高中数学试卷模板(密封线俱全8开)

合集下载

试卷规范

试卷规范

试卷规范为了加强对制卷工作的领导和管理,统一试卷格式和要求,提出如下规范。

一、试卷版式要求1.试卷采用Word文件格式排版。

2.页面设置:8开版面,单页打印。

横向排列,左侧留密封线。

3.页边距:上2厘米,左2厘米,下2厘米,右2厘米4.行间距:行间距统一为1.5。

左侧装订,页眉1.5,页脚1.75。

5.正文字体和字号:宋体五号。

二、试卷头格式1.卷号:按A、B、C卷三套试卷。

2.考试时间:标注考试年月。

3.考试试卷名称:课程的全称。

4.考试范围:试卷内容覆盖教学内容的范围。

如全部或第1至8章。

5.考试形式:指开卷、闭卷或半开卷。

6.课程类别:按教学计划填写为必修、选修等。

7.学期:学期定义:20091表示2009年上半年,20092表示2009年下半年。

三、试卷内容1.题型排列:题型按从易到难的顺序排列。

2.题型名称:概括表明本大题题型3.题数及分值分配:紧接题型列出,标明(本大题共×小题,每小题×分,共×分)。

①某大题只一个小题,分值就标在题型后面。

格式为:(本大题共1题,共×分)②某大题有多个小题,且分值相等,格式为:(本大题共×小题,每小题×分,共×分)③某大题有多个小题,且分值不等,格式为:(本大题共×小题,共×分),每小题分值标在小题后。

4.指导语:是针对题型需要达到的目的,向应考者指明答题方式的语句。

答题指导语置于括号内,对本题解题提出具体要求。

无特殊要求的可以不列指导语。

5.试题题干:表达一道题内容的语言,其作用是使应考者明白试题是什么,要求做什么,试题题干一般由完整的语句组成,亦可由完整的段落或专业术语构成。

6.总题量:文科类为:40-50道之间;理科类为:35-45道之间。

7.注意:设计题型及试卷格式时,应考虑到学生答题的方便,考生直接在试卷上做题。

安徽省,高中数学试卷模板

安徽省,高中数学试卷模板

20 年月模拟考试
数学试题(卷)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第I卷(选择题共50分)
一、选择题(本大题共10小题,每小题5分,共50分,在
每小题给出的四个选项中,只有一项是最符合题目要求的。


()A. B.
C. D.
2.
() A.B.
C.D.
3.
() A.B.
C.D.
4.
()
A. B. C. D.
5.
()
A. B. C. D.
6.
()
A. B. C. D.
7.()
A.B.C.D.
8.
() A. B. C. D
9.
()A.B.C.D.
10.
()A.B. C.D.
第Ⅱ卷(非选择题共100分)
二、填空题(本大题共5小题,每小题5分,共25分,把
答案填在题中横线上)。

11.
12.
13.
14.
15.
三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。


16.(本小题满分12分)
17.(本小题满分12分);
18.(本小题满分12分)( 19.(本小题满分13分)
20.(本小题满分13分)21.(本小题满分13分)。

