∠NME ,又∵∠A=∠ECM,∴∠NME =∠A ,又∵∠A =a ,∴∠NME =a,即∠BMN =a.【点睛】考查全等三角形的判定和性质、等腰三角形性质等知识,解题的关键是灵活运用相关性质求证到∠ACD =∠EMC .79.如图所示,在Rt ABC ∆中,AC BC <,90ACB ∠=,点D 在BC 上,CD CA =,点E 在AB 上,连接CE ,DE ,过点C 作CF CE ⊥交BA 的延长线于点F .若180CAB CDE ∠+∠=,DE 与AF 相等吗?请说明理由.【答案】DE=AF,理由见解析【解析】【分析】先证明∠DCE =∠ACF 、∠CDE =∠CAF ,再根据AAS 证明△CDE ≌△CAF ,从而得到DE =AF.【详解】∵90ACB ∠=,CF CE ⊥,∴∠DCE+∠ECA=90o ,∠ACF+∠ECA=90o ,∴∠DCE=∠ACF,∵180CAB CDE ∠+∠=,∠CAE+∠CAF=180o ,∴∠CAF=∠CDE,在△CDE 和△CAF 中,CAF CDE DCE ACF CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CAF (AAS ),∴DE =AF.【点睛】考查了全等三角形的判定和性质,解题关键利用同角的补角相等和同角的余角相等证明∠DCE=∠ACF 、∠CAF=∠CDE.三、填空题80.如图,已知BD=DC,∠1=∠2,则,AB=___________,∠B=________________。

人教版数学八年级上册第十一章 三角形 习题课 角度计算的专项训练(含答案)

人教版数学八年级上册第十一章 三角形 习题课 角度计算的专项训练(含答案)

习题课角度计算的专项训练01 课堂精讲精练类型1 直接利用三角形的内、外角性质求角度【例1】(佛山顺德区期末)如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=.【变式1】如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于.类型2 借助三角形的角平分线、高的性质求角度【例2】如图,在△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC.过点D作DE⊥AB 于点E,则∠ADE的度数是.【变式2】如图,在△ABC中,∠B=60°,AD是△ABC的外角的平分线,DE⊥AC,则∠γ=.例1 变式1 例2 变式2类型3 借助平行线的性质求角度【例3】(葫芦岛中考)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE =165°,则∠B的度数为.【变式3】(重庆中考)如图,直线EF∥GH,点A在EF上,AC交GH于点B.若∠FAC=72°,∠ACD=58°,点D在GH上,则∠BDC的度数为.类型4 借助学具的特征求角度【例4】(泰安中考)如图,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上.若∠2=44°,则∠1的大小为.【变式4】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是 .例3 变式3 例4 变式4类型5 借助折叠的性质求角度【例5】如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于.【变式5】如图,将△ABC沿DE,HG,EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为.例5 变式502 分层检测A组1.如图,在△ABC中,AD平分∠BAC,DE∥AC,且∠B=40°,∠C=60°,则∠ADE的度数为( )A.80°B.30°C.40°D.50°2.将一副三角板按如图位置摆放,若∠BDE=75°,则∠AMD 的度数是( )A.75°B.80°C.85°D.90°3.如图所示,将三角形ABC沿AB方向平移后,到达三角形BDE的位置,若∠CAB=50°,∠ABC=100°,则∠1的度数为( )A.30°B.40°C.50°D.60°4.如图,已知四边形纸片ABCD,其中∠B=120°,∠D=54°,现将其右下角向内折出△PC′R,恰使C′P∥AB,RC′∥AD,则∠C的度数是.5.如图,将三角尺ABC和三角尺DFF(其中∠A=∠E=90°,∠C=60°,∠F=45°)摆放在一起,使得点A,D,B,E在同一条直线上,BC交DF于点M,那么∠CMF度数等于.第5题第4题B组6.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是( )A.110°B.120°C.130°D.140°7.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC相交于点F.(1)填空:∠AFC=;(2)求∠EDF的度数.C组8.如图,在△ABC中,AD平分∠BAC,EG⊥AD,且分别交AB,AD,AC及BC的延长线于点E,H,F,G.若∠B=45°,∠ACB=75°,则∠G的度数为.9.已知,如图,AD是BC边上的高,AE平分∠BAC,试探究∠DAE与∠B,∠C之间的数量关系.。

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)一、选择题1.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )A. 2cmB. 4cmC. 6cmD. 8cm2.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A. 3cmB. 4cmC. 5cmD. 6cm3.如图,△ABC是等边三角形,AD⊥BC于点D,点E在AC上,且AE=AD,则∠DEC的度数为( )A. 105°B. 95°C. 85°D. 75°4.如图,直线l1//l2,△ABC是等边三角形∠1=50°,则∠2的大小为( )A. 60°B. 80°C. 70°D. 100°5.如图,Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3则BD的长是( )A. 12B. 9C. 6D. 36.如图,直线l//m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为18°,则∠α的度数为( )A. 60°B. 42°C. 36°D. 30°7.如图,△ABC中,AB=AC,∠BAC=120∘,AC的垂直平分线交BC于D,交AC于E,DE=2,则BC=( )A. 8B. 10C. 12D. 158.如图,四边形ABCD中∠C=30∘,∠B=90∘,∠ADC=120∘若AB=2,CD=8,则AD=( )A. 4B. 5C. 6D. 79.如图,已知∠AOB=60°,点P在边OA上OP=12,点M,N在边OB上PM=PN,若MN=2,则OM的长是( )A. 3B. 4C. 5D. 610.如图,C为线段AB上一动点(不与点A、B重合),在AB同侧分别作正三角形ACD和正三角形BCE,AE与BD 交于点F,AE与CD交于点G,BD与CE交于点H,连接GH.以下五个结论:①AE=BD②GH//AB③AD=DH ④GE=HB⑤∠AFD=60°一定成立的是( )A. ①②③④B. ①②④⑤C. ①②③⑤D. ①③④⑤二、填空题11.若一个等边三角形的周长是30cm,一边上的高是5√ 3cm,则这个等边三角形的面积是.12.如图∠MAN=60°,点B在射线AM上,且AB=2,点C在射线AN上.若△ABC是锐角三角形,则AC的取值范围是______.13.在△ABC中,若AB=AC=7,∠B=30°,则BC边上的高AD=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为________米.15.如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是cm2.16.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.17.如图,在△ABC中∠B=30°,BC的垂直平分线交AB于点E,垂足为点D,若ED=5,则EC的长为.18.在△ABC中∠B=10°,∠C=20°,AC=2cm,CD⊥AB且CD交BA的延长线于点D,则CD的长为.19.