大学物理波动学公式集
大学物理波动部分公式
• 弹簧振子作简谐运动的总能量(守恒)、动能、势能:
1
1
1
1
1
1
1
1
= 2 2 + 2 2 = 2 2 2 = 2 2 ; = 2 2 = 2 2 2 2 ( + ); = 2 2 = 2 2 2 ( + )
• 两个同方向同频率简谐振动的合成
•
=
= 2; =
• ⑤简谐振动的速度: =
2
• ⑥简谐运动的加速度: =
= 2
;=
2
=⥂
1
2
;=
1
= − ( + )
2
2
=
= −2 ( + )
• 单摆作简谐运动:
•
2
运动方程: 2 = −
• 机械振动
• 弹簧振子作简谐运动:
• ①加速度: = = − = −2
•
2
②微分方程: 2
= −2
• ③运动方程: = ( + )
• 或 = ( + ′ ) 其中 ′ = + 2
• ④弹簧振子的角频率、频率、周期、劲度系数之间的关系:
10
0
• 电磁波波速: =
• 声强级: =
电磁震荡与电磁波
2
2
1
+ = 0无阻尼自由震荡(有电容C和电感L组成的电路)
= 0 ( + )
=
1
大学物理波动学公式集.
d
θ
条纹间距Δy=D/λd
y
a
θ
f
单缝衍射(夫琅禾费衍射): asinθ=kλ(暗纹) θ≈sinθ≈y/f
瑞利判据: θmin=1/R =1.22λ/D(最小分辨角)
光栅: dsinθ=kλ(明纹即主极大满 d
足条件) tgθ=y/f d=1/n=L/N(光栅常数)
薄膜干涉:(垂直入射) δ反=2n2t+δ0 δ0= 0 中 λ/2 极 增反:δ反=(2k+1)λ/2 增透:δ反=kλ
偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的
光。
部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的
光的合成。
2. 方法、定律和定理
1 旋转矢量法:
A
如图,任意一个简谐振动
ωφ
A1
A2
ξ=Acos(ωt+φ)可看成初始
o
x
o
x 角位置为φ以ω逆时针旋转
的矢量在x方向的投影。
粒子的动能为:EK=mc2 – m0c2= 当V<<c时,EK≈mV2/2 *③ 动量与能量关系:E2–p2c2=E02 *5.速度变换关系: Σ’系→Σ系: Σ系→Σ’系:
初相φ——x=0处t=0时相位 (x0,V0) V0= –Aωsinφ
频率ν——每秒振动的次数
圆频率ω=2πν
决定于波源如: 弹簧振子ω=
周期T——振动一次的时间
单摆ω=
波速V——波的相位传播速度或能量传播速度。决定于介质如: 绳V=
光速V=C/n
空的波的叠加。
大学物理波动学公式集
波动学
1. 定义和概念
简谐波方程: x处t时刻相位
大学物理公式总结
引言在大学物理学习的过程中,公式总结是非常重要的。
公式的掌握和运用对于解决物理问题至关重要。
本文将对大学物理学中常见的公式进行总结,帮助读者更好地理解和应用这些