5年年河南省中招考试数学试题卷及答案

5年年河南省中招考试数学试题卷及答案

2007年河南省高级中等学校招生学业考试试卷数 学注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.【 】A.— 1B. 1C.-3 2. 使分式有意义的x 的取值范围为A.x≠2B.X≠-2C.X>-23. 如图,△ABC 与△AB ℃关于直线1对称, 则 Z B 的 度 数 为 【 】A.30°B. 50°C. 90°D. 100°4. 为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:D. 3【 】C. x<2( 第 3 题 )则关于这10户家庭的约用水量,下列说法错误的是【 】A. 中位数是5吨B. 极 差 是 3 吨 C . 平均数是5 . 3吨 D . 众 数 是 5 吨一 、选择题(每小题3分,共18分)1. 计算( - 1)3 的结果是得分 评卷人5. 由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表 示在该位置上的小正方体的个数,那么,这个几何体的左视图是 【 】A. B. C. D. (第5题图)6. 二次函数y=ax²+x+a² - 1 的图像可能是 【 】A. B. C. D.7. 的相反数是 .8. 计算:(-2x²) · 3x ⁴=9. 写出一个经过点(1, — 1)的函数的表达式10. 如图, PA 、PB 切◎O 于点A 、B,点C 是◎O 上 一 点,且ZACB=65°,则ZP=.(第10题图) (第11题图)11. 如图,在直角梯形ABCD 中, AB//CD,ADICD,AB=1cm,AD=2cm,CD=4cm, 则BC= ·12. 已知x 为整数,且满足- √2≤x≤ √3,则x= .13. 将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割, … ,则第n 个图形中共有 个正六边形.● ·0度 二、 填空题(每小题3分,共27分)得分评卷人14.将图,四边形OABC为菱形,点B、C在以点○为圆心的EF上,若OA=3,Z1=22,则扇形OEF的面积为 .15.如图,点P是ZAOB的角平分线上一点,过P作P C//OA交OB于点C .若ZAOB=60°,O C = 4 , 则点P 到O A 的距离P D 等于三、解答题(本大题共8个小题,满分75分)16 . (8分)(第15题图)17 . (9分)如图,点E 、F 、G分别是□ABCD 的边AB 、BC、CD 、DA 的中点.求证:△BEF丝△DGH .18. (9分)下图是2006年某省各类学校在校生数情况制作的扇形统计图和不完整的条形统计图.人数 ( 万人)得分评卷人得分评卷人已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:(1)2006 年该省各类学校在校生总人数约多少万人? (精确到1万)(2)补全条形统计图;(3)请你写出一条合理化建议.19.(9分)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.20. (9分)如图,A BCD 是边长为1的正方形,其中D E 、EF 、FG 的圆心依次是点A 、B 、C .(1)求点D 沿三条圆弧运动到G 所经过的路线长; (2)判断直线GB 与DF 的位置关系,并说明理由 .(2)在你所画的等腰△ ABC 中设底边BC=5米,求腰上的高BE . 22. (10分)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)(1)该商场购进A 、B 两种商品各多少件?底边上的高AD=BC .(1)求tanB 和sinB 的值;21. (10分)请你画出一个以BC 为底边的等腰△ ABC,使(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?23 . (11分)如图,对称轴为直线的抛物线经过点A ( 6 , 0 ) 和B ( 0 , 4 ) .(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.2007年河南省实验区中考数学试题参考答案79例三、解答题16.解:方程两边同乘以(x+2)(x-2),得3x(x-2)+2(x+2)=3(x+2)(x-2)解之,得X= 4检验:当x=4时,(x+2)(x-2)=(4+2)(4-2)≠0所以,X=4是原方程的解.17. 证明:∵四边形ABCD 是平行四边形,·ZB= ZD,AB = CD,BC =AD.又∵E、F 、G 、H 分别是平行四边形ABCD 的四边中点, . · B E = DG,BF = DH. · △BEF 丝△DGH.18. 解:(1)2006年该省种类学校在校生总数为97 .41÷4 . 87%≈2000(万人) .(2)普通高中在校生人数约为2000×10 . 08%= 201 . 6(万人) . (没有计算,但图形正确者可给满分)(3)(答案不唯一 ,回答合理即可) .19. 解:张彬的设计方案:,,,所以,张彬的设计方案不公平.王华的设计方案:可能出现的的所有结果列表如下:第一次第二次1 2 31 2 3 42 3 4 53 4 5 65: P ( 王华得到入场券) = P ( 和为偶数) = 9 ,4P(张彬得到入场券)=P(和不是偶数)=9因头所以,王华的设计方案也不公平.20.解:(1)∵AD=1,ZDAE=90°,. D E 的长同理,EF的长所以,点D运动到点G所经过的路线长l=l+1z+l3=3π(2)直线GBLDF .理由如下:延长GB交DF于H.∵CD=CB,LDCF= ZBCG,CF = CG,·△FDC丝△GBC .·ZF =LG.又∵ZF+ ZFDC = 90°,LG + ZFDC = 90°,即ZGHD = 9 0 ,故G B L D F .21. 解:如图,正确画出图形.(1)∵A B=A C,A D工B C,A D=B C,·:AB=√ED²+AD⁷=√5BD即AD=2BD ..(2)作BELAC 于E .在Rt △BEC 中,又 ∵·故BE=2 √5(米).22. (1)设购进A 种商品X 件,B 种商品Y 件.根据题意,得化简,得解之,得答:该商场购进A 、B 两种商品分别为200件和120件. (2)由于A 商品购进400件,获利为(1380- 1200)×400 = 72000(元).从而B 商品售完获利应不少于81600-72000 = 9600(元).设B 商品每件售价为x 元,则120(x- 1000)≥9600. 解之,得x≥1080.所以,B 种商品最低售价为每件1080元.23. 解:(1)由抛物线的对称轴是,可设解析式为把A 、B 两点坐标代入上式,得解之,得故抛物线解析式为,顶点为.(2)∵点E(x y)在抛物线上,位于第四象限,且坐标适合:y<0,即-y>0,-y 表示点E 到OA 的距离.∵0A是口OEAF 的对角线,因为抛物线与X 轴的两个交点是(1,0)的(6,0),所以,自变量X 的取值范围是1<X<6.根据题意,当S = 24时,即化简,得 解之,得×=3,X2= 4. 故所求的点E 有两个,分别为El(3,-4),E2(4,—4).点E1(3,-4)满足OE = AE,所以□OEAF 是菱形;点E2(4,—4)不满足OE = AE,所以□OEAF 不是菱形.当OALEF,且OA=EF 时,口OEAF 是正方形,此时点E 的坐标只能是(3, 一 3) .而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使□OEAF为正方形.(实验区)(濮阳市的中原油田、南阳市的南阳油田)2008年河南省高级中等学校招生统一考试试卷数 学注意事项:1、本试卷共8页,三大题,满分120分,考试时间100分钟。

高三数学真题试卷电子版

高三数学真题试卷电子版

考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数$f(x) = 2x^3 - 3x^2 + 1$,则$f'(x)$的零点为:A. $x = \frac{1}{2}$B. $x = 1$C. $x = \frac{3}{2}$D. $x = 2$2. 若$\sin A + \sin B = \sqrt{2}\sin(A + B)$,则$A + B$的值为:A. $\frac{\pi}{4}$B. $\frac{\pi}{2}$C. $\frac{3\pi}{4}$D. $\pi$3. 在平面直角坐标系中,点P的坐标为$(2, 3)$,点Q在直线$y = 2x - 1$上,且$|PQ| = 3$,则点Q的坐标为:A. $(1, 1)$B. $(1, 5)$C. $(5, 1)$D. $(5, 5)$4. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 27$,则$abc$的值为:A. $9$B. $27$C. $81$5. 若$y = \ln(x - 1) + \frac{1}{x - 1}$,则$y'$的值为:A. $\frac{1}{x^2 - 1}$B. $\frac{1}{(x - 1)^2}$C. $-\frac{1}{(x - 1)^2}$D. $\frac{1}{x^2 - 1}$6. 已知复数$z = a + bi$($a, b \in \mathbb{R}$),若$|z - 1| = |z + 1|$,则$z$的取值范围是:A. $a = 0$B. $a = 1$C. $a = -1$D. $a = \pm 1$7. 在三角形ABC中,$a = 5, b = 6, c = 7$,则$\cos A$的值为:A. $\frac{1}{2}$B. $\frac{1}{3}$C. $\frac{2}{3}$D. $\frac{3}{4}$8. 若$a^2 + b^2 = 1$,则$\sqrt{a^2 + b^2 + 2ab\cos C}$的值为:A. $1$B. $\sqrt{2}$C. $2$D. $\sqrt{3}$9. 若函数$f(x) = ax^2 + bx + c$在$x = 1$处取得极值,则$a + b + c$的值为:A. $0$C. $-1$D. 不确定10. 若$y = \log_2(3x - 1)$,则$y'$的值为:A. $\frac{3}{2}$B. $\frac{1}{2}$C. $\frac{3}{2} \ln 2$D. $\frac{1}{2} \ln 2$二、填空题(本大题共5小题,每小题5分,共25分。

河南中考数学试题及答案解析[版]

河南中考数学试题及答案解析[版]

2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号 一 二 三总分 1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是( ) (A )31- (B )31(C )-3 (D )32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为 ( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )4.下列计算正确的是 ( ) (A )=(B )(-3)2=6(C )3a 4-2a 3= a 2(D )(-a 3)2=a 55. 如图,过反比例函数y=(x> 0)的图象上一点A ,作AB ⊥x 轴于点B ,S △AOB =2,则k 的值为( )(A )2 (B )3 (C )4 (D )56. 如图,在ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为( )(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE 沿AE 折叠,点B 落在点B'处,过点B'作AD 的垂线,分别交AD 、BC 于点M 、N,当点B'为线段MN 的三等份点时,BE 的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)121()1(222++-÷-+x x x x x x ,其中x 的值从不等式组的整数解中选取。

