双曲线的几何性质教案(精)
双曲线的简单几何性质(教案)(精)
双曲线的简单几何性质山丹一中周相年教学目标:(1 知识目标能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 .(2能力目标通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 .(3 情感目标通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 .教学难点:双曲线的渐近线 .教学方法:启发诱导、练讲结合教学用具 :多媒体教学过程:一、复习回顾,问题引入:问题 1:双曲线的定义及其标准方程?问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究?二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(12222>>=-b a by a x 研究它的几何性质 1. 范围:双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 .2. 对称性:双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称中心叫双曲线中心 .3.顶点:(1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0,它们叫做双曲线的顶点 .(2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .(3实轴与虚轴等长的双曲线叫等轴双曲线,其方程为: 练一练:1. 若点 P (2, 4在双曲线上,下列是双曲线上的点有(1 P (-2, 4 (2 P (-4, 2 (3 P(-2, -4 (4 P (2, -42. 求适合下列条件的双曲线的标准方程:0(22≠=-m m y x(1焦点在 x 轴上,实轴长是 10,虚轴长是 8,则方程是(2焦点在 y 轴上,焦距是 10,虚轴长是 8,则方程是 :4. 渐近线(1概念:双曲线 0, 0(12222>>=-b a by a x 的各支向外延伸时,与这两条直线逐渐接近!故把这两条直线叫做双曲线的渐近线!(2双曲线 12222=-by a x 的渐近线方程为:x a b y ±= ,即 0=±b y a x (3等轴双曲线的渐近线方程为:x y ±=.(4 利用双曲线的渐近线, 可以帮助我们较准确地画出双曲线的草图 . 具体做法是:画出双曲线的渐近线, 先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线 .5. 离心率:(1定义:双曲线的焦距与实轴长的比 e=ac ,叫双曲线的离心率 .(2范围:由 c>a>0可得 e>1.思考:离心率可以刻画椭圆的扁平程度,双曲线的离心率刻画双曲线的什么几何特征?(3含义 :离心率是表示双曲线开口大小的一个量 , 离心率越大开口越大 . 思考:你能到处双曲线 0, 0(12222>>=-b a b x a y 的性质吗? 三、学以致用,巩固双基:例 1 求双曲线 9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程 .练习 1 求双曲线 9y 2-16x 2=-144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程 .思考 1:请你写出一个以为渐近线的双曲线方程 .思考 2:你能写出所有以为渐近线的双曲线方程吗 ?练习 2 求渐近线为 x y 34±=,且过点 4, 3(的双曲线的标准方程 .四、小结反思,总结提高:1. 双曲线 0, 0(12222>>=-b a b x a y 的简单几何性质:范围,对称性,顶点,离心率,渐进线2. 比较双曲线的几何性质与椭圆的几何性质的异同五、作业布置 :必做:作业案 1-10 选做:作业案 11-12x y 34±=x y 34±=六、教学反思渐近线是双曲线的特有性质,也是教学的难点,但课程标准要求相对较低,不要求严格证明,为了突破难点,通过问题引导学生从已有认知水平出发,来发现双曲线的渐近线,然后充分利用多媒体展示,帮助学生进一步直观理解渐近线“渐近”的含义。
双曲线的几何性质教案
吕 叔 湘 中 学 教 师 备 课 纸高 二 年级 数学 学科 时间 编号( )教学过程设计【授课】 一、复习双曲线的定义及标准方程.〖基础知识〗二、双曲线的几何性质 由双曲线的标准方程12222=-by ax (a >b >0)来研究双曲线的几何性质:1.范围:2.对称性:3.顶点:双曲线和对称轴的交点叫做双曲线的顶点. 在双曲线12222=-by ax 的方程里,对称轴是,x y 轴,所以令0=y 得a x ±=,因此双曲线和x 轴有两个交点)0,()0,(2a A a A -,他们是双曲线12222=-bya x的顶点.令0=x ,没有实根,因此双曲线和y 轴没有交点。
⑴注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。
⑵实轴:________________________________________________________虚轴:________________________________________________________ 在作图时,我们常常把虚轴的两个端点画上(为要确定渐进线),但要注意他们并非是双曲线的顶点.4.离心率定义:ac e =∈(1,+∞)称为双曲线的离心率。
由于c e a==故e 越大,双曲线__________;e 越小,双曲线的_________。
5.渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。
从图上看,双曲线12222=-by ax 的各支向外延伸时,与这两条直线逐渐接近.思考:从哪个量上反映“无限接近但永不相交”?——距离。
只要证明什么?——距离趋向于0.求法:求已知双曲线的渐近线方程:令右端的1为0,解出的直线方程即为双曲线的渐近线方程.6.等轴双曲线:⑴定义:实轴和虚轴等长的双曲线叫做等轴双曲线。
定义式:a b =⑵等轴双曲线的性质:①渐近线方程为:x y ±= ;②渐近线互相垂直。
高中数学双曲线几何性质教案
高中数学双曲线几何性质教案
一、教学目标:
1. 了解双曲线的定义和基本性质;
2. 能够根据给定条件解决双曲线相关问题;
3. 掌握双曲线的方程和图像特点。
二、教学内容:
1. 双曲线的定义和基本性质;
2. 双曲线的方程和图像特点;
3. 双曲线的焦点、准轴、渐近线等相关概念。
三、教学重点:
1. 理解双曲线的几何性质;
2. 掌握双曲线的方程和图像特点。
四、教学难点:
1. 理解双曲线方程中参数对图像的影响;
2. 能够灵活运用双曲线的性质解决问题。
五、教学方法:
1. 讲解结合示例;
2. 提问互动,引导学生思考;
3. 小组讨论,合作解题。
六、教学过程:
一、导入
1. 欢迎学生,引入双曲线的定义和概念;
2. 让学生回顾椭圆和抛物线的性质,引申到双曲线。
二、讲解
1. 介绍双曲线的定义和一般方程;
2. 讲解双曲线的图像特点和性质;
3. 详细解释双曲线的焦点、准轴、渐近线等重要概念。
三、练习
1. 带学生做几道双曲线方程求解问题;
2. 引导学生分组合作,解决双曲线相关实际问题。
四、巩固
1. 总结双曲线的性质和特点;
2. 提醒学生复习重点内容,做好准备。
七、作业布置
1. 布置相关习题,巩固所学知识;
2. 提供实际问题,让学生应用双曲线知识解答。
八、评价与反思
1. 对学生的学习情况进行评价;
2. 总结教学过程,反思教学方法,提出改进意见。
以上是本节课的教学内容,希望同学们能认真学习,掌握双曲线的性质和应用,成为数学的高手!。
双曲线的几何性质教案
双曲线的几何性质教案【教案】一、教学目标:1.了解双曲线的定义及基本特点;2.学习双曲线的标准方程;3.掌握双曲线的几何性质。
二、教学重点:1.学习双曲线的标准方程;2.掌握双曲线的几何性质。
三、教学内容:1.双曲线的定义及基本特点:双曲线是平面上一类特殊的曲线,与椭圆和抛物线相似,它们都是二次曲线。
双曲线的特点是曲线上的每一点到两个固定点(称为焦点)的距离之差等于一个常数(称为离心率)的绝对值。
双曲线有两条分支,两个焦点分别位于两条分支的焦点处。
两条分支无限延伸,且永不相交。
2.双曲线的标准方程:标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$。
其中,a为双曲线横轴方向的半轴长,b为双曲线纵轴方向的半轴长。
