甲醇精馏塔设计说明书

合集下载

甲醇水溶液板式精馏塔课程设计

甲醇水溶液板式精馏塔课程设计

原料温度: 20℃ 处理量: 5 万吨/年
原料组成: 甲醇的质量分数 WF=0.55 产品要求: 塔顶甲醇的质量分数 WD=0.97,塔底甲醇的质量分数 WW=0.02 生产时间: 300 天/年 冷却水进口温度:25℃
-9-
加热剂: 单板压降:
0.3MPa 饱和水蒸汽 ≤0.7kPa
生产方式:连续操作,泡点回流 五、 设计说明书内容(指设计说明书正文中包括的主要设计内容,根据目录列出大标 题即可) 6. 设计方案的确定 7. 带控制点的工艺流程图的确定 8. 操作条件的选择(包括操作压强、进料状态、加热剂、冷却剂、回流比) 9. 塔的工艺计算 (1) 全塔物料衡算 (2) 最佳回流比的确定 (3) 理论板及实际板的确定 (4) 塔径的计算 (5) 降液管及溢流堰尺寸的确定 (6) 浮阀数及排列方式(筛板孔径及排列方式)的确定 (7) 塔板流动性能的校核(液沫夹带校核,塔板阻力校核,降液管液泛校核,液体 在降液管内停留时间校核,严重漏液校核) (8) 塔板负荷性能图的绘制 (9) 塔板设计结果汇总表 10. 辅助设备工艺计算
化工与制药学院
课程设计说明书
课题名称 甲醇-水溶液板式精馏塔课程设计 专业班级 精细化工 01 学生学号 1206210306 1206210301 1206210322 学生姓名 学生成绩 指导教师 课题工作时间 杜 治 平 2014.12.22—2015.1. 郝张升 陈林周 王曙光
课程设计任务书
专业 化学工程与工艺 年 班级 月 12 精化 01 学生姓名
发题时间:
日化工原理课程设计任务书
一.设计题目:5 万吨/年甲醇-水溶液精馏塔设计 二.设计条件: 原料: 甲醇、 水
原料温度: 20℃ 处理量: 5 万吨/年

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

Aspen plus模拟甲醇、水精馏塔设计说明书一、设计题目根据以下条件设计一座分离甲醇、水混合物的连续操作常压精馏塔:生产能力:24500吨精甲醇/年;原料组成:甲醇50%w,水50%w;产品组成:塔顶甲醇质量分率≥94%w;塔底甲醇质量分率 1 %w;进料温度:350.5K;塔顶压力常压;进料状态饱和液体。

二、设计要求对精馏塔进行详细设计,给出下列设计结果并绘制塔设备图,并写出设计说明。

(1).进料、塔顶产物、塔底产物;(2).全塔总塔板数N;最佳加料板位置N F;(3).回流比R;(4).冷凝器和再沸器温度、热负荷;(5).塔内构件塔板或填料的设计。

三、分析及模拟流程1.物料衡算(手算)目的:求解 Aspen 简捷设计模拟的输入条件。

内容:(1)生产能力:一年按300天计算,进料流量为24500/(300*24)=3.40278 t/hr。

(2)原料、塔顶与塔底的组成(题中已给出):原料组成:甲醇50%w,水50%w;产品:塔顶甲醇≥94%w;塔底甲醇《1% w。

(3).温度及压降:进料温度:77.35摄氏度=350.5K;2.用简捷模块(DSTWU)进行设计计算目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。

3.灵敏度分析目的:研究回流比与理论板数的关系(N T-R),确定合适的回流比与塔板数;研究加料板位置对产品的影响,确定合适的加料板位置。

方法:作回流比与理论塔板数的关系曲线(N T-R),从曲线上找到期望的回流比及塔板数。

4. 用详细计算模块(RadFrac)进行计算目的:精确计算精馏塔的分离能力和设备参数。

方法:用RadFrac模块进行精确计算,通过设计规定(Design Specs)和变化(Vary)两组对象进行设定,检验计算数据是否收敛,计算出塔径等主要尺寸。

5. 塔板设计目的:通过塔板设计(Tray sizing)计算给定板间距下的塔径。

甲醇-水溶液连续精馏塔设计

甲醇-水溶液连续精馏塔设计

课程设计说明书武汉工程大学化工与制药学院课程设计说明书课题名称 ___________________________________专业班级 ___________________________________ 学生学号学生姓名 _________________________________________ 学生成绩指导教师 _________________________________________ 课题工作时间武汉工程大学化工与制药学院化工与制药学院课程设计任务书1%专业 ____________________ 班级 ________________ 学生姓名_ 发题时间: 2015 _______ 年 12 月1_ ___________ 日 一、 课题名称甲醇-水溶液连续板式精馏塔设计二、 课题条件(文献资料、仪器设备、指导力量)(一) 设计任务(1) 处理能力: T/Y ,年开工7200小时。

(2)原料甲醇-水溶液:(甲醇的质量分数)。

3 产品要求:塔顶产品甲醇含量 (质量分数)不低于 ___________ ,釜液中甲醇含量不高于(二) 操作条件: (1 )操作压力:塔顶压强为 (2)单板压降:不高于 75mm 液柱(3) ____________________ 进料状况:(4) 回流比:自选(5) 加热方式:间接蒸汽加热 (6)冷却水进口温度:30 C试设计一板式精馏塔,完成该生产任务。

三、 设计任务1确定设计方案,绘制工艺流程图。

2塔的工艺计算。

(1) 精馏塔的物料衡算; (2) 最佳回流比的确定 (3) 塔板数的确定.3塔工艺尺寸的计算(1 )板间距; (5)塔径;(6 )塔盘结构设计;4塔板的流体力学核算; 5绘出负荷性能图 6辅助设备的计算与选型确定塔顶冷凝器、塔底再沸器面积,加料泵,回流泵型号。

7附件尺寸确定塔顶空间、塔底空间、人孔、裙座、封头、进出管口等。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