高中数学模拟试题

高中数学模拟试题

数 学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

满分150分。

考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试卷上。

3.本试卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

参考公式:一、选择题:(1)设全集R U =,集合{}0>=x x M ,{}x x x N ≥=2,,则下列关系中正确的是A.M N M ∈B.M N M ⊆C.R N M =D.=N M C U )(φ(2)复数ii i 21)1)(2(2--+的值是A. 2B. -1C. i 2D.i 2-(3)某小组有4名男生,5名女生,从中选派5人参加竞赛,要求有女生且女生人数少于男生人数的选派方法种数有A. 40B. 45C. 105D. 110 (4)已知,a b 为两条不同的直线,,,αβγ为三个不同的平面,在下列四个命题中,①,,//a b a b αα⊥⊥则; ②,,//a a αβαβ⊥⊥则 ③,,//γαγβαβ⊥⊥则; ④,,//a a ααββ⊥⊥则真命题是A ,①④B ,①②C ,③④D ,②③(5)已知1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,M 为双曲线上的点,若21MF MF ⊥,︒=∠6012F MF ,则双曲线的离心率为A .13-B .26C .13+D .213+(6)“2a =”是“6()x a -的展开式的第三项是604x ”的 条件。

A.充分不必要B. 必要不充分C. 充要D.既不充分也不必要(7)已知平面上三点A 、B 、C 满足3||=,4||=BC ,5||=,+∙BC ABCA BC ∙AB CA ∙+的值等于A. 25B. 24C.-25D. -24(8)球面上有三点A 、B 、C ,任意两点之间的球面距离都等于球大圆周长的四分之一,且过这三点的截面圆的面积为4π,则此球的体积为A. B. C. D. (9)直线)1(1:-=-x k y l 和圆0222=-+y y x 的关系是A .相离B .相切或相交C .相交D .相切(10)过点(-1,0)作曲线12++=x x y 的切线,其中一条切线为A.022=++y xB. 033=+-y xC. 01=++y xD. 01=+-y x (11)如图,ABCD 为矩形,AB=3,BC=1,EF//BC 且AE=2EB ,G 为BC 中点,K 为△ADF 的外心。

高考数学试卷文本模板

高考数学试卷文本模板

一、选择题(本大题共25小题,每小题4分,共100分)1. 若函数f(x) = x^2 - 3x + 2在区间[1, 2]上单调递增,则实数a的取值范围是()A. a < 1B. a ≥ 1C. a < 2D. a ≥ 22. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积是()A. 1B. -1C. 7D. -73. 若等差数列{an}的公差d > 0,且首项a1 = 3,则第10项a10与第5项a5的和为()A. 18B. 21C. 24D. 274. 在平面直角坐标系中,点A(2, 3),点B(5, 1)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = -2,b = 7B. k = 2,b = 7C. k = -2,b = -7D. k = 2,b = -75. 若复数z满足|z - 3i| = 5,则复数z的实部取值范围是()A. -2 ≤ Re(z) ≤ 2B. -5 ≤ Re(z) ≤ 5C. -5 ≤ Re(z) ≤ 2D. -2 ≤ Re(z) ≤ 56. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (4, 3)D. (5, 4)7. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. 1/2C. √2/2D. 18. 若函数f(x) = |x - 2| + |x + 1|在区间[-1, 2]上的最小值为4,则实数x的取值范围是()A. -1 ≤ x ≤ 2B. -1 < x < 2C. -1 ≤ x < 2D. -1 < x ≤ 29. 若等比数列{an}的公比q > 0,且首项a1 = 2,则第5项a5与第3项a3的积为()A. 16B. 32C. 64D. 12810. 在平面直角坐标系中,点P(1, 2)关于直线y = x的对称点为Q,则点Q的坐标是()A. (2, 1)B. (1, 2)C. (2, 2)D. (1, 1)11. 若函数y = x^3 - 6x^2 + 9x - 1在区间[0, 2]上有极值点,则实数a的取值范围是()A. a < 0B. a > 0C. a ≤ 0D. a ≥ 012. 在△ABC中,∠A = 30°,∠B = 75°,则sinC的值为()A. √3/2B. 1/2C. √2/2D. 113. 若函数y = 2^x在区间[0, 1]上单调递增,则函数y = log2(x + 1)在区间[-1, 0]上()A. 单调递增B. 单调递减C. 有极值点D. 不是单调函数14. 在平面直角坐标系中,点A(1, 2),点B(4, 5)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = 1,b = 1B. k = 1,b = 3C. k = -1,b = 1D. k = -1,b = 315. 若复数z满足|z - 3i| = 5,则复数z的虚部取值范围是()A. -2 ≤ Im(z) ≤ 2B. -5 ≤ Im(z) ≤ 5C. -5 ≤ Im(z) ≤ 2D. -2 ≤ Im(z) ≤ 516. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (4, 3)D. (5, 4)17. 在△ABC中,∠A = 60°,∠B = 45°,则cosC的值为()A. √3/2B. 1/2C. √2/2D. 118. 若函数y = |x - 2| + |x + 1|在区间[-1, 2]上的最大值为5,则实数x的取值范围是()A. -1 ≤ x ≤ 2B. -1 < x < 2C. -1 ≤ x < 2D. -1 < x ≤ 219. 若等比数列{an}的公比q > 0,且首项a1 = 2,则第5项a5与第3项a3的积为()A. 16B. 32C. 64D. 12820. 在平面直角坐标系中,点P(1, 2)关于直线y = x的对称点为Q,则点Q的坐标是()A. (2, 1)B. (1, 2)C. (2, 2)D. (1, 1)21. 若函数y = x^3 - 6x^2 + 9x - 1在区间[0, 2]上有极值点,则实数a的取值范围是()A. a < 0B. a > 0C. a ≤ 0D. a ≥ 022. 在△ABC中,∠A = 30°,∠B = 75°,则cosC的值为()A. √3/2B. 1/2C. √2/2D. 123. 若函数y = log2(x + 1)在区间[-1, 0]上单调递增,则函数y = 2^x在区间[0, 1]上()A. 单调递增B. 单调递减C. 有极值点D. 不是单调函数24. 在平面直角坐标系中,点A(1, 2),点B(4, 5)在直线y = kx + b上,则直线AB的斜率k和截距b分别是()A. k = 1,b = 1B. k = 1,b = 3C. k = -1,b = 1D. k = -1,b = 325. 若复数z满足|z - 3i| = 5,则复数z的实部取值范围是()A. -2 ≤ Re(z) ≤ 2B. -5 ≤ Re(z) ≤ 5C. -5 ≤ Re(z) ≤ 2D. -2 ≤ Re(z) ≤ 5二、填空题(本大题共10小题,每小题5分,共50分)26. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为______。

