轴向拉压习题

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

项目三 轴向拉压杆习题

项目三   轴向拉压杆习题

项目三轴向拉伸与压缩一、填空题:1、内力是由引起的杆件内个部分间的。

2、求内力的基本方法是。

3、直杆的作用内力称。

其正负号规定为:当杆件受拉而伸长时为正,其方向截面。

4、截面法就轴力的步骤为:、、。

5、轴力图用来表达,画轴力图时用的坐标表示横截面位置,坐标表示横截面上的轴力。

6、轴力图中,正轴力表示拉力,画在轴的。

7、轴力的大小与外力有关。

与杆件截面尺寸、材料(有关、无关)。

8、应力是,反应了内力的分布集度。

单位,简称。

9、1pa= N/mm2 = N/m2。

1Mpa= pa。

10、直杆受轴力作用时的变形满足假设,根据这个假设,应力在横截面上分布,计算公式为。

11、正应力是指。

12、在荷载作用下生产的应力叫。

发生破坏是的应力叫。

许用应力是工作应力的;三者分别用符号、、表示。

13、当保证杆件轴向拉压时的安全,工作应力与许用应力应满足关系式:。

14、等截面直杆,受轴向拉压力作用时,危险截面发生在处。

而变截面杆,强度计算应分别进行检验。

15、轴向拉压杆的破坏往往从开始。

16、杆件在轴向力作用下长度的改变量叫,用表示。

17、胡克定律表明在范围内,杆件的纵向变形与及,与杆件的成正比。

18、材料的抗拉、压弹性模量用表示,反映材料的能力。

19、EA称作材料的,它反映了材料制成一定截面尺寸后的杆件的抗拉、压能力。

EA越大,变形越。

20、ε叫作,指单位长度的变形。

21、泊松比又叫,ν= ,应用范围为弹性受力范围。

二、计算题:1、试计算轴向拉压杆指定截面的轴力。

2、绘制图示杆件的轴力图。

3、求图示结构中各杆的轴力。

4、用绳索起吊管子如图所示。

若构件重W=10KN ,绳索的直径d=40mm ,许用应力[30 20KNB 45C 455、图示支架中,荷载P=100KN。

杆1为圆形截面钢杆,其许用应力[σ]=150MPa,拉=4MPa。

试确定钢杆的直径d和木杆杆2位正方形截面木杆,其许用应力[σ]压截面的边长c。

C6、钢杆长l=2m,截面面积A=200 mm2,受到拉力P=32KN的作用,钢杆的弹性模量E=2.0×105MPa,试计算此钢杆的伸长量Δl。

轴向拉伸 习题

轴向拉伸 习题

轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。

()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。

()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。

()5.轴力是指杆件沿轴线方向的内力。

()6.内力图的叠加法是指内力图上对应坐标的代数相加。

()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。

9.如图所示,杆件受力P作用,分别用N1、N2、N3和σ1、σ2、σ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力σ1>σ2>σ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A > L B , 所以△L A>△L B(两杆均处于弹性范围内),因此有εA>εB。

()11.因E=σ/ε,因而当ε一定时,E随σ的增大而提高。

()12.已知碳钢的比例极限σp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力σ=Eε=200×10×0.002=400Mpa。

()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。

()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。

()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。

()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。

()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。

轴向拉伸与压缩练习题

轴向拉伸与压缩练习题

轴向拉伸与压缩练习题在材料力学中,轴向拉伸与压缩是一种常见的载荷方式,它们用于研究材料的强度、刚度和变形特性。

这些练习题旨在帮助学生加深对轴向拉伸与压缩的理解,并提供实践应用的机会。

以下是一些典型的练习题,通过解答这些问题,我们可以更好地理解这一领域的概念和原理。

1. 假设一根钢杆的长度为L,直径为D,已知拉伸载荷为F,求该杆的应力和应变。

2. 一根弹性体的长度为L,横截面积为A,已知施加在该体上的拉伸载荷为F,它的徐变模量为E,求该体的应变。

3. 如果一根杆材受到的拉伸载荷逐渐增加,最终达到其屈服强度,该杆材会发生什么样的变形?4. 如果一根杆材受到的压缩载荷逐渐增加,最终达到其屈服强度,该杆材会发生什么样的变形?5. 如果一根杆材同时受到轴向拉伸和压缩两种载荷,该杆材会如何变形?6. 一根弹性体的长度为L,横截面积为A,已知施加在该体上的拉伸载荷为F,计算该体的应力。

7. 一块材料在受到拉伸载荷时,其应力与应变之间的关系可以通过应力-应变曲线来表示,请描述应力-应变曲线的特点。

8. 如果一根杆材在受到轴向拉伸时断裂,这可能是由于哪些原因导致的?9. 一根杆材经过轴向拉伸后恢复原状的能力被称为什么?10. 在材料力学中,有一种称为胶黏剪切的变形模式,你了解它吗?请简要描述一下。