甲醇-水分离精馏塔设计 完整版

甲醇-水分离精馏塔设计 完整版
5 共 30 页
u -空塔气速 m/s u0-气体通过筛孔的速度 ,m/s uo,min-漏液点气速, m/s tF- 进料板温度℃ tD-塔顶 温度℃ tW-塔底 温度℃ tm-平均 温度℃ W-釜残液流量 kmol/h wc -边缘区宽度 m wd -弓形降液管的宽度 m ws -破沫区宽度 m x -液相中易挥发组分的摩尔分率 y -气相中易挥发组分的摩尔分率 Z -塔高 m
6 共 30 页
二 、精馏塔的物料衡算
1、 原料液及塔顶、塔底产品的摩尔分率
甲醇的摩尔质量 水的摩尔质量
xF
M甲醇 32kg / kmol M水 18kg / kmol
0.46 / 32 =0.324 0.46 / 32 0.54 / 18 0.98 / 32 xD =0.965 0.98 / 32 0.02 / 18 0.005 / 32 xW =0.00282 0.005 / 32 0.995 / 18
2、 原料液及塔顶、塔底产品的平均摩尔质量
MF 0.324 32 (1 0.324) 18 22.54kg / kmol
MD 0.965 32 (1 0.965) 18 31.51kg / kmol MW 0.00282 32 (1 0.00282) 18 18.04kg / kmol
1 0.4 4.04 0.4(1 0.729)

2

3
4

0.9194 (1 0.8741) 1.643 0.8741 (1 0.9194)来自 m
1 2 3
4
4
4.65
相平衡方程为;
y x/ 1 ( 1x )

甲醇与水填料精馏塔的设计任务书

甲醇与水填料精馏塔的设计任务书

食品工程原理课程设计说明书甲醇、水填料精f留塔的设计姓名:学号:班级:指导老师:一、设计任务书 (3)二、设计方案简介 (3)三、工艺计算 (5)1.基础物性数据 (5)(1)液相物性的数据 (5)(2)气相物性数据 (5)(3)......................................................................................................................... 气液相平衡数据.. (5)(4)......................................................................................................................... 物料衡算62.填料塔的工艺尺寸的计算 (7)(1)塔径的计算 (7)(2)填料层高度计算 (9)(3)填料塔附属高度及总高计算 (11)(4)填料层压降计算 (11)(5)液体分布器简要设计 (12)(6)吸收塔接管尺寸计算 (13)四、设计一览表 (13)五、主要符号说明 (14)六、参考文献 (15)七、附图 ..............................................................食品工程原理课程设计任务书设计题目:分离甲醇-水混合物的填料精馏塔第一章流程的确定和说明一、加料方式加料方式有两种,高位槽加料和泵直接加料。

采用高位槽加料,通过控制液位高度,可以得到稳定的流量和流速。

通过重力加料,可以节省一笔动力费用。

但由于多了高位槽,建设费用相应增加,采用泵加料,受泵的影响,流量不太稳定,流速也忽大忽小,从而影响了传质效率,但结构简单、安装方便;如采用自动控制泵来控制泵的流量和流速,其控制原理较复杂,且设备操作费用高。

化工原理课程设计,甲醇和水的分离精馏塔的设计说明

化工原理课程设计,甲醇和水的分离精馏塔的设计说明

轻工业学院——化工原理课程设计说明书课题:甲醇和水的分离学院:材料与化学工程学院班级::学号:指导老师:目录第一章流程确定和说明 (1)1.1.加料方式 (1)1.2.进料状况 (2)11.3.塔型的选择 (2)1.4.塔顶的冷凝方式 (2)1.5.回流方式 (2)1.6.加热方式 (3)第二章板式精馏塔的工艺计算 (3)2.1物料衡算 (3)2.3 塔板数的确定及实际塔板数的求取 (5)2.3.1理论板数的计算 (5)2.3.2求塔的气液相负荷 (5)2.3.3温度组成图与液体平均粘度的计算 (6)2.3.4 实际板数 (7)2.3.5试差法求塔顶、塔底、进料板温度 (7)第三章精馏塔的工艺条件及物性参数的计算 (9)3.1 平均分子量的确定 (9)3.2平均密度的确定 (10)3.3. 液体平均比表面积力的计算 (11)第四章精馏塔的工艺尺寸计算 (12)4.1气液相体积流率 (12)4.1.1 精馏段气液相体积流率: (12)4.1.2提馏段的气液相体积流率: (13)第五章塔板主要工艺尺寸的计算 (14)5.1 溢流装置的计算 (14)5.1.1 堰长 (14)5.1.2溢流堰高度: (15)5.1.3弓形降液管宽度 (15)5.1.4 降液管底隙高度 (16)5.1.5 塔板位置及浮阀数目与排列 (16)第六章板式塔得结构与附属设备 (23)6.1附件的计算 (23)6.1.1接管 (23)6.1.2 冷凝器 (27)6.1.3再沸器 (28)第七章参考书录 (28)第八章设计心得体会 (29)第一章流程确定和说明1.1.加料方式加料方式有两种:高位槽加料和泵直接加料。

采用高位槽加料,通过控制液位高度,可以得到稳定的流速和流量,通过重力加料,可以节省一笔动力费用,但由于多了高位槽,建设费用相应增加;采用泵加料,受泵的影响,流量不太稳定,流速不太稳定,流速不太稳定,从而影响了传质效率,但结构简单,安装方便。

精馏塔设计说明书(最全)

精馏塔设计说明书(最全)

引言塔设备是化学工业,石油化工,生物化工,制药等生产过程中广泛采用的传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔为逐级接触式气液传质设备,塔内设置一定数量的塔板,气体以鼓泡形式或喷射形式通过塔板上的液层,正常条件下,气相为分散相,液相为连续相,气相组成呈阶梯变化,它具有结构简单,安装方便,压降低,操作弹性大,持液量小等优点,被广泛的使用。

本设计的目的是分离苯—甲苯的混合液,故选用板式塔。

设计方案的确定和流程说明1.塔板类型精馏塔的塔板类型共有三种:泡罩塔板,筛孔塔板,浮阀塔板。

浮阀塔板具有结构简单,制造方便,造价低等优点,且开孔率大,生产能力大,阀片可随气流量大小而上下浮动,故操作弹性大,气液接触时间长,因此塔板效率较高。

本设计采用浮阀塔板。

2. 加料方式加料方式共有两种:高位槽加料和泵直接加料。

采用泵直接加料,具有结构简单,安装方便等优点,而且可以引入自动控制系统来实时调节流量及流速。

故本设计采用泵直接加料。

3. 进料状况进料方式一般有两种:冷液进料及泡点进料。

对于冷液进料,当进料组成一定时,流量也一定,但受环境影响较大;而采用泡点进料,不仅较为方便,而且不受环境温度的影响,同时又能保证精馏段和提馏段塔径基本相等,制造方便。