3.双曲线的几何性质:(1) 对称性:双曲线关于x轴、y轴对称,关于原点对称;(2) 焦点性质:曲线上任意一点到两个焦点的距离之差等于离心率的绝对值;(3) 焦点到顶点的距离等于半轴长a;(4) 曲线和渐近线的关系:当$x\to+\infty$或$x\to-\infty$时,曲线趋于渐近线$y=\pm\frac{b}{a}x$;(5) 端点位置:双曲线与横轴和纵轴的交点分别称为端点,位于横轴上的端点坐标为$(\pm a, 0)$,位于纵轴上的端点坐标为$(0, \pm b)$;(6) 曲线的拐点:双曲线没有拐点。
四、教学过程:1.引入双曲线的概念,通过图像展示和对比椭圆、抛物线等曲线的差异,激发学生的兴趣。
2.介绍双曲线的定义及基本特点:说明双曲线与焦点、离心率的关系,引导学生思考对称性、焦点性质等几何特征。
3.讲解双曲线的标准方程:通过代入具体的数值,给予学生实际的例子,帮助他们理解标准方程的含义。
4.分析双曲线的几何性质:依次介绍对称性、焦点性质、焦点到顶点的距离、曲线和渐近线的关系、端点位置以及曲线的拐点等重要几何性质。
双曲线的简单几何性质教学设计(同课异构公开课)
双曲线的几何性质 教学设计一、教学目标 授课:1、理解双曲线的几何性质(顶点坐标、实、虚轴长,渐近线方程和离心率)。
2﹑能够根据双曲线的几何性质得出相应的双曲线方程。
3、学会画图,探究与双曲线有关的范围(最值)问题过程与方法培养学生的观察能力,想象能力,数形结合和研究问题能力,以及类比的学习方法。
二、教学重点、难点教学重点:双曲线的几何性质(离心率和渐近线等)教学难点:数形结合,动手画图与双曲线有关的范围(最值)问题三、教学准备学生熟练掌握椭圆的定义﹑标准方程及几何性质,了解双曲线的定义﹑标准方程,认识椭圆和双曲线的内在联系,并掌握几何画板的一般操作步骤。
教师制作PPT 课件和易于学生发现和掌握规律的几何画板实验平台。
四、教学过程4.1 复习回顾,引入课题复习1、双曲线的定义及标准方程122PF PF a -=,22221x y a b -=或22221y x a b-= 4.2 活动探究,认识性质1、范围、对称性、顶点、离心率的探究结合椭圆的性质,让学生类比得出双曲线的相关性质,并结合方程加以验证并说出与椭圆的不同。
从而对双曲线的几何性质有一整体认识。
4、给出等轴双曲线的定义并让学生求出实轴长、虚轴长、焦点坐标、顶点坐标、离心率及渐近线方程。
4.3 应用举例,加深理解(1)例、求双曲线22143xy -=的实轴长、虚轴长、焦点坐标、顶点坐标、离心率及渐近线方程。
通过此例,使学生巩固双曲线的几何性质。
(2)考点聚焦,重点讲授双曲线的离心率、渐近线以及与双曲线有关的范围(最值)问题进行理解、探究与突破。
【例1】(2021 年全国甲卷) 已知 12,F F 是双曲线C 的两个焦点, P 为 C 上一点, 且 12160,F PF PF ︒∠==23PF , 则C 的离心率为( ).A.B. C. D. 规律方法:【例2】. (一题多解)焦点为(6,0),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x规律方法:【例3】已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点, A ,则当点P 的位置变化时,△P AF 周长的最小值为____________. 规律方法:4.4 归纳总结,认识升华在学生总结的基础上,再总结归纳,将学生画图的能力,和研究问题能力,以及类比的学习方法进行巩固与加深。
双曲线的简单几何性质精品教案
2.2.2 双曲线的简单几何性质学习目标 1.了解双曲线的简单几何性质(范围、对称性、顶点、实轴长和虚轴长等).2.理解离心率的定义、取值范围和渐近线方程.3.掌握标准方程中 a ,b ,c ,e 间的关系.4.能用双曲线的简单几何性质解决一些简单问题.知识点一 双曲线的简单几何性质思考 类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的哪些几何性质?答案 范围、对称性、顶点、离心率、渐近线.x ≥a 或x ≤-a y ≥a 或y ≤-a 知识点二 双曲线的离心率思考1 如何求双曲线的渐近线方程?答案 将方程x 2a 2-y 2b 2=1(a >0,b >0)右边的“1”换成“0”,如图,即由x 2a 2-y 2b 2=0得x a ±yb =0,作直线x a ±y b =0,在双曲线x 2a 2-y 2b2=1的各支向外延伸时,与两直线无限接近,把这两条直线叫做双曲线的渐近线.思考2 椭圆中,椭圆的离心率可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?答案 双曲线x 2a 2-y 2b 2=1的各支向外延伸无限接近渐近线,所以双曲线的“张口”大小取决于b a 的值,设e =c a ,则ba =c 2-a 2a=e 2-1. 当e 的值逐渐增大时,ba的值增大,双曲线的“张口”逐渐增大.双曲线的半焦距c 与实半轴长a 的比值e 叫做双曲线的离心率,其取值范围是(1,+∞).e 越大,双曲线的张口越大. 知识点三 双曲线的相关概念(1)双曲线的对称中心叫做双曲线的中心.(2)实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y =±x .类型一 双曲线的简单几何性质例1 求与椭圆x 2144+y 2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解 椭圆x 2144+y 2169=1的焦点是(0,-5),(0,5),焦点在y 轴上,于是可设双曲线的方程是y 2a 2-x 2b 2=1(a >0,b >0).又双曲线过点(0,2),所以c =5,a =2, 所以b 2=c 2-a 2=25-4=21. 所以双曲线的标准方程为y 24-x 221=1.所以双曲线的实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .反思与感悟 根据双曲线方程研究其性质的基本思路(1)将双曲线的方程转化为标准方程.(2)确定双曲线的焦点位置,弄清方程中的a ,b 所对应的值,再利用c 2=a 2+b 2得到c 的值. (3)根据确定的a ,b ,c 的值求双曲线的实轴长、虚轴长、焦距、焦点坐标、离心率及渐近线方程等.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1.由此可知,实半轴长a =4,虚半轴长b =3;c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5); 离心率e =c a =54;渐近线方程为y =±43x .类型二 由双曲线的几何性质求标准方程例2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: (1)双曲线过点(3,92),离心率e =103; (2)过点P (2,-1),渐近线方程是y =±3x . 解 (1)e 2=109,得c 2a 2=109,设a 2=9k (k >0),则c 2=10k ,b 2=c 2-a 2=k .于是,设所求双曲线方程为x 29k -y 2k =1①或y 29k -x 2k =1.②把(3,92)代入①,得k =-161,与k >0矛盾,无解; 把(3,92)代入②,得k =9, 故所求双曲线方程为y 281-x 29=1.(2)由渐近线方程3x ±y =0,可设所求双曲线方程为x 219-y 2=λ(λ≠0),(*)将点P (2,-1)代入(*),得λ=35, ∴所求双曲线方程为x 2359-y 235=1.反思与感悟 由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1 (mn >0),从而直接求得.若已知双曲线的渐近线方程为y =±bax ,还可以将方程设为x 2a 2-y 2b2=λ(λ≠0),避免讨论焦点的位置.跟踪训练2 已知圆M :x 2+(y -5)2=9,双曲线G 与椭圆C :x 250+y 225=1有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 解 椭圆C :x 250+y 225=1的两焦点为F 1(-5,0),F 2(5,0),故双曲线的中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则G 的渐近线方程为y =±ba x ,即bx ±ay =0,且a 2+b 2=25.