制作试卷密封线

制作试卷密封线

如何使用Word2003制作试卷密封线、装订线、模板2012-08-20 20:07:44 来源:评论:0点击:135一、设置页面试卷通常使用B4纸、横向、分两栏印刷,因此在制作之前,先要设置页面。

启动Word 2003(其他版本操作相似),新建一空白文...一、设置页面试卷通常使用B4纸、横向、分两栏印刷,因此在制作之前,先要设置页面。

启动Word 2003(其他版本操作相似),新建一空白文档。

执行“文件→页面设置”命令,打开“页面设置”对话框,切换到“纸张”标签下,设置纸张大小为B4纸;再切换到“页边距”标签下,设置好边距,并选中“横向”方向(图1)。

全部设置完成后,确定返回。

二、制作密封线正规的试卷上都有密封线,我们可以用文本框来制作。

执行“视图→页眉和页脚”命令,进入“页眉和页脚”编辑状态。

然后执行“插入→文本框竖排”命令,再在文档中拖拉出一个文本框(图2),并仿照图2的样式输入字符及下划线。

将光标定在文本框中,执行“格式→文字方向”命令,打开“文字方向&—文本框”对话框(图3),选中“右边”一种文字方向样式,确定返回。

将文本框定位到页面左边页边距外侧,并根据页面的大小调整好文本框的大小及字符位置等。

将鼠标移至文本框边缘处成“梅花状”时,双击鼠标,打开“设置文本框格式”对话框,在“颜色与线条”标签中,将“线条”设置为“无颜色线条”,确定返回。

最后单击“页眉和页脚”工具栏上的“关闭”按钮返回文档编辑状态,密封线制作完成(局部效果如图4)。

小提示:添加了页眉后,页眉处出现了一条横线,影响试卷的制作,我们可以用下面的方法将其清除:在页眉处双击鼠标,再次进入“页眉和页脚”编辑状态,执行“格式→边框和底纹”命令,打开“边框和底纹”对话框,在“边框”标签下,选中“无”边框样式,然后将其“应用于”“段落”,确定返回即可。

用Word制作试卷模版的方法和技巧[日期:2012-02-22] 来源:作者:[字体:大中小] 【摘要】介绍了用Word2000编排一张试卷模版的方法和技巧。

河南中考数学试题及答案解析[版]

河南中考数学试题及答案解析[版]

2016年河南省普通高中招生考试试卷数学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是()(A)(B)(C)-3 (D)32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()4.下列计算正确的是()(A)=(B)(-3)2=6(C)3a4-2a3 = a2(D)(-a3)2=a55. 如图,过反比例函数y=(x> 0)的图象上一点A,作AB⊥x轴于点B,S△AOB=2,则k的值为()(A)2 (B)3 (C)4 (D)56. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为()(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中x的值从不等式组的整数解中选取。

【最新文档】8开试卷模板-推荐word版 (13页)

【最新文档】8开试卷模板-推荐word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==8开试卷模板篇一:八开试卷模板试题第1页(共4页)试题第2页(共4页)试题第3页(共4页)试题第4页(共4页)篇二:8开高考试卷模板※※※※※※※※※※※※※※ ※※※※※※※ ※※※※※※※※※※※※※※ ※※※※※※※·●···装——订···● ··· ······校名··············密·班级密··················姓名—···················封考号封··········· ······ ··(··密—····封··线·· ···内·· ··线·不线··要··答····题·· ··)—·· ····●···装——订· ··●···※※※※※※※※※※※※※※※※※※※※※ ※※※※※※※※※※※※※※ ※※※※※※※201X年秋学期中学数学一年级上册测试题 (一)●···············●· ············································································································ ···········································································································●···············●封(密封线内不要答题密封)线线篇三:8开试卷模板※※※※※※※※※※※※※※ ※※※※※※※ ※※※※※※※ ※※※※※※※ ※※※※※※※●· ··装——订···● ··· ······校名···············密·班级密·················姓名—····················封··考号封················ ·· ··(··密—··封····线·· ··内·· ··线不线··要····答····题··)—··· ·●···· ··装——订· ··●···※※※※※※※※※※※※※※※※※※※※※ ※※※※※※※※※※※※※※ ※※※※※※※七年级数学《平面直角坐标系》练习题(考试时间∶90分钟满分∶100分)一、选择题(4分×6=24分) 1.点A(?3,4)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限 2.点B(?3,0)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为() A 、(2,3) B、(?2,?3)C、(?3,2) D、(3,?2) 4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

如何制作试卷密封线

如何制作试卷密封线

如何制作试卷密封线试卷,是教师朋友们接触最多的办公应用了吧。

从这一节开始,我们讲一讲用WPS文字制作试卷的一些技巧。

下面我们以制作一张8开纸,4个版面,双面打印的试卷为例,重点讲解一些需要注意的要点。

§2-3-1试卷头和密封线制作试卷首选要做的是制作密封线。

密封线一般在试卷的左侧,在密封线外侧是学校、班级、姓名、考号等信息。

而内侧,就是试卷的题目了。

其实,密封线的制作非常简单,只要插入一个文本框,并在其中输入学校、班级、考号、姓名等考生信息,留出足够的空格,并为空格加上下划线,试卷头就算完成了,然后另起一行,输入适量的省略号,并在省略号之间键入“密封线”等字样,最后将文本框的边线设置为“无线条颜色”即可。

图2-31在制作过程中,可能会出现考生信息不能居中的问题,即使将其设置为“居中对齐”了,可它却总是有些偏右,这是怎么回事呢?原来,在WPS文字中,是将空格(即使是全角空格)当作西文处理的,并且在排版的时候,连续的空格会自动被忽略掉,因此,在图2-31中,极有可能从“学校”到“姓名:”这部分内容居中了,但“姓名:”之后的空格被忽略掉了。

