〔高中数学〕三角函数PPT课件 (14)

合集下载

高中数学三角函数的诱导公式PPT课件

高中数学三角函数的诱导公式PPT课件

谢谢聆听
02
弧度制
以弧长与半径之比作为角的度量单位,一周角等于2π弧 度。
03
角度与弧度的转换公式
1度=π/180弧度,1弧度=180/π度。
三角函数定义域与值域
正弦函数(sin)
定义域为全体实数,值域为[-1,1]。
余弦函数(cos)
定义域为全体实数,值域为[-1,1]。
正切函数(tan)
定义域为{x|x≠kπ+π/2,k∈Z},值域为全体实数。
电磁波
三角函数在电磁学中描述电场和磁场的振动,以 及电磁波(如光波、无线电波)的传播。
工程技术中的测量和计算问题
1 2 3
角度测量
三角函数在测量学中用于计算角度、距离和高程 等问题,如使用全站仪进行地形测量。
建筑设计
在建筑设计中,三角函数用于计算建筑物的角度 、高度和间距等参数,确保建筑结构的稳定性和 安全性。
错误产生原因分析
基础知识不扎实
学生对三角函数的基本概念和性 质理解不深入,导致在记忆和使
用诱导公式时出错。
思维方式僵化
学生可能过于依赖记忆而非理解, 导致在面对灵活多变的题目时无法 灵活运用诱导公式。
训练不足
学生可能缺乏足够的练习,无法熟 练掌握诱导公式的使用方法和技巧 。
针对性纠正措施建议
A
强化基础知识
04 学生易错点剖析及纠正措施
常见错误类型总结
公式记忆错误
学生常常将三角函数的诱 导公式混淆,例如将正弦 、余弦、正切的诱导公式 记混。
角度转换错误
在解题过程中,学生可能 会将角度制与弧度制混淆 ,或者在角度加减时出错 。
符号判断错误
在使用诱导公式时,学生 可能会忽略符号的判断, 导致最终结果错误。

人教版高中数学必修1《三角函数的概念》PPT课件

人教版高中数学必修1《三角函数的概念》PPT课件

• [方法技巧]
• 有关三角函数值符号问题的解题策略
• (1)已知角α的三角函数值(sin α,cos α,tan α)中任意两 个的符号,可分别确定出角α终边所在的可能位置,二者的 公共部分即角α的终边位置.注意终边在坐标轴上的特殊情 况.
• (2)对于多个三角函数值符号的判断问题,要进行分类讨 论.
()
• A.第一象限 二象限
B.第
• C.第三象限
D.第四象限
• (2)判断下列各式的符号:
• ①sin 2 020°cos 2 021°tan 2 022°;
• ②tan 191°-cos 191°;
• ③sin 2cos 3tan 4.
• [解析] (1)由点P(sin θ,sin θcos θ)位于第二象限,
则 sin θ+tan θ=3 1100+30;
当 θ 为第二象限角时,sin θ=31010,tan θ=-3,
则 sin θ+tan θ=3
10-30 10 .
(2)直线 3x+y=0,即 y=- 3x 经过第二、四象限. 在第二象限取直线上的点(-1, 3), 则 r= -12+ 32=2, 所以 sin α= 23,cos α=-12,tan α=- 3; 在第四象限取直线上的点(1,- 3), 则 r= 12+- 32=2, 所以 sin α=- 23,cos α=12,tan α=- 3.
• 可得sin θ<0,sin θcos θ>0,可得sin θ<0,cos θ<0,
• 所以角θ所在的象限是第三象限.
答案:C (2)①∵2 020°=1 800°+220°=5×360°+220°, 2 021°=5×360°+221°,2 022°=5×360°+222°, ∴它们都是第三象限角,∴sin 2 020°<0,cos 2 021°<0,tan 2 022°>0, ∴sin 2 020°cos 2 021°tan 2 022°>0. ②∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0. ③∵π2<2<π,π2<3<π,π<4<32π, ∴2 是第二象限角,3 是第二象限角,4 是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0,∴sin 2cos 3tan 4<0.

