Ansys-Workbench动力学分析
AnsysWorkbench动力学分析幻灯片
A(i) 描述了系统做第 i 阶主振动时具有的振动形态,称为第 i 阶主振型,或第 i 阶模态。
系统在各个坐标上都将以第 i 阶模态频率 ? 0i 做简谐振动,并且同时通过静平衡位置。
28
? 第三节 模态分析步骤
实例 – 目标: 在这个练习,我们的目标是研究在一定
的约束条件下如图所示的机架的模态,得到其振动特性。
26
? ? ? 2n 0
?
a1
2( n?1) 0
?
?
? an?1
2 0
?
an
?
0
频率方程或特征多项式
解出 n 个值,按升序排列为:
? ? ? 0 ?
2 01
?
2 02
?
?
?
2 0n
? 0i :第 i 阶固有频率
? 01 :基频。
仅取决于系统本身的刚度、质量等物理参数。
? ? ? ? ? 将每一个? 0i 代入方程 ([K] ? 02[M ]) x ? 0
x2 ? x1) (x2 ? x1
)
? ? ?
m1?x?1 m2 ?x?2
? (k1 ? ? k2 x1
k2 )x1 ? (k2
? ?
k2 x2 k3 ) x2
?0 ?0
方程组用矩阵表达为:
?m1
? ?
0
0 m2
?? ?? ??
?x?1 ?x?2
? ? ?
?
?k1 ? k2
? ?
?
k2
? k2
k2 ? k3
50
100
150
200
250
300
Acceleration (cm 2 400
如何简单的区分ANSYS Workbench有限元分析中的静力学与动力学问题
如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力学问题四川 曹文强“力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。
从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。
力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。
而今天主要是简单介绍一个静力学与动力学。
首先,静力学与动力学区别是什么?答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。
故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。
当然“静”动力学静力学实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。
对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
此外,静力学的有五大公理公理一力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。
公理二二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。
公理三加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。
公理四牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。
此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。
ANSYSWorkbench在结构瞬态动力学分析中的应用_巨文涛
=
{ un }
2
+
{ un }
Δt ( 6)
其中: α 、δ 为 New mark 积分参数 在时刻控制方程 为了计算下一时刻的位移 u n + 1 , ( 2. 4 ) 为 [ M] C] K] { un + 1 } + [ { un + 1 } + [ { un + 1 } = { Fa } ( 7) 由( 5 ) 和( 6 ) 得 { u n + 1 } = a0 ( { u n + 1 } - { u n } ) - a2 { u n } - a3 { u n } ( 8) { u n + 1 } { u n } + a6 { u n } + a7 { u n + 1 } ( 9) 1 1 1 δ , a = , a = -1 , a4 a1 = 其中 a0 = 2, αΔt 2 αΔt 3 2 α αΔt δ Δt δ a5 = ( - 2) , = -1 , a6 = Δt( 1 - δ) ,a7 = Δtδ 2 α α ( 8 ) 和( 9 ) 得 由( 7 ) 、 M]+ a1[ C] + [ K] M]a0 ( a0[ ) { un + 1 } = { Fa } + [ { u n } + a2 { u n } + a3 { u n } + [ C] ( a1 { u n } + a4 { u n } + a5 ( 10 ) { un } ) 根据以上各式, 速 可以得到 t n + 1 时刻的位移 u n + 1 、 度 u n + 1 和 u n + 1 加速度。 