如图,将边长为5cm的等边△ABC向右平移1cm,得到△A′B′C′,此时阴影部分的周长为cm.20.如图,△ABC为等边三角形DE//AC,点O为线段EC上一点,DO的延长线与AC的延长线交于点F,DO= FO.若AC=7,FC=3,则OC的长为.三、解答题21.如图,在Rt△ABC中∠A=90°,∠B=30°,请用尺规作图法在AB上求作一点D,使得AB=3AD.(保留作图痕迹,不写作法)22.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.23.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足分别为D、E,CE交AB于点F.(1)求证:BE=CD;(2)若∠ECA=75°,求证:DE=1AB.224.如图,在△ABC中AB=AC=8,∠CBA=45°.(1)求证:AC⊥AB;(2)分别以点A,C为圆心,AC长为半径作弧,两弧交于点D(点D在AC的左侧),连接CD,AD,BD.求△ABD 的面积.25.如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.(1)尺规作图:在直线BC的下方,过点B作∠CBE=∠CBA,作NC的延长线,与BE相交于点E.(2)求证:△BEC是等边三角形;(3)求证:∠AMN=60°.答案和解析1.【答案】B【解析】【分析】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.根据直角三角形30°角所对的直角边等于斜边的一半解答.【解析】解:∵直角三角形中30°角所对的直角边为2cm∴斜边的长为2×2=4cm.故选:B.2.【答案】C【解析】解:∵∠B=∠BAC=15°∴AC=BC∵∠ACD=∠B+∠BAC=15°+15°=30°又∵AD⊥BCAC=5cm.∴AD=12故选:C.根据等角对等边的性质可得AC=BC=10cm,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.本题考查了等角对等边的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.【答案】A【解析】【分析】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.先根据△ABC是等边三角形,AD⊥BC可得∠CAD=30°,再由AD=AE可知∠ADE=∠AED,根据三角形内角和定理即可求出∠AED的度数,故可得出∠DEC的度数.【解答】解:∵△ABC是等边三角形∴∠BAC=60°.∵AD⊥BC ∴AD平分∠BAC∴∠DAC=30°.∵AD=AE∴∠ADE=∠AED=180°−30°2=75°∴∠DEC=∠DAC+∠ADE=105°.故选:A4.【答案】C【解析】【分析】本题考查了等边三角形的性质和平行线的性质,熟记等边三角形的性质和平行线的性质是解题的关键.根据等边三角形的性质及外角性质可求∠3,再根据平行线的性质即可得到结论.【解答】解:如图∵△ABC是等边三角形∴∠A=60°∵∠1=50°∴∠3=∠1+∠A=50°+60°=110°∵直线l1//l2∴∠2+∠3=180°∴∠2=180°−∠3=70°故选:C.5.【答案】B【解析】解:∵CD⊥AB,∠ACB=90°∴∠ADC=90°=∠ACB∵∠B=30°∴∠A=90°−∠B=60°∴∠ACD=90°−∠A=30°∵AD=3∴AC=2AD=6∴AB=2AC=12∴BD=AB−AD=12−3=9故选:B.根据三角形的内角和求出∠A,根据余角的定义求出∠ACD,根据含30°角的直角三角形性质求出AC=2AD,AB=2AC求出AB即可.本题主要考查的是含30°角的直角三角形性质和三角形内角和定理的应用,关键是求出AC=2AD,AB=2AC.6.【答案】B【解析】解:∵△ABC是等边三角形∴∠A=∠ABC=60°.∵l//m∴∠1=∠ABC+18°=78°.∴∠α=180°−∠A−∠1=180°−60°−78°=42°.故选:B.先利用等边三角形的性质得到∠A、∠ABC的度数,再利用平行线的性质求出∠1的度数,最后利用三角形的内角和定理求出∠a.本题考查了平行线的性质、等边三角形的性质等知识点,掌握“等边三角形的每个内角都是60°”、“三角形的内角和是180°”及平行线的性质是解决本题的关键.另解决本题亦可过点C作直线l的平行线,利用平行线的性质求解.7.【答案】C【解析】解:连接AD,如图所示:∵AB=AC,∠BAC=120∘∴∠B=∠C=30∘∵AC的垂直平分线交BC于D∴DA=DC,∠DEC=90∘∴CD=2DE=4∴AD=4∵∠BAD=120∘−30∘=90∘∴BD=2AD=8∴BC=BD+CD=8+4=12∴故选C.8.【答案】A【解析】【分析】本题考查了含30∘角的直角三角形的性质,通过作辅助线得出直角三角形是解决问题的关键.作DE⊥BC于E,作AF⊥DE于F,先求出EF=AB=2,再根据含30∘角的直角三角形的性质得出DE= 12CD=4,进而得到DF=DE−EF=2,进而可得出答案.【解答】解:作DE⊥BC于E,作AF⊥DE于F,如图所示:则∠DEC=∠AFD=90∘,EF=AB=2∵∠C=30∘∴∠CDE=60°∴∠ADE=120°−60°=60∘,DE=12CD=4∴DF=DE−EF=2∵∠AFD=90°∴∠DAF=30∘∴AD=2DF=4.故选A.9.【答案】C【解析】【分析】此题考查了含30°角的直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用含30°角的直角三角形的性质得出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD−MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D在Rt△OPD中∠AOB=60°,OP=12∴∠OPD=30°∴OD=12OP=6∵PM=PN,PD⊥MN,MN=2∴MD=ND=12MN=1∴OM=OD−MD=6−1=5.故选C.10.【答案】B【解析】【分析】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.根据等边三角形的性质可以得出△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,进而得出结论.【解答】解:∵△ACD和△BCE是等边三角形∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.∴∠DCE =60°.∴∠DCE =∠BCE .∴∠ACD +∠DCE =∠BCE +∠DCE∴∠ACE =∠DCB .在△ACE 和△DCB 中{AC =DC ∠ACE =∠DCB CE =CB∴△ACE ≌△DCB(SAS)∴AE =BD ,∠CAE =∠CDB ,∠AEC =∠DBC.故①正确;在△CEG 和△CBH 中{∠GEC =∠HBC CE =CB ∠GCE =∠HCB,∴△CEG ≌△CBH(ASA)∴CG =CH ,GE =HB ,故④正确;∴△CGH 为等边三角形∴∠GHC =60°∴∠GHC =∠BCH∴GH//AB ,故②正确;∵∠AFD =∠EAB +∠CBD∴∠AFD =∠CDB +∠CBD =∠ACD =60°,故⑤正确;∵∠DHC =∠HCB +∠HBC =60°+∠HBC∴∠DCH ≠∠DHC∴CD ≠DH∴AD ≠DH ,故③不正确;综上所述,正确的有:①②④⑤.故选B .11.【答案】25√ 3cm 2【解析】【分析】根据周长可求边长;根据三角形面积公式计算.此题考查等边三角形的性质和三角形的面积计算,属基础题.【解答】解:∵等边三角形的周长是30厘米∴边长为10厘米.∵高是√ 102−52=√ 75=5√ 3厘米∴面积=10×5√ 3÷2=25√ 3(cm2).故答案是:25√ 3cm2.12.【答案】1<AC<4【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中AB=2,∠A=60°∴∠ABC1=30°∴AC1=12AB=1在Rt△ABC2中AB=2,∠A=60°∴∠AC2B=30°∴AC2=4当点C在C1和C2之间时,△ABC是锐角三角形∴AC的取值范围是1<AC<4故答案为:1<AC<4.当点C在射线AN上运动,△ABC的形状可能是钝角三角形、直角三角形或锐角三角形.