∵圆M 的圆心为(0,5),半径为r =3. ∴|5a |a 2+b 2=3⇒a =3,b =4. ∴双曲线G 的方程为x 29-y 216=1.类型三 直线与双曲线的位置关系例3 已知直线y =kx -1与双曲线x 2-y 2=4. (1)若直线与双曲线没有公共点,求k 的取值范围; (2)若直线与双曲线只有一个公共点,求k 的取值范围.解 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,得(1-k 2)x 2+2kx -5=0.①(1)直线与双曲线没有公共点,则①式方程无解.∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+20(1-k 2)<0,解得k >52或k <-52, 则k 的取值范围为k >52或k <-52. (2)直线与双曲线只有一个公共点,则①式方程只有一解. 当1-k 2=0,即k =±1时,①式方程只有一解; 当1-k 2≠0时,应满足Δ=4k 2+20(1-k 2)=0, 解得k =±52,故k 的值为±1或±52.反思与感悟 (1)直线与双曲线的公共点就是以直线的方程与双曲线的方程联立所构成方程组的解为坐标的点,因此对直线与双曲线的位置关系的讨论,常常转化为对由它们的方程构成的方程组解的情况的讨论.(2)直线与椭圆的位置关系是由它们交点的个数决定的,而直线与双曲线的位置关系不能由其交点的个数决定.(3)弦长公式:直线y =kx +b 与双曲线相交所得的弦长与椭圆的相同:d =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. 跟踪训练3 经过点M (2,2)作直线l 交双曲线x 2-y 24=1于A ,B 两点,且M 为AB 中点.(1)求直线l 的方程; (2)求线段AB 的长.解 (1)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 214=1①,x 22-y224=1②,①-②得(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)4=0.又x 1+x 2=4,y 1+y 2=4,∴y 1-y 2x 1-x 2=4=k . ∴直线l 的方程为y -2=4(x -2), 即4x -y -6=0.(2)由⎩⎪⎨⎪⎧4x -y -6=0,x 2-y 24=1,得3x 2-12x +10=0,∴x 1+x 2=4,x 1x 2=103.∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=21023.1.双曲线2x 2-y 2=8的实轴长是( ) A.2 B.2 2 C.4 D.4 2 答案 C解析 双曲线的标准方程为x 24-y 28=1,故实轴长为4.2.设双曲线x 2a +y 29=1的渐近线方程为3x ±2y =0,则a 的值为( )A.-4B.-3C.2D.1 答案 A解析 ∵方程表示双曲线,∴a <0,标准方程为y 29-x 2-a =1,∴渐近线方程为y =±3-ax , ∴3-a =32,解得a =-4. 3.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.3414B.324C.32D.43答案 C解析 由题意知a 2+5=9, 解得a =2,e =c a =32.4.等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( ) A.x 29-y 29=1 B.y 29-x 29=1 C.y 218-x 218=1 D.x 218-y 218=1 答案 D解析 ∵等轴双曲线的焦点为(-6,0),∴c =6, ∴2a 2=36,a 2=18.∴双曲线的标准方程为x 218-y 218=1.5.若双曲线x 24-y 2m =1的渐近线方程为y =±32x ,则双曲线的焦点坐标是____________.答案 (±7,0)解析 由渐近线方程为y =±m 2x =±32x , 得m =3,c =7,且焦点在x 轴上.6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为________________. 答案 y =±22x解析 由条件知2b =2,2c =23, ∴b =1,c =3,a 2=c 2-b 2=2,∴双曲线方程为x 22-y 2=1,因此其渐近线方程为y =±22x .1.渐近线是双曲线特有的性质,两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.3.直线与双曲线的位置关系,可以通过由直线方程与双曲线方程得到的方程来判断,首先看二次项系数是否为零,如果不为零,再利用Δ来判断直线与双曲线的关系.4.弦长问题可以利用弦长公式,中点弦问题可使用点差法.一、选择题1.过双曲线x 2―y 2=4的右焦点且平行于虚轴的弦长是( ) A.1 B.2 C.3 D.4 答案 D解析 设弦与双曲线交点为A ,B (A 点在B 点上方),由AB ⊥x 轴且过右焦点,可得A ,B 两点横坐标为22,代入双曲线方程得A (22,2),B (22,-2),故|AB |=4. 2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14xB.y =±13xC.y =±12xD.y =±x答案 C解析 因为e =c a =52,所以c 2a 2=54,又因为c 2=a 2+b 2,所以a 2+b 2a 2=54,得b 2a 2=14,所以渐近线方程为y =±12x .3.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( )A.4B.2C.1D.-2 答案 A解析 ∵双曲线x 24-y 2=1中,x ≥2或x ≤-2,∴若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 选项符合题意.4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( ) A. 6 B. 3 C. 2 D.33答案 B解析 如图,在Rt △MF 1F 2中,∠MF 1F 2=30°. 又|F 1F 2|=2c , ∴|MF 1|=2c cos 30°=433c , |MF 2|=2c ·tan 30°=233c . ∴2a =|MF 1|-|MF 2|=233c .∴e =ca= 3. 5.如图,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过点F 1作倾斜角为30°的直线l ,l 与双曲线的右支交于点P ,若线段PF 1的中点M 落在y 轴上,则双曲线的渐近线方程为( )A.y =±xB.y =±3xC.y =±2xD.y =±2x答案 C解析 设F 1(-c,0),M (0,y 0),因为M 为PF 1中点,且PF 1倾斜角为30°,则P ⎝⎛⎭⎫c ,233c ,将其代入双曲线方程得c 2a 2-43c 2b2=1,又有c 2=a 2+b 2,整理得3⎝⎛⎭⎫b a 4-4⎝⎛⎭⎫b a 2-4=0,解得⎝⎛⎭⎫b a 2=2或⎝⎛⎭⎫b a 2=-23(舍去). 故所求渐近线方程为y =±2x .6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 答案 A解析 令y =0,可得x =-5,即焦点坐标为(-5,0), ∴c =5,∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,∴ba =2, ∵c 2=a 2+b 2, ∴a 2=5,b 2=20,∴双曲线的方程为x 25-y 220=1.二、填空题7.已知双曲线C :x 24-y 2m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是____________. 答案 (4,+∞)解析 ∵等轴双曲线的离心率为2,且双曲线C 的开口比等轴双曲线更开阔, ∴双曲线C :x 24-y 2m =1的离心率e >2,即4+m 4>2.∴m >4.8.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是____________.答案 (-12,0)解析 双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),则1<4-k2<2,解得-12<k <0. 9.过点(0,1)作直线l 与双曲线4x 2―ay 2=1相交于P ,Q 两点,且∠POQ =π2(O 为坐标原点),则a 的取值范围是______________. 