利用式( 5 ) 和( 6 ) 得到的 New mark 求解方法的无 条件稳定必须满足: 1 1 1 1 + δ) 2 , ( 11 ) δ≥ , + δ + α > 0 α≥ ( 4 2 2 2 New mark 参数 1 1 2 ( 12 ) δ = +γ α = ( 1 + γ) , 4 2 其中: γ 为振幅衰减因子 通过观察( 11 ) 和( 12 ) 可以发现无条件稳定也可以 1 1 2 α≥ ( 1 + γ) 且 γ≥0 。因此只要 γ 表述为 δ = + γ, 2 4 ≥0 , 则求解就是稳定的。 2. 2 HHT 算法 HHT 时间积分法由下式给出 在完全瞬态分析中, [ M] { u n + 1 - αm } + [ { u n + 1 - αf } + [ { u n + 1 - αf } = C] K] { Fa n + 1 - αm } 其中 { u n + 1 - αm } = ( 1 - α m ) { u n + 1 } + α m { u n } { u n + 1 - αf } = ( 1 - α f ) { u n + 1 } + α f { u n } { u n + 1 - αf } = ( 1 - α f ) { u n + 1 } + α f { u n } ( 13 )
ansysworkbench瞬态动力学实例
在本文中,我将为您撰写一篇关于ANSYS Workbench瞬态动力学实例的文章。
我们将深入探讨ANSYS Workbench在瞬态动力学仿真方面的应用,从简单到复杂、由浅入深地讨论其原理和实践操作,并共享个人观点和理解。
第一部分:介绍ANSYS Workbench瞬态动力学仿真ANSYS Workbench是一种用于工程仿真的全面评台,包含了结构、流体、热传递、多物理场等多种仿真工具。
瞬态动力学仿真是ANSYS Workbench的重要应用之一,它能够模拟在时间和空间上随机变化的动力学过程,并对结构在外部力作用下的动力响应进行分析。
在瞬态动力学仿真中,ANSYS Workbench可以模拟诸如碰撞、冲击、振动等动态载荷下的结构响应,用于评估零部件的耐久性、振动特性、动态稳定性等重要工程问题。
通过对这些现象的模拟和分析,工程师可以更好地了解结构在实际工况下的性能,进而进行有效的设计优化和改进。
第二部分:实例分析为了更直观地展示ANSYS Workbench瞬态动力学仿真的应用,我们以汽车碰撞仿真为例进行分析。
假设我们需要评估汽车前部结构在碰撞事故中的动态响应,我们可以通过ANSYS Workbench建立汽车前部结构的有限元模型,并对其进行碰撞载荷下的瞬态动力学仿真。
我们需要构建汽车前部结构的有限元模型,包括车身、前保险杠、引擎盖等部件,并设定材料属性、连接方式等。
接下来,我们可以在仿真中引入具体的碰撞载荷,如40km/h车速下的正面碰撞载荷,并进行瞬态动力学仿真分析。
通过仿真结果,我们可以获取汽车前部结构在碰撞中的应力、应变分布,以及变形情况,从而评估其在碰撞事故中的性能表现。
第三部分:个人观点与总结通过以上实例分析,我们可以看到ANSYS Workbench瞬态动力学仿真在工程实践中的重要应用价值。
瞬态动力学仿真不仅能够帮助工程师分析结构在动态载荷下的响应,还可以为设计优化、安全评估等工程问题提供重要参考。
ANSYS workbench联合dyna显示动力学分析
ANSYS workbench联合dyna显示动力学分析说明:本文例子无太多工程意义,旨在说明操作步骤,供学习交流之用,如能起到抛砖引玉的作用,实乃荣幸~1.打开workbench选中如图所示模块2. 进入Engineering data 设置材料参数3. 返回1界面,双击进入model (1)设置材料参数(2)suppress 多余的body4.part 及接触设置5.网格设置及划分6.载荷及边界设置7. 求解设置,求解并保存8.找到K文件,如图所示的文件夹K文件保存在目录(文件名)_files\dp0\SYS\MECH下,如图所示:9.调用ansys-lsdyna求解K文件设置10.通过LS-prepost打开d3plot文件,进行后处理。
如下图:PET/CT示踪剂18F-FDG(氟代脱氧葡萄糖) 氟代脱氧葡萄糖葡萄糖,通常简称为18F-FDG或FDG。
FDG最常用于正电子发射断层扫描(PET)类的医学成像设备:FDG分子之中的氟选用的是属于正电子发射型放射性同位素的氟-18(fluorine-18,F-18,18F,18氟),从而成为18F-FDG(氟-[18F]脱氧葡糖)。
在向病人(患者,病患)体内注射FDG之后,PET扫描仪可以构建出反映FDG 体内分布情况的图像。
接着,核医学医师或放射医师对这些图像加以评估,从而作出关于各种医学健康状况的诊断。
历史二十世纪70年代,美国布鲁克海文国家实验室(Brookhaven National Laboratory)的Tatsuo Ido首先完成了18F-FDG的合成。
1976年8月,宾夕法尼亚大学的Abass Alavi首次将这种化合物施用于两名正常的人类志愿者。
其采用普通核素扫描仪(非PET扫描仪)所获得的脑部图像,表明了FDG在脑部的浓聚(参见下文所示的历史参考文献)。
作用机理与代谢命运作为一种葡萄糖类似物,FDG将为葡萄糖高利用率细胞(high-glucose-using cells)所摄取,如脑、肾脏以及癌细胞。