画出相应的图形,根据运动三角形的变化,构造含30°角的直角三角形,即可得到AC的取值范围.本题考查了直角三角形中30°的角所对的直角边等于斜边的一半,能熟记含30°角的直角三角形的性质是解此题的关键.13.【答案】3.5【解析】【分析】本题考查了含30°角的直角三角形的性质,熟练掌握含30°角的直角三角形的性质是解题关键.根据含30°角的直角三角形的性质即可得.【解答】解:∵在△ABC中AB=AC=7,∠B=30°,AD⊥BC∴AD=12AB=3.5故答案为:3.5.14.【答案】12【解析】【分析】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面4米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图∵∠BAC=30°,∠BCA=90°∴AB=2CB而BC=4米∴AB=8米∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.15.【答案】8【解析】【分析】本题主要考查含30°角的直角三角形,等腰直角三角形,平行线的判定与性质等知识点,熟记公式是解题的关键.先利用直角三角形的性质求出AC的长,再根据平行线的性质及等腰直角三角形的性质求出CF的长即可.【解答】解:∵∠B=30°,∠ACB=90°,AB=8cm∴AC=4cm.由题意可知BC//ED∴∠AFC=∠ADE=45°∴AC=CF=4cm.×4×4=8(cm2).故S△ACF=12故答案为8.16.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点∴EF=2∵DE//AB,DF//AC∴△DEF是等边三角形∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.本题考查了等边三角形的判定与性质,平行线的性质,关键是证明△DEF是等边三角形.17.【答案】10【解析】【分析】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【解答】解:在△ABC中∠B=30°,BC的垂直平分线交AB于E,ED=5所以BE=CE所以∠B=∠DCE=30°在Rt△CDE中因为∠DCE=30°,ED=5所以CE=2DE=10.故答案为:10.18.【答案】1cm【解析】【分析】根据三角形的外角的性质可求得∠DAC=30°,再根据直角三角形中有一个角是30°,则这个角所对的边等于斜边的一半,从而求得CD的长.本题考查直角三角形的性质的综合运用.【解答】解:∵∠B=10°,∠C=20°∴∠DAC=30°.∵CD⊥AB∴CD=1/2AC=1cm.故CD的长度是1cm.19.【答案】12【解析】【分析】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平移的性质.利用等边三角形的性质得到AB=BC=5cm,∠B=∠ACB=60°,再根据平移的性质得到∠A′B′C′=∠B= 60°,BB′=1cm,B′C=4cm,于是可判断阴影部分为等边三角形,从而得到阴影部分的周长.【解答】解:∵△ABC为等边三角形∴AB=BC=5cm,∠B=∠ACB=60°∵等边△ABC向右平移1cm得到△A′B′C′∴∠A′B′C′=∠B=60°,BB′=1cm∴∠A′B′C′=∠ACB=60°,B′C=BC−BB′=5−1=4cm∴阴影部分为等边三角形∴阴影部分的周长为3×4=12(cm).故答案为:12.20.【答案】221.【答案】解:如下图:点D即为所求.【解析】本题考查了尺规作图,掌握作一个角的平分线的方法是解题的关键.作∠ACB 的平分线即可.22.【答案】解:(1)∵△ABD 、△AEC 都是等边三角形∴AD =AB ,AC =AE ,∠DAB =∠DBA =∠ADB =60°,∠CAE =60°∵∠DAB =∠DAC +∠CAB ,∠CAE =∠BAE +∠CAB∴∠DAC =∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC≌△BAE∴CD =BE .(2)∵△DAC≌△BAE∴∠ADC =∠ABE∴∠CFE =∠BDF +∠DBF=∠BDF +∠DBA +∠ABF=∠BDF +∠DBA +∠ADC=∠BDA +∠DBA=60°+60°=120°.【解析】本题考查了全等三角形的性质与判定,解决本题的关键是证明△DAC≌△BAE .(1)利用△ABD 、△AEC 都是等边三角形,证明△DAC≌△BAE ,即可得到CD =BE ;(2)由△DAC≌△BAE ,得到∠ADC =∠ABE ,再由∠CFE =∠BDF +∠DBF =∠BDF +∠DBA +∠ABF ,即可解答.23.【答案】证明:(1)∵∠ACB =90°,AD ⊥CE ,BE ⊥CE∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°∴∠BCE =∠CAD在△ADC 和△CEB 中{∠ADC =∠CEB ∠CAD =∠BCE AC =BC∴△ADC≌△CEB(AAS)∴BE =CD ;(2)∵∠ECA=75°∴∠CAD=15°=∠BCE ∵∠ACB=90°,AC=BC∴∠CBA=∠CAB=45°∴∠BFE=60°,∠DAF=30°∴∠FBE=30°,DF=12AF∴EF=12BF∴DE=DF+EF=12(AF+BF)=12AB.【解析】(1)由“AAS”可证△ADC≌△CEB,可得BE=CD;(2)由直角三角形的性质可得DF=12AF,EF=12BF,可得结论.本题考查了全等三角形的判定和性质,30°所对的直角边是斜边的一半,直角三角形的性质,证明三角形全等是解题的关键.24.【答案】(1)证明:∵AB=AC∴∠CBA=∠ACB=45°∴∠CAB=180°−∠ACB−∠CBA=90°∴AC⊥AB.(2)解:过点D作DE⊥BA,交BA的延长线于点E由题意得:AC=AD=CD=8∴△ACD是等边三角形∴∠DAC=60°∴∠DAE=180°−∠DAC−∠CAB=30°∴DE=12AD=4∴△ABD的面积=12AB⋅DE=12×8×4=16∴△ABD的面积为16.【解析】(1)利用等腰三角形的性质可得∠CBA=∠ACB=45°,然后利用三角形内角和定理求出∠CAB=90°,即可解答;(2)过点D作DE⊥BA,交BA的延长线于点E,根据题意可得:AC=AD=CD=8,从而可得△ACD是等边三角形,然后利用等边三角形的性质可得∠DAC=60°,从而利用平角定义可得∠DAE=30°,最后在Rt△DEA中,利用含30°角的直角三角形的性质可得DE=4,从而利用三角形的面积进行计算即可解答.本题考查了等腰三角形的性质,等边三角形的判定与性质,含30°角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【答案】(1)解:如图所示:(2)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∴∠ACH=120°∵CN平分∠ACH∴∠HCN=∠BCE=60°∵∠CBE=∠CBA=60°∴∠EBC=∠BCE=∠BEC=60°∴△BEC是等边三角形;(3)证明:连接ME∵△ABC和△BCE是等边三角形∴AB=BC=BE在△ABM和△EBM中∵{AB=EB∠ABM=∠EBM BM=BM,∴△ABM≌△EBM(SAS)∴AM=EM,∠BAM=∠BEM∵AM=MN∴MN=EM∴∠N=∠CEM∵∠HCN=∠N+∠CMN=60°∠BEC=∠BEM+∠CEM=60°∴∠CMN=∠BEM=∠BAM∵∠AMC=∠ABC+∠BAM=∠AMN+∠CMN∴∠AMN=60°.【解析】【分析】此题是三角形综合题目,考查了等边三角形的性质和判定,作一个角等于已知角的基本作图,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.(1)以B为圆心,以任意长为半径画弧,交AB、BC两边为D和F,以F为圆心,以DF为半径画弧,交前弧于G,作射线BG,交NC的延长线于E,则∠CBE=∠CBA;(2)证明△BCE三个角都是60°,可得结论;(3)作辅助线,构建三角形全等,证明△ABM≌△EBM(SAS),得AM=EM,∠BAM=∠BEM,证明∠CMN=∠BEM=∠BAM根据三角形外角的性质可得结论.。

人教版_部编版八年级数学上册第十一章第二节三角形的外角习题(含答案) (59)

人教版_部编版八年级数学上册第十一章第二节三角形的外角习题(含答案) (59)