解决的办法是,选中考生信息部分,右击鼠标,在右键菜单中选择“段落”,弹出“段落”设置对话框,切换到“换行和分布”选项卡,选中“换行”项目下的“允许西文在单词中间换行”(图2-32)即可。

图2-32试卷头做好了,但它是“横”着的,怎样才能把它“竖”起来呢?用鼠标右击该文本框,选择“设置对象格式”在“文本框”选项卡中勾选上“允许文字随对象旋转”,确定退出(图2-33)。

图2-33这时,我们再次选中文本框,把光标放到文本框正上方的绿色调整点上,会发现光标变成一个旋转的形状(图2-34),此时调整鼠标位置好可旋转这个文本框,按下SHIFT键可以较好地定位到左旋90度的位置(也即旋转270度,如图2-35),放开鼠标右键,并用鼠标点一下文本框之外的位置,这个文本框就“竖”起来了。

8开双面双页码密封试卷模板

8开双面双页码密封试卷模板

第1页,共4页 第2页,共4页绝密★启用前*****中学**--**学年*学期期*考试试卷****本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷X 至X 页,第Ⅱ卷X 至X 页。

满分X 分。

考试时间X 分钟。

第Ⅰ卷(选择题部分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、班级、考号写在密封线以内对应框中。

2. 每小题选出答案后,用0.5毫米黑色签字笔填写在答题纸对应答题处。

写在试卷上的答案无效。

3. 本卷共X 题,每小题X 分,共X 分。

在每小题给出的四个选项中只有一个选项是符合题目要求的。

一、单项选择题(每题? 分,共? 分) 1、单击此处编辑试题A 、单击此处编辑备选答案B 、单击此处编辑备选答案C 、单击此处编辑备选答案D 、单击此处编辑备选答案(将上题根据需要多复制几次)第Ⅱ卷(非选择题部分)注意事项:1. 本卷用0.5毫米黑色签字笔填写在答题纸对应答题处。

2. 本卷共X 大题,共X 分二、填空题(每空? 分,共? 分)1、单击此处编辑试题 _____________________。

三、判断题(每小题? 分,共? 分)1、单击此处编辑试题(将上题根据需要多复制几次)四、简答题(每小题? 分,共? 分)五、论述题(每小题? 分,共? 分)[注:后续纸张请按Ctrl+Enter 组合键手工添加][题号前的评分表请按照奇数页左栏/右栏、偶数页左栏/右栏分别复制]页码、页数以及其它页眉/页脚自动变更,若要更改请执行视图菜单→页眉/页脚命令第3页,共4页第4页,共4页。

广西钦州市2024-2025学年高一上学期10月同步月考数学测试卷(一)(含解析)

广西钦州市2024-2025学年高一上学期10月同步月考数学测试卷(一)(含解析)