以上是一些典型的轴向拉伸与压缩练习题,通过解答这些问题,我们可以更好地理解轴向拉伸与压缩的基本概念和应用。

在解答问题的过程中,我们也可以运用公式和原理来计算并分析材料的应力、应变和变形等性质。

同时,通过这些练习题,我们可以培养应用知识解决实际问题的能力。

要提醒的是,在进行轴向拉伸与压缩练习题时,我们应该注意准确的计算和合理的分析。

在解答问题时,可以尝试用不同的方法和途径来验证答案,以加深对知识的理解和掌握。

同时,在实践中,我们也可以通过学习和研究更多的相关材料,来进一步拓展和深化对轴向拉伸与压缩的理解。

通过轴向拉伸与压缩练习题的学习与实践,我们可以更好地掌握这一领域的知识和技能。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

第一章轴向拉伸和压缩习题

第一章轴向拉伸和压缩习题

第一章轴向拉伸和压缩习题一、单项选择题1、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的A、刚度,B、稳定性,C、硬度,D、强度。

2、构件具有足够的抵抗变形的能力,我们就说构件具有足够的A、强度,B、稳定性,C、刚度,D、硬度。

3、单位面积上的内力称之为A、正应力,B、应力,C、拉应力,D、压应力。

4、与截面垂直的应力称之为A、正应力,B、拉应力,C、压应力,D、切应力。

5、轴向拉伸和压缩时,杆件横截面上产生的应力为A、正应力,B、拉应力,C、压应力,D、切应力。

6、胡克定律在下述哪个范围内成立?A、屈服极限,B、比例极限,C、强度极限,D、名义屈服极限。

时,试样将7、当低碳钢试样横截面上的实验应力σ =σsA、完全失去承载能力,B、断裂,C、产生较大变形,D、局部出现颈缩。

8、脆性材料具有以下哪种力学性质?A、试样拉伸过程中出现屈服现象,B、抗冲击性能比塑性材料好,C、若构件开孔造成应力集中现象,对强度没有影响。

D、抗压强度极限比抗拉强度极限大得多。

9、灰铸铁压缩实验时,出现的裂纹A、沿着试样的横截面,B、沿着与试样轴线平行的纵截面,C、裂纹无规律,D、沿着与试样轴线成45。

角的斜截面。

10、横截面都为圆的两个杆,直径分别为d和D ,并且d=0.5D。

两杆横截面上轴力相等两杆横截面上应力之比Ddσσ为 A 、2倍, B 、4倍, C 、8倍, D 、16倍。

二、填空题1、求内力常用的方法是 。

2、轴向拉伸和压缩时,虎克定律的两种表达形式为 ,3、通过低碳钢拉伸试验可知,反映材料抵抗弹性变形能力的指标是 ;反映材料强度的指标是 ;反映材料塑性的指标是 。