答案 0<a ≤3解析 由⎩⎪⎨⎪⎧y =kx +1,4x 2-ay 2=1,得:(4-ak 2)x 2-2akx -a -1=0,得⎩⎪⎨⎪⎧Δ=(-2ak )2+4(a +1)(4-ak 2)>0, ①x 1x 2=-a -14-ak 2,y 1y 2=4-k 24-ak 2,由∠POQ =π2,得OP ⊥OQ ⇒x 1x 2+y 1y 2=0,则-a -14-ak 2+4-k 24-ak 2=0,② 由①②得0<a ≤3. 三、解答题10.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23);(2)顶点间距离为6,渐近线方程为y =±32x .解 (1)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,所以双曲线方程为x 29-y 216=14,即4x 29-y 24=1.(2)设渐近线方程为y =±32x 的双曲线方程为x 24-y 29=λ. 当λ>0时,2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=111.已知双曲线x 2-y 22=1,过P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点?若能,求出l 的方程;若不能,请说明理由. 解 设l 与双曲线交于A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21-y 212=1,x 22-y222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,即(x 1+x 2)-y 1+y 22·y 1-y 2x 1-x 2=0, 又直线过P (1,1)且为线段AB 中点,所以x 1+x 2=2,y 1+y 2=2,所以k AB =2,所以l 方程为y =2x -1,由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2,消去y ,得2x 2-4x +3=0, 因为Δ=16-4×2×3<0,故直线l 与双曲线没有交点,即直线l 不存在.12.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0). (1)若a =12,求l 与C 相交所得的弦长. (2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围.解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1, 联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y ,得3x 2+2x -2=0. 设两个交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23, 于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+(x 1-x 2)2 =2·(x 1+x 2)2-4x 1x 2=2×289=2143. (2)将y =-x +1代入双曲线x 2a2-y 2=1中得(1-a 2)x 2+2a 2x -2a 2=0, 所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1. 又双曲线的离心率e =1+a 2a =1a 2+1, 所以e >62且e ≠2, 即离心率e 的取值范围是⎝⎛⎭⎫62,2∪(2,+∞). 13.若原点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,求OP →·FP →的取值范围.解 由双曲线方程x 2a 2-y 2=1(a >0)知b =1, 又F (-2,0),∴c =2.∴a 2+1=c 2=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设双曲线右支上点P (x ,y ),且x ≥ 3. OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2=43x 2+2x -1=43⎝⎛⎭⎫x +342-74. ∵x ≥3,∴当x =3时,上式有最小值3+2 3. 故OP →·FP →的取值范围为[3+23,+∞).。
2.3.2双曲线的简单几何性质教学设计(优秀教案)
双曲线的简单几何性质教案一、学习目标知识目标: 了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线、离心率。
能力目标: 通过观察、类比、转化、概括等探究,提高学生运用方程研究双曲线的性质的能力. 情感目标: 使学生在合作探究活动中体验成功, 激发学习热情,感受事物之间处处存在联系.二、学习重点、难点1. 教学重点:双曲线的范围、对称性、顶点、渐近线、离心率等几何性质;2. 教学难点:双曲线的渐近线.三、学习过程:(一)复习式导入:在椭圆部分,我们曾经从图形和标准方程两个角度来研究椭圆的几何性质。
那么,你认为应该研究双曲线22221(0,0)x y a b a b-=>>的哪些性质呢?范围、对称性、顶点、离心率等.这就是我们今天要共同学习的内容:双曲线的简单几何性质 (二)新课:我们先来研究一下焦点坐标在x 轴上的双曲线的简单几何性质。
1双曲线22221(0,0)x y a b a b-=>>的简单几何性质(1)范围从图形看,x 的取值范围是什么? 师生: 从标准方程能否得出这个结论呢? y 的范围呢?R y ∈(2)对称性从图形看,双曲线关于什么对称性? 生:关于x 轴、y 轴和原点都是对称的那么,类比椭圆几何性质的推导,从标准方程如何得出这个结论呢?提示:用y -代替原方程中的y ,若方程不变,则该曲线……关于x 轴对称。
同理,若用x -代替原方程中的x ,若方程不变,则该曲线关于y 轴对称。
若用y x --,分别代替原方程中的y x ,,若方程不变,则该曲线关于原点对称。
所以,双曲线是关于x 轴、y 轴和原点都是对称的。
x 轴、y 轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。
(3)顶点椭圆的顶点有几个?(4个)它是如何定义的?(椭圆与对称轴的交点)类比椭圆顶点的定义,我们把双曲线与对称轴的交点,叫做双曲线的顶点。
由图形可以看到,双曲a x a x -≤≥或012222≥-=ax b y 2222,1a x ax≥≥∴即ax a x -≤≥∴或线22221(0,0)x y a b a b-=>>的顶点有几个?顶点坐标是?(,0)a ± 虽然对比椭圆,双曲线只有两个顶点,但我们仍然把(0,)b ±标在图形上。
双曲线的几何性质教案
双曲线的几何性质教案教案标题:双曲线的几何性质教案目标:1. 了解双曲线的定义和基本性质。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够应用所学知识解决与双曲线相关的几何问题。
教案步骤:引入活动:1. 引导学生回顾并复习椭圆和抛物线的几何性质,引出双曲线的概念。
2. 引导学生思考双曲线与椭圆、抛物线的异同之处。
知识讲解:3. 介绍双曲线的定义,以及与椭圆和抛物线的区别。
4. 解释双曲线的标准方程,并讲解如何根据方程确定双曲线的形状和位置。
性质探究:5. 讲解双曲线的焦点和准线的定义,以及它们与双曲线方程中的参数的关系。
6. 引导学生通过计算实例,理解焦点和准线对双曲线形状的影响。
应用实践:7. 引导学生通过实例,探究双曲线的渐近线的性质和方程。
8. 给学生一些实际问题,要求他们应用所学知识解决问题,如:给定双曲线的焦点和准线,求双曲线的方程。
巩固练习:9. 提供一些练习题,让学生巩固所学知识。
总结回顾:10. 总结双曲线的几何性质,强调重点和难点。
11. 鼓励学生提问和解答疑惑。
教学辅助:- 演示板或投影仪,用于展示双曲线的图形和方程。
- 教科书或教学PPT,用于讲解和示范。
- 计算器,用于计算实例。
教学评估:- 在课堂上观察学生的参与度和理解情况。
- 布置作业,检查学生对双曲线几何性质的掌握程度。
- 进行小组或个人演示,让学生展示他们对双曲线的理解和应用能力。
教案扩展:- 引导学生进一步探究双曲线的其他性质,如离心率、直线的切线等。
- 引导学生应用双曲线的性质解决更复杂的几何问题,如求解交点、证明性质等。
注意事项:- 确保讲解清晰,语言简明扼要,避免过于抽象或复杂的表达。
- 鼓励学生思考和提问,激发他们的兴趣和参与度。