ANSYS workbench齿轮啮合瞬态动力学分析
ANSYS workbench齿轮啮合瞬态动力学分析齿轮传动是机械系统传动方式中应用最为广泛的一种,今天给介绍一下如何利用workbench实现齿轮啮合的瞬态动力学分析。
有限元分析流程分为3大步、3小步,如下图所示。
今天将以这种方式介绍使用workbench实现齿轮啮合的分析流程。
图1 有限元分析流程一、前处理1.1 几何模型的构建本文几何模型在SolidWorks中创建,并导入workbench中,如图所示图2 齿轮对几何模型1.2 材料定义材料选用结构钢:密度:7850kg/m3,杨氏模量:2.1e11Pa,泊松比:0.31.3 有限元模型的构建有限元模型的构建包括材料赋予、网格划分以及连接关系的构建1.3.1 材料赋予双击瞬态动力学分析流程中的Model,进入Mechanical界面,单击项目树Geometry 下的两个零件,左下角细节框中,Material处指派steel材料1.3.2 网格划分为便于分析及收敛,对网格进行一个简单的控制:首先在左侧项目树Mesh处插入一个method,选中两个齿轮,划分方法为MultiZone;然后插入两个Size,对几个参与啮合的齿面进行尺寸控制,得到了如图所示的网格模型。
图3 网格模型1.3.3 连接关系的构建连接关系包括两部分:接触和运动副,运动副可以实现齿轮的转动,接触可以实现齿轮的传力。
由于workbench会自动创建向邻近位置之间的接触,但默认接触为绑定接触,不符合实际情况,故直接删除,后续手动创建相应接触。
首先在左侧项目树Connections下插入一个Frictional contact,接触面选择其中一个齿轮参与接触的几个齿面,目标面选择另一个齿轮参与接触的几个齿面。
摩擦系数为0.15,Normal Stiffness为1,Update Stiffness为Each iteration,Time Step Controls为Automatic Bisection。
基于ansys workbench齿轮啮合刚度计算及动力学仿真
Keywords:involutetoothprofile;finiteelement;meshingstiffness;geardynamics;quasistaticmethod; contactratio;workbenchsoftware;gearvibration
齿轮是机械装置中的重要零部件,广泛应用 于汽车、航空等领域.啮合刚度是齿轮系统振动的 内部激励源之一,正确地求解啮合刚度以及齿轮 啮合动力学研究对工程实际具有重要意义.
啮合刚度是齿轮动力学分析中的重要参数,而 齿轮副在不同的工况下,实际重合度是不相同的, 齿轮动力学数值仿真时需要啮合刚度有明确的数 学表达式,因此多数学者对啮合刚度进行了曲线拟 合.引用最多的是文献[7]的方法,这些公式中都包 含重合度的因素,若将理论重合度下的啮合刚度公 式代入齿轮动力学方程,将会因为理论重合度与实 际重合度不同,导致动力学分析出现偏差.
第42卷 第2期 2020年 3月
沈 阳 工 业 大 学 学 报 JournalofShenyangUniversityofTechnology
Vol42No2 Mar2020
doi:10.7688/j.issn.1000-1646.2020.02.13
基于 ANSYSworkbench齿轮啮合刚度计算 及动力学仿真
王旭等[1]用材料力学的方法计 算 了 正 常 和 含裂纹齿轮的啮合刚度,并且对有、无裂纹齿轮副 进行了动力学特性分析;万志国等[2]考虑了齿轮 基体变形与齿根圆、基圆不重合的情况,进一步修
收稿日期:2018-03-02. 基金项目:国家自然科学基金项目(51075314);陕西省自然科学基础研究计划项目(2014JM7269). 作者简介:何育民(1968-),男,陕西西安人,副教授,博士,主要从事机械设备状态监测及故障诊断等方面的研究.
WORKBENCH中的动力学分析简介
…求解结果
• 对应于Frequency Finder 分支得ANSYS 命令如下:
– 假如Frequency Finder 分支被选上, 对应于ANTYPE,MODAL 命令 – 定义模态得阶数使用 nmodes 命令, 定义“搜索频率”得最小和最大范围使
用MODOPT,,nmodes,freqb,freqe 命令得freqb 和 freqe,振型被放大通过 MXPAND 命令、 为了节省磁盘空间和计算时间,单元求解选项不能打开,除 非需要得到应力或者应变结果、
影响。 – FE Modeler 用来把Nastran得网格转化到ANSYS中使用。
WORKBENCH中得动力学分析
… ANSYS WORKBENCH概述
Design Simulation ANSYS Workbench
DesignXplorer
DesignModeler
FE Modeler
WORKBENCH中得动力学分析
– 边界条件对于模态分析来说,就是很重要得。因为她们能影响部件得振型和固 有频率、 因此需要仔细考虑模型就是如何被约束得、
– 压缩约束就是非线性得,因此在此分析中将不能被使用、 • 如果存在得话, 压缩约束通常会表现出与无摩擦约束相似、