4、σ0.2表示材料的 。

5、与截面平行的应力称为 ;与截面垂直的应力称之为 。

6、 钢的弹性模量E=200Gpa ,铝的弹性模量E=71Gpa,试比较在同一应力作用下,哪种材料应变大? 。

7、轴向拉伸和压缩时,杆上所受外力或外力的合力与杆件的轴线 。

2.1轴向拉压习题

2.1轴向拉压习题

2.1轴向拉压习题一、选择题1、一阶梯形杆件受拉力F的作用,其截面1-1,2-2,3-3上的内力分别为F1,F2和F3,三者的关系为()。

A、F1≠F2、F2≠F3;B、F1=F2、F2=F3;C、F1=F2、F2>F3;D、F1=F2、F2<F3。

2、图示阶梯形杆,CD段为铝,横截面面积为A;BC和DE段为钢,横截面面积均为2A。

设1-1、2-2、3-3截面上的正应力分别为σ1、σ2、σ3,则其大小次序为()。

A、σ1>σ2>σ3;B、σ2>σ3>σ1;C、σ3>σ1>σ2;D、σ2>σ1>σ3。

3、轴向拉伸杆,正应力最大的截面和剪应力最大的截面()。

A、分别是横截面、450斜截面;B、都是横截面;C、分别是450斜截面、横截面;D、都是450斜截面。

4、设轴向拉伸杆横截面上的正应力为σ,则450斜截面上的正应力和剪应力()。

A、分别为σ/2和σ;B、均为σ;C、分别为σ和σ/2;D、均为σ/2。

5、材料的塑性指标有()。

A、σS和δ;B、σS和ψ;C、δ和ψ;D、σS、δ和ψ。

6、图示钢梁AB由长度和横截面面积相等的钢杆①和铝杆②支承,在载荷F作用下,欲使钢梁平行下移,则载荷F的作用点应()。

A、靠近A端;B、靠近B端;C、在AB梁的中点;D、任意点。

7、用三种不同材料制成尺寸相同的试件,在相同的试验条件下进行拉伸实验,得到应力-应变曲线图。

比较三条曲线,可知拉伸强度最高、弹性模量最大、塑性最好的材料分别是()。

A 、a 、b 、c ;B 、b 、c 、a ;C 、b 、a 、c ;D 、c 、b 、a 。

8、一拉伸钢杆,弹性模量E =200GPa ,比例极限为200MPa ,今测得其轴向应变ε=0.0015,则横截面上的正应力()。

A 、σ=Eε=300MPa ;B 、σ>300MPa ;C 、200MPa <σ<300MPa ;D 、σ<200MPa 。

9、变截面杆AD 受集中力作用,如图所示。

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。

(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。

列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。

方法二:简便方法。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。

故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。

2-2b 作图示杆的轴力图。

(c)图:(b)图:(3)杆的轴力图如图(d )所示。

2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。

试计算两柱上、中、下三段的应力。

(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。

将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。

列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。

(2)作柱的轴力图,如(e)、(f)所示。

(3)求柱各段的应力。

解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。

材料力学第二章轴向拉伸与压缩作业习题

材料力学第二章轴向拉伸与压缩作业习题

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

《材料力学》第2章 轴向拉(压)变形 习题解讲解

《材料力学》第2章 轴向拉(压)变形 习题解讲解

第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。

[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EC横截面上的应力。

解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。

由平衡条件可知:②以C节点为研究对象,其受力图如图所示。

由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。

荷载,材料的密度,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。

解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答一、判断改错1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。

答:错。

静定构件内力的大小之与外力的大小有关,与材料的截面无关。

2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。

答:对。

3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。

如图所示。

两杆都受自重作用。

则两杆最大压应力相等,最大压缩量也相等。

答:对。

自重作用时,最大压应力在两杆底端,即max max N All A Aνσν=== 也就是说,最大应力与面积无关,只与杆长有关。

所以两者的最大压应力相等。

最大压缩量为 2max max22N Al l l l A EA Eνν⋅∆===即最大压缩量与面积无关,只与杆长有关。

所以两杆的最大压缩量也相等。

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。

所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。

答:错 。

在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。

5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。

答:错, 不一定。

由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。

A 1(a) (b)二、填空题1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45o)2、受轴向拉伸的等直杆,在变形后其体积将(增大)3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。

4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。

5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。

材料力学第二章轴向拉伸与压缩习题答案

材料力学第二章轴向拉伸与压缩习题答案
3-13图示结构的AB杆为刚性杆,A处为铰接,AB杆由钢杆BE与铜杆CD吊起。已知CD杆的长度为 ,横截面面积为 ,铜的弹性模量 ;BE杆的长度为 ,横截面面积为 ,钢的弹性模量 。试求CD杆和BE杆中的应力以及BE杆的伸长。
解:为一次超静定问题。
静力平衡条件:
: ①
变形协调方程:
即:
即: ②
由①②解得:
由于内压的作用,油缸盖与缸体将有分开的趋势,依靠六个螺栓将它们固定在一起。
油缸盖受到的压力为
由于6个螺栓均匀分布,每个螺栓承受的轴向力为
由螺栓的强度条件

可得螺栓的直径应为

3-3图示铰接结构由杆AB和AC组成,杆AC的长度为杆AB长度的两倍,横截面面积均为 。两杆的材料相同,许用应力 。试求结构的许用载荷 。
第二章
2-1试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴力图。
2-2图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。
解:
1.轴力
由截面法可求得,杆各横截面上的轴力为
2.应力
MPa MPa
MPa MPa
2-3图示桅杆起重机,起重杆AB的横截面是外径为 、内径为 的圆环,钢丝绳BC的横截面面积为 。试求起重杆AB和钢丝绳BC横截面上的应力。
解:
由几何关系,有
取AC杆为研究对象

由此可知:当 时,
由 ≤
可得

3-9图示联接销钉。已知 ,销钉的直径 ,材料的许用切应力 。试校核销钉的剪切强度,若强度不够,应改用多大直径的销钉。
解:
1.校核销钉的剪切强度
MPa MPa
∴销钉的剪切强度不够。
2.设计销钉的直径
由剪切强度条件 ≤ ,可得

轴向拉伸与压缩习题

轴向拉伸与压缩习题

轴向拉伸与压缩习题一、填空题1.在工程设计中,构件不仅要满足、和稳定性的要求,同时还必须符合经济方面的要求。

2、在式σ=eε中,比例系数e称作材料的拉压_______,相同材料的e值相同;它充分反映某种材料抵抗变形的能力,在其他条件相同时,ea越大,杆件的变形__________。