人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)如图,已知//AB CD ,72A ∠=︒,58C ∠=︒,则E ∠=________.【答案】14︒【解析】【分析】利用两直线平行,同位角相等以及三角形的外角和定理计算即可.【详解】∵//AB CD ,72A ∠=︒,58C ∠=︒∴72DFE A ∠=∠=︒∴根据三角形外角定理725814E DFE C ∠=∠-∠=︒-︒=︒故答案为:14︒.【点睛】平行线的性质以及三角形的外角定理是解决本题的关键.82.如图,将一副三角板按如图方式叠放,则角α等于_____.【答案】165°【解析】【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【详解】解:∠1=90°﹣30°=60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故答案为:165°.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,掌握三角形内角和定理,三角形外角的性质是解题的关键.83.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=__________.【答案】110°【解析】【分析】先延长直线,然后根据平行线的性质和三角形的外角性质解答即可.【详解】解:如图:延长直线:∵a 平移后得到直线b ,∴a ∥b ,∴∠5=180°-∠1=180°-70°=110°,又∵∠2=∠4+∠5,∠3=∠4,∴∠2-∠3=∠5=110°故答案为:110°.【点睛】本题考查平移问题,解答本题的关键是根据平行线的性质和三角形的外角性质求角.84.如图,A ABC CB =∠∠,AD ,BD ,CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠.以下结论:①//AD BC ;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 平分ADC ∠;⑤12BDC BAC ∠=∠.其中正确的结论有______________.(把正确结论序号填写在横线上)【答案】①②③⑤【解析】【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC ,∠EAC=2∠EAD ,∠ACF=2∠DCF ,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC ,∠EAC=∠ABC+∠ACB ,根据已知结论逐步推理,即可判断各项.【详解】解:∵AD 平分∠EAC ,∴∠EAC=2∠EAD ,∵∠EAC=∠ABC+∠ACB ,∠ABC=∠ACB ,∴∠EAD=∠ABC ,∴AD ∥BC ,∴①正确;∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 平分∠ABC ,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°-(∠DAC+∠ACD)=180°-12(∠EAC+∠ACF)=180°-12(∠ABC+∠ACB+∠ABC+∠BAC)=180°-12(180°+∠ABC)=90°-12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°-12∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵BD平分∠ABC,∴∠CBD=∠CBD=12∠ABC,∵CD平分∠ACF,∴∠DCF=12∠ACF,∴∠DCF-∠CBD=12∠ACF-12∠ABC∵∠BAC=∠ACF-∠ABC ∠BDC=∠DCF-∠CBD∴∠BDC=12∠BAC,⑤正确.故答案为:①②③⑤.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.85.如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为_____.【答案】45°【解析】【分析】反向延长DE交BC于M,如图,先根据平行线的性质求出∠BMD的度数,进而可得∠CMD的度数,然后利用三角形的外角定理解答即可.【详解】解:反向延长DE交BC于M,如图,∵AB∥DE,∴∠BMD=∠ABC=75°,∴∠CMD=180°﹣∠BMD=105°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣105°=45°.故答案为:45°.【点睛】本题考查了平行线的性质和三角形的外角定理,属于基本题型,熟练掌握上述基础知识是解题的关键.86.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为________【答案】28°【解析】【分析】添加辅助线后,根据平行线的性质、直角三角形的性质以及三角形外角的性质即可求解.【详解】解:延长直角边与直线相交,如图:∵两直线平行∠=∠=︒∴3132∵三角板是含30角的直角三角板∠=︒-︒=︒∴4903060∠=∠-∠=︒-︒=︒.∴243603228故答案是:28︒【点睛】本题考查了平行线的性质、直角三角形的性质以及三角形外角的性质,题目较为简单,添加适当的辅助线是解题的关键.∠+∠+∠+∠+∠的度数为______度.87.如图,A B C D E【答案】180【解析】【分析】延长BD交AC于点G,先由三角形外角的性质得出∠CFG=∠EDF+∠E,∠CGF=∠A+∠B,再由三角形内角和定理即可得出结论.【详解】解:延长BD交AC于点G,∵∠CFG 是∵DEF 的外角,∠CGF 是∵ABG 的外角,∴∠CFG=∠EDF+∠E ,∠CGF=∠A+∠B ,∵∠C+∠CFG+∠CGF=180°,∴∠A+∠B+∠C+∠EDF+∠E=180°.故答案为:180.【点睛】本题考查的是三角形内角和定理及三角形外角的性质,根据题意作出辅助线,构造出三角形是解答此题的关键.88.如图,已知DC 是ABC ∆中ACB ∠的外角平分线,则DCA ∠__________B (填“>”、“<”或“=”)【答案】>【解析】【分析】根据三角形的外角性质、角平分线的定义解答.【详解】解:DCE ∠是DCB ∆的一个外角,DCE B ∴∠>∠, DC 是ABC ∆中ACB ∠的外角平分线,DCE DCA ∴∠=∠,DCA B ∴∠>∠,故答案为:>.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.89.已知60ABC ∠=︒,点D 为BC 边上一点,过点D 作//DP AB ,如果3PBD ABC ∠=∠,则DPB ∠=_______.【答案】40︒或100︒【解析】【分析】结合题意由点P 得位置不同画出相应的图形,再根据平行线的性质、角的倍分计算、三角形外角性质或三角形内角和定理即可求得答案.【详解】解:①当点P 在ABC ∠内部时,如图:∵60ABC ∠=︒,3PBD ABC ∠=∠∴20PBD ∠=︒∵//DP AB∴60PDC ABC ∠=∠=︒∴40DPB PDC PBD ∠=∠-∠=︒;②当点P 在ABC ∠外部时,如图:∵60ABC ∠=︒,3PBD ABC ∠=∠∴20PBD ∠=︒∵//DP AB∴60PDB ABC ∠=∠=︒∴180100DPB PDB PBD ∠=︒-∠-∠=︒;∴综上所述,40DPB ∠=︒或100DPB ∠=︒.故答案是:40︒或100︒【点睛】本题考查了根据已知条件画图、平行线的性质、角的倍分计算、三角形外角性质、三角形内角和定理以及分类讨论的思想方法,注意此题不要漏解.90.将一个直角三角板和一把直尺如图放置,如果∠α=39°,则∠β的度数为_______.【答案】51°【解析】【分析】先根据三角形一个外角等于与它不相邻的两个内角和求出∠1,再根据两直线平行线同位角相等求出∠2,最后根据三角形的内角和定理即可求出∠β的度数.【详解】解:如图,由直角三角板可知∠B=30°,∠A=60°,由直尺可知EF∥GH.∵∠B=30°,∠α=39°,∴∠1=∠B+∠α=69°,∵EF∥GH,∴∠2=∠1=69°,∵∠A=60°,∴∠β=180°-∠2-∠A=180°-69°-60°=51°,故答案为:51°.【点睛】本题考查三角形内角和定理,三角形外角的性质,平行线的性质.熟练掌握相关定理,并且能正确识图完成角度之间的转换是解决此题的关键.。