故本设计采用泡点进料。

4. 塔顶冷凝方式苯和甲苯不反应,且容易冷凝,故塔顶采用全凝器,用水冷凝。

塔顶出来的气体温度不高,冷凝后的回流液和产品无需进一步冷却,选用全凝器符合要求。

5. 回流方式回流方式可分为重力回流和强制回流。

本设计所需塔板数较多,塔较高,为便于检修和清理,回流冷凝器不适宜塔顶安装,故采用强制回流。

6. 加热方式加热方式分为直接蒸气和间接蒸气加热。

直接蒸气加热在一定回流比条件下,塔底蒸气对回流液有稀释作用,从而会使理论塔板数增加,设备费用上升。

故本设计采用间接蒸气加热方式。

7. 操作压力苯和甲苯在常压下相对挥发度相差比较大,因此在常压下也能比较容易分离,故本设计采用常压精馏。

化工原理甲醇-水板式精馏塔设计

化工原理甲醇-水板式精馏塔设计
一、甲醇-水板式精馏塔设计条件
(1)生产能力:3万吨/年,年开工300天
(2) 进料组成:甲醇含量65%(质量分数)
(3) 采用间接蒸汽加热并且加热蒸汽压力:0.3MPa
(4) 进料温度:采用泡点进料
(5) 塔顶馏出液甲醇含量99%(质量分数)
(6) 塔底轻组分的浓度≤1%(本设计取0.01)
(7) 塔顶压强常压
11.171
49
11.745
50
12.344
51
12.97
52
13.623
53
14.303
54
15.012
55
15.752
56
16.522
57
17.324
58
18.159
59
19.028
60
19.932
61
20.873
62
21.851
63
22.868
64
23.925
65
25.022
66
26.163
67
即:
同理可以求得
如此重复,直至
此后,改用提馏段操作线方程,
即: ,求出
同理可得:
如此重复计算,直至计算到
计算结果见下表:
逐板计算法的理论塔板数
y y的值
x x的值
y1
0.982
Xd
0.982
y2
0.960182532
x2
0.935523207y3 Nhomakorabea0.922159507
x3
0.865110198
y4
0.864902729
式中:D——塔径,m
——气体体积流量,

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

(完整版)Aspenplus模拟甲醇、水精馏塔设计详细说明书

Aspen plus模拟甲醇、水精馏塔设计说明书一、设计题目根据以下条件设计一座分离甲醇、水混合物的连续操作常压精馏塔:生产能力:24500吨精甲醇/年;原料组成:甲醇50%w,水50%w;产品组成:塔顶甲醇质量分率≥94%w;塔底甲醇质量分率 1 %w;进料温度:350.5K;塔顶压力常压;进料状态饱和液体。

二、设计要求对精馏塔进行详细设计,给出下列设计结果并绘制塔设备图,并写出设计说明。

(1).进料、塔顶产物、塔底产物;(2).全塔总塔板数N;最佳加料板位置N F;(3).回流比R;(4).冷凝器和再沸器温度、热负荷;(5).塔内构件塔板或填料的设计。

三、分析及模拟流程1.物料衡算(手算)目的:求解 Aspen 简捷设计模拟的输入条件。

内容:(1)生产能力:一年按300天计算,进料流量为24500/(300*24)=3.40278 t/hr。

(2)原料、塔顶与塔底的组成(题中已给出):原料组成:甲醇50%w,水50%w;产品:塔顶甲醇≥94%w;塔底甲醇《1% w。

(3).温度及压降:进料温度:77.35摄氏度=350.5K;2.用简捷模块(DSTWU)进行设计计算目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。