3、构件工作应力的最高极限叫做__________。

材料能承受的最大应力叫做材料__________。

4、材料抵抗弹性变形能力的指标就是____和_______。

5.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的现象称为。

二、选择题1.轴向弯曲或放大时,直杆横截面上的内力称作轴力,则表示为:()a.fnb.fsfqc.d.fjy2.材料的塑性指标有:()a.σu和δb.σs和ψc.σb和δd.δ和ψ3.截面上的内力大大,()a.与截面的尺寸和形状无关b.与截面的尺寸有关,但与截面的形状无关c.与截面的尺寸无关,但与截面的形状有关d.与截面的尺寸和形状都有关4.等横截面直杆在两个外力的促进作用下出现轴向放大变形时,这对外力所具有的特点一定就是等值、()。

a逆向、共线b反向,过截面形心c方向相对,促进作用线与杆轴线重合d方向相对,沿同一直线促进作用5.一阶梯形杆件受拉力p的作用,其截面1-1,2-2,3-3上的内力分别为n1,n2和n3,三者的关系为()。

an1≠n2n2≠n3bn1=n2n2=n3cn1=n2n2>n3dn1=n2n2<n36.图示阶梯形杆,cd段为铝,横截面面积为a;bc和de段为钢,横截面面积均为2a。

设1-1、2-2、3-3截面上的正应力分别为σ1、σ2、σ3,则其大小次序为()。

aσ1>σ2>σ3bσ2>σ3>σ1cσ3>σ1>σ2dσ2>σ1>σ37.轴向拉伸杆,正应力最大的截面和剪应力最大的截面()a分别是横截面、450斜截面b都是横截面c分别是450斜截面、横截面d都是450斜截面10.由变形公式δl=pl/ea即e=pl/aδl可知,弹性模量()a与载荷、杆长、横截面面积毫无关系b与载荷成正比c与杆长成正比d与横截面面积成正比11.在以下观点,()就是恰当的。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解答计算题1:利用截面法,求图2.1所示简支梁m — m 面的力分量。

解:〔1〕将外力F 分解为两个分量,垂直于梁轴线的分量F sin θ,沿梁轴线的分量F cos θ. (2)求支座A 的约束反力:xF∑=0,AxF∑=cos F θB M ∑=0, Ay F L=sin 3L F θAy F =sin 3Fθ (3)切开m — m ,抛去右半局部,右半局部对左半局部的作用力N F ,S F 合力偶M 代替 〔图1.12 〕。

图 2.1 图2.1(a) 以左半段为研究对象,由平衡条件可以得到xF∑=0, N F =—Ax F =—cos F θ〔负号表示与假设方向相反〕y F ∑=0, s F =Ay F =sin 3Fθ 左半段所有力对截面m-m 德形心C 的合力距为零sin θC M ∑=0, M=AyF 2L =6FL sin θ 讨论 对平面问题,杆件截面上的力分量只有三个:和截面外法线重合的力称为轴力,矢量与外法线垂直的力偶距称为弯矩。

这些力分量根据截面法很容易求得。

在材料力学课程中主要讨论平面问题。

计算题2:试求题2-2图所示的各杆1-1和2-2横截面上的轴力,并作轴力图。

解 〔a 〕如图〔a 〕所示,解除约束,代之以约束反力,作受力图,如题2-2图〔1a 〕所示。

利用静力学平衡条件,确定约束反力的大小和方向,并标示在题2-2图〔1a 〕中。

作杆左端面的外法线n ,将受力图中各力标以正负号,凡与外法线指向一致的力标以正号,反之标以负号,轴力图是平行于杆轴线的直线。

轴力图在有轴力作用处,要发生突变,突变量等与该处轴力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,如题2-2图〔2a 〕所示,截面1和截面2上的轴力分别为1N F =F 和2N F =—F 。