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (67)

人教版_部编版八年级数学上册第十一章第二节三角形的外角练习题(含答案) (67)

人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)如图,向两边延长ABC ∆的边AB ,点P 是直线AB 上B 点右边的一动点,PE AC ∥,CO 平分ACB ∠,PM 平分APE ∠,OC 与PM 交与点M ,当点P 在直线AB 上运动时,探求M ∠与ABC ∠数量关系.【答案】12M ABC ∠=∠. 【解析】【分析】过点A 作AG PM ∥,交MO 的延长于点G ,先根据平行线的性质得出G M ∠=∠,再得出6030m n =⎧⎨=-⎩平分NAC ∠,再根据三角形内、外角平分线的交角的结论即可【详解】解:如图,过点A 作AG PM ∥,交MO 的延长于点G ,则G M ∠=∠ PE AC ∥,NAC APE ∴∠=∠,AG ∴平分NAC ∠, CO 平分ACB ∠,由三角形内、外角平分线的交角的基本图形与结论得,12G ABC ∠=∠,即12M ABC ∠=∠.【点睛】此题主要考查了角平分线的性质,三角形内角与外角的关系,三角形内角和定理,关键是根据角平分线的性质得到角之间的关系.62.如图,在ABC ∆中,ABC ∠的平分线与BAC ∠,ACB ∠的外角平分线交于点D ,DE BC ⊥的延长线于点E ,已知30∠=︒CDE ,50ABC ∠=︒,求ADB ∠、BDC ∠的度数.【答案】30ADB ∠=︒;35BDC ∠=︒.【解析】【分析】 根据三角形的内角和定理、角平分线定义得出1302∠=∠=︒ADB ACB ,1352∠=∠=︒BDC BAC 即可 【详解】解:30CDE ∠=︒,DE BC ⊥,60DCE ∴∠=︒. DC 平分ACE ∠,120∴∠=︒ACE60ACB ∠=︒∴.ADB ∠是内、外角平分线的交角,1302ADB ACB ∴∠=∠=︒. 180180506070BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒.BDC ∠是内、外角平分线的交角,1352BDC BAC ∴∠=∠=︒. 【点睛】此题主要考查了角平分线的性质,三角形内角与外角的关系,三角形内角和定理,关键是根据角平分线的性质得到角之间的关系.63.如图,已知射线OE ⊥射线OF ,B 、A 分别为OE 、OF 上一动点,ABE ∠、BAF ∠的平分线交于C 点.问B 、A 分别在OE 、OF 上运动的过程中,C ∠的度数是否改变?若不变,求出其值;若改变,说明理由.【答案】不变,45C ∠=︒.【解析】【分析】根据三角形的内角和定理、角平分线定义和三角形的外角的性质可以得到∠C=90°-12∠O . 【详解】解:∠C 的度数不会改变.∵∠ABE 、∠BAF 的平分线交于C ,∴∠CAB=12∠FAB ∠CBA=12∠EBA ∴∠C=180°-(∠CAB +∠CBA )=180°-12(∠ABE+∠BAF ) =180°-12(∠O+∠OAB+∠BAF ) =180°-12(∠O+180°) =90°-12∠O=45°. 【点睛】本题考查了三角形的内角和定理,角平分线的定义,三角形外角的性质定理,熟练掌握相关的性质是解题的关键.64.如图,在ABC ∆中,角平分线AD 、BE 、CF 相交于点O ,过点B 作BG CF ⊥于点G ,12OBG BAC ∠=∠成立吗?说明理由.【答案】12OBG BAC ∠=∠ 成立,见解析. 【解析】【分析】根据三角形内角平分线的交角的基本图形和结论和三角形外角的性质定理即可得出答案【详解】解:12OBG BAC ∠=∠成立. 理由如下:∵在ABC ∆中,角平分线AD 、BE 、CF 相交于点O ,由三角形内角平分线的交角的基本图形和结论得,1902BOC BAC ∠=︒+∠. 由三角形的外角性质得,90BOC G OBG OBG ∠=∠+∠=︒+∠,190902BAC OBG ∴︒+∠=︒+∠, 12OBG BAC ∴∠=∠ 【点睛】本题考查了三角形的内角和定理,以及三角形的角平分线的性质,熟练掌握相关的知识点是解题的关键.65.如图,BG 是ABD ∠的平分线,CH 是ACD ∠的平分线,BG 与CH 交于点O ,若150BDC ∠=︒,110BOC ∠=°,求A ∠的度数.【答案】70A ∠=︒.【解析】【分析】根据三角形的外角的性质得出燕尾角的基本图形的结论得出∠BDC 、∠BOC ,在根据角平分线的性质即可得出【详解】解:由燕尾角的基本图形与结论可得,BDC BOC OBD OCD ∠=∠+∠+∠①BOC A ABO ACO ∠=∠+∠+∠② BG 是ABD ∠的平分线,GH 是ACD ∠的平分线ABO OBD ∴∠=∠,ACO OCD ∠=∠.①-②得,270A BOC BDC ∠=∠-∠=︒.【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.66.如图,已知DE 分别交ABC ∆的边AB 、AC 于D 、E ,交BC 的延长线于F ,62B ∠=︒,76ACB ∠=︒,93ADE ∠=︒,求DEC ∠的度数.【答案】135DEC ∠=︒.【解析】【分析】根据三角形的内角和定理即可求解【详解】解:在ABC 中,=180--∠︒∠∠A B ACB =180︒-62︒-7642︒=︒,∴∠DEC=9342135A ADE ∠+∠=︒+︒=︒【点睛】本题主要考查三角形内角和定理和外角的性质,掌握三角形内角和为180°及三角形的一个外角等于不相邻两个内角的和是解题的关键.67.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP 分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需要说明理由)【答案】(1)∠DBC+∠ECB =180°+∠A,理由见解析;(2)50°;(3)∠P=90°-12∠A;(4)∠BAD+∠CDA =360°-2∠P,理由见解析【解析】【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.【详解】(1)∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2-∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=12(∠DBC+∠ECB)=12(180°+∠A),在△PBC中,∠P=180°-12(180°+∠A)=90°-12∠A;即∠P=90°-12∠A;故答案为:50°,∠P=90°-12∠A;(4)延长BA、CD于Q,则∠P=90°-12∠Q,∴∠Q=180°-2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°-2∠P,=360°-2∠P.【点睛】此题考查三角形的外角性质,三角形内角和定理,解题关键在于作辅助线68.如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【答案】(1) 25°;(2) ∠E=β-α【解析】【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC 的度数,由PE⊥AD,可得∠DPE的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【详解】(1)∵∵B=35°,∵ACB=85°,∵∵BAC=180°-∵B-∵ACB=60°.∵AD平分∵BAC,∵∵DAC=∵BAD=30°.∵∵ADC=∵B+∵BAD=65°.又∵PE∵AD,∵∵DPE=90°,∵∵E=90°-∵ADC=25°.(2)∵∵B=α,∵ACB=β,∵∵BAC=180°-α-β.∵AD平分∵BAC,∵∵DAC=∵BAD=(180°-α-β).∵∵ADE=∵B+∵BAD=90°+α-β,又∵PE∵AD,∵∵DPE=90°,∵∵E=90°-∵ADE=β-α.【点睛】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.69.,D E 分别为ABC ∆的边,AC BC 上两点,将CDE ∆沿DE 翻折,C 点落在C '处,11,44PDC ADC PEC BEC ''''∠=∠∠=∠.