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。

三角函数的概念 完整版PPT课件

三角函数的概念 完整版PPT课件
通常将它们记为: 正弦函数 y sin x, x R
余弦函数 y cosx, x R
正切函数 y tanx, x k (k Z )
2
注意:
y
的终边
(1)正弦就是交点的纵坐标, 余弦就是交点的横坐标 正切就是交点的纵坐标与横坐标的比值.
(x, y)
x o
(2) 正弦函数、余弦函数总有意义.当α 的终边在y 轴上时,点P 的
单位圆半径不变,点P的横、纵坐标只与α的大小有关, α确定时,p的坐标能唯一确定。
任意角的三角函数定义
设 α是一个任意角, R ,它的终边与单位圆交于点 P(x, y)
那么:(1) y 叫做 α的正弦函数,记作 sin α 即 y = sin α
(2) x 叫做 α的余弦函数,记作 cos α 即 x = cos α
.
证明:如图,设角 的终边与单位圆交于点 P0 (x0 , y0 )
分别过点P, P0 作 x 轴的垂线PM , P0M 0 ,垂足分别为 M , M0
则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
OMP ∽ OM0P0
于是,| P0M 0 | | PM
P c
b
O
a
M
b
sin c
a
cos c
b
tan a
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是

高中数学三角函数 ppt课件

高中数学三角函数 ppt课件
第三章 三角函数、解三角形
高考目标定位 目标了然于胸,让讲台见证您的高瞻远瞩
内容分析
命题热点
1.弧度制和角的概念的推广是三角函数的基 础,弧度制的引入,也简化了弧长公式、面 积公式等. 2.三角函数同二次函数、幂函数、指数函数 、对数函数一样,其图象、性质和应用是考 查的重点,其中y=Asin(ωx+φ)的图象是研 究函数图象变换的代表. 3.三角恒等式的化简、求值和证明,是培养 学生分析问题、解决问题能力和提升学生思 维品质的良好载体.公式的逆用和变形都需 要较强的应变能力. 4.解三角形进一步体现了数学的应用性,正 弦定理和余弦定理的推导和应用,有利于培 养学生的建模、解模能力. 5.本章概念多、公式多(如同角三角函数关 系式、诱导公式、两角和与差的正余弦、正 切、正余弦定理等)、符号变化多,这几多决 定了学习本章要加强记忆.本章与其他章节 联系也很密切,是综合应用所学知识的一章.
又由①各边都加上 π,得
32π+2kπ<π-α<2π+2kπ(k∈Z).
∴π-α 是第四象限角.
同理可知,π+α 是第一象限角.
(2)在(0,π)内终边在直线 y= 3x 上的角是3π,
∴终边在直线 y= 3x 上的角的集合是{α|α=π3+kπ,k∈Z}.
(3)∵θ=168°+k·360°(k∈Z), ∴θ3=56°+k·120°(k∈Z). ∵0°≤56°+k·120°<360°, ∴k=0,1,2 时,θ3∈[0°,360°). 故在[0°,360°)内终边与θ3角的终边相同的角是 56°,176°,296°.
热点之三 三角函数的定义
1.已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角 函数的定义求解.
2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点 到原点的距离,然后用三角函数的定义来求相关问题,若直线的倾斜角为特殊角, 也可直接写出角α的值.