(b)解题步骤与题2-2〔a 〕一样,杆受力图和轴力图如题2-2〔1b 〕、〔2b 〕所示。

轴向拉伸和压缩习题附标准答案

轴向拉伸和压缩习题附标准答案

轴向拉伸和压缩习题附标准答案第四章轴向拉伸和压缩⼀、填空题1、杆件轴向拉伸或压缩时,其受⼒特点是:作⽤于杆件外⼒的合⼒的作⽤线与杆件轴线相________.2、轴向拉伸或压缩杆件的轴⼒垂直于杆件横截⾯,并通过截⾯________.4、杆件轴向拉伸或压缩时,其横截⾯上的正应⼒是________分布的.7、在轴向拉,压斜截⾯上,有正应⼒也有剪应⼒,在正应⼒为最⼤的截⾯上剪应⼒为________.8、杆件轴向拉伸或压缩时,其斜截⾯上剪应⼒随截⾯⽅位不同⽽不同,⽽剪应⼒的最⼤值发⽣在与轴线间的夹⾓为________的斜截⾯上.9、杆件轴向拉伸或压缩时,在平⾏于杆件轴线的纵向截⾯上,其应⼒值为________.10、胡克定律的应⼒适⽤范围若更精确地讲则就是应⼒不超过材料的________极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能⼒,这说明杆件材料的弹性模量E值越⼤,其变形就越________.12、在国际单位制中,弹性模量E的单位为________.13、在应⼒不超过材料⽐例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越⼩.15、低碳钢试样据拉伸时,在初始阶段应⼒和应变成________关系,变形是弹性的,⽽这种弹性变形在卸载后能完全消失的特征⼀直要维持到应⼒为________极限的时候.16、在低碳钢的应⼒—应变图上,开始的⼀段直线与横坐标夹⾓为α,由此可知其正切tgα在数值上相当于低碳钢________的值.17、⾦属拉伸试样在屈服时会表现出明显的________变形,如果⾦属零件有了这种变形就必然会影响机器正常⼯作.18、⾦属拉伸试样在进⼊屈服阶段后,其光滑表⾯将出现与轴线成________⾓的系统条纹,此条纹称为________.19、低碳钢试样拉伸时,在应⼒-应变曲线上会出现接近⽔平的锯齿形线段,若试样表⾯磨光,则在其表⾯上关键所在可看到⼤约与试样轴线成________倾⾓的条纹,它们是由于材料沿试样的________应⼒⾯发⽣滑移⽽出现的.20、使材料试样受拉达到强化阶段,然后卸载,在重新加载时,其在弹性范围内所能随的最⼤荷载将________,⽽且断裂后的延伸率会降低,此即材料的________现象.21、铸铁试样压缩时,其破坏断⾯的法线与轴线⼤致成________的倾⾓.22、铸铁材料具有________强度⾼的⼒学性能,⽽且耐磨,价廉,故常⽤于制造机器底座,床⾝和缸体等.25、混凝⼟,⽯料等脆性材料的抗压强度远⾼于它的________强度.26、为了保证构件安全,可靠地⼯作在⼯程设计时通常把________应⼒作为构件实际⼯作应⼒的最⾼限度.27、安全系数取值⼤于1的⽬的是为了使⼯程构件具有⾜够的________储备.28、设计构件时,若⽚⾯地强调安全⽽采⽤过⼤的________,则不仅浪费材料⽽且会使所设计的结构物笨重.29、正⽅形截⽽的低碳钢直拉杆,其轴向向拉⼒3600N,若许⽤应⼒为100Mpa,由此拉杆横截⾯边长⾄少应为________mm.⼆、判断题(对论述正确的在括号内画 ,错误的画╳)1、杆件两端受到等值,反向和共线的外⼒作⽤时,⼀定产⽣轴向拉伸或压缩变形.()4、轴⼒图可显⽰出杆件各段内横截⾯上轴⼒的⼤⼩但并不能反映杆件各段变形是伸长还是缩短.()5、⼀端固定的杆,受轴向外⼒的作⽤,不必求出约束反⼒即可画内⼒图.