(1)如图(1)若90C ∠=.求P ∠的度数.(2)如图(2)若180C P ∠+∠=,求C ∠的度数.【答案】(1)45︒;(2)120︒.【解析】【分析】(1)易得180ADC BEC ''∠+∠=︒,求出45PDC PEC ''∠+∠=︒,然后根据三角形内角和定理求出P ∠;(2)由题意得4ADC PDC ''∠=∠,4BEC PEC ''∠=∠,2ADC BEC C ''∠+∠=∠,然后根据三角形内角和定理可得P ∠11802C EDC DEC =︒-∠-∠-∠,结合180CDE CED C ∠+∠=︒-∠,可求出120C ∠=︒.【详解】解:(1)2180ADC BEC C ''∠+∠=∠=︒,又44ADC BEC PDC PEC ''''∠+∠=∠+∠,45PDC PEC ''∴∠+∠=︒,45PDE PED PDC EDC PEC C ED CDE CED ''''∠+∠=∠+∠+∠+∠=︒+∠+∠4590135=︒+︒=︒,180********P PDE PED ∠=︒-∠-∠=︒-︒=︒(2)14PDC ADC ''∠=∠ 4ADC PDC ''∴∠=∠14PEC BEC ''∠=∠∠, 4BEC PEC ''∴∠=∠2ADC BEC C ''∠+∠=∠,442PDC PEC C ''∴∠+∠=∠12PDC PEC C ''∴∠+∠=∠, 180180P PDE PED PDC EDC PEC DEC ''''∠=︒-∠-∠=︒-∠-∠-∠-∠11802C EDC DEC =︒-∠-∠-∠ 180C CDE CED ∠+∠+∠=︒180CDE CED C ∴∠+∠=︒-∠()1118018022P C C C ∴∠=︒-∠-︒-∠=∠ 又180P C ∠+∠=︒11802C C ∴∠+∠=︒, 120C ∴∠=︒【点睛】本题主要考查三角形内角和定理与外角的性质,涉及的角较多,分析起来较为复杂,结合题意求出12PDC PEC C ''∠+∠=∠是解题关键.70.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)求∠ACB的大小;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CF∥OB.【答案】(1)135°;(2)45°;(3)证明见解析.【解析】【分析】(1)根据角平分线的性质得到∠OAC =∠CAB,∠ABC=∠GBC,根据三角形的内角和得到∠OAB+∠ABO=90°,即可求出∠CAB+∠ABC的度数,根据三角形的内角和即可求解.(2)根据角平分线的性质得到∠GBD=∠EBD,则∠CBD=∠GBC+∠GBD=12(∠ABG+∠GBE)=90°,根据∠ACB=135°即可求出∠ADB的大小.(3)根据三角形外角的性质得到∠AGO=∠GCB+∠GBC=45°+∠GBC,∠AGO-∠BCF=45°,可得到∠GBC=∠BCF,即可证明.【详解】(1)∵AC、BC分别是∠BAO和∠ABO角的平分线,∴∠OAC =∠CAB,∠ABC=∠GBC,∵m⊥n,∴∠AOB=90°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-12(∠OAB+∠ABO)=180°-12×90° =135°.(2)∵BD是∠OBE角的平分线,∴∠GBD=∠EBD,∴∠CBD=∠GBC+∠GBD=12(∠ABG+∠GBE)=90°,又∵∠ACB=135°,∴∠DCB=45°,∴∠ADB=180°-∠CBD-∠DCB=45°点A、B在运动的过程中,∠ADB不发生变化,其值为45°.(3)∵∠AGO=∠GCB+∠GBC=45°+∠GBC,又已知:∠AGO-∠BCF=45°,∴ 45°+∠GBC-∠BCF=45°,∠GBC=∠BCF,∴CF∥OB.【点睛】考查角平分线的性质,三角形的内角和,三角形外角的性质,平行线的判定等,综合性比较强,掌握三角形的内角和定理是解题的关键.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (98)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案) (98)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题一(含答案)已知,如图,点A 、D 、B 、E 在同一直线上,AC EF =,AD BE =,A E ∠=∠,CHD ∠=110°,求HBD ∠的度数.【答案】55°【解析】【分析】先根据SAS 即可证明ABC EDF ∆≅∆;可知HDB HBD ∠=∠,再利用三角形的外角关系即可求出HBD ∠的度数.【详解】解:AD BE =,AB ED ∴=,在ABC ∆和EDF ∆中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩, ()ABC EDF SAS ∴∆≅∆;ABC EDF ∆≅∆,HDB HBD ∴∠=∠,110CHD HDB HBD ∠=∠+∠=︒,55HBD ∴∠=︒.【点睛】本题考查了全等三角形的判定和性质以及三角形的外角关系,属于基础性题目.解题关键是由SAS 证明ABC EDF ∆≅∆.72.如图所示,D 是BC 上一点,AB AD =,BC DE =,AC AE =,AC 与DE 交于点F .求证:C E ∠=∠.【答案】证明见解析.【解析】【分析】利用“边边边”证明ABC ∆和ADE ∆全等,根据全等三角形对应角相等证明即可;【详解】证明:在ABC ∆和ADE ∆中,AB AD BC DE AC AE =⎧⎪=⎨⎪=⎩, ()ABC ADE SSS ∴∆≅∆,C E ∴∠=∠(全等三角形对应角相等);【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.73.如图所示,在ABC 中,90BAC ∠=︒,AB AC =,MN 是经过点A 的直线,,BD MN CE MN ⊥⊥,垂足分别为D ,E .(1)求证:①BAD ACE =∠∠;②BD AE =;(2)请写出BD ,CE ,DE 三者间的数量关系式,并证明.【答案】(1)①见解析;②见解析;(2)BD=CE+DE ,证明见解析.【解析】【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE ;②根据全等三角形的判定方法(AAS )得出△ABD ≌△CAE ,从而得出BD=AE ;(2)根据△ABD ≌△CAE ,得出BD=AE ,AD=CE ,再根据AE=AD+DE ,即可得出BD ,DE ,CE 三者间的数量关系.【详解】解:(1)△△△BAC=90°,△△BAD+△CAE=90°,△CE △MN ,△△ACE+△CAE=90°,△△BAD=△ACE ;△△BD △MN ,CE △MN ,△△BDA=△AEC=90°,在△ABD 和△CAE 中,∵∠BDA =∠AEC ,∠BAD =∠ACE ,AB =AC ,△△ABD △△CAE ,△BD=AE ;(2)△△ABD △△CAE ,△BD=AE ,AD=CE ,△AE=AD+DE ,△BD=CE+DE .【点睛】本题主要考查了直角三角形的性质,余角的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.74.如图,点E 在ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若123∠=∠=∠,AC AE =,试说明:ABC ADE △≌△的理由.【答案】证明见详解.【解析】【分析】根据已知,利用三角形的内角和得到∠E=∠C ,再由已知可得∠BAC=∠DAE ,又因为AC=AE ,所以根据AAS 可判定△ABC ≌△ADE .【详解】∵∠2=∠3,∠AFE=∠CFD ,∴∠C=∠E ;∵∠1=∠2,∴∠1+∠DAF=∠2+∠DAF即:∠BAC=∠DAE .又∵AC=AE ,∠C=∠E ,∴△ABC ≌△ADE .【点睛】此题考查三角形内角和及全等三角形的判定的理解及运用,准确识图,熟练掌握和运用相关知识是解题的关键.75.如图ABC 中,60,,ABC AD CE ︒∠=分别平分,BAC ACB AD CE∠∠、、相交于点P .(1)求CPD ∠的度数;(2)求证:AE CD AC +=【答案】(1)∠CPD=60°;(2)详见解析【解析】【分析】(1)根据三角形的内角和定理及角平分线的定义,三角形的外角性质即可求出;(2)在AC 上截取AF=AE ,先证明△APE ≌△APF (SAS ),再证明△CFP ≌△CDP (ASA ),根据全等三角形的性质证明AE CD AC +=即可.