人教A版高中数学:三角函数的概念【精品课件】

人教A版高中数学:三角函数的概念【精品课件】

[教材解难]
正确认识三角函数线 (1)正弦线、余弦线、正切线分别是正弦、余弦、正切函数 的几何表示,三角函数线的长度等于三角函数值的绝对值,方向表 示三角函数值的正负,凡与 x 轴或 y 轴同向的为正值,反向的为负 值. (2)三角函数线的画法 定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给 出了角 a 的三角函数线的画法,即先找到 P,M,T 点,再画出 MP, OM,AT. (3)三角函数线的作用 三角函数线的主要作用是解三角不等式及比较同角异名三角 函数值的大小,同时它也是以后学习三角函数的图象与性质的基 础.
知识点四 三角函数值在各象限的符号
状元随笔 对三角函数值符号的理解 三角函数值的符号是根据三角函数定义和各象限内坐标符号 导出的.从原点到角的终边上任意一点的距离 r 总是正值.根据三 角函数定义知: (1)正弦值符号取决于纵坐标 y 的符号; (2)余弦值的符号取决于横坐标 x 的符号; (3)正切值的符号是由 x,y 符号共同决定的,即 x,y 同号 为正,异号为负.
应用诱导公式一时,先将角转化到 0 ~2π 范围内的角,再求 值.对于特殊角的三角函数值一定要熟记.
最新课程标准: 理解同角三角函数的基本关系式:sin2x+cos2x=1,csoins xx=tan x.
知识点 同角三角函数的基本关系式
状元随笔 (1)利用 sin2α+cos2α=1 可实现 α 的正弦、余弦的互化,利 用csoins αα=tan α 可以实现角 α 的弦切互化. (2)关系式的逆用及变形用:1=sin2α+cos2α,sin2α=1- cos2α,cos2α=1-sin2α.
知识点二 正弦、余弦、正切函数在弧度制下的定义域
三角函数
定义域
sin α

人教高中数学必修四 1.2.1三角函数线 课件(共30张PPT)

人教高中数学必修四 1.2.1三角函数线 课件(共30张PPT)
α的
(Ⅳ) 终边
二、单位圆中的三角函数线 带方向的线段称为有向线段。
规定:有向线段与坐标轴同向时数量为 正,反向时数量为负。
如图,单位圆与角α的终边交于点P(x,y),与x轴交于点A;
,过P点作PM⊥x轴,垂足为M;
注意:正弦线、余弦线、正切线
过A点作AT⊥x轴,与OP的延长线交于点T。 都是有向线段,有正负之分.
不查表,比较大小。
2
(2)cos 3
和 cos 4
5
解:由图形得到
cos 2π > cos 4π
3
5
2π 3 4π 5
y 1
o 1x
题型五:利用三角函数线比较三角函数值的大小
不查表,比较大小。
⑶ tan 2 和 tan 4
3
5
解:由图形得到
2π 3 4π 5
y 1
tan 2π < tan 4π
2
规律方法:
3
3
-1
利用三角函数线解三角不等式的步骤:
第一步:在直角坐标系内,以原点为圆心作出单位圆;
第二步:作出三角函数值对应的三角函数线;
第三步:作出三角函数线对应的两个角;
第四步:根据不等式的范围,写出角的取值范围.
“三角函数线法”是解三角不等式最好的方法,需牢固掌握.
x1 2
y
1
3
1
O
x
(2k , 2k 5 )k Z
6
6
6
-1
2 sin 1
2
[2k 7 , 2k ]k Z
6
6
y

1
6
y
1
2
O 1x

三角函数 ppt课件

三角函数  ppt课件

ppt课件
12
④理解同角三角函数的基本关系式:sin2x+cos2x=1,
sin x/cos x=tan x.
⑤结合具体实例,了解y=Asin(ωx+φ)的实际意义; 能借助计算器或计算机画出
y=Asin(ωx+φ)的图象.
观察参数A,ω ,φ对函数图象变化的影响.
⑥会用三角函数解决一些简单实际问题,体会三角 函数是描述周期变化现象的重要函数模型.
ppt课件
13
三、本章内容的定位
1.引言 提供背景:自然界广泛地存在着周期性现象,
圆周上一点的运动是一个简单又基本的例子.
提出问题:用什么样的数学模型来刻画周期性
运动?
明确任务:建构这样的数学模型.
教学的起点是:对周期性现象的数学(分析)
研究.
教材的定位是:展示对周期现象进行数学研究
的过程,即建构刻画周期性现象的数学模型的 (思维)过程.
ppt课件
8
第一章 三角函数 (约16课时)
ppt课件
9
一、本章结构
周期现象
任意角
弧度
三角函数
三角函数线
同角三角函数关系 诱导公式 三角函数图象性质
综合运用
ppt课件
10
二、内容与要求
(1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度 的互化.
(2)三角函数 ①借助单位圆理解任意角三角函数(正弦、余
ppt课件
37
(2)要充分发挥形数结合思想方法在本章 的运用.发挥单位圆、三角函数线、图象 的作用.
ppt课件
38
(3)运用和深化函数思想方法.
三角函数是学生在高中阶段系统学习的又一个 基本初等函数,教学中应当注意引导学生以数学l 中学到的研究函数的方法为指导来学习本章知识, 即在函数观点的指导下,学习三角函数,这对进 一步理解三角函数概念,理解函数思想方法对提 高学生在学习过程中的数学思维水平都是十分重 要的.