ANSYS License DesignSpace Entra DesignSpace Professional Structural Mechanical/Multiphysics
们会转化为绑定或者无间隙接触方式来替代并产生作用、
– 假如有间隙存在, 非线性得接触行为将就是自由无约束得(也就就是说, 好像 就是没有接触一样)、 绑定得和无间隙得接触将取决于pinball 区域得大小、
• pinball 区域由缺省值自动产生
ANSYS workbench 多体动力学分析功能说明
刚体动力学分析模块(ANSYS Rigid Dynamics)
ANSYS Rigid Dynamics是ANSYS 产品的一个附加模块,它集成于ANSYS Workbench环境下(继承了 Workbench与各种CAD软件之间的良好接口能力,如双向参数链接和互动等),在ANSYS 所具有的柔性 体动力学(瞬态动力学)分析功能的基础上,基于全新的模型处理方法和求解算法(显式积分技术),专 用于模拟由运动副和弹簧连接起来的刚性组件的动力学响应。其功能简述如下:
自动探测运动副 利用自动探测运动副功能来建立零件之间的连接关系。 根据自动探测的结果,可以快速修改运动副的连接关系。 完整的运动副类型和弹簧
利用完整的运动副类型(固定、转动、柱面滑动和转动、平动、滑槽、万向连接、球铰、平 面运动、自定义等) 和弹簧来建立零件之间的连接,提供精确的定位方法保证零件间的定位。 提供体对体(BTB)和体对地(BTG)等连接方法。 与Flexible Dynamics直接耦合 可以和ANSYS 模块的Flexible Dynamics功能在Workbench中实现无缝集成,一次求解同时 得到结构运动结果和强度/变形结果等,并支持柔性体的各种非线性特性(如接触、大变形、 材料非线性等)。 用户可自由定义零件为刚体或柔体,设置相关求解属性,直接计算刚体的位移、速度、加速 度和反作用力以及柔体的变形和应力。真正意义上实现了刚柔动力学分析的直接耦合。 Rigid Dynamics独特的前后处理 Windows操作风格 目录树管理模型数据库 支持两个零件连接面(运动关系)的清晰显示 快速高质量的动画显示效果 支持多窗口画面分割显示 自动生成计算报告
© 2008 PERA Global
随时间和空间变化的Ansys Workbench分析实例
随时间和空间变化的Ansys Workbench分析实例例如对一个长为1米,截面是50mm*50mm的梁,施加一个随时间和轴线坐标X变化的载荷其变化规律是这里的x是从左端点开始的杆件上各点的X坐标而t是时间。
因此这是一个瞬态动力学问题。
要求在此载荷规律作用下梁的变形。
下面是用ANSYS WORKBENCH计算该问题的过程。
(1)打开ANSYS WORKBENCH14.5。
(2)创建瞬态动力学项目示意图。
(3)创建几何模型。
双击geometry,打开DM,在其中创建一个长1米,截面是50mm*50mm的长方体。
其细节视图的设置是然后退出DS.(4)创建局部坐标系。
双击Model,进入到mechanical中,并把长度单位切换成米,角度单位切换成radian.然后添加一个局部坐标系,把该坐标系的坐标原点定位在长方体的上表面的左边一个顶点上。
该坐标系用于对后面施加的载荷提供坐标系,以确定方程中的X是从哪里开始定义的。
(5)划分网格。
设置单元尺寸为25mm,划分网格如下(6)设置载荷步。
对于分析设置进行如下定义即计算1秒,而只有1个载荷步,该载荷步被均分为10个载荷子步。
(7)固定左端面。
选择左边的端面进行固定。
(8)施加随时间和空间变化的分布载荷。
选择上表面,施加分布载荷。
在其细节视图的magnitude中首先选择function.说明要用函数进行定义然后在magnitude中输入表达式如下注意到此时的坐标系统切换成了上面定义的坐标系。
此时主窗口中显示如下图同时在图形窗口显示了在1秒时候的载荷曲线可见,此时的载荷曲线是抛物线。
(9)仿真并查看结果计算,然后查看位移的结果如下图。
(参考资料)ANSYS Workbench 显示动力学 质量块冲击薄板
ANSYS Workbench显示动力学质量块冲击薄板案例分析:本例模拟一立方体刚性质量块以速度300mm/s冲击一方形薄板的过程,立方体质量块的边长为20mm,方形薄板的边长为200mm,厚度为10mm,薄板材料为显式材料Steel1006,立方体材料为IRON-ARMCO,分析薄板在冲击载荷作用下的连续动态过程。
几何模型的建立打开workbench,载入几何模型模块和显式动力学模块,生成的几何模型为显式分析做准备。
双击A2打开几何模型,在弹出的单位选择窗口选择长度单位为mm。
点亮xy工作平面,同时点击面对视图图标来确定一个比较方便建模的视角。
XY平面显示如下,可以开始进行XY二维平面内的几何建模操作。
切换到草图模式进行草图建模编辑。
点击Draw主目录条下面的Rectangle生成方形几何外形线。
在坐标原点附近拖动鼠标形成一个方框草图。
对方框草图进行位置约束和几何尺寸的标定。
假设薄板平面依坐标轴对称,则每个边距离平行坐标轴的距离均为100mm。