2024~2025学年度高中同步月考测试卷(一)高一数学测试模块:必修第一册考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本试卷主要命题范围:北师大版必修第一册第一章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合的子集个数为( )A .4B .8C .10D .162.不等式的解集为( )A . B . C . D .3.已知集合,若,则实数a 的值为( )A .B .3C .3或D .64.已知实数a ,b ,c ,d 满足,则下列结论正确的是( )A .B .C .D .5.已知关于x 的不等式的解集为,其中a ,b ,c 为常数,则不等式的解集是( )A .B .C .D .6.某校高一年级组织趣味运动会,有跳远球类跑步三项比赛,共有24人参加比赛,其中有12人参加跳远比赛,有11人参加球类比赛,有16人参加跑步比赛,同时参加跳远和球类比赛的有4人,同时参加球类和跑步比赛的有5人,没有人同时参加三项比赛,则( )A .同时参加跳远和跑步比赛的有4人B .仅参加跳远比赛的有3人{2,3,4},{0,1}A B =={,,}C z z x y x A y B ==+∈∈∣342x ≤-1124x x ⎧⎫<≤⎨⎬⎩⎭,2114x x x ⎧⎫≥<⎨⎬⎩⎭或1124x x ⎧⎫≤≤⎨⎬⎩⎭11,24x x x ⎧⎫≥≤⎨⎬⎩⎭或{,||,3}A a a a =-3A ∈3-3-0a b c d >>>>a d b c ->-ab cd >a c b d ->-ac bd>20ax bx c ++>{27}xx -<<∣20cx bx a ++≤211,7x x x ⎧⎫≤-≥⎨⎬⎩⎭或11,27x x x ⎧⎫≤-≥⎨⎬⎩⎭或1127x x ⎧⎫-≤≤⎨⎬⎩⎭1172x x ⎧⎫-≤≤⎨⎬⎩⎭C .仅参加跑步比赛的有5人D .同时参加两项比赛的有16人7.已知全集U ,集合M ,N 满足,则( )A . B .C .D .8.已知实数x 满足,则的最小值为( )A .9B .18C .27D .36二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列结论中正确的是( )A .B .C .D .10.已知,若q 是的充分条件,则q 可以是( )A .B .C .D .11.定义,则下列说法正确的是( )A .B .对任意的且C .若对任意实数恒成立,则实数a 的取值范围是D .若存在,使不等式成立,则实数a 的取值范围是三、填空题:本题共3小题,每小题5分,共15分.12.命题“”的否定是_________.13.已知集合,若,则实数m 的最大值为__________.14.已知实数a ,b 满足,且,则的最小值为____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合.(1)若成立的一个必要条件是,求实数m 的取值范围;(2)若,求实数m 的取值范围.16.(本小题满分15分)M N U ⊆⊆()()U U M N =∅ ððM N M = ()U M N M = ð()()U U M N M= ðð103x <<11213x x+-0∈∅{0}=∅{}∅∈∅{0}∅⊆:2p x ≥p ⌝3x ≥1x ≤2x >0x <*(1)(1)x y x y =+-1*33*2=2x >-111,*112x x x≠-=++,(1)*(23)33x x a x a ----≥--{13}aa -<<∣2x ≥(1)*(23)33x a x a ----≤--27a a ⎧⎫≥⎨⎬⎩⎭23,430x x x ∈++=R {3,2,0,2,3},{}M N xx m =--=≥∣M N M = 11a b -<<<2a b +=1311aa b ++-{26},{22}A xx B x m x m =-<<=-<<+∣∣x B ∈x A ∈A B =∅记全集,集合,.(1)若,求;(2)若,求a 的取值范围;(3)若,求a 的取值范围.17.(本小题满分15分)已知实数a ,b 满足.(1)求实数a ,b 的取值范围;(2)求的取值范围.18.(本小题满分17分)如图所示,为宣传某运动会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为,为了美观,要求海报上四周空白的宽度均为,两个宣传栏之间的空隙的宽度为,设海报纸的长和宽分别为.(1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?19.(本小题满分17分)已知:,q :关于x 的方程的两根均大于1.(1)若p 为真命题,求实数a 的取值范围;(2)若p 和q 中一个为真命题一个为假命题,求实数a的取值范围.U =R {221,}A xa x a a =-≤≤+∈R ∣{3,7}B x x x =≤≥∣或4a =()U A B ðA B =R A B A = 18,34a b a b ≤+≤≤-≤25a b -2700dm 2dm 3dm dm,dm x y 2:1,30p x x ax a ∀≥---+≥2260 x ax a -+-=2024~2025学年度高中同步月考测试卷(一)·高一数学参考答案、提示及评分细则1.D ,故其子集的个数为16.故选D .2.B 不等式,即,等价于解得或,所以原不等式的解集为.故选B .3.A 由,,则,不符合集合元素的互异性;若,则或(舍),,此时符合集合元素的特征;若,即,则不符合集合元素的互异性.故.故选A .4.A 对于A ,,所以,则,故A 正确;对于BCD ,取,,,,满足,显然,,故BCD 错误.故选A .5.C 关于x 的一元二次不等式的解集为,则,且,7是一元二次方程的两根,于是解得则不等式化为,即,解得,所以不等式的解集是.故选C .6.C 设同时参加跳远和跑步比赛的有x 人,由题意画出韦恩图,如图,则,解得,故A 错误;仅参加跳远比赛的人数为,故B 错误;仅参加跑步比赛的人数为,故C 正确;同时参加两项比赛的人数为,故D 错误.故选C .{}2,3,4,5C =342x ≤-11402x x -≤-(114)(2)0,20,x x x --≤⎧⎨-≠⎩114x ≥2x <11,24x x x ⎧⎫≥<⎨⎬⎩⎭或3A ∈3a =||3a =||3a =3a =-3a =36a -=-{3,3,6}A =--33a -=6a =||6a =3a =-0a b c d >>>>0d c ->->a d b c ->-2a =1b =2c =-4d =-0a b c d >>>>28,45ab cd a c b d =<=-=<=-4ac bd =-=20ax bx c ++>{27}xx -<<∣0a <2-20ax bx c ++=0,27,27,a b a c a ⎧⎪<⎪⎪-+=-⎨⎪⎪-⨯=⎪⎩5,14,0,b a c a a =-⎧⎪=-⎨⎪<⎩20cx bx a ++≤1450ax ax a --+≤2214510x x +-≤1127x -≤≤20cx bx a ++≤1127x x ⎧⎫-≤≤⎨⎬⎩⎭84251124x x x -+++++-=6x =862-=1165-=46515++=7.B 全集U ,集合M ,N 满足,绘制图,如图:对于A:,故A 错误;对于B:,故B 正确;对于C:,故C 错误;对于D:,故D 错误.故选B .8.C 因为,所以,又因为,所以(当且仅当,即时等号成立).故选C .9.CD 是不含任何元素的集合,所以是指元素为的集合,所以,故AB 错误,C 正确;是任何集合的子集,所以,故D 正确.故选CD .10.BD 因为条件,所以,对于A ,因为不能推出,所以不是的充分条件,故A 错误;对于B ,因为能推出,所以是的充分条件,故B 正确;对于C ,因为不能推出,所以不是的充分条件,故C 错误;对于D ,因为能推出,所以是的充分条件,故D 正确.故选BD .M N U ⊆⊆Venn ()()U U U M N N = ðððM N M = ()U M N =∅ ð()()U U U M N M = ððð103x <<0131x <-<3(13)1x x +-=1123123121336[3(13)]1515271331331313x x x x x x x x x x x x -⎛⎫+=+=+-⨯+=++≥+= ⎪----⎝⎭133613x x x x -=-19x =∅0,{}∉∅∅∅{}∅∈∅∅{0}∅⊆:2p x ≥:2p x <3x ≥2x <3x ≥2x <1x ≤2x <1x ≤2x <2x >2x <2x >2x <0x <2x <0x <2x <11.ABD 对于A ,,即,故A 正确;对于B ,,故B 正确;对于C , 恒成立,即恒成立,则,解得,故C 错误;对于D ,由题可知存在,使得成立,即成立,又,得a 的取值范围是,故D 正确.故选ABD .12. 由特称量词命题的否定为全称量词命题得,命题“”的否定为“”.13. 因为且,所以,则,所以m 的最大值为.14由题易得,则,又,即时等号成立,的最小值为.15.解:(1)是的一个必要条件,,显然,,且,解得,即m 的取值范围为. 6分(2)若,,或,解得,或,即m 的取值范围为,或. 13分16.解:(1)因为,所以,所以,或, 2分1*3(11)(13)4,3*2(13)(12)4=+⨯-=-=+⨯-=-1*33*2=111121*111121212x x x x x x x x++⎛⎫⎛⎫=+-=⋅= ⎪⎪++++++⎝⎭⎝⎭(1)*(23)(11)x a x x a ----=+--2[1(23)]()(33)3(33)333x x a x x a x a a ---=-+=+--≥--2(1)10x a x +-+≥2(1)40a ∆=--≤13a -≤≤2x ≥2(1)10x a x +-+≤11a x x ≥++min 1712x x ⎛⎫++= ⎪⎝⎭72a a ⎧⎫≥⎨⎬⎩⎭2,430x x x ∀∈++≠R 2,430x x x ∃∈++=R 2,430x x x ∀∈++≠R 3-{3,2,0,2,3},{}M N xx m =--=≥∣M N M = M N ⊆3m ≤-3-1-2a b =-13163133111111a b a b a b a b -+=+=+-+-+-+-133(1)1[(1)(1)]13441111a b a b a b b a +-⎛⎫++-+=+++≥+=+ ⎪+--+⎝⎭13211a b ∴+≥++-3(1)111a b b a +-=-+2,4a b ==1311aa b ∴++-231+=x A ∈ x B ∈B A ∴⊆B ≠∅26m ∴+≤22m -≥-04m ≤≤{04}mm ≤≤∣A B =∅ 26m ∴-≥22m +≤-8m ≥4m ≤-{4m m ≤-∣8}m ≥4a ={29}A xx =≤≤∣U {2A xx =<∣ð9}x >所以,或. 4分(2)因为,所以6分解得,故a 的取值范围为. 8分(3)因为,所以,9分①当,即时,,显然满足,符合题意;11分②当,即时,,因为,所以,或,所以,或,14分综上所述,,或,即a 的取值范围为,或. 15分17.解:(1),①,②①②两式相加,得,.3分,③ 5分∴①③两式相加,得, 7分的取值范围为的取值范围为. 8分(2)令,,9分,10分,11分又,,12分, 14分的取值范围为.15分18.解:(1)由题知,两个矩形宣传栏的长为,宽为, 2分U (){2A B x x =< ∣ð9}x >A B =R 23,217,a a -≤⎧⎨+≥⎩35a ≤≤{35}aa ≤≤∣A B A = A B ⊆221a a ->+3a <-A =∅A B ⊆221a a -≤+3a ≥-A ≠∅A B ⊆27a -≥213a +≤9a ≥31a -≤≤1a ≤9a ≥{1aa ≤∣9}x ≥18ab ≤+≤ 34a b ≤-≤4212a ≤≤26a ∴≤≤34,43a b b a ≤-≤∴-≤-≤- 35325,22b b -≤≤∴-≤≤a ∴{26},aa b ≤≤∣3522b b ⎧⎫-≤≤⎨⎬⎩⎭,x a b y a b =+=-,22x y x ya b +-∴==737325()()2222a b y x a b a b ∴-=-=--+21734,()1422a b a b ≤-≤∴≤-≤ 18,8()1a b a b ≤+≤∴-≤-+≤-3312()22a b ∴-≤-+≤-37325()()2222a b a b ∴-≤--+≤25a b ∴-325252522a b a b -⎧⎫⎨-≤≤⎩-⎬⎭72x -4y -, 6分整理得.8分(2)由(1)知,即,10分,∴由基本不等式可得,12分令,解得(舍去)或.14分,当且仅当即时等号成立, 16分∴海报长,宽时,用纸量最少,最少用纸量为. 17分19.解:(1)若p 为真命题,即为真命题,当时,成立,此时;2分当时,,所以在内恒成立, 4分令,则,所以,当且仅当,即时等号成立. 7分所以,故实数a 的取值范围为, 8分(2)设关于x 的方程的两根分别为,则且,所以即11分解得,即实数a 的取值范围为.13分因为p 和q 中一个为真命题一个为假命题,所以p 真q 假,或p 假q 真,当p 真q 假时,所以,15分72(4)7002x y -∴⨯⨯-=7004(7)7y x x =+>-(7)(4)700x y --=47672xy x y =++7,4x y >> 47672672xy x y =++≥+t =26720t --≥t ≤-t ≥1008xy ∴≥47,47672,x y xy x y =⎧⎨=++⎩42,24x y ==42dm 24dm 21008dm 21,30x x ax a ∀≥---+≥1x =-2(1)(11)30a ---++≥a ∈R 1x >-10x +>231x a x +≤+{1}xx >-∣1x t +=1(0)x t t =->2223(1)34242221x t t t t x t t t +-++-===+-≥-=+4t t=2(1)t x ==2a ≤{2}aa ≤∣2260x ax a -+-=12,x x 11x >212121,2,6x x x a x x a >+==-()()()()21212(2)4(6)0,110,110,a a x x x x ⎧---≥⎪-+->⎨⎪-->⎩260,22,6210,a a a a a ⎧+-≥⎪>⎨⎪--+>⎩723a ≤<723a a ⎧⎫≤<⎨⎬⎩⎭2,72,,3a a a ≤⎧⎪⎨<≥⎪⎩或2a <当p 假q 真时,所以,所以实数a 的取值范围为. 17分2,72,3a a >⎧⎪⎨≤<⎪⎩723a <<72,23a a a ⎧⎫<<<⎨⎬⎩⎭∣或。