高中数学新人教A版必修一三角函数的概念课件34张

高中数学新人教A版必修一三角函数的概念课件34张

【跟踪训练 3】 若角α的终边与直线 y=3x 重合,且 sin α<0,又 P(m,n)是角α终边
上一点,且|OP|= 10 ,则 m-n=
.
解析:由题,所以n=3m, 又m2+n2=10, 所以m2=1. 又sin α<0,所以m=-1,所以n=-3. 故m-n=2.
答案:2
考查角度2:三角函数值的符号 【例4】 (2018·石家庄质检)已知sin α<0,tan α>0. (1)求角α的集合;
(A) 4 5
(B)- 4 (C) 3
5
5
(D)- 3 5
解析:因为点 A 的纵坐标 yA= 4 ,且点 A 在第二象限,又因为圆 O 为单位圆,所以 A 5
点的横坐标 xA=- 3 ,由三角函数的定义可得 cos α=- 3 .故选 D.
5
5
【例2】 若角θ的终边过点P(-4a,3a)(a≠0). (1)求sin θ+cos θ的值;
(A)1 (B)-1 (C)±1 (D)±2
解析:sin α= 2 = 2 ,x=2,tan α= y = 2 =1.故选 A.
x2 22 x
x2
4.(教材改编题)若sin α<0且tan α<0,则α是( D ) (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
解析:由sin α<0,得α在第三或第四象限;由tan α<0,得α在第二或第四象 限,故α在第四象限.故选D.
2.弧度制
(1)定义 长度等于 (2)公式
半径长
角α的弧度数公式
角度与弧度的换算 弧长公式
扇形面积公式
的弧所对的圆心角叫做1弧度的角.弧度记作rad.
|α|= ①1°=

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

(2024年)高中数学三角函数诱导公式ppt课件

(2024年)高中数学三角函数诱导公式ppt课件
波动问题
波动是物理学中另一个重要的研究领域。在波动问题中,三角函数同样扮演着重 要的角色。利用三角函数诱导公式,可以求解波动方程,得到波的传播速度、波 长、频率等关键参数。
21
拓展延伸:复数域内三角函数性质探讨
复数域内三角函数的定义
在复数域内,三角函数可以通过欧拉公式进行定义。这使得三角函数在复数域内具有了许多独特的性质。
α)等。
12
利用同角关系求值或化简表达式
已知一个角的三角函 数值,求其他角的三 角函数值。
通过同角关系式证明 三角恒等式。
2024/3/26
利用同角关系式化简 复杂的三角函数表达 式。
13
典型例题解析
例题1
已知sinα = 3/5,求cosα ,tanα的值。
2024/3/26
例题2
化简表达式(sinα
5
三角函数值域和极值点
值域
正弦函数和余弦函数的值域均为$[-1, 1]$;正切函数的值域 为$R$。
2024/3/26
极值点
正弦函数在$frac{pi}{2} + kpi(k in Z)$处取得最大值1,在 $frac{3pi}{2} + kpi(k in Z)$处取得最小值-1;余弦函数在 $2kpi(k in Z)$处取得最大值1,在$pi + kpi(k in Z)$处取得 最小值-1。
关注三角函数与其他知识点的 联系,如向量、数列、不等式
等。
2024/3/26
26
THANKS
感谢观看
2024/3/26
27
18
05
实际应用举例与拓展延伸
2024/3/26
19
在几何图形中求解角度问题