【详解】解:(1)∵∠ABC=60°,∴∠BAC+∠ACB=180°-60°=120°,又∵AD 、CE 分别平分∠∠、BAC ACB , ∴12CAD BAC ∠=∠,12ACE ACB ∠=∠ ∴111()60222CAD ACE BAC ACB BAC ACB ∠+∠=∠+∠=∠+∠=︒, 又∵∠CPD 是△ACP 的外角,∴∠CPD=∠CAD+△ACE=60°,∴∠CPD=60°.(2)如图,在AC 上截取AF=AE ,连接PF ,∵∠CPD=60°,∴∠APC=120°,∠APE=60°∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠BAD=∠CAD ,∠ACE=∠BCE在△APE 与△APF 中AE AF BAD CAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴△APE ≌△APF (SAS )∴∠APF=∠APE=60°,∴∠CPF=△AOC-△APF=60°,在△CFP 与△CDP 中,ACE BCE CP CPCPD CPF ∠=⎧⎪=⎨⎪∠=∠⎩∴△CFP ≌△CDP (ASA )∴CD=CF∴AC=AF+CF=AE+CD ,即AE CD AC +=.【点睛】本题考查了全等三角形的判定及性质、三角形内角和定理与角平分线的角度计算问题,解题的关键是通过在AC 上截取AF=AE 构造全等三角形.76.如图,点E 在四边形ABCD 的边AD 上,90BAE BCE ACD ∠=∠=∠=︒,且BC CE =,求证:AD AE AB =+.【答案】详见解析【解析】【分析】根据等量代换证明出∠ACB=△DCE 及∠ABC=△DEC ,再证明△ABC ≌△DEC (ASA ),由全等三角形的性质即可证明结论.【详解】解:∵90BCE ACD ∠=∠=︒∴∠ACB+∠ACE=△DCE+△ACE∴∠ACB=△DCE又∵90BAE BCE ∠=∠=︒,四边形ABCE 的内角和为360°,∴∠ABC+∠AEC=180°,又∵∠AEC+△DEC=180°,∴∠ABC=△DEC在△ABC 与△DEC 中ABC DEC BC CEACB DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEC (ASA )△AB=DE∴AD=AE+DE=AE+AB即AD AE AB =+.【点睛】本题考查了全等三角形的判定,结题的关键是通过等量代换证明∠ACB=△DCE 及∠ABC=△DEC .77.如图,A ,B ,D ,F 在同直线上,AD BF =,AE BC =,A B ∠=∠,求证:(1)AEF BCD ≌;(2)//AE BC .【答案】(1)见解析;(2)见解析【解析】【分析】(1)由AD=BF 得出AF=BD ,根据SAS 即可证得△AEF ≌△BCD ;(2)由∠A=∠B,根据平行线的判定方法:内错角相等,两直线平行即可证明.【详解】解:(1)∵AD=BF ,∴AD+DF=BF+FD ,即AF=BD ,在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△BCD (SAS );(2)∵∠A=∠B ,∴AE ∥BC.【点睛】本题考查了全等三角形的判定与性质和平行线的判定,比较简单,熟记全等三角形的判定方法SAS 是解决问题的关键.78.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.【答案】(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【解析】【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE ∴∠=∠//AD BCDAE F ∴∠=∠BAF F ∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE ∴=在ADE 和FCE △中,DAE FAED FECDE CE∠=∠⎧⎪∠=∠⎨⎪=⎩ ()ADE FCE AAS ∴≅AD FC ∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE ∴∠=∠在ADE 和AGE 中,AD AGDAE GAEAE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅,DE GE D AGE ∴=∠=∠E 是边CD 的中点DE CE ∴=CE GE ∴=ECG EGC ∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC ∴∠=∠BG BC ∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF由方法1可知:,AF GF AE GE ==AFG ∴是等腰三角形EF ∴平分AFG ∠12EFC AFG ∴∠=∠ //CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒ 11802D BCD ︒∠+∠=,即1()1802D ECF BCF ∠+∠+∠=︒ 1()2ECF ECF BCF ∴∠=∠+∠ ECF BCF ∴∠=∠在ECF △和BCF 中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅CB CE ∴=.【点睛】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键.79.如图,在ABC 和DBE 中,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,A BDE ∠=∠,ABD CBE ∠=∠.(1)求证:ABC DBE ≅;(2)若 2.5AD DC ==,4BC =,求CDP 与BEP △的周长和.【答案】(1)证明见解析;(2)CDP 与BEP △的周长和为15.5.【解析】【分析】(1)先根据角的和差得出ABC DBE ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质得出5,4AC DE BC BE ====,再根据三角形的周长公式、线段的和差即可得.【详解】(1)ABD CBE ∠=∠ABD CBD CBE CBD ∴∠+∠=∠+∠,即ABC DBE ∠=∠在ABC 和DBE 中,A BDE AB DB ABC DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DBE ASA ∴≅;(2) 2.5AD DC ==5AC AD DC ∴=+=由(1)知,ABC DBE ≅5,4AC DE BC BE ∴====CDP ∴与BEP △的周长和为CD CP DP PE BP BE +++++()()CD CP BP DP PE BE =+++++CD BC DE BE =+++2.5454=+++15.5=即CDP 与BEP △的周长和为15.5.【点睛】本题考查了三角形全等的判定定理与性质、角的和差等知识点,熟记三角形全等的判定定理与性质是解题关键.80.如图,在ABC 和DEF 中,点B 、F 、C 、E 在同一直线上,AB DE =,BF CE =,AB DE ∥,求证:ABC DEF △≌△.【答案】证明见解析.【解析】【分析】先根据线段的和差可得BC EF =,再根据平行线的性质可得B E ∠=∠,然后根据三角形全等的判定定理即可得证.【详解】BF CE =BF CF CE CF ∴+=+,即BC EF =//AB DEB E ∴∠=∠在ABC和DEF中,BC EFB E AB DE=⎧⎪∠=∠⎨⎪=⎩()ABC DEF SAS∴≅△△.【点睛】本题考查了线段的和差、平行线的性质、三角形全等的判定定理,熟记三角形全等的判定定理是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的相关计算和证明(习题)
➢ 例题示范
例1:已知:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,AE ⊥BC 于点E .若∠ADE =80°,∠EAC =20°,则 ∠B =_______.