3.灵敏度分析目的:研究回流比与理论板数的关系(N T-R),确定合适的回流比与塔板数;研究加料板位置对产品的影响,确定合适的加料板位置。

方法:作回流比与理论塔板数的关系曲线(N T-R),从曲线上找到期望的回流比及塔板数。

4. 用详细计算模块(RadFrac)进行计算目的:精确计算精馏塔的分离能力和设备参数。

方法:用RadFrac模块进行精确计算,通过设计规定(Design Specs)和变化(Vary)两组对象进行设定,检验计算数据是否收敛,计算出塔径等主要尺寸。

5. 塔板设计目的:通过塔板设计(Tray sizing)计算给定板间距下的塔径。

Φ800甲醇精馏塔设计

Φ800甲醇精馏塔设计

Φ800甲醇精馏塔设计在甲醇生产中,甲醇精馏塔是一个重要的设备,用于将甲醇从原料中分离出来。

本文将对Φ800甲醇精馏塔的设计进行详细说明。

首先,我们需要了解甲醇精馏过程的基本原理。

甲醇精馏过程是在常压下进行的,通过不同馏分的沸点差异来分离甲醇。

在甲醇精馏塔中,原料进入塔底,经过加热和汽化后,将沸点较低的甲醇汽相逐渐冷凝成液相,然后从塔顶蒸出。

同时,在塔中还有一系列的塔板,用于增加接触面积,加快蒸馏过程。

接下来,我们对Φ800甲醇精馏塔的设计进行具体说明。

首先,我们需要确定塔的高度。

塔的高度与分离效果息息相关。

一般来说,塔的高度越高,分离效果越好。

在实际设计中,可以根据甲醇精馏过程的需求来确定塔的高度。

另外,塔的宽度也需要确定,一般来说,塔的宽度越大,分离效果越好。

在Φ800甲醇精馏塔的设计中,塔的高度可以根据经验值进行初步确定。

其次,我们需要确定塔板的数量。

塔板的数量越多,分离效果越好。

在设计中,可以根据甲醇精馏过程的需求及经验值来确定塔板的数量。

另外,塔板的布置也需要考虑。

在Φ800甲醇精馏塔的设计中,可以采用均匀布置的塔板,以提高分离效果。

然后,我们需要确定塔板的尺寸。

塔板的尺寸与甲醇精馏过程的需求及塔的尺寸有关。

在实际设计中,可以根据塔板上液相和汽相的流动速度来确定塔板的尺寸。

同时,还需要考虑气液分布的均匀性,可以采用分散器等设备来改善气液分布情况。

最后,我们需要确定加热方式和冷凝方式。

在Φ800甲醇精馏塔的设计中,可以采用外加热的方式,通过外部加热器对原料进行加热。

同时,可以采用冷凝器对甲醇汽相进行冷凝。

在实际设计中,可以根据加热和冷凝的需求来选择合适的设备。

综上所述,Φ800甲醇精馏塔的设计需要考虑塔的高度、宽度、塔板的数量和尺寸,以及加热和冷凝方式等因素。

在设计过程中,需要根据甲醇精馏过程的需求及经验值来进行合理的确定。

同时,还需要注意安全和运行稳定性等方面的考虑,以保证甲醇精馏塔的正常运行。

化工原理甲醇—水精馏塔设计说明

化工原理甲醇—水精馏塔设计说明

沈阳化工大学化工原理课程设计说明书专业:制药工程班级:制药1102学生姓名:黄奎兴学号:11220223指导老师:王国胜设计时间:2014.5.20----2014620成绩:____________化工原理课程设计任务书设计题目:分离甲醇-水混合液的填料精馏塔二原始数据及条件生产能力:年生产量甲醇1万吨(年开工300天)原料:甲醇含量为30% (质量百分数,下同)的常温液体分离要求:塔顶甲醇含量不低于95%,塔底甲醇含量不高于0.3%。

建厂地区:沈阳三设计要求(一)•一份精馏塔设计说明书,主要内容要求:(1)•前言(2).流程确定和说明(3)•生产条件确定和说明(4)•精馏塔设计计算(5)•主要附属设备及附件选型计算(6)•设计结果列表专业•专注(7).设计结果的自我总结与评价(8).注明参考和试用的设计资料(9).结束语(二)•绘制一份带控制点工艺流程图。

(三)•制一份精馏塔设备条件图四.设计日期:2013年5月20日至6月20日、八、,刖言精馏塔分为板式塔和填料塔两大类。

填料塔又分为散堆填料和规整填料两种。

板式塔虽然结构较简单,适应性强,宜于放大,在空分设备中被广泛采用。

但是,随着气液传热、传质技术的发展,对高效规整填料的研究,一些效率高、压降小、持液量小的规整填料的开发,在近十多年内,有逐步替代筛板塔的趋势。

实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。

对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B 物质,而残液是沸点高的A 物质,精馏是多次简单蒸馏的组合o精馏塔底部是加热区,温度最高;塔顶温度最低。

精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。

精馏塔的优点:归纳起来,规整填料塔与板式塔相比,有以下优点:1)压降非常小。

气相在填料中的液相膜表面进行对流传热、传质,不存在塔板上清液层及筛孔的阻力。

在正常情况下,规整填料的阻力只有相应筛板塔阻力的1/5 〜1/6 ; 2)热、质交换充分,分离效率高,使产品的提取率提高;3)操作弹性大,不产生液泛或漏液,所以负荷调节范围大,适应性强。

甲醇精馏塔机械设计方案书部分

甲醇精馏塔机械设计方案书部分

厦门大学化工系课程设计—机械部分计算说明书设计题目:甲醇精馏塔专业:化工工艺学号:姓名:2005年07月23日目录一、前言 (3)二、塔设备任务书 (4)三、塔设备计算 (4)(一)选择塔体和裙座材料………………………………………,4(二)计算筒体和封头壁厚 (4)(三)塔高计算 (5)(四)塔设备质量载荷计算 (5)(五)风载荷与风弯矩计算………………………………………,7(六)地震载荷与地震弯矩计算 (8)(七)偏心载荷与偏心弯矩计算 (9)(八)最大弯矩计算 (9)(九)危险截面的强度和稳定性校核 (9)(十)基础环设计 (11)(十一)地脚螺栓计算 (13)四、计算结果表 (14)五、参考文献 (14)六、符号表 (14)七、结束语 (15)一、前言塔设备设计包括工艺设计和机械设计两方面,本课程设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对他设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行结构设计。

本设计采用的是填料塔。

二、塔设备任务书三、 塔设备计算(一) 选择塔体和裙座材料由于设计压力P =0.05MPa (表压)属于低压分离设备,属于一类容器;介质腐蚀性小,故选用Q235-A 号钢材作为材料。

(二) 计算筒体和封头壁厚1. 筒体壁厚按强度条件,筒体所需厚度0.034000.0622[]21130.850.03i C tPD mm P δσφ⨯===-⨯⨯- 式中:[]t σ-Q235A 在温度为150℃时的许用应力,查表得[]t σ为113MPa φ-塔体焊缝系数,采用双面对接焊,局部无损探伤,查表得φ=0.85 C 1-钢板壁厚负偏差,估计壁厚在8mm 左右,查表得C 1=0.8 C 2-腐蚀裕量,为腐蚀速率⨯设计年限=0.1⨯20=2mm 上述数值代入上式可得:min 0.034000.0622[]21130.850.03i C t PD P δδσφ⨯===<-⨯⨯-按刚度要求,取min 3mm δ=,考虑到此塔较高,安装地区风载荷较大,而塔的内径较小,故增加壁厚。

甲醇水分离过程板式精馏塔的设计_课程设计任务书 精品

甲醇水分离过程板式精馏塔的设计_课程设计任务书 精品

第一章设计任务书1.1 设计题目设计题目:甲醇—水分离过程板式精馏塔的设计设计要求:年产纯度为99.5%的甲醇12000吨,塔底馏出液中含甲醇不得高于0.1%,原料液中含甲醇40%,水60% 。

1.2操作条件1) 操作压力常压2) 进料热状态自选3) 回流比自选4) 塔底加热蒸气压力0.3Mpa(表压)1.3塔板类型筛孔塔1.4 工作日每年工作日为330天,每天24小时连续运行。