《高中数学《三角函数课件》PPT》

《高中数学《三角函数课件》PPT》
分析不同三角函数的图像特 点和性质,帮助理解其行为。
三角函数的周期、对称性及单位圆解释
1
周期性
解释三角函数的周期性,包括正弦、余
对称性
2
弦和正切函数。
介绍三角函数的对称性,如奇偶性和周
期性对称。
3
单位圆解释
使用单位圆来解释三角函数的概念和性 质。
角度制与弧度制转换及应用
1 角度制和弧度制
介绍角度制和弧度制的概念,以及它们之间的转换关系。
1
基本关系
介绍不同三角函数之间的基本关系,如
导出公式
2
正切和余切的关系。
推导和解释一些重要的三角函数之间的
关系公式。3ຫໍສະໝຸດ 应用应用这些关系公式解决实际问题。
三角恒等式证明及其常用应用
• 证明重要的三角恒等式,如和差化积、倍角公式等。 • 分享这些恒等式的常见应用和解题技巧。
三角函数的应用:三角形的面 积、高度及角度求解
2 应用
说明角度制和弧度制在三角函数中的实际应用和意义。
三角函数在平面解析几何中的运用
坐标平面
展示如何使用三角函数在坐标平 面中描述和计算点的位置。
三角形
平面向量
说明三角函数在解析几何中用于 计算和分析三角形的角度和边长。
描述三角函数在平面向量中的应 用,包括方向角和向量的投影。
三角函数的基本关系及导出公式介绍
1 面积求解
利用三角函数计算三角形的 面积。
2 高度求解
使用三角函数计算三角形的 高度。
3 角度求解
应用三角函数解决三角形中的角度问题。
课程复习及答疑
回顾整个课程内容,并解答学生们在课程中遇到的问题。
高中数学《三角函数课件》 PPT

高中数学 第一章 三角函数 1.2.三角函数的定义课件

高中数学 第一章 三角函数 1.2.三角函数的定义课件

12/12/2021
第二十页,共五十页。
(2)因为角 α 的终边过点(a,2a)(a≠0), 所以 r= 5|a|,x=a,y=2a.

a>0
时,sinα=yr=
2a =2 5a
5 5,cosα=xr=
a= 5a
55,tanα
=yx=2aa=2;

a<0
时,sinα=yr=-2a5a=-2 5
5,cosα=xr=- a
原点的距离为 r,则 sinα=
y r ,cosα=
x r ,tanα=
y x.
12/12/2021
第八页,共五十页。
[答一答] 1.三角函数值的大小与点 P 在终边上的位置是否有关?
提示:三角函数值是比值,是一个实数,这个实数的大小与 点 P(x,y)在终边上的位置无关,只与角 α 的终边位置有关,即 三角函数值的大小只与角有关.
12/12/2021
第六页,共五十页。
12/12/2021
第七页,共五十页。
知识点一 三角函数的定义
[填一填] (1)单位圆:圆心是 原点 ,半径长为
单位长度 .
(2)定义:设任意角 α 的终边与单位圆交于点 P(x,y),则 sinα

y ,cosα=
x ,tanα= yx(x≠0) .
(3)一般地,设角 α 终边上任意一点 P 的坐标为(x,y),它与
12/12/2021
第二十三页,共五十页。
[变式训练 1] (1)如果角 α 的终边经过点 P- 23,12,则 sinα

1 2
,cosα=

3 2
,tanα=

3 3

高中数学第一章三角函数143正切函数的性质与图象课件新人教A版必修

高中数学第一章三角函数143正切函数的性质与图象课件新人教A版必修

其中k∈Z;两线为直线x=kπ+
π 2
和直线x=kπ-
π2 ,其中k∈
Z(两线也称为正切曲线的渐近线,即无限接近但不相交).
(2)作简图时,只需先作出一个周期中的两条渐近线,
然后描出三个点,用光滑的曲线连接得到一条曲线,最后平
行移动至各个周期内.
2.下列说法正确的是( ) A.y=tan x是增函数 B.y=tan x在第一象限是增函数 C.y=tan x在某一区间上是减函数 D.y=tan x在区间 kπ-π2,kπ+π2 (k∈Z)上是增函 数 解析:由正切函数的图象可知D正确. 答案:D
3.函数y=tan
x2+π3的单调递增区间是(
定义域 值域 周期
xx∈R,且x≠π2+kπ,k∈Z R π
奇偶性