- 根据学生的实际情况和学习进度,适当调整教学内容和步骤。
双曲线的几何性质教学设计
双曲线的几何性质教学设计【教学设计】双曲线的几何性质一、引言双曲线作为解析几何中重要的曲线之一,具有独特的几何性质。
本教学设计旨在通过讲解双曲线的几何性质,引发学生对双曲线的兴趣,提高他们的几何思维和问题解决能力。
二、知识概述双曲线是由平面上一动点P到两定点F1和F2的距离差的绝对值等于常数a所确定的轨迹。
它的数学方程为x^2/a^2 - y^2/b^2 = 1(a > 0,b > 0)。
三、教学目标1. 理解双曲线的定义和基本特征;2. 掌握双曲线的焦点、准线等重要几何性质;3. 能够应用双曲线的性质解决相关的几何问题。
四、教学内容及过程1. 引入(10分钟)- 引导学生回顾椭圆和抛物线的几何性质,并展示双曲线的数学方程;- 激发学生的兴趣,提出关于双曲线的问题,如双曲线与其他曲线的区别等。
2. 讲解双曲线的性质(30分钟)a. 双曲线的焦点与准线- 解释焦点的概念:F1和F2为双曲线上的两个定点,其距离和为2a;- 定义准线:双曲线的对称轴,与双曲线没有交点;- 手绘示意图,帮助学生理解焦点和准线的几何意义。
b. 双曲线的渐近线- 定义渐近线:双曲线的两条直线趋近于无限远时的情况;- 推导渐近线的方程:y = ±b/a·x。
c. 双曲线的离心率- 解释离心率的概念:e = c/a,其中c为焦点到准线的距离;- 讨论离心率对双曲线形状的影响。
3. 实例分析与讨论(40分钟)a. 利用双曲线的性质解决几何问题- 以实例引导学生应用双曲线的性质解决几何问题,如判断点是否在双曲线上、求双曲线的切线方程等;- 学生自主解答,并与同学分享思路和解题方法。
b. 探究双曲线的应用领域- 引导学生思考双曲线在实际生活中的应用,如天体运动轨迹的描述、电磁波传播的规律等;- 学生展示自己的想法,并进行讨论。
4. 总结与拓展(20分钟)a. 总结双曲线的几何性质- 让学生归纳总结双曲线的焦点、准线、渐近线和离心率等几何性质。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标1. 理解双曲线的定义及其标准方程。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够运用双曲线的几何性质解决实际问题。
二、教学内容1. 双曲线的定义及标准方程引导学生回顾椭圆的定义及标准方程,引出双曲线的定义及标准方程。
强调双曲线的关键要素:中心、焦点、实轴、虚轴、顶点等。
2. 双曲线的焦点解释双曲线的焦点概念,引导学生理解焦点与实轴的关系。
引导学生通过实例验证双曲线的焦点性质。
3. 双曲线的准线介绍准线的概念,引导学生理解准线与虚轴的关系。
引导学生通过实例验证双曲线的准线性质。
4. 双曲线的渐近线解释双曲线的渐近线概念,引导学生理解渐近线与双曲线的关系。
引导学生通过实例验证双曲线的渐近线性质。
5. 双曲线的对称性引导学生理解双曲线的对称性,包括轴对称和中心对称。
引导学生通过实例验证双曲线的对称性。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过探索、发现双曲线的几何性质。
2. 利用图形软件或板书,直观展示双曲线的几何性质,帮助学生理解。
3. 提供丰富的实例,引导学生通过实践验证双曲线的几何性质。
四、教学评估1. 课堂练习:布置相关的练习题,检测学生对双曲线几何性质的理解。
2. 小组讨论:组织学生进行小组讨论,促进学生之间的交流与合作。
3. 课后作业:布置相关的作业题,巩固学生对双曲线几何性质的掌握。
五、教学资源1. 教学PPT:制作精美的教学PPT,展示双曲线的几何性质。
2. 图形软件:利用图形软件或板书,展示双曲线的几何性质。
3. 练习题及答案:提供相关的练习题及答案,方便学生自测。
教学反思:本节课通过问题驱动的教学方法,引导学生探索双曲线的几何性质。
通过实例验证,使学生更好地理解双曲线的焦点、准线、渐近线等性质。
利用图形软件或板书进行直观展示,帮助学生形成直观的双曲线几何性质的认识。
在教学过程中,要注意关注学生的学习情况,及时进行反馈和指导。
双曲线的简单几何性质(优秀教案)
教案普通高中课程标准选修2-12.3.2双曲线的简单几何性质(第一课时)教材的地位与作用本节内容是在学习了曲线与方程、椭圆及其标准方程和简单几何性质、双曲线及其标准方程的基础上,进一步通过双曲线的标准方程推导研究双曲线的几何性质。
(可以类比椭圆的几何性质得到双曲线的几何性质。
)通过本节课的学习,使学生深刻理解双曲线的几何性质,体验数学中的类比、联想、数形结合、转化等思想方法。
二、教学目标 (一)知识与技能1、了解双曲线的范围、对称性、顶点、离心率。
2、理解双曲线的渐近线。
(二)过程与方法通过联想椭圆几何性质的推导方法,用类比方法以双曲线标准方程为工具推导双曲线的几何性质,从而培养学生的观察能力、联想类比能力。
(三)情感态度与价值观让学生充分体验探索、发现数学知识的过程,深刻认识“数”与“形”的关系,培养学生勇于攀登科学高峰的精神。
三、 教学重点难点双曲线的渐近线既是重点也是难点。
四、 教学过程 (一)课题引入1、前面我们学习了椭圆及其标准方程,并由标准方程推导出椭圆的几何性质,椭圆的几何性质有哪些?(教师用课件引导学生复习椭圆的几何性质,双曲线及其标准方程。
) 今天我们以标准方程为工具,研究双曲线的几何性质。
【板书】:双曲线)0,0(12222>>=-b a by a x 的性质2、双曲线有哪些性质呢?(范围、对称性、顶点、离心率、渐近线。
)3、双曲线的这些性质具体是什么?如何推导?请同学们对比椭圆的几何性质的推导方法,推导出双曲线的几何性质。
(讨论)(二)双曲线的性质 1、范围:把双曲线方程12222=-by a x 变形为22221b y a x +=。
因为022≥b y ,因此122≥a x ,即22a x ≥,所以a x a x ≥-≤或。
又因为022≥by ,故R y ∈。
【板书】:1、范围:a x a x ≥-≤或,R y ∈。
2、对称性:下面我们来讨论双曲线的的对称性,哪位同学能根据双曲线12222=-by a x 的标准方程,判断它的对称性?在标准方程中,把x 换成x -,或把y 换成y -,或把x ,y 同时换成x -,y -时,方程都不变,所以图形关于y 轴、x 轴和原点都是对称的。
双曲线的简单几何性质优秀教案
2.3.2 双曲线的几何性质(第一课时教案)一、 教学目标1. 知识与技能(1)理解并掌握双曲线的简单几何性质;(2)利用双曲线的几何性质解决双曲线的问题。
2. 过程与方法(1)通过类比椭圆的几何性质,得到双曲线的几何性质;(2)通过例题和练习掌握根据条件求双曲线几何性质的相关问题。
3. 情感、态度与价值观(1)培养学生的知识类比的数学思想和逻辑思维能力;(2)培养学生的方法归纳能力和应用意识。
二、 教学重难点1、教学重点:双曲线的几何性质2、教学难点:应用双曲线的几何性质解决双曲线的相关问题三、 教学过程结合双曲线图像以及几何画板动画,学习双曲线的相关几何性质。
1. 取值范围(1) 焦点在x 轴上:x a ≥或x a ≤-,y R ∈(2) 焦点在y 轴上:y a ≥或y a ≤-,x R ∈2. 对称性——既是轴对称图形,又是中心对称图形3. 顶点——双曲线与坐标轴的交点,即12,A A (以图为例)(1) 实轴——线段12A A 。
122,A A a a =为半实轴长;(2) 虚轴——记12(0,),(0,)B b B b -,则线段12B B 为虚轴。
122,B B b b =为半虚轴长。
(3) 等轴双曲线——实轴与虚轴长度相等的双曲线。
一般可设为:22,(0)x y m m -=≠4. 离心率:c e a= (1) 范围:1e >;(2) 变化规律:e 越大,双曲线开口越大;e 越小,双曲线开口越小.5. 渐近线(1) 若22221(0,0)x y a b a b -=>>,则渐近线为:b y x a=±, (2) 若)0,0(12222>>=-b a b x a y ,则渐近线为:a y x b=±, (3) 一般求法:令双曲线方程等于0,即22220x y a b -=(或22220y x a b-=) (4) 渐近线相同的双曲线可设为:2222(0)x y a bλλ-=≠题型一:求双曲线的标准方程例 求满足下列条件的双曲线标准方程(1) 顶点在x 轴上,两定点间的距离为8,54e =; (2) 焦点在y 轴上,焦距为16,43e =; (3) 以椭圆22185x y +=的焦点为顶点,顶点为焦点的双曲线; (4) 过点(3,1)A -的等轴双曲线.题型二:有关渐近线的计算例1 已知双曲线的渐近线方程为34y x =±,求双曲线的离心率为.例2 若双曲线的渐近线方程为3y x =±,它的一个焦点为),求双曲线的方程.例3 求与双曲线221916x y -=有共同的渐近线,且过点(3,-的双曲线方程.作业:P61 A 组 《导报》第8课时。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标1. 知识与技能:使学生了解双曲线的定义,掌握双曲线的标准方程及几何性质,能够运用双曲线的性质解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现双曲线的几何性质,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力,感受数学在实际生活中的应用。