约束各条边界。
点击尺寸Dimensions主条目下面的General来标注几何尺寸。
点击Y 坐标轴,按住Ctrl键,点选右侧线段,出现距离标注如下图。
依次标注其余三条线段的到平行坐标轴的距离,修改标准尺寸均为100mm,同时四条线段均为蓝色,说明线段均约束完全。
点击concept在下拉菜单中选择surfaces from sketches点击SurfaceSK1,然后点亮xyplane下的Sketch1,在base objects后面点击apply确认。
在SurfaceSK1右键generate生成几何面。
生成有有厚度的实体。
点击create下拉菜单Extrude拉伸实体。
选择base object为sketch1,实体的厚度Depth为10mm点击Extrude1右键generate。
点击creatives在下拉菜单中滑动鼠标至primitives选择box。
基于ANSYS Workbench大摆锤刚体动力学分析
基于ANSYS Workbench大摆锤刚体动力学分析赵九峰【摘要】大摆锤是一种大型的游乐设施,乘客乘坐在固接于转盘上的座椅上,经历着摆动加旋转的合成运动,由于大摆锤运行速度高、加速度大、载荷工况复杂,有必要在不同工况条件下对大摆锤的动力学参数进行分析.利用ANSYS Workbench的刚体动力学模块Rigid Dynamics,对大摆锤进行动力学仿真分析研究.分别在满载和偏载的虚拟环境中,模拟大摆锤整体的运动及受力情况,通过仿真分析,在设计阶段就可获得大摆锤在不同工况下运行时各部件的速度、加速度及载荷时间历程,提高了设计效率和计算精度,为大摆锤的设计提供了参考.【期刊名称】《机械研究与应用》【年(卷),期】2019(032)001【总页数】4页(P44-47)【关键词】大摆锤;游乐设备;加速度;动力学分析【作者】赵九峰【作者单位】河南省特种设备安全检测研究院,河南郑州 450000【正文语种】中文【中图分类】TH311.40 引言大摆锤是一种高空、高速的大型游乐设施, 乘客乘坐在固接于转盘上的座椅上,经历着摆动加旋转的合成运动,惊险而刺激,深受人民群众的喜爱。
现在几乎每个新建的游乐场或主题公园都要安装大摆锤,但同时也是涉及生命安全、危险性较大的特种设备,其质量与安全性能直接关系到游客的人身安全,因而其安全可靠性极其重要[1]。
大摆锤主要由支架、悬臂、驱动装置、转盘、座椅等部分组成[2];设备中部为悬臂部件,悬臂部件中心是横臂组焊件有二组驱动装置,分别由电机、减速器、小齿轮、回转支承进行减速。
大摆锤的结构示意图如图1。
在分析大摆锤运行特点和载荷特性分析的基础上,利用虚拟样机技术建立大摆锤整机的动力学模型,在满载和偏载工况下进行大摆锤动力学仿真分析,并与传统力学分析校核结果比较[3]。
基于虚拟样机的动力学分析,计算大摆锤运行过程中的速度、加速度及关键部件的受力情况,减小了常规计算带来的设计误差,提高了设计效率和计算精度,为大摆锤的设计提供了参考。
基于ANSYS Workbench的汽车驱动桥壳力学分析
基于ANSYS Workbench的汽车驱动桥壳力学分析0 引言汽车驱动桥壳是汽车动力传动系统的重要组成部分,承载着发动机的扭矩和轮胎的载荷,同时又要保持稳定的转速和转矩输出,承受复杂的动态荷载和静态荷载,因此其结构设计和强度分析对于汽车的性能和安全至关重要。
汽车驱动桥壳有限元分析是汽车工程领域中的一个重要研究方向。
该技术可以通过数值模拟和分析,为汽车设计和制造提供可靠的理论基础和实验依据,从而提高汽车的性能和可靠性。
研究结果表明,优化设计后的驱动桥壳在强度和刚度方面得到了明显提升,可以满足汽车高速行驶时的需求。
研究汽车驱动桥壳的结构和性能并改进设计方案,改进设计后的驱动桥壳在强度和刚度方面得到了明显提升。
对汽车驱动桥壳进行研究,并进行了优化设计,优化设计后驱动桥壳在强度和刚度方面得到了明显提升。
综上所述,汽车驱动桥壳有限元分析是汽车工程领域中的一个重要研究方向。
通过有限元分析的方法,可以研究汽车驱动桥壳的结构和性能,并进行强度和结构优化设计,从而提高汽车的性能和可靠性。
1 驱动桥壳的四种典型工况驱动桥壳在汽车行驶过程中会遇到多种工况,主要包括四种工况:纵向加速、制动、弯曲和扭转。
下面是这四种工况下驱动桥壳的受力分析:1.最大牵引力工况:在汽车加速过程中,驱动桥壳承受发动机输出扭矩的作用,导致桥壳产生弯曲和剪切应力,同时还要承受轮胎的向后反作用力和悬挂系统的反弹力,产生轴向拉伸和剪切应力。
2.最人制动力工况:在汽车制动过程中,驱动桥壳承受制动器的反作用力和轮胎的向前反作用力,导致桥壳产生弯曲和剪切应力,同时还要承受车身的惯性力和悬挂系统的反弹力,产生轴向压缩和剪切应力。
3.最大垂向力工况:在汽车行驶过程中,驱动桥壳承受路面不平度和转向力的作用,导致桥壳产生弯曲应力,同时还要承受轮胎的载荷和悬挂系统的反弹力,产生轴向拉伸和压缩应力。
4.最大侧向力工况:在汽车行驶过程中,驱动桥壳承受发动机和车轮的扭矩作用,导致桥壳产生扭转应力,同时还要承受轮胎的载荷和悬挂系统的反弹力,产生轴向拉伸和压缩应力。
ansys workbench 瞬态动力学 模态叠加法
ansys workbench 瞬态动力学模态叠
加法