单调性 在区间-π2+kπ,π2+kπ(k∈Z) 上都是增函数
温馨提示 函数y=tan x的对称中心的坐标是k2π,0, (k∈Z),不是(kπ,0)(k∈Z).
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)正切函数在整个定义域内是增函数.( ) (2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期 π.( ) (4)函数y=tan x为奇函数,故对任意x∈R都有tan(-x) =-tan x. ( )
②由题意,得tan x≠1,且x≠kπ+π2,k∈Z,
所以函数f(x)的定义域为{x|x≠kπ+
π 2
,且x≠kπ+
π4,k∈Z},其不关于原点对称.
所以函数f(x)既不是奇函数,也不是偶函数.
归纳升华 1.一般地,函数y=Atan(ωx+φ)的最小正周期为T =|ωπ |,常常利用此公式来求周期. 2.判断函数的奇偶性要先求函数的定义域,判断 其是否关于原点对称.若不对称,则该函数无奇偶性; 若对称,再判断f(-x)与f(x)的关系.

人教A版高中数学必修四任意角的三角函数教学PPT精品课件

人教A版高中数学必修四任意角的三角函数教学PPT精品课件

概念拓展
课堂小结
类比
当r=1
情景《引三入角函数概》整念体复设习计 概念探究
【概念再探】
概念形成
概念应用
概念拓展
课堂小结
y
单位圆:
r=1
直角坐标系中,以原点为圆
O
x
心,以单位长为半径的圆。
情景《引三入角函数概》整念体复设习计 概念探究
【概念形成】
概念形成
概念应用
概念拓展
课堂小结
y
O
x
情景《引三入角函数概》整念体复设习计 概念探究
【概念复习】
概念形成
概念应用
概念拓展
课堂小结
直角三角形中 线段比
情景《引三入角函数概》整念体复设习计 概念探究
【概念初探】
概念形成
概念应用
概念拓展
课堂小结
y
y
O
x
线段比--坐标比
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】
概念形成
概念应用
概念拓展
课堂小结
类比

演示,观察 相应的坐标比值。
人教A版必修四第一章
《任意角的三角函数》
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
O r=1 P
x
〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰 〰〰 〰〰〰
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
任意角的三角函数的概念
1.对任意角的三角函数概念的理解 (1)任意角的正弦、余弦、正切函数由角的终边位置唯一确定. (2)了解三角函数线,从几何角度理解三角函数的定义. (3)根据三角函数的定义推出并熟记以下知识 三角函数值在各象限内的符号;三角函数的定义域;特殊角 的三角函数值.
【例3】(2011·福建高考改编)设函数 f3sincos,其
6