()6、轴向拉伸或压缩杆件横截⾯上的内⼒集度----应⼒⼀定正交于横截⾯.()9、求轴向拉伸或压缩杆件的轴⼒时,⼀般地说,在采⽤了截⾯法之后,是不能随意使⽤⼒的可传性原理来研究留下部分的外⼒平衡的.()15、材料相同的⼆拉杆,其横截⾯⾯积和所产⽣的应变相等,但杆件的原始长度不⼀定相等. ()16、⼀钢杆和⼀铝杆若在相同下产⽣相同的应变,则⼆杆横截⾯上的正应⼒是相等的. ()17、弹性模量E值不相同的两根杆件,在产⽣相同弹性应变的情况下,其弹性模量E值⼤的杆件的受⼒必然⼤. ()32、在强度计算时,如果构件的⼯作和⼯作应⼒值⼤于许⽤应⼒很少,⽽且没有超过5%.则仍可以认为构件的强度是⾜够的.()三、最佳选择题(将最符合题意的⼀个答案的代号填⼊括号内)1、在轴向拉伸或压缩杆件上正应⼒为零的截⾯是()A、横截⾯B、与轴线成⼀定交⾓的斜截⾯C、沿轴线的截⾯D、不存在的2、在轴向拉伸或压缩杆件横截⾯上不在此列应⼒是均布的,⽽在斜截⾯上()A、仅正应⼒是均布的;B、正应⼒,剪应⼒都是均布的;C、仅剪应⼒是均布的;D、正应⼒,剪应⼒不是均布的;3、⼀轴向拉伸或压缩的杆件,设与轴线成45.的斜截⾯上的剪应⼒为τ,则该截⾯上的正应⼒等于()A、0;B、1.14τ;C、0.707;D、τ;6、⼀圆杆受拉,在其弹性变形范围内,将直径增加⼀倍,则杆的相对变形将变为原来的()倍.A 、41; B 、21; C 、1; D 、2 7、由两杆铰接⽽成的三⾓架(如图所⽰),杆的横截⾯⾯积为A ,弹性模量为E ,当在节点B 处受到铅垂载荷P 作⽤时,铅垂杆AB 和斜杆BC 的变形应分别为()A 、EA Pl ,EA Pl 34; B 、0,EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 11、两圆杆材料相同,杆Ⅰ为阶梯杆,杆Ⅱ为等直杆,受到拉⼒P 的作⽤(如图所⽰),分析两杆的变形情况,可知杆Ⅰ的伸长()的结论是正确的.A 、为杆Ⅱ伸长的2倍; B 、⼩于杆Ⅱ的伸长;C 、为杆Ⅱ伸长的2.5倍;D 、等于杆Ⅱ的伸长;12、⼏何尺⼨相同的两根杆件,其弹性模量分别为E 1=180Gpa,E 2=60 Gpa,在弹性变形的范围内两者的轴⼒相同,这时产⽣的应变的⽐值21εε 应⼒为()A、31 B 、1; C 、2; D 、3 13、⼀钢和⼀铝杆的长度,横截⾯⾯积均相同,在受到相同的拉⼒作⽤时,铝杆的应⼒和().A 钢杆的应⼒相同,但变形⼩于钢杆;B 变形都⼩于钢杆;C 钢杆的应⼒相同,但变形⼤于钢杆;D 变形都⼤于钢杆.四、图所⽰⽀架,AB 为钢杆,横截⾯积A AB =600mm 2;BC 为⽊杆,横截⾯积A BC =300cm 2.钢的许⽤应⼒[σ]=140Mpa ,⽊材的许⽤拉应⼒[σL ]=8Mpa ,许⽤压应⼒[σy ]=4Mpa.求⽀架的许可载荷.第四章轴向拉伸和压缩答案⼀、填空题:1、重合;2、形⼼; 4、均匀;7、零;8、450;9、零;10、⽐例;11、⼩;12、Pa;13、⼤; 15、正⽐、⽐例;16、弹性模量;17、塑性;18、450、滑移线;19、450、最⼤剪;20、提⾼、冷作硬化;21、450;22、抗压;23、⾼;24、拉;25、抗拉;26、许⽤;27、强度;28、安全系数;29、6;.⼆、判断题:1、×;2、√;3、√;4、×;5、√;6、√;7、√;8、√;9、×;10、×;11、×;12、×;13、√;14、×;15、√;16、×;17、×; 32、√.三、最佳选择题:1—C;2—B;3—D;4—A;5—C;6—A;7—D;8—B;9—C;10—B;11—C;12—A;13—C;四、[P]=101KN.。