模态叠加法是通过对模态分析得到的振型乘上因子并求和来计算结构的响应,是ANSYS/Professional程序中唯一可用的瞬态动力学分析法。
其优点为:对于许多问题,它比缩减法或完全法更快、开销更小;只要模态分析不采用PowerDynamics方法,通过LVSCALE 命令将模态分析中施加的单元载荷引入到瞬态分析中;允许考虑模态阻尼(阻尼比作为振型号的函数)。
模态叠加法的缺点为:整个瞬态分析过程中时间步长必须保持恒定,不允许采用自动时间步长;唯一允许的非线性是简单的点点接触(间隙条件);不能施加强制位移(非零)位移。
在进行瞬态动力学分析时,需要根据具体问题选择合适的方法。
如果有需要,可以咨询专业的工程师或查阅相关文献资料来获取更详细的信息。
ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析
第10章 瞬态动力学分析
瞬态动力学分析(亦称时间历程分析)是用于确定承受任意随时间变化的载荷的结构动力学响应的一种方法。
利用瞬态动力学分析可以确定结构在静载荷、瞬态载荷和简谐载荷的随意组合下随时间变化产生的位移、应变、应力及力。
★ 了解瞬态动力学分析。
10.1 瞬态动力学分析概述
瞬态动力学分析(Transient Structural Analysis)给出的是结构关于时间载荷的响应,它不同于刚体动力学分析,在Workbench中瞬态动力学的模型可以是刚体,也可以是柔性体,而对于柔性体可以考虑材料的非线性特征,由此可得出柔性体的应力和应变值。
在进行瞬态动力学分析时,需要注意:
当惯性力和阻尼可以忽略时,采用线性或非线性的静态结构分析来代替瞬态动力学分析。
当载荷为正弦形式时,响应是线性的,采用谐响应分析更为有效。
当几何模型简化为刚体且主要关心的是系统的动能时,采用刚体动力学分析更为有效。
除上述三种情况外,其余情况均可采用瞬态动力学分析,但其所需的计算资源较其他方法要大。
10.2 瞬态动力学分析流程
在ANSYS Workbench左侧工具箱中Analysis
Systems下的Transient Structural上按住鼠标左键拖动到
项目管理区的A6栏,即可创建瞬态动力学分析项目,
如图10-1所示。
当进入Mechanical后,单击选中分析树中的
Analysis Settings即可进行分析参数的设置,如图10-2
图10-1 创建瞬态动力学分析项目。
(完整版)workbench动力学分析实例
– SC = Single Click with Left Mouse Button
– RMB = Right Mouse Button Selection
– D&D = Drag and Drop = Hold Left Mouse Button down on item while dragging it to new location and then release it (i.e., Copy or Move)
Note: Engineering Data is native in Workbench, but Mechanical is NOT at this time (but will be in the future).
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
2.b Request that Native Applications in Workbench have their values be Displayed in the Project Units
2.c Check those unit systems to Suppress from appearing in the Units List
WS09 Inventory #002665
Workshop 2. Simulate the Crushing of an Empty Soda Can
Step 3 – Define Engineering Data Material
Training Manual
3.a Edit the Engineering Data cell to add a
ansysworkbench瞬态动力分析PPT教学课件
求解方法
• 时间积分方案 – 两种积分方案 Newmark 和 HHT. 缺省为 Newmark
• 不同的a 和d 造成积分方案的变化 (隐式 / 显式 / 平均加速度 ).
• Newmark 是隐式积分方案. • ANSYS/LS-DYNA 利用显式积分方案.
求解方法
• 时间积分方案 - HHT 方法 :
积分时间步长
• 如何选择 ITS? • 推荐打开自动时间步长选项 (AUTOTS), 并设置
初始时间步长Dtinitial和最小时间步长Dtmin 、最 大时间步长Dtmax. ANSYS 会利用自动时间步长 功能来自动决定最佳时间步长Dt. • 例如: 如果AUTOTS 是打开的, 并且Dtinitial= 1 sec, Dtmin= 0.01 sec, and Dtmax= 10 sec; 那 ANSYS 起始采用 ITS= 1 sec ,并依据结构的响 应允许其在0.01 和 10 之间变动.