高三数学试卷_真题电子版

高三数学试卷_真题电子版

考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 8,f(3) = 18,则a、b、c的值分别为()。

A. 1, 3, 2B. 2, 3, 1C. 1, 2, 3D. 2, 2, 12. 函数y = 3x - 2的图像与直线y = mx + n相交于点P,若P点的横坐标为2,则m、n的值分别为()。

A. 3, -4B. 2, -2C. 3, -2D. 2, -43. 已知数列{an}的通项公式为an = 2n + 1,则数列{an}的前10项和S10等于()。

A. 110B. 120C. 130D. 1404. 在△ABC中,∠A = 60°,∠B = 45°,∠C = 75°,若AB = 5,则BC的长度为()。

A. 5√2B. 5√3C. 10D. 10√25. 已知函数y = log2(x - 1)的图像上一点P的坐标为(3, 1),则点P关于y轴的对称点坐标为()。

A. (3, -1)B. (-1, 1)C. (-3, 1)D. (1, -1)6. 下列命题中正确的是()。

A. 若a > b,则a^2 > b^2B. 若a > b,则ac > bcC. 若a > b,则a/c > b/c D. 若a > b,则ac > bc(c > 0)7. 已知复数z = 1 + i,则|z|的值为()。

A. 1B. √2C. 2D. √38. 在等差数列{an}中,若a1 = 3,公差d = 2,则数列{an}的第10项an等于()。

A. 19B. 20C. 21D. 229. 已知函数y = sin(x)在区间[0, π]上的图像为()。

(word完整版)高中数学测试题(简单)(2021年整理)

(word完整版)高中数学测试题(简单)(2021年整理)

(word完整版)高中数学测试题(简单)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学测试题(简单)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学测试题(简单)(word版可编辑修改)的全部内容。

数 学 试 题 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-,则A B =(A ){0,1} (B ){0,1,2}(C ){1,0,1}- (D ){1,0,1,2}-(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于(A)-错误! (B)-错误! (C )错误! (D )错误!(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于(A )20 (B )60 (C )90 (D )100(4)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C )外切 (D )相离(5)已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为(A)12 (B)11 (C)3 (D)-1(6)已知等比数列{a n}中,a1=1,q=2,则T n=错误!+错误!+…+错误!的结果可化为(A)1-错误!(B)1-错误!(C)错误!(1-错误!) (D)错误!(1-错误!)(7)“m=1”是“直线20++-=平行”的x my m+-=与直线10mx y(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(8)阅读右面的程序框图,运行相应的程序,输出S的值为(A)15(B)105(C)245(D)945第II卷二、填空题:本大题共4小题,每小题5分(13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生.(14)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若3,,cos 64a B A π=== 则b =___________.(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |〈6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为__________ .(16)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+,不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立,则实数k 的取值范围_______.三、解答题:解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xxxx 中xxxx 年x 月高x 模拟考试
理科数学试题(卷)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第I 卷(选择题 共50分)
参考公式:
如果事件A 、B 互斥,那么 球的体积公式 P(A+B)=P(A)+P(B) 33
4R V π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
P(A •B)=P(A)•P(B) 柱体(棱柱、圆柱)的体积公式 如果事件A 在一次试验中发生的概率是 V 柱体=Sh
P ,那么n 次独立重复试验中恰好发生k 其中S 表示柱体的底面积, 次的概率
h 表示柱体的高.
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是最符合题目要求的。