二、教学重点1. 双曲线的定义及标准方程。
2. 双曲线的几何性质:焦点、实轴、虚轴、顶点、渐近线等。
三、教学难点1. 双曲线几何性质的理解和应用。
2. 双曲线方程的求解。
四、教学准备1. 教师准备:双曲线的教学课件、教案、例题及练习题。
2. 学生准备:预习双曲线相关知识,准备课堂讨论。
五、教学过程1. 导入新课:通过复习椭圆的知识,引出双曲线的学习,激发学生的兴趣。
2. 讲解双曲线的定义及标准方程:引导学生了解双曲线的定义,讲解双曲线的标准方程及求解方法。
3. 分析双曲线的几何性质:引导学生观察双曲线的图形,分析双曲线的焦点、实轴、虚轴、顶点、渐近线等几何性质。
4. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法,引导学生运用双曲线的几何性质解决问题。
5. 课堂练习:为学生提供一些有关双曲线的练习题,巩固所学知识,提高学生的解题能力。
6. 总结:对本节课的主要内容进行总结,强调双曲线的几何性质及其在实际问题中的应用。
7. 布置作业:布置一些有关双曲线的练习题,让学生课后巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 学生对双曲线的定义、标准方程及几何性质的掌握程度。
2. 学生运用双曲线性质解决问题的能力。
3. 学生对数学学习的兴趣和积极性。
七、教学建议1. 注重双曲线几何性质的讲解,让学生充分理解并掌握。
2. 多举例子,让学生在实际问题中感受双曲线的应用。
3. 鼓励学生提问、讨论,提高课堂互动性。
双曲线的几何性质 精品教案
双曲线的几何性质学案 (一)教学目标1.知识与技能(1)复习双曲线的定义,几何图形及标准方程(2)知道双曲线的几何性质,并会简单应用2.过程与方法(1)会利用信息技术画双曲线的几何图形(2)会利用信息技术感受渐近线的意义及离心率的变化对双曲线形状的影响3.情感、态度与价值观理解数形结合的思想 (二)教学重点、难点重点:双曲线的几何性质及简单应用难点:双曲线渐近线的意义及离心率的变化对双曲线形状的影响(三)教学方法尝试指导与合作交流相结合.通过提出问题、小组合作,引导学生总结双曲线的几何性质,分析、讨论、探究双曲线渐近线的意义及离心率的变化对双曲线形状的影响,并能依照要求加深对双曲线几何性质的掌握.通过数据的计算对比,培养数形结合的思想。
【知识回顾】(1)双曲线的定义.①平面内与两个定点F1,F2(|F1F2|=2c>0)的距离_____________为常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的_____,两焦点间的距离叫做_____.②集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a>0,c>0.(ⅰ)当_________时,M 点的轨迹是双曲线;(ⅱ)当_________时,M 点的轨迹是两条射线;(ⅲ)当_________时,M 点不存在.【活动探究】 活动一 怎样精准的画一个双曲线?例:122=-y x活动二类比椭圆的几何性质总结并展示双曲线的几何性质活动三请设计数学实验探究双曲线渐近线的意义及离心率的变化对双曲线形状的影响【巩固练习】 (1)(选修2-1P61A 组T1改编)双曲线 上的点P 到点(5,0)的距离是6,则点P 的坐标是_______.(2)(选修2-1P61练习T3改编)以椭圆22x y 143+=的焦点为顶点,顶点为焦点的双曲线方程为_______.22222222x y x y A. 1 B.15202053x 3y 3x 3y C. 1 D.12510010025====----【课堂小结】22x y 1169-= 【真题小试】 (1)(2014·天津高考)已知双曲线 12222=-by a x (a>0,b>0)的一条渐近线平行于直线l :y=2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) (2)(2014·新课标全国卷Ⅰ)已知F 为双曲线C:x 2-my 2=3m(m>0)的一个焦点,则点F 到C 的一条渐近线的距离为( ).3 C (3)(2014·广东高考)若实数k 满足0<k<9,则曲线 与曲线 的( ) A.焦距相等 B.实半轴长相等C.虚半轴长相等D.离心率相等22x y 1259k =--22x y 125k 9=--。
双曲线的几何性质数学教案设计
双曲线的几何性质数学教案设计一、教学目标1. 理解双曲线的定义和标准方程。
2. 掌握双曲线的几何性质,包括焦点、准线、离心率等。
3. 能够应用双曲线的几何性质解决实际问题。
二、教学内容1. 双曲线的定义和标准方程介绍双曲线的定义,即所有到两个固定点(焦点)的距离之差为常数的点的集合。
推导双曲线的标准方程,即\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(其中\(a > 0, b > 0\))。
2. 双曲线的焦点和准线解释双曲线的焦点概念,即双曲线上每个点到两个焦点的距离之差等于双曲线的离心率。
推导双曲线的焦点坐标,即\((\pm c, 0)\),其中\(c = \sqrt{a^2 + b^2}\)。
介绍准线的概念,即与双曲线对称的直线,其方程为\(x = \pm\frac{a^2}{c}\)。
3. 双曲线的离心率定义双曲线的离心率\(e\) 为\(e = \frac{c}{a}\)。
解释离心率与双曲线的形状的关系,即\(e > 1\) 表示双曲线开口向外,\(e < 1\) 表示双曲线开口向内。
4. 双曲线的渐近线介绍双曲线的渐近线概念,即当\(x\) 趋于无穷大或无穷小时,双曲线的曲线趋近于一条直线。
推导双曲线的渐近线方程,即\(y = \pm\frac{b}{a}x\)。
5. 双曲线的对称性和周期性解释双曲线的对称性,即双曲线关于\(x\) 轴和\(y\) 轴对称。
介绍双曲线的周期性,即双曲线在\(x\) 轴和\(y\) 轴上具有无限周期。
三、教学方法1. 采用问题驱动的教学方法,通过引导学生思考和探索双曲线的几何性质,激发学生的学习兴趣和主动性。
2. 使用图形和实例进行直观的解释和演示,帮助学生理解和记忆双曲线的几何性质。
3. 组织小组讨论和合作,鼓励学生之间的交流和思考,培养学生的团队合作能力。
四、教学评估1. 课堂讲解和提问:通过观察学生在课堂上的参与和回答问题的表现,评估学生对双曲线几何性质的理解程度。
《双曲线的几何性质》教案
《双曲线的几何性质》教案一、教学目标:1. 让学生理解双曲线的定义及其标准方程。
2. 掌握双曲线的基本几何性质,包括渐近线方程、离心率、焦距等。
3. 能够应用双曲线的几何性质解决实际问题。
二、教学内容:1. 双曲线的定义与标准方程2. 双曲线的渐近线方程3. 双曲线的离心率4. 双曲线的焦距5. 双曲线与其他几何图形的关系三、教学重点与难点:1. 重点:双曲线的定义、标准方程及其几何性质。
2. 难点:双曲线渐近线方程的推导,离心率、焦距的计算。
四、教学方法:1. 采用问题驱动的教学方法,引导学生探索双曲线的几何性质。
2. 利用数形结合的方法,让学生直观地理解双曲线的特点。
3. 注重个体差异,鼓励学生提问和发表见解。
五、教学过程:1. 导入:回顾椭圆的几何性质,引导学生思考双曲线的定义及其与椭圆的区别。
2. 新课:讲解双曲线的定义与标准方程,引导学生理解双曲线的图形特点。
3. 探究:让学生自主探究双曲线的渐近线方程,教师给予指导。
4. 讲解:讲解双曲线的离心率和焦距的计算方法,结合实际例子进行演示。
5. 应用:布置练习题,让学生运用双曲线的几何性质解决实际问题。
6. 总结:对本节课的内容进行归纳总结,强调重点和难点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