轴向拉伸习题

轴向拉伸习题

轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。

()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。

()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。

()5.轴力是指杆件沿轴线方向的内力。

()6.内力图的叠加法是指内力图上对应坐标的代数相加。

()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。

9.如图所示,杆件受力P作用,分别用N1、N2、N3和σ1、σ2、σ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力σ1>σ2>σ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A > L B , 所以△L A>△L B(两杆均处于弹性范围内),因此有εA>εB。

()11.因E=σ/ε,因而当ε一定时,E随σ的增大而提高。

()12.已知碳钢的比例极限σp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力σ=Eε=200×10×0.002=400Mpa。

()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。

()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。

()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。

()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。

()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。

《材料力学》第2章-轴向拉(压)变形-习题解

《材料力学》第2章-轴向拉(压)变形-习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a ) 解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。

(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。

(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。

(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为: x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积2400mm A =,试求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σ MPa mm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1轴向拉压习题一、选择题1、一阶梯形杆件受拉力F的作用,其截面1-1,2-2,3-3上的内力分别为F1,F2和F3,三者的关系为()。

A、F1≠F2、F2≠F3;B、F1=F2、F2=F3;C、F1=F2、F2>F3;D、F1=F2、F2<F3。

2、图示阶梯形杆,CD段为铝,横截面面积为A;BC和DE段为钢,横截面面积均为2A。

设1-1、2-2、3-3截面上的正应力分别为σ1、σ2、σ3,则其大小次序为()。

A、σ1>σ2>σ3;B、σ2>σ3>σ1;C、σ3>σ1>σ2;D、σ2>σ1>σ3。

3、轴向拉伸杆,正应力最大的截面和剪应力最大的截面()。

A、分别是横截面、450斜截面;B、都是横截面;C、分别是450斜截面、横截面;D、都是450斜截面。

4、设轴向拉伸杆横截面上的正应力为σ,则450斜截面上的正应力和剪应力()。

A、分别为σ/2和σ;B、均为σ;C、分别为σ和σ/2;D、均为σ/2。

5、材料的塑性指标有()。

A、σS和δ;B、σS和ψ;C、δ和ψ;D、σS、δ和ψ。

6、图示钢梁AB由长度和横截面面积相等的钢杆①和铝杆②支承,在载荷F作用下,欲使钢梁平行下移,则载荷F的作用点应()。

A、靠近A端;B、靠近B端;C、在AB梁的中点;D、任意点。

7、用三种不同材料制成尺寸相同的试件,在相同的试验条件下进行拉伸实验,得到应力-应变曲线图。

比较三条曲线,可知拉伸强度最高、弹性模量最大、塑性最好的材料分别是()。

A 、a 、b 、c ;B 、b 、c 、a ;C 、b 、a 、c ;D 、c 、b 、a 。

8、一拉伸钢杆,弹性模量E =200GPa ,比例极限为200MPa ,今测得其轴向应变ε=0.0015,则横截面上的正应力()。

A 、σ=Eε=300MPa ;B 、σ>300MPa ;C 、200MPa <σ<300MPa ;D 、σ<200MPa 。

9、变截面杆AD 受集中力作用,如图所示。

设F 1、F 2、F 3分别代表杆AB 段、BC 段和CD 段的轴力,则下列结论中()是正确的。

A 、123F F F >>;B 、123F F F ==;C 、123F F F =>;D 、123F F F <=。

10、甲乙两杆,几何尺寸相同,轴向拉力相同,材料不同,它们的应力和变形有四种可能,下列()是正确的。

A 、应力σ和变形l ∆相同;B 、应力σ不同和变形l ∆相同;C 、应力σ相同和变形l ∆不同;D 、应力σ不同和变形l ∆不同。

11、低碳钢拉伸经过冷作硬化后,以下四种指标中()将得到提高。

A 、强度极限;B 、比例极限;C 、断面收缩率;D 、延伸率。

12、当低碳钢试件的拉伸试验应力s σσ=时,试件将()。

A 、完全失去承载能力;B 、断裂;C 、发生局部颈缩现象;D 、产生很大的塑性变形。

13、图示平板,两端受均布载荷q 作用,若变形前在板面上画两条平行线段AB 和CD ,则变形后()。

A 、AB//CD ,α角减小;B 、AB//CD ,α角不变;C 、AB//CD ,α角增大;D 、AB 不平行于CD 。

14、图示结构中,杆①的材料是钢,GPa E 2061=;杆②的材料是铝,GPa E 702=;已知两杆的横截面积相等,则在力F 作用下,节点A ()。

A 、向左下方移动;B 、向右下方移动;C 、沿铅垂方向向下移动;D、不动。

15、下列说法()是正确的。

A 、杆件某截面上的内力是该截面上应力的代数和;B 、杆件某截面上的应力是该截面上内力的平均值;C 、应力是内力的分布集度;D 、内力必大于应力。

16、图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将()。

A 、平动;B 、转动;C 、不动;D 、平动加转动。

17、关于确定截面内力的截面法的适用范围,下列说法()是正确的。

A 、只适用于等截面直杆;B 、只适用于承受基本变形的直杆;C 、适用于不论基本变形还是组合变形,但限于直杆的横截面;D 、适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形的普遍情况。

18、图示拉杆由两段胶合而成,胶合面m -m 的法线与轴线夹角为α,已知胶合面的许可拉应力[]MPa 100=σ,许可切应力[]MPa 50=τ,问α角为()可使胶合面承受最大拉力。

A 、5.0tan =α;B 、2tan =α;C 、1tan =α;D 、33tan =α。

19、作为脆性材料的极限应力是()。

A 、比例极限;B 、弹性极限;C 、屈服极限;D 、强度极限。

20、对于拉伸曲线上没有明显屈服极限平台的一般塑性材料,工程上规定2.0σ作为名义屈服应力,此时对应的()。

A 、应变量为0.2%ε=;B 、塑性应变量为0.2%ε=;C 、应变量为0.2ε=;D 、塑性应变量为0.2ε=。

21、有同一种材料组成的变截面杆的横截面面积分别为A 2和A ,受力如图所示,弹性模量E 为常数;以下结论()是正确的。

A 、D 截面位移为2Fl EA ;B 、D 截面位移为2Fl EA ;C 、C 截面位移为2Fl EA ;D 、C 截面位移为2Fl EA 。

22、刚性杆AB 由三根材料、横截面面积均相同的杆吊杆。

在结构中()为零。

A 、杆①的轴力;B 、杆②的轴力;C 、A 点的水平位移;D 、A 点的垂直位移。

23、设图示结构中2l ∆、3l ∆分别表示杆②、③的伸长,1l ∆表示杆①的缩短,则3l ∆与1l ∆、2l ∆的关系式为()。

A 、312tan /sin l l l αα∆=∆+∆;B 、312tan /cos l l l αα∆=∆+∆;C 、312tan /sin l l c l αα∆=∆+∆;D 、312tan /cos l l c l αα∆=∆+∆。