1.5 设计说明书的内容(1) 流程和工艺条件的确定和说明(2) 操作条件和基础数据(3) 精馏塔的物料衡算;(4) 塔板数的确定;(5) 精馏塔的工艺条件及有关物性数据的计算;(6) 精馏塔的塔体工艺尺寸计算;(7) 塔板主要工艺尺寸的计算;(8) 塔板的流体力学验算;(9) 塔板负荷性能图;(10)主要工艺接管尺寸的计算和选取(11) 塔板主要结构参数表(12) 对设计过程的评述和有关问题的讨论第二章设计原则2.1确定设计方案的原则确定设计方案总的原则是在可能的条件下,尽量采用科学技术上的最新成就,使生产达到技术上最先进、经济上最合理的要求,符合优质、高产、安全、低消耗的原则。

必须具体考虑如下几点:2.1.1满足工艺和操作的要求⑴首先必须保证产品达到任务规定的要求,而且质量要稳定。

这就要求各流体流量和压头稳定,入塔料液的温度和状态稳定,从而需要采取相应的措施。

⑵其次所定的设计方案需要有一定的操作弹性,各处流量应能在一定范围内进行调节,必要时传热量也可进行调整。

因此,在必要的位置上要装置调节阀门,在管路中安装备用支线。

计算传热面积和选取操作指标时,也应考虑到生产上的可能波动。

再其次,要考虑必需装置的仪表(如温度计、压强计,流量计等)及其装置的位置,以便能通过这些仪表来观测生产过程是否正常,从而帮助找出不正常的原因,以便采取相应措施。

2.1.2满足经济的要求要节省热能和电能的消耗,减少设备及基建费用。

如前所述在蒸馏过程中如能适当地利用塔顶、塔底的废热,就能节约很多生蒸汽和冷却水,也能减少电能消耗。

甲醇精馏塔设计说明书

甲醇精馏塔设计说明书

设计条件如下:操作压力:105.325 Kpa(绝对压力)进料热状况:泡点进料回流比:自定单板压降:≤0.7 Kpa塔底加热蒸气压力:0.5M Kpa(表压)全塔效率:E T=47%建厂地址:武汉[设计计算](一)设计方案的确定本设计任务为分离甲醇-水混合物。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。