思路分析 ①读题标注:
②梳理思路:
从条件出发,看到AE ⊥BC 想到直角三角形两锐角互余,再结合已知的角度可求出∠DAE =10°,∠C =70°; 由AD 平分∠BAC 可知∠BAC =60°;
把∠B 看作△ABC 的一个内角,则∠B =180°-60°-70°=50°.
(思路不唯一,也可将∠B 看作△ABD 的一个内角,则∠ADE 是△ABD 的一个外角,利用三角形的外角定理进行求解.)
➢ 巩固练习
1. 已知:如图,AB ⊥BD 于点B ,ED ⊥BD 于点D ,C 是线段BD 上一点.若AC
⊥CE ,∠A =30°,则∠E =______.
A
B
C D
E
2
1
C B A
第1题图 第2题图
2. 已知:如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠
1+∠2=____________.
3. 已知:如图,∠A =32°,∠B =45°,∠C =38°,则∠DFE =( )
80°
20°
A
C
E D B D E C
A
A .120°
B .115°
C .110°
D .105°
D A
E
F E
F
A
第3题图 第4题图
4. 已知:如图,在△ABC 中,∠A :∠B =1:2,DE ⊥AB 于E ,且∠FCD =60°,则∠
D =( ) A .50°
B .60°
C .70°
D .80°
5. 已知:如图,在△ABC 中,∠B =∠ACB ,CD ⊥AB ,垂足为D .
求证:∠A =2∠BCD .
D B
A
证明:如图, 设∠BCD =α
∵CD ⊥AB (已知)
∴∠BDC =90° (垂直的定义)
∴∠BCD +_____=90° (_________________________) ∴2α+2∠B=180° (等量代换)
∵_____________________(_________________________) ∵∠B =∠ACB (已知) ∴∠A+2∠B =180° (等量代换) ∴∠A=2α (同角的补角相等) 即∠A =2∠BCD
6. 已知:如图,AB ∥DE ,∠1=∠ACB ,AC 平分∠BAD .
求证:AD ∥BC .
A D
7.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于F.若
∠B=30°,∠C=70°,求
∠DEF的度数.
8.已知:如图,在△ABC中,AD平分∠BAC,EF⊥AD于点P,交BC延长线于点
M.已知∠ACB=70°,∠B=40°,求∠M的度数.
F
E
D C
B
A
➢思考小结
1.我们在做几何证明题的时候,可以从已知出发,看条件如何用,比如看到平
行线,考虑___________________________,看到垂直考虑
______________________,_________________
_________;也可以从目标出发,根据目标倒推,比如把角看作什么角,看
作三角形的一个内角考虑__________________,看作外角考虑
_______________________________________.
2.阅读材料
我们是怎么做几何题的?
例1:已知:如图,DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,求∠A的度数.
A
第一步:读题标注,把题目信息转移到图形上;(请把条件标注图上)
第二步:走通思路,要求∠A的度数,怎么想?
要求∠A,可以把∠A看作△ABC的一个内角,∠C度数已知,只需求出∠B 的度数即可;
结合题中的条件,由DE∥BC,∠DEF=50°得∠EFC=∠DEF=50°,再由EF∥AB得∠B=∠EFC=50°;
最后,利用三角形的内角和等于180°,
得∠A=180°-∠B-∠C=180°-50°-70°=60°.
第三步:规划过程
过程分成三块:
①由DE∥BC,∠DEF=50°得∠EFC=∠DEF=50°;
②由EF∥AB得∠B=∠EFC=50°;
③利用三角形内角和定理求∠A.
第四步:书写过程
【参考答案】
➢巩固练习
1.60°
2.270°
3. B
4. A
5.证明:如图,
设∠BCD =α
∵CD ⊥AB (已知)
∴∠BDC =90° (垂直的定义)
∴∠BCD+∠B=90° (直角三角形两锐角互余) ∴2α+2∠B=180° (等量代换)
∵∠A+∠B+∠ACB =180° (三角形的内角和等于180°) ∵∠B =∠ACB (已知) ∴∠A+2∠B =180° (等量代换) ∴∠A=2α (同角的补角相等) 即∠A =2∠BCD 6. 证明:如图,
A B C
D
E F
1
∵AB ∥DE (已知)
∴∠1=∠BAC (两直线平行,同位角相等) ∵AC 平分∠BAD (已知)
∴∠DAC =∠BAC (角平分线的定义) ∴∠1=∠DAC (等量代换) ∵∠1=∠ACB (已知) ∴∠DAC =∠ACB (等量代换)
∴AD ∥BC (内错角相等,两直线平行) 7. 解:如图,
在△ABC 中,∠B =30°,∠C =70°(已知)
∴∠BAC=180°-∠B -∠C =180°-30°-70°
=80°(三角形的内角和等于180°)
∴∠EDF =∠B+∠BAD (三角形的外角等于与它不相邻的两个内角的和)
∵∠B=30°(已知)
∴∠EDF=30°+40°
=70°(等量代换)
∵EF⊥BC(已知)
∴∠EFD=90°(垂直的定义)
∴∠EDF+∠DEF=90°(直角三角形两锐角互余)∴∠DEF=90°-∠EDF
=90°-70°
=20°(等式的性质)
8.解:如图,
在△ABC中,∠ACB=70°,∠B=40°(已知)∴∠BAC=180°-∠ACB-∠B
=180°-70°-40°
=70°(三角形的内角和等于180°)∵AD平分∠BAC(已知)
∴∠DAC=1
2
∠BAC
=1
2
×70°
=35°(角平分线的定义)
∵EF⊥AD(已知)
∴∠APF=90°(垂直的定义)
∴∠AFP+∠DAC =90°(直角三角形两锐角互余)
∴∠AFP=90°-∠DAC
=90°-35°
=55°(等式的性质)
∵∠CFM=∠AFP(对顶角相等)
∴∠CFM=55°(等量代换)
∵∠ACB是△CFM的一个外角(外角的定义)
∴∠ACB=∠M +∠CFM(三角形的外角等于与它不相邻的两个内角的和)∴∠M=∠ACB-∠CFM
=70°-55°
=15°(等式的性质)
➢思考小结
同位角、内错角、同旁内角,
直角三角形两锐角互余,同角(等角)的余角相等;
三角形的内角和等于180°,
三角形的外角等于与它不相邻的两个内角的和.。

相关文档
最新文档