二、填空题1、图示等直杆BD 的抗拉压刚度为EA ,杆长为2l ,则杆的总伸长量为()。

2、对于没有明显屈服阶段的塑性材料,通常用2.0σ表示其屈服极限。

2.0σ是塑性应变等于()时的应力值。

3、等直杆两端受轴向载荷作用,其横截面面积为A ,则n -n 斜截面上的正应力和剪应力为()和()。

4、如图所示结构,已知:F 、①杆长为l 及两杆抗拉压刚度均为EA ,030α=,则B 点的水平位移和铅垂位移各为()和()。

5、有同一种材料组成的变截面杆的横截面面积分别为2A和A,受力F作用,如图所示,弹性模量E为常数,则截面D产生的位移为()。

6、一长为l,横截面面积为A的等截面直杆,其容重为γ,弹性模量为E,则该杆自由悬挂σ=(),杆的总伸长l∆=()。

时由自重引起的最大正应力max7、A、B、C三种材料的应力—应变曲线如图所示。

其中强度最高的材料是(),塑性最好的材料是()。

8、低碳钢在拉伸过程中,依次表现为()、()、强化和局部变形四个阶段。

9、脆性材料的极限应力是(),塑性的极限应力是()。

10、受轴向外力作用的等直杆,其m-m横截面的轴力为()。

11、图示一刚性梁AB ,其左端铰支于A 点,杆①、②的横截面面积A 、长度l 和弹性模量均E 相同。

在梁的右端受力F =50KN ,梁自重不计。

则①、②两杆的内力分别为()kN 和()kN。

12、杆件的基本变形包括()、()、()和()。

13、等截面直杆受轴向拉力F 作用发生拉伸变形。

已知横截面面积为A ,则横截面上的正应力和450斜截面上的正应力分别为()和()。

14、轴向拉伸和压缩时其截面上的内力被称为()。

15、变截面杆承受轴向载荷作用,其横截面面积分别为A 和2A ,则m -m 截面上的轴力和正应力分别为()和()。

16、铸铁压缩试件,破坏是在()截面发生剪切错动,是由于()应力引起的。

17、图示铰接结构由杆AB 和AC 组成,杆AC 长度为杆AB 长度的两倍,横截面面积均为2mm 200=A 。

两杆材料相同,许用应力MPa 160][=σ。

则该结构的许用载荷=][F ()kN 。

18、在计算拉压杆变形的胡克定律EA l F l N =∆中,EA 被称为()。

19、两杆结构如图所示,已知杆②单独在两端F 力轴向拉伸时的伸长为11mm ,则A 点的位移大小为()mm 。

20、图示等截面直杆,其抗拉、压刚度为EA ,各段长度均为a 。

在四个相等的力F 1=F 2=F 3=F 4=F 作用下,杆件的总变形为(),1-1截面的内力为()。

三、计算题1、求下面所示杆指定截面上的轴力,并绘制轴力图。

2、变截面杆,如横截面面积A 1=200mm 2,A 2=300mm 2,A 3=400mm 2,求杆各个横截面上的应力。

3、拉杆如图所示,求该杆的总伸长量。

杆材料的弹性模量E=150GPa ,图中长度单位为mm 。

4、试计算刚性梁AB 的B 处位移。

其它杆件为弹性杆,刚度EA 。

5、结构受力如图所示。

若kN F 10=,AB 杆的横截面面积为2110000mm A =,许用应力[]MPa 71=σ;BC 杆的横截面面积为22600mm A =,许用应力[]MPa 1602=σ。

试:1)校核结构的强度;2)求结构的最大许可载荷[]F 。

6、图示结构,杆AB 和BC 的拉压刚度EA 相同,在节点B 处承受集中力F ,试求节点B 的水平及铅垂位移。

7、如图所示托架,AB 为圆钢杆cm d 2.3=,BC 为正方形木杆cm a 14=。

杆端均用铰链连接。

在结点B 作用一载荷kN F 60=。

已知钢许用应力[]MPa 140=σ;木材许用拉、压应力分别为[]MPa t 8=σ,[]MPa c 5.3=σ,试求:1)校核托架能否正常工作;2)如果要求载荷kN P 60=不变,应如何修改钢杆和木杆的截面尺寸。

相关文档
最新文档