(二)精馏塔的物料衡算1、原料液及塔顶、塔底产品的摩尔分率甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmolx F=32.4%x D=99.47%x W=0.28%2、原料液及塔顶、塔底产品的平均摩尔质量M F= 32.4%*32+67.6%*18=22.54 Kg/KmolM D= 99.47*32+0.53%*18=41.37 Kg/KmolM W= 0.28%*32+99.72%*18=26.91 Kg/Kmol3、物料衡算原料处理量:F=(3.61*103)/22.54=160.21 Kmol/h总物料衡算:160.21=D+W甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28%得D=51.88 Kmol/h W=108.33 Kmol/h(三)塔板数的确定1、理论板层数M T的求取甲醇-水属理想物系,可采用图解法求理论板层数①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y图(附表)②求最小回流比及操作回流比采用作图法求最小回流比,在图中对角线上,自点e(0.324,0.324)作垂线ef即为进料线(q线),该线与平衡线的交战坐标为 (x q=0.324,y q=0.675)故最小回流比为R min= (x D- y q)/( y q - x q)=0.91取最小回流比为:R=2R min=2*0.91=1.82③求精馏塔的气、液相负荷L=RD=1.82*51.88=94.42 Kmol/hV=(R+1)D=2.82*51.88=146.30 Kmol/hL′=L+F=94.42+160.21=254.63 Kmol/hV ′=V=146.30 Kmol/h ④精馏段操作线方程为:y =(L/V)x + (D/V)x D =(99.42/146.30)x+(51.88/146.30)*99.47%=0.6454x+0.3527 提馏段操作线方程为:y ′=(L ′/V ′)x ′ + (W/V ′)x W =(254.63/146.30) x ′-(108.33/146.30)*0.28% =1.7405 x ′-0.0021 ⑤图解法求理论板层数采用图解法求理论板层数(附图),求解结果为: 总理论板层数:N T =13(包括再沸器) 进料板位置: N F =10 2、实际板层数的求取)1()1(A A A A --=y x x y αα%47E 047.1*(345.00= 故= 见后) μαμ=精馏段实际板层数:N 精=9/47%=20 N 提=4/47%=9(四) 精馏塔的工艺条件及有关物性数据的计算以精馏段为例进行计算1、 塔顶操作压力:P D =101.3 Kpa每层塔板压降:△P =0.7 Kpa进料板压力:P F =105.3+0.7*20=119.3 Kpa 精馏段平均压力:(105.3+119.3)/2=112.3 Kpa 2、 操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中甲醇、水的饱和蒸气压由安托尼方程计算,计算过程略,计算结果如下:塔顶温度:t D =64.6℃ 进料板温度:t F =76.3℃ 精馏段平均温度:t M =70.45℃ 3、 平均摩尔质量计算塔顶平均摩尔质量计算:由x D =y 1=0.9947,查y-x 曲线(附表),得 x 1=0.986M VDm =0.9947*32+(1-0.9947)*18=31.93 M LDm =0.9860*32+(1-0.9860)*18=31.80进料板平均摩尔质量计算 由图解理论板(附图),得 y f =0.607 x F =0.229M VFm =0.607*32+(1-0.607)*18=26.50 M LFm =0.229*32+(1-0.229)*18=21.21 所以精馏段平均摩尔质量: M Vm =(31.93+26.50)/2=29.22 M Lm = (31.80+21.21)/2=26.51 4、 平均密度计算 ⑴气相密度计算由理想气体状态方程计算,即3/15.1)45.70273(*314.822.29*3.112M Kg RT M P mV m V m m=+==ρ⑵液相平均密度计算液相平均密度依下式计算,即∑=iiLmραρ1塔顶液相平均密度的计算 由t D =64.6℃ 查手册得,3B 3/K 3.980/K 745m g m g A = ρρ=3/K 7460053.09947.01m g BALD m=+=ρρρ进料板液相平均密度的计算 由t F =76.3℃ 查手册得,3B 3/K 978/K 735m g m g A = ρρ=进料板液相的质量分量%56.3418*771.032*229.032*229.0=+=A α3/K 7.8776544.03456.01m g BA LF m=+=ρρρ⑶精馏段液相平均密度为:321/K 8122)(m g mL =+=ρρρ5、 液体平均表面张力计算⑴液相平均表面张力依下式计算,即∑=i i L x mσσ塔顶液相平均表面张力的计算 由t D =64.6℃,查手册得mmN m mN m mN B A A m/ 05.190053.09947.0/ 2.65/ 8.18LD B =+===σσσσσ ⑵进料板液相平均表面张力的计算 由t F =76.3℃,查手册得mmN m mN m mN B A A m/ 35.52771.0229.0/ 7.62/ 5.17LF B =+===σσσσσ ⑶精馏段液相平均表面张力为:m mN m m mLF LD L / 7.352)(=+=σσσ6、 平均粘度的计算液相平均粘度依下式计算,即∑=iiL x m μμlg lg⑴塔顶液相平均粘度的计算 由t D =64.6℃ 查手册得,smpa smpa s mpa mmL B A L /34.0lg 0053.0lg 9947.0lg /437.0/34.0D D B A = 解得= =μμμμμμ+=⑵进料板液相平均粘度的计算 由t F =76.3℃ 查手册得smpa smpa s mpa mmL B A L /53.0lg 771.0lg 229.0lg /374.0/28.0F F B A = 解得= =μμμμμμ+=⑶精馏段液相平均表面张力为s mpa /345.0221A =)(=μμμ+(五)精馏塔的塔体工艺尺寸计算1、 塔径的计算精馏段的气、液相体积流率为:021.0)15.1812(08.110*56.8)(L )(L 20C C /10*856812*360051.26*42.94*3600/033.115.1*360022.29*30.146*360021421212.0L 20max 343===-=======--V L s s V L h h V V L Lm Lm s Vm Vm s V V Cu sm LM L sm VM V ρρρρσρρρρρ)(= 其中由取板间距H T =0.4m ,板上液层高度h L =0.06m ,则H T -h L =0.40-0.06=0.34m 查史密斯关联图得,C 20=0.074sm u / 204.215.115.1812083.0083.0207.35074.020C C max 2.02.0L20=-=== )()(=σ取安全系数为0.7,则空塔气速为sm sm u u / 948.0543.1*1.033*4u 4V D / 543.1204.2*7.0s max ======ππ 按标准塔径圆整后,为D=1.0m 塔截面积为22785.04m D A T ==π实际空塔气速为u=1.033/0.785=1.316s m /2、 精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =(20-1)*0.4=7.6m 提馏段有效高度为Z 提=(N 提-1)H T =(9-1)*0.4=3.2m 在进料板上方开2人孔,其高度为0.8m故精馏塔有效高度为Z =N 精+N 提+0.8*2=12.4m(六)塔板主要工艺尺寸的计算1、 溢流装置计算因塔径D =1.0m ,可选用单溢流弓形降液管,采用凹形受液盘,各项计算如下:⑴塔长l W =0.66D=0.66m⑵溢流堰高度h W 由h W =h L -h OW选用平直堰,堰上液层高度h OW32)(100084.2wh ow l L E h =近似取E =1,则m h ow 93.7)66.03600*10*56.8(*1*100084.2324==-取板上清液层高度h L =60mm故m h w 33310*07.5210*93.710*60---=-=⑶弓形降液管宽度W d 和截面积A f由l w /D=0.66,查图得 A f /A T =0.0722 W d /D=0.124mD W m A A d T f 124.0124.00567.0*0722.02====验算液体在降液管中停留时间s s L H A hTf 55.263600*10*56.840.0*0567.0*360036004>===-θ 故降液管设计合理⑷降液管底隙高度h 0mm h s m u u l L h w h006.0016.008.0*66.0*36003600*10*56.8/ 08.0*36004000>==''=-则=取故降液管底隙设计合理选用凹形受液盘,深度wh '=50mm 2、 塔板布置⑴塔板的分块因D ≥800mm ,故塔板采用分块式,且分为3块⑵边缘区宽度确定取m W m W W C S S 035.0065.0=='= ⑶开孔面积A a212221222a 532.0)465.0311.0sin 180465.0*311.0465.0311.0(2465.0035.05.02311.0)065.0124.0(5.0)(2sin 180(2A m A mW Dr m W W Dx rx r x r x a c s d =+-==-=-==+-=+-=+-=--ππ故 其中, ⑷筛孔计算及其排列本例所处理的物系无腐蚀性,可选用δ=3mm 碳钢板,取筛孔直径d 0=5mm 筛孔按正三角形排列,取孔中心距t 为 t =3d 0=15 mm筛孔数目n 为个2731015.0532.0*155.1155.122===t A n a 开孔率为%1.10)015.0005.0*907.0)907.0220==((=t d ϕ气体通过阀孔的气速为 s m A V u s / 23.19532.0*101.0033.100===(七)筛板的液体力学验算1、 塔板压降⑴干板阻力h c 计算 干板阻力 )()(051.0200LVc C u h ρρ= 由d 0/δ=3/5=1.667, 得C 0=0.772 故液注0448.0)81215.1()772.023.19(051.02==c h⑵气体通过液层的阻力h l 计算 h l =βh L21210 52.115.1418.1/418.10567.0785.0033.1ms Kgu F sm A A V u v af T s a ====-=-=ρ查图得,β=0.59故液柱m h h h h ow w L l 0354.0)10*93.710*07.52(59.0)(33=+=+==--ββ⑶液体表面张力的阻力σh 计算液体表面张力所产生的阻力σh 由下式计算液柱m gd h L L 00359.0005.0*81.9*81210*7.35*4430===-ρσσ气体通过每层塔板的液柱高度h P 可按下式计算,即 h P =h c +h l +h σh P =0.0448+0.0354+0.00359=0.084m 液柱 气体通过每层塔板的压降为设计允许值)(7.045.66781.9*812*084.0h P p KPa g L <===∆ρ2、 液面落差对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响。