! Write load data to load step file
DDELE,ALL,UY
! Remove imposed displacements
TIMINT,ON
! Time integration effects on
...
非零初始位移和零初始速度
需要用两个子步[NSUBST,2]来实现,所加位移在 两个子步间是阶跃变化的[KBC,1]。如果位移不是 阶跃变化的(或只用一个子步),所加位移将随 时间变化,从而产生非零初速度。下面的例子演 示了如何施加初始条件 u0 = 1.0, v0 = 0.0:
施加初始条件的两种方法
• 以静载荷步开始 • 当只需在模型的一部分上施加初始条件时,例如,用强加的位移将悬臂梁 的自由端从平衡位置“拨”开时,这种方法是有用的;
基于ANSYSWorkbench对凸轮结构动力学分析
的过程中将
图1凸轮机构三维示意图
凸轮内部的网格划分的较为粗略一点,而在
接触表面的网格划分的需要密集一些,这样研究方向为机器人领域。
动结构。
具体设置如图2、3所示。
图2杆的刚性设置
图3凸轮的柔性设置
此外,为了更好的探索到在固定转矩下的凸轮机
构的杆末端所输出的力的变化规律,在原来的模型中
又加入了弹簧,弹簧的一端连接杆的末端,另一端则
. All Rights Reserved.
与大地相连。
这样就可以在传动过程中,通过观察弹
簧的伸长量变化来获得杆末端的输出力的大小。
2结果分析。
图4凸轮应力分布图
图5凸轮传动过程曲线图(下转第68页)
图6杆末端力变化曲线图
3结论
本文首先通过对凸轮结构进行有限元模型的建立,对其在有限元软件中的边界条件进行了合理的设。
ANSYS Workbench有限元分析实例详解(动力学)
5.6瞬态分 析之复合材 料
04
5.7转子动 力学之瞬态 分析
06
5.9总结
05
5.Байду номын сангаас声场之 瞬态分析
5.3.1准静态法之移动载荷瞬态分析 5.3.2瞬态法之移动载荷分析
5.4.1全刚性体(柔性体)零件全Joint连接的多体动力学 5.4.2刚柔性体零件全Joint连接的多体动力学 5.4.3刚柔性体零件Joint和Contact连接的多体动力学
5.5.1跌落冲击分析 5.5.2三辊弯曲成型分析 5.5.3接触磨损分析
作者介绍
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,暂无该书作者的介绍。
精彩摘录
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,可以替换为自己的精彩内容摘 录。
1.1动力学基本解 析
1.3低版本程序打 开高版本文件的过
程
2.1模态分析之计算 原理
2.2普通模态及自由 模态分析
2.3线性摄动模态分 析
2.4模态分析之拓扑 优化
1
2.5含阻尼的 模态分析
2
2.6模态之子 结构分析
3
2.7转子动力 学之模态分析
4
2.8声场模态 分析
5
2.9总结
2.2.1模态分析之固有频率研究 2.2.2模态分析之振型研究 2.2.3模态分析之线性叠加
2.3.1线性摄动模态分析之应力刚化和旋转软化 2.3.2非线性模态分析
2.4.1模态分析之拓扑优化基本实例 2.4.2齿轮减重拓扑优化设计基本实例
2.5.1复模态分析基本实例 2.5.2非对称复模态分析基本实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1: 动力学绪论
第一节 动力学分析目的及定义 为什么要对结构进行动力学分析?
土木建筑、地质工程领域
1940年11月7日倒塌—风载
1940年7月1日通车 美国塔科曼悬索大桥
交通运输、航空航天领域
机械、机电领域
什么是结构动力学?
定义:研究结构在动力荷载作用下的动力反应。
目的:动力荷载作用下结构的内力和变形;
4.2: 模态分析
第一节 模态分析的含义
什么是模态分析?