1.设集合{}R x x x A ∈≥-=,914, ⎭
⎬⎫
⎩⎨⎧∈≥+=R x x x x
B ,03, 则A ∩B=
( )
A .]2,3(--
B .]2
5
,0[]2,3(⋃-- C .),2
5[]3,(+∞⋃--∞
D .),2
5[)3,(+∞⋃--∞
2.若复数i
i a 213++(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为
( )
A .-2
B .4
C .-6
D .6
3.给出下列三个命题
①若1->≥b a ,则b
b a
a +≥+11
②若正整数m 和n 满足n m ≤,则2
)(n m n m ≤-
③设),(11y x P 为圆9:221=+y x O 上任一点,圆O 2以),(b a Q 为圆心且半径为 1.当
1)()(2121=-+-y b x a 时,圆O 1与圆O 2相切 其中假命题的个数为
( ) A .0 B .1 C .2 D .3 4.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是
( )
A . l m l ⊥=⋂⊥,,βαβα
B . γβγαγα⊥⊥=⋂,,m
C . αγβγα⊥⊥⊥m ,,
D . αβα⊥⊥⊥m n n ,,
5.设双曲线以椭圆
19
252
2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为
( )
A .2±
B .3

C .2

D .4

6.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122
22=+n
y m x 中的m 和n,则能组成落在矩
形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为 ( )
A .43
B . 72
C . 86
D . 90
7.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( )
A .
125
81
B .
125
54 C .
125
36 D .
125
27 8.要得到函数x y cos 2=的图象,只需将函数)4
2sin(2π+=x y 的图象上所有的点的( )
A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度
B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4
π
个单位长度
C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π
个单位长度
D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8
π
个单位长度
9.设)(1x f -是函数)1( )(2
1)(>-=-a a a x f x x 的反函数,则使1)(1
>-x f 成立的x 的取值范
围为
( )
A .),21(2+∞-a a
B . )21,(2a a --∞
C . ),21
(2a a
a - D . ),[+∞a 10.若函数)1,0( )(log )
(3
≠>-=a a ax x x f a 在区间)0,2
1
(-
内单调递增,
则a 的取值范围是
高x 理科数学 第3页,共8页
高x 理科数学 第4页,共8页
…………○…………密…………封…………线…………内…………不…………要…………答…………题…………○…
A .)1,4
1[
B . )1,4
3[
C .),4
9(+∞
D .)4
9,1(
第Ⅱ卷(非选择题 共100分)
二、填空题(本大题共6小题, 每小题4分,共24分,
把答案填在题中横线上)。

11.设*∈N n ,则=++++-1
23216
66n n n n n n C C C C . 12.如图,PA ⊥平面ABC ,∠ABC=90°且PA=AC=BC=a ,则
异面直线PB 与AC 所成角的正切值等于_______ _. 13.在数列{a n }中, a 1=1, a 2=2,且)( )1(12*
+∈-+=-N n a a n
n n ,
则100S =__ ___.
14.在直角坐标系x Oy 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上且|OC |=2,
则OC =
15.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年
后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:
则该公司一年后估计可获收益的期望是___________(元).
16.设f (x )是定义在R 上的奇函数,且y=f (x )的图象关于直线2
1=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+
f (5)=________________.
三、解答题:(本大题共6小题,共76分,解答应写出文字说明,证明过程或演算步骤。


17.(本小题满分12分)
在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设
c b a 、、满足条件222a bc c b =-+和
32
1
+=b c ,求A ∠和B tan 的值。

18.(本小题满分12分) 已知:
)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n .
(Ⅰ)当b a =时,求数列{}n u 的前n 项和n S ; (Ⅱ)求1
lim
-∞→n n
n u u 。

评卷人 得分
投资成功
投资失败 192次
8次
评卷人 得分
评卷人
得分
………密…………封…………线…………内…………不…………要…………答…………题…………○………
准考证号: 姓名: 班级:
19.(本小题满分12分)
如图,在斜三棱柱111C B A ABC -中,
a B A A A AC AB AC A AB A ===∠=∠1111,,,侧面11BCC B 与底面ABC 所成的二面角为
120,E 、F 分别是棱A A C B 111、的中点.
(Ⅰ)求A A 1与底面ABC 所成的角; (Ⅱ)证明E A 1//平面FC B 1;
(Ⅲ)求经过C B A A 、、、1四点的球的体积. 20.(本小题满分12分)
某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中
所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为α ,tan α=1/2试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)
评卷人 得分
评卷人
得分
高x 理科数学 第7页,共8页
高x 理科数学 第8页,共8页
21.(本小题满分14分)
抛物线C 的方程为)0(2
<=a ax y ,过抛物线C 上一点
P(x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A(x 1,y 1)B(x 2,y 2)两点(P,A,B 三点互不相同),且满足)10(012-≠≠=+λλλ且k k . (Ⅰ)求抛物线C 的焦点坐标和准线方程;
(Ⅱ)设直线AB 上一点M ,满足MA BM λ=,证明线段PM 的中点在y 轴上; (Ⅲ)当λ=1时,若点P 的坐标为(1,-1),求∠PAB 为钝角时点A 的纵坐标1y 的取值 范围.
22.(本小题满分14分)
设函数)( sin )(R x x x x f ∈=.
(Ⅰ)证明x k x f k x f sin 2)()2(ππ=-+,其中k 为整数;
(Ⅱ)设0x 为)(x f 的一个极值点,证明2
40
2
01)]([x x x f +=

(Ⅲ)设)(x f 在(0,+∞)内的全部极值点按从小到大的顺序排列 ,,,,21n a a a ,证明
),2,1( 2
1 =<-<+n a a n n ππ
.。

相关文档
最新文档