f
(
17) 6
tan(
1 17)
1 tan(3
)
6
6
1 tan
1 3
3.
63
三角函数的图像 对三角函数的图像的几点认识
本章在必修一学习基本初等函数图像画法的基础上,进一 步学习了三角函数图像的画法,完善了函数图像的画法理论, 主要包括以下内容.
(1)描点法.用列表、描点、连线的方式研究未知函数的图像 特征. (2)利用性质画简图,对于熟悉的函数可直接根据特殊点、线 画简图.如“五点法”“三点二线法”等. (3)图像变换法,利用已知函数与未知函数解析式之间的关系, 用平移、伸缩、对称变换画图.
s i n
3 2
c
o
s
1 2
于是 f 3 sin co s . 3312
22
正弦、余弦、正切函数的诱导公式 对正弦、余弦、正切函数的诱导公式的理解
和应用 (1)理解方法:借助单位圆,根据角终边的对称性和三角函数 的定义理解. (2)记忆方法:奇变偶不变,符号看象限
(3)应用方法:用诱导公式一方面可化任意角为0°~90°的 角,另一方面可实现正弦与余弦之间的互化.因此在应用诱导 公式时,要根据题目的要求恰当选择公式.
图像的平移变换极易出错,解答时一方面要注意平移 方向,另一方面要根据自变量本身的变化量确定平移量.
【例5】已知函数 fxsin(1x)
26
(1)利用“五点法”画出函数y=f(x)在长度为一个周期的闭区
间的简图;(要求列出表格)
(2)说明函数y=f(x)的图像可由函数y=sinx(x∈R)的图像经过
ቤተ መጻሕፍቲ ባይዱ(A) 3
4
(B)
4
(C) (D) 3
4
4
(2)已知角α的终边与角-330°的终边关于原点对称,则其中
绝对值最小的角α是_______.
【审题指导】(1)解答的关键是判断出θ与 1 终1 边相同.
4
(2)若角α,β的终边关于原点对称则其终边互为反向延长
线,因此α+180°与角β终边相同.
怎样平移和伸缩变换得到的.
【审题指导】(1)五点法画函数图像的关键是 1 x 整 体取
26
0, ,π, ,23 π .
2
2
(2)平移变换要遵循“左加右减,上加下减”,伸缩变换要依
据周期变换和振幅变换确定.
【规范解答】(1)先列表,后描点并画图.
(2)方法一:把y=sinx的图像上所有的点向左平移 个单位长
【规范解答】(1)选A.由已知得θ与 1终1 边相同
4
所以 2k(k1∈1Z)
4
当k=0时θ= 1 1 ;当k=1时θ= 3
4
4
当k=2时θ=5
4
∴使|θ|最小的θ值是 3
4
(2)∵角α的终边与角-330°的终边关于原点对称 且-330°+180°=-150° ∴角α的终边与角-150°的终边相同 ∴α=k×360°-150°,k∈Z 当k=0时α=-150°;当k=1时α=210° ∴绝对值最小的角α是-150° 答案:-150°
诱导公式的应用过程中,往往会由于角终边位置的确 定错误而导致符号错误,要特别注意.
【例4】设 f 2 sin 2 s in 2 c o s sin ( c o s ) ,
若 17 ,求f(α)的值;
6
【审题指导】解答本题的关键是利用诱导公式和因式分解的
方法化简求值.
6
度,得到 y sin(x的图)像,再把所得图像的横坐标伸长到
6
原来的2倍(纵坐标不变),得到 ysin(1的x图像) .
26
方法二:把y=sinx的图像横坐标伸长到原来的2倍(纵坐标不
变),得到 y sin的1 图x 像.再把所得图像上所有的点向左平
2
移 个单位长度,得到
3
ysin1,(x即)
任意角和弧度制
1.对任意角概念的理解 (1)角的分类: 任意角可按旋转方向分为正角、负角和零角.
(2)象限角和终边相同的角 正确理解象限角、锐角、钝角、小于90°的角等概念,注意 各自特点,会根据其终边位置表示这些角. (3)理解弧度的概念,正确利用π rad=180°进行度与弧度的 互化.
【例2】已知扇形的圆心角为 ,它所对的弦长等于2,求
3
扇形的弧长和扇形的面积.
【审题指导】解答本题的关键是根据平面图形的性质求出扇
形的半径长.
【规范解答】∵扇形的圆心角|θ|=
3
∴扇形半径和弦构成等边三角形
∴扇形的半径r=2∴扇形的弧长l= 2 2
3
3
∴扇形的面积 s1.22 2
23
23
y的s图in(1x)
26
像.
三角函数的性质
1.求定义域的方法 求定义域往往要解三角不等式,解三角不等式的一般方法为 图像法和三角函数线法
2.求三角函数的单调区间
求 fxA sin( x )的单调区间时,首先要看A,ω是否为
【规范解答】f 2 sin 2 s in 2 c o s sin ( c o s )
2sin cos cos
2sin 2 sin
2sin cos cos 2sin 2 sin
2sin 2sin
1 cos 1sin
1 tan
若 1,7
2.弧长公式、扇形面积公式
记准弧度数计算公式 l 和扇形面积公式 s 1 l r ,
r
2
很容易推出弧长公式l=|α|r和扇形面积公式 s 1 r 2 .
2
在同一个式子中,采用的度量制度必须一致,不可混
用.
【例1】(1)把 1 1 表示成2kπ+θ(k∈Z)的形式,使|θ|最
4
小的θ值是( )
中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合, 终边经过点P(x,y)且0≤θ≤π,若点P的坐标为( 1 , 3 ) ,求f(θ)
22
的值.
【审题指导】根据任意角的三角函数的定义,只要求出角θ终边
与单位圆交点的坐标,就可以求出sinθ,cosθ.
【规范解答】由点P的坐标和三角函数的定义可得
相关文档
最新文档