模态分析是用来确定结构的振动特性(固有频率和振型) 的一种技术。 模态分析的好处:
– 使结构设计避免共振或以特定频率进行振动(例如 扬声器);
– 使工程师可以认识到结构对于不同类型的动力载荷 是如何响应的。
建议: 在准备进行其它动力分析之前首先要进行
单地用简谐函数来表示。
FP
t
(3)冲击荷载 荷载的幅值(大小)在很短时间内急剧增大或急剧减小。
FP 冲击荷载
t
FP 突加荷载
t
(4)随机荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷载。
风荷载 地震作用
25 Wind speed (m/s) 20
15
10
5
0
0
50
100
脉动风
平均风
150
200
fn
n 2
为系统的固有频率,Hz
1 2
T
fn n
为系统的周期,s
2.二自由度无阻尼线性系统
对质量块m1、 m2受力分析, 由Newton第二定律得
mm12xx12 kk13xx12kk22(
x2 x1) (x2 x1)
mm12xx12(kk21x1
k2 )x1 (k2
k2 x2 0 k3)x2 0
第二节 结构动力运动方程
1.单自由度无阻尼线性系统
Newton第二定律
F ma
a x
系统的运动方程
mx kx 0 令
x 02 x 0
02
k m
,则方程变为
无阻尼自由振动解的形式为:
x(t) Acos(nt )
其中A与 由初始条件决定
A为系统的响应的振幅, 为系统的初相位
n
k m
为系统的固有圆频率,弧度/秒
kn1 2mn1 kn2 2mn2 knn 2mnn
2n 0
a 2(n1) 10
an102
an
0
频率方程或特征多项式
解出 n 个值,按升序排列为:
0
2 01
2 02
2 0n
0i :第 i 阶固有频率
机械与动力工程学院 CAD/CAM工程技术研究中心
Ansys Workbench 结构动力学分析
主要内容
4.1: 动力学绪论
4.3: 谐分析
第一节 动力学分析概述 第二节 动力学研究内容 第三节 动力学分析的类型
第一节 谐分析目的 第二节 术语和概念 第三节 谐分析步骤
4.2: 模态分析
第一节 模态分析的含义 第二节 结构动力运动方程 第三节 模态分析步骤
结构 (系统)
输出 (动力荷载)
结构 (系统)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
控制系统 (装置、能量)
输出 (动力反应)
输出 (动力反应)
第三节 动力学分析类型
1.动荷载 静荷载:
大小、方向和作用点不随时间变化或变化很 缓慢的荷载。如:结构的自重、雪荷载等。
方程组用矩阵表达为:
m1
0
0 m2
xx12
k1 k2
k2
k2 k2 k3
xx12
0 0
通用表示为:
M x Kx 0
其中:
M 表示质量矩阵
K 表示刚度矩阵
x 表示加速度向量
x 表示位移向量
设方程的解为:
x Asin(0t )
将上式代入微分方程得:
kk2111
m1102 m2102
结构体系
输入
input
质量、刚度 阻尼、约束 频率、振型
动力响应
输出 Output
位移 内力 数值
应力
动位移 加速度 速度 动应力 动力系数
时间函数
第二节 结构动力学研究的内容
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
确定结构的动力反应规律。
安全性:确定结构在动力荷载作用下可能产生的最大内力, 作为强度设计的依据; 舒适度:满足舒适度条件(位移、速度和加速度不超过规 范的许可值)。
结构动力体系
静荷载
大小 方向 作用点
结构体系
静力响应
输入 input
刚度、约束 杆件尺寸 截面特性
输出 Output
动荷载
大小 方向 作用点 时间变化
k12 k22
m1202 m2202
•
A1 A2
0 0
A1、 A2 不全为0,则:
k11 m1102 k21 m2102
k12 m1202 0 k22 m2202
02[M ] [K] 0 特征方程
上述方程可求得两个根 01 、02
对于 01 可求得
A11 A21
,
对于 02
可求得
A12 A22
3.多自由度无阻尼线性系统
系统运动方程: M x K x 0 x Rn
方程解为: x Asin(0t )
代入振动方程:[K ] 02[M ] 0
即:
特征方程
k11 2m11 k12 2m12 k1n 2m1n
k21 2m21 k22 2m22 k2n 2m2n 0
动荷载: 大小、方向或作用点随时间变化很快的荷载。
快慢标准: 是否会使结构产生显著的加速度。
显著标准: 质量运动加速度所引起的惯性力与荷载相比 是否可以忽略
问题:你知道有哪些动荷载?
第一章:结构动力学基础
(1)简谐荷载
荷载随时间周期性变化,并可以用简谐函数来表示。
FP
t
(2)一般周期荷载 荷载随时间作周期性变化,是时间t的周期函数,但不能简
t(sec)
250
300
Acceleration (cm/s 2)
400
200
0
-200
t(sec)
0
5
10
15
20
25
30
35
40
45
50
2.动力学分析类型 (1)简谐荷载
谐响应分析
(2)一般周期荷载
谐波分析
(3)冲击荷载 (4)随机荷载
瞬态分析 谱分析
模态分析
3.分析类型的选择原则
(1)如果在相对较长时间内载荷是一个常数,可选择静力 分析,否则为动态分析。 (2)如果动荷载频率小于结构最低阶固有频率的1/3,可进 行静力分析。 (3)载荷对结构刚度的变化可忽略时,可进行线性分析。 (4)载荷引起结构刚度的变化很显著时,或应变超过弹性 范围,或两物体间存在接触,必须进行非线性分析。