2. 作业完成情况:检查学生作业的完成质量,巩固所学知识。
3. 练习题解答:评估学生在练习题中的表现,了解其对双曲线几何性质的掌握程度。
4. 课堂讨论:鼓励学生积极参与课堂讨论,提高其分析和解决问题的能力。
七、教学资源:1. 教案、PPT课件2. 数学教材3. 练习题及答案4. 几何画图软件(可选)八、教学进度安排:1. 第一课时:双曲线的定义与标准方程2. 第二课时:双曲线的渐近线方程3. 第三课时:双曲线的离心率4. 第四课时:双曲线的焦距5. 第五课时:双曲线与其他几何图形的关系九、教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏。
双曲线的简单几何性质 精品教案
双曲线的简单几何性质【教学目标】1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。
2.掌握等轴双曲线,共轭双曲线等概念。
3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养。
【教学重难点】教学重点:双曲线的渐近线、离心率。
教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系。
【课时安排】1课时【教学过程】一、复习引入1.范围、对称性由标准方程2222 1 x y a b-=,从横的方向来看,直线x=-a ,x=a 之间没有图像,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线,双曲线不封闭,但仍称其对称中心为双曲线的中心。
2.顶点顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a ,a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。
3.渐近线过双曲线2222 1 x y a b-=的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的平行线b y ±=,四条直线围成一个矩形。
矩形的两条对角线所在直线方程是 b y x a =±(0 x y a b±=),这两条直线就是双曲线的渐近线。
4.等轴双曲线等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e等轴双曲线可以设为:22(0) x y λλ-=≠,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上。
5.共渐近线的双曲线系如果已知一双曲线的渐近线方程为 b y x a =±(0) kbx k ka=±>,那么此双曲线方程就一定是:22221(0) ()()x y k ka kb -=±>或写成2222 x y a bλ-= 6.双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线。
双曲线的简单几何性质 精品教案
双曲线的简单几何性质第三课时(一)教学目标1.掌握直线与双曲线位置关系的判定,能处理直线与双曲线截得的弦长,与弦的中点有关的问题.2.能综合应用所学知识解决较综合的问题,提高分析问题与解决问题的能力. (二)教学过程 【设置情境】练习:求下列直线和双曲线的交点坐标(课本P108.5)①02=-y x ,152022=-y x ②01634=--y x ,1162522=-y x ③01=+-y x ,322=-y x 答案:①(6,2),(14332-,)②(425,3)③()12--, 说出上边各例直线与双曲线的位置关系.不少学生会认为直线01=+-y x 与双曲线322=-y x 相切,让学生动手画图,很显然此时直线与双曲线相交,且只有一个交点.为什么会出现这种情况呢? 【探索研究】直线与双曲线的位置关系通过对第③小题的研究发现直线01=+-y x 与双曲线的渐近线平行,因而此时相交且只有一个公共点.从而得出结论直线与双曲线相切—只有一个公共点(只有一个公共点是直线与双曲线相切的必要条件,但不是充分条件).直线与双曲线相离—没有公共点. 【例题分析】例 1 如果直线1-=kx y 与双曲线422=-y x 没有公共点,求k 的取值范围.(课本P132第13题)解:由⎩⎨⎧=--=4122y x kx y 得()()*=-+-052122kx x k 即此方程无解.由()⎪⎩⎪⎨⎧<-+=∆≠-0120401222k k k 得25>k 或25-<k则k 的取值范围为25>k 或25-<k . 引申:(1)如果直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围. 解析:直线与双曲线有两个公共点()*⇔式方程有两个不等的根()25250120401222<<-⇔⎪⎩⎪⎨⎧>-+≠-⇔k k k k 且1±≠k (2)如果直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程只有一解当012=-k 即1±=k 时,(﹡)式方程只有一解当012≠-k 时,应满足()0120422=-+=∆kk解得25±=k 故k 的值为1±或25±(3)如果直线1-=kx y 与双曲线422=-y x 的右支有两个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程有两个不等的正根()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-->-+⇔015012012042222k k k k k 即251110112525<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧->><<-><<-k k k k k k 或或 (4)如果直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围.(125-<<-k ) (5)如果直线1-=kx y 与双曲线422=-y x 两支各有一个交点,求k 的取值范围.解析:此时等价于(﹡)式方程有两个相异实根即0152<--k 即11<<-k . 例2 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点.当k 为何值时,以AB 为直径的圆经过坐标原点.可由一位学生演板,教师讲评指出有关二次方程知识的应用.解:由方程组:⎩⎨⎧=-+=13122y x kx y 得()022322=---kx x k因为直线与双曲线交于A 、B 两点 ∴()038422>-+=∆k k解得66<<-k .设()11y x A ,,()22y x B ,,则:22132k k x x -=+,32221-=k x x , 而以AB 为直径的圆过原点,则OB OA ⊥, ∴02121=+y y x x .()()()111212122121+++=++=x x k x x k kx kx y y .于是()()01121212=++++x x k x x k ,即()0132321222=+-+-⋅+k kkkk. 解得1±=k 满足条件.故当1±=k 时,以AB 为直径的圆过原点.例3 已知双曲线方程1222=-y x ,试问过点()11,A 能否作直线l ,使与双曲线交于1P 、2P 两点,且点A 是线段1P 、2P 的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.由学生讨论完成,教师给予提示. 解:假设存在直线l 满足条件.显然斜率不存在时,直线1=x 不满足条件.设()11+-=x k y l :,代入双曲线方程整理得:()()032122222=-+--++k k x k k x k若022=-k 即2±=k ,则l 与渐近线平行,没有交点.∴022=-k 设()111y x P ,、()222y x P ,则:()221212k k k x x --=+由于()11,A 是1P 2P 的中点.∴()1212221=--=+k k k x x 解得2=k . 这时方程为03422=+-x x ,02416<-=∆,即直线l 与双曲线无交点. 故这样的直线l 不存在.例 4 已知1l 、2l 是过点()02,-P 的两条互相垂直的直线,且1l 、2l 与双曲线122=-x y 各有两个交点,分别为1A 、1B 和2A 、2B .(1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l 、2l 的方程. 由教师讲解,弦长的求法要分步演算.