甲醇精馏塔 化工原理课程设计

甲醇精馏塔 化工原理课程设计

目录一、前言 (3)1.精馏与塔设备简介 (3)2.体系介绍 (3)3.筛板塔的特点 (4)4.设计要求: (4)二、设计说明书 (5)1.设计单元操作方案简介 (5)2.筛板塔设计须知 (5)3.筛板塔的设计程序 (6)三、设计计算书 (6)1.设计参数的确定 (6)1.1进料热状态 (6)1.2加热方式 (6)1.3回流比的选择 (7)1.4塔顶冷凝水的选择 (7)2.流程简介及流程图 (7)3.理论塔板数的计算与实际板数的确定 (8)3.1理论板数计算 (8)3.2操作温度的计算 (10)3.3热量衡算 (11)3.4全塔效率的计算 (11)3.5实际板层数的确定 (12)4.塔的工艺条件及物性数据计算 (12)5.塔板主要工艺参数确定 (17)5.1溢流装置 (17)5.2溢流堰长 (17)5.3出口堰高 (18)5.4降液管的宽度与降液管的面积: (18)5.5降液管底隙高度ho: (19)5.6塔板布置及筛孔数目与排列 (19)6.筛板的力学检验 (20)6.1塔板压降 (20)6.2筛板塔液面落差 (22)6.3液沫夹带 (22)6.4漏液 (22)6.5液泛 (23)7.塔板负荷性能图 (23)7.1雾沫夹带线 (23)7.2 液泛线 (24)7.3 液相负荷上限线 (25)7.4液相负荷下限线 (25)7.5漏液线(气相负荷下限线) (25)7.6操作弹性 (26)8. 辅助设备及零件设计 (27)8.1塔顶冷凝器(列管式换热器) (27)8.2釜式再沸器: (31)8.3原料预热器 (32)8.4管路设计 (32)8.5冷凝水泵 (34)四、设计结果汇总 (35)1.工艺计算 (35)2.辅助设备 (37)五、设计感想 (38)六、参考文献 (38)七、致谢 (39)一.前言1.精馏与塔设备简介蒸馏是分离液体混合物的一种方法,是传质过程中最重要的单元操作之一,蒸馏的理论依据是利用溶液中各组分蒸汽压的差异,即各组分在相同的压力、温度下,其探发性能不同(或沸点不同)来实现分离目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计条件如下:操作压力:105.325 Kpa(绝对压力)进料热状况:泡点进料回流比:自定单板压降:≤0.7 Kpa塔底加热蒸气压力:0.5M Kpa(表压)全塔效率:E T=47%建厂地址:武汉[ 设计计算](一)设计方案的确定本设计任务为分离甲醇- 水混合物。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。

塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。

(二)精馏塔的物料衡算1、原料液及塔顶、塔底产品的摩尔分率甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmolx F=32.4%x D=99.47%x W=0.28%2、原料液及塔顶、塔底产品的平均摩尔质量M F= 32.4%*32+67.6%*18=22.54 Kg/KmolM D= 99.47*32+0.53%*18=41.37 Kg/KmolM W= 0.28%*32+99.72%*18=26.91 Kg/Kmol3、物料衡算3原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h总物料衡算:160.21=D+W甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28%得D=51.88 Kmol/h W=108.33 Kmol/h(三)塔板数的确定1、理论板层数M T 的求取甲醇-水属理想物系,可采用图解法求理论板层数①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表)②求最小回流比及操作回流比采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675)故最小回流比为R min= (x D- y q)/( y q - x q)=0.91取最小回流比为:R=2R min=2*0.91=1.82③求精馏塔的气、液相负荷L=RD=1.82*51.88=94.42 Kmol/hV=(R+1)D=2.82*51.88=146.30 Kmol/hL ′ =L+F=94.42+160.21=254.63 Kmol/hV′ =V=146.30 Kmol/h④精馏段操作线方程为:y =(L/V)x + (D/V)x D =(99.42/146.30)x+(51.88/146.30)*99.47%=0.6454x+0.3527提馏段操作线方程为:y ′=(L′/V′)x′ + (W/V ′ )x W=(254.63/146.30) x ′-(108.33/146.30)*0.28% =1.7405 x ′ -0.0021⑤图解法求理论板层数采用图解法求理论板层数( 附图) ,求解结果为:总理论板层数:N T=13( 包括再沸器) 进料板位置:N F=102、实际板层数的求取y (1 x )x (1 y )3.0360.345(见后) * =1.047故E0=47%精馏段实际板层数:N 精=9/47%=20 N 提=4/47%=9(四) 精馏塔的工艺条件及有关物性数据的计算以精馏段为例进行计算1、塔顶操作压力:P D=101.3 Kpa 每层塔板压降:△ P=0.7 Kpa 进料板压力:P F=105.3+0.7*20 =119.3 Kpa 精馏段平均压力: ( 105.3+119.3) /2=112.3 Kpa2、操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中甲醇、水的饱和蒸气压由安托尼方程计算,计算过程略,计算结果如下:塔顶温度:t D=64.6 ℃进料板温度:t F=76.3℃精馏段平均温度:t M=70.45 ℃3、平均摩尔质量计算塔顶平均摩尔质量计算:由x D=y1=0.9947, 查y-x 曲线(附表) ,得x1=0.986M VDm=0.9947*32+(1-0.9947)*18=31.93M LDm=0.9860*32+(1-0.9860)*18=31.80进料板平均摩尔质量计算 由图解理论板(附图) ,得 y f =0.607 xF=0.229M VFm =0.607*32+(1-0.607)*18=26.50 M LFm =0.229*32+(1-0.229)*18=21.21 所以精馏段平均摩尔质量: M Vm =( 31.93+26.50 )/2=29.22 M Lm = (31.80+21.21)/2=26.514、 平均密度计算⑴气相密度计算 由理想气体状态方程计算,即112.3* 29.221.15Kg / M 38.314* (273 70.45)⑵液相平均密度计算液相平均密度依下式计算,即VmP m MV mRTm塔顶液相平均密度的计算由 t D = 64.6 ℃ 查手册得,A 745K g / m 3B=980.3Kg / m 3LD0.9947A0.0053B3 746K g / m 3进料板液相平均密度的计算由 t F = 76.3 ℃ 查手册得,A 735K g / m 3B=978K g / m 3进料板液相的质量分量0.229* 320.229* 32 0.771* 1834.56%LF0.34560 .6544A877.7Kg /m 3⑶精馏段液相平均密度为:L m (12)2 812Kg/m 35、 液体平均表面张力计算⑴液相平均表面张力依下式计算,即xi i塔顶液相平均表面张力的计算由 t D = 64.6 ℃,查手册得0.9947 A 0.0053 B 19.05mN /m⑵进料板液相平均表面张力的计算 由 t F = 76.3 ℃,查手册得⑶精馏段液相平均表面张力为:Lm6、 平均粘度的计算液相平均粘度依下式计算,即 lg L x i lg i⑴塔顶液相平均粘度的计算 由 t D = 64.6 ℃ 查手册得,A=0.34mpa/ s B =0.437mpa / slg LD m0.9947lg A 0.0053lg B 解得 LD m=0.34mpa / s⑵进料板液相平均粘度的计算 由 t F = 76.3 ℃ 查手册得A=0.28mpa / s B =0.374 mpa / slg LF m0.229 lg A 0.771 lg B 解得 LF m=0.35mpa / s⑶精馏段液相平均表面张力为五)精馏塔的塔体工艺尺寸计算1、 塔径的计算精馏段的气、液相体积流率为:取板间距 H T = 0.4m ,板上液层高度 h L =0.06m ,则H T -h L =0.40-0.06 =0.34m 查史密斯关联图得, C 20=0.07418.8 mN / m65.2 mN / mLDA17.5mN/m B62.7 mN / m LF0.229 A 0.771 Bm52.35 mN / mA=L sVMVm3600* VmLM 146.30* 29.223600* 1.151.033m 3 /s94.42* 26.513600* 812856*10 4m 3/ s其中C =C 2(0 20L )0.20.021(LDm35.7 mN / m0.345mpa / sLm 3600* Lm由umax8.56*10 4 (812)121.08 (1.15)C =C 2(0 20L )0.2 0.07(4 3250.7)0.2 0.083 u max 0.083 812 1.15 2.204m/s max1.15取安全系数为 0.7 ,则空塔气速为u u max 0.7* 2.204 1.543m / s按标准塔径圆整后,为 D=1.0m 塔截面积为 A TD 2 0.785m 2 T4实际空塔气速为 u=1.033/0.785=1.316 m/s2、 精馏塔有效高度的计算精馏段有效高度为 Z 精=( N 精-1)H T =( 20-1 )*0.4 =7.6m提馏段有效高度为 Z 提=(N 提-1)H T =(9-1)*0.4 =3.2m 在进料板上方开 2 人孔,其高度为 0.8m 故精馏塔有效高度为 Z = N 精 +N 提+0.8*2 = 12.4m六)塔板主要工艺尺寸的计算1、 溢流装置计算因塔径 D = 1.0m ,可选用单溢流弓形降液管,采用凹形受液盘,各项计算如下: ⑴塔长 l W =0.66D=0.66m ⑵溢流堰高度 h W 由 h W = h L -h OW 选用平直堰,堰上液层高度 h OW近似取 E = 1,则2.84 *1*(8.56*104*3600)23 7.93m1000 0.66取板上清液层高度 h L = 60mm故h w 60*10 3 7.93*10 3 52.07 * 10 3m ⑶弓形降液管宽度 W d 和截面积 A f由 l w /D=0.66, 查图得A f /A T =0.0722 W d /D=0.124A f 0.0722* A T 0.0567m 2 W d 0.124D 0.124m验算液体在降液管中停留时间3600A f H T L h3600* 0.05467*0.40 26.5s 5s8.56*10 4* 3600故降液管设计合理4* 1.033* 1.5430.948m/ show2.84 E(L h )23 1000 l whow⑷降液管底隙高度 h 0七)筛板的液体力学验算1、 塔板压降 ⑴干板阻力 h c 计算故 h c 0.051(109.7.2732)2(18.1125) 0.0448液注h 0L h则h 0取u 0=0.08m / s3600* l w u 08.56* 10 4 *3600 0.016m 0.006m3600* 0.66* 0.08故降液管底隙设计合理选用凹形受液盘,深度 h w =50mm2、 塔板布置⑴塔板的分块因 D ≥ 800mm ,故塔板采用分块式,且分为 3 块⑵边缘区宽度确定 取 W S W S 0.065m WC0.035m⑶开孔面积 A aA a 2(x r 2x 22rsin 1801x其中,x(W d W s ) 0.5 (0.124 0.065) 0.311mW c 0.50.035 0.465m故A a 2(0.311 0.46520.31122 * 0.4652sin 18010.311) 0.532m 20.465⑷筛孔计算及其排列 本例所处理的物系无腐蚀性,可选用δ= 3mm 碳钢板,取筛孔直径d 0=5mm筛孔按正三角形排列,取孔中心距 t 为 t = 3d 0= 15 mm1.155A a 1.155*0.532筛孔数目 n 为 nt 2 开孔率为 =0.90(7 d 0 )2 气体通过阀孔的气速为2731个0.01520.907*(0.005)210.1% 0.0151.033 V su0A 0 0.101*0.53219.23m/s干板阻力 h c 0.051( u0 )2( V )C0 L由 d 0/ δ= 3/5=1.667, 得 C 0=0.772⑵气体通过液层的阻力 h l 计算 h l = β h L uaA T A f1.0331.418m/ s 0.785 0.0567 F 0 1.418 1.15 1.52Kg查图得,β =0.59 故h l h L (h w h ow ) 0.59(52.07* 10 3 7.93*10 3) 0.0354 m 液柱⑶液体表面张力的阻力 h 计算 液体表面张力所产生的阻力 h 由下式计算 4L 4* 35.7*10 30.00359m 液柱L gd 0 812*9.81* 0.005气体通过每层塔板的液柱高度 h P 可按下式计算,即 h P =h c +h l +h σ h P =0.0448+0.0354+0.00359=0.084m 液柱 气体通过每层塔板的压降为 P h p L g 0.084 * 812 * 9.81 667.45 0.7KPa(设计允许值) 2、 液面落差 对于筛板塔, 的影响。

相关文档
最新文档