解:(1)依题意,两直线的斜率都存在,由于()211+=x k y l :与双曲线有两个交点,则下述方程组有两组不同解:()()012221≠⎪⎩⎪⎨⎧=-+=k x y x k y 消去y 得()0122212121221=-++-k x k x k于是 ()⎪⎩⎪⎨⎧>-=∆≠-013401212k k ①同理由()⎪⎩⎪⎨⎧=-+-=121221x y x k y 得()0222121221=-++-k x x k ()⎪⎩⎪⎨⎧>-=∆≠-0134012121k k 解①②得1k 的取值范围是()()3113333113,,,,⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--- (2)设()11y x A ,,()22y x B ,,则212121122k k x x -=+ 12212121-=k k x x ∴()()()()[]212212122121211411x x x x k x x k B A -++=-+=()()()221212111314k k k --+=同理()()()22121412121221361k k k k k B A --++=由22115B A B A =得()()()()()()2212141212122121211361511314k k k k k k k k --++⋅=--+解得21±=k 当 21=k 时,()221+=x y l :,()2222+-=x y l :, 当21-=k 时, ()221+-=x y l :, ()2222+=x y l :. (三)随堂练习1.设双曲线1322=-y x C :的左准线与x 轴的交点是M ,则过点M 与双曲线C 有且只有一个交点的直线共有( )A .2条B .3条C .4条D .无数条2.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,4=AB ,则这样的直线l 有( )A .1条B .2条C .3条D .4条3.若过双曲线1322=-y x 的右焦点2F ,作直线l 与双曲线的两支都相交,则直线l 的倾斜角α的取值范围是________________.答案:1.C 2.C 3.()()180120600,,∈α2.注意二次曲线、二次方程、二次函数三者之间的内在联系,直线与双曲线的位置关系通常是转化为二次方程,运用判别式、根与系数关系以及两次方程实根分布原理来解决.(五)布置作业1.设双曲线()0012222>>=-b a by a x ,的一条准线与两条渐近线交于A 、B 两点,相应焦点为F ,若ABF ∆为正三角形,则双曲线的离心率为( )A .3B .3C .2D .22.直线l 过双曲线12222=-by a x 的右焦点,斜率2=k ,若l 与双曲线的两个交点分别在双曲线左、右两支上,则双曲线的离心率e 的取值范围是( )A .2>e B .31<<e C .51<<e D .5>e3.若过点()18,P 的直线与双曲线4422=-y x 相交于A 、B 两点,且P 是线段AB 的中点,则直线A 、B 的方程是________________.4.直线1+=ax y 与双曲线1322=-y x 相交于A 、B 两点,当α为何值时,A 、B 两点在双曲线的同一支上?5.过双曲线()0012222>>=-b a by a x ,上的点P 向x 轴作垂线恰好通过双曲线的左焦点1F ,双曲线的虚轴端点B 与右焦点2F 的连线平行于PO ,如图.(1)求双曲线的离心离;(2)若直线2BF 与双曲线交于M 、N 两点,且12=MN ,求双曲线方程.答案:1.D ;2.D ;3.0152=--y x ;4.63<<α或36-<<-α;5.(1)2=e (2)422=-y x(六)板书设计。
双曲线的几何性质教案
《双曲线的几何性质》教案课题:双曲线的几何性质教学目标:(1)使学生理解和掌握双曲线的范围,对称性,顶点等性质。
(2)理解渐近线与双曲线的位置关系。
(3)理解离心率和双曲线形状间的变化关系(4)培养学生的观察能力,想象能力,数形结合能力,和逻辑推理能力,以及类比的学习方法。
重点:由方程导出性质及其应用。
难点:双曲线渐近线的理解。
教学方法和手段:采用类比、启发、探索式相结合的教学方法,结合多媒体教学。
教学过程:复习提问:1、椭圆、双曲线的标准方程如何表示?2、椭圆22221(0)x ya ba b+=>>有哪些几何性质?3、离心率的大小对椭圆的形状有何影响?ba的变化会引起椭圆怎样的变化?4、双曲线22221,(0,0)x ya ba b-=>>会有哪些几何性质?引入新课:双曲线的几何性质(一)、引导学生对比椭圆的几何性质,得出双曲线的范围、对称性、顶点、离心率等性质:(二)、思考:椭圆的离心率可以决定椭圆的圆扁程度,那么双曲线的离心率能决定双曲线的什么几何特征呢?1、在此引入渐近线概念,并用数形结合的方法解释为什么叫做渐近线。
在这里不想象教材当中那样去证明,因为只要给学生说明以下两点就可以了:(1)在第一象限双曲线全在直线b y x a=的下方; (2)在第一象限,x →∞当时,双曲线无限趋近于直线b y x a =。
所以做以下变形:22221,(0,0)x y a b a b-=>>双曲线中, 22b y x a a =-22||1b a x a x =±-221b a x a x=±-x →∞当时,220a x →,双曲线无限趋近于直线b y x a=。
这说明:,x b y x a→∞=±当时双曲线上点的纵坐标与的纵坐标很接近. 2、说清楚b a对双曲线图形的影响: 2221()c a b b e a a+===+e 越大,斜率越大,倾斜角越大,张角越大,张口越开阔;e 越小,斜率越小,倾斜角越小,张角越小,张口越扁狭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的简单几何性质教案课题:双曲线的简单几何性质
教学类型:新知课
教学目标:
①知识与技能
理解并掌握双曲线的几何性质, 能根据性质解决一些基本问题培养学生分析,归纳,推理的能力。
②过程与方法
与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的方法
③情感态度与价值观
通过本节课的学习使学生进一步体会曲线与方程的对应关系, 感受圆锥曲线在解决问题中的应用
教学方法:本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。
教学重难点:
重点:双曲线的几何性质及其运用
难点 : 双曲线渐近线,离心率的讲解
教具:多媒体
教学过程:
⑴复习提问导入新课:
首先带领学生复习椭圆的几何性质,它有哪些几何性质?(应为范围,对称性,顶点,焦点 ,离心率,准线是如何探讨的呢?(通过椭圆的标准方程探讨。
让全班同学口答,并及时给以表扬。
接下来让那个同学回忆双曲线的标准方程是什么?请一名同学回答。
(应为:中心在原点,焦点在 x 轴上的双曲线的标准方程为 x ²/a ²-y ²/b ²=1; 中心在原点,焦点在 y 轴上的双曲线的标准方程为 y ²/a ²-x ²/b ²=1 。
回忆完旧知后,我会给出一首歌曲《悲伤的双曲线》 (大概一分钟左右 ,引起学生兴趣,渴望知道双曲线的性质,这样顺利进入探究新知环节中。
⑵引导探索,学习新知
1, 引导学生完成黑板上关于椭圆与双曲线性质的表格(让学生回答,教师引导,启发,订正并写在黑板上 ,通过类比联想可以得到双曲线的范围,对称性和顶点。
2, 导出渐近线(性质 4
在学习椭圆时,以原点为中心, 2a,2b 为邻变的矩形,对于估计椭圆的形状, 画出椭圆的简图有很大帮助, 试问对双曲线, 仍然以 2a,2b 为邻边做一矩形, 那么双曲线和这个矩形有什么关系呢?这个矩型对于估计和画出双曲线有什么指导意义呢? (不要求学生回答, 只引起学生类比联想。
接着在提出问题:当 a,b 为已知时,这个矩形的两条对角线所在的直线的方程是什么?(请一名同学回答。
接下来按照幻灯片显示来详细解决。
最后向学生说明我们研究渐近线是为了较
准确地画出双曲线的草图。
3. 顺其自然介绍离心率
由于正确的认识了渐近线的概念, 对于离心率的直观意义也就容易掌握了,为此介绍双曲线的离心率其的影响。
最后应明确的指出:双曲线的几何性质与坐标系的选择无关, 即不随坐标系的
改变而改变。
4, 在讲解完所有新课之后,带领学生在总体回顾双曲线的性质。
⑶加强训练,巩固强化
给出例 1,帮助学生分析:可用待定系数法,直接求出 a,b,c
学生独立思考后,教师分析,解答,教师板书。
⑷归纳小结,
用表格的形式让学生清楚的看到双曲线的性质。
布置作业
课本 p56页练习 A
课后设疑
焦点在 y 轴上的双曲线的性质自己探索
教学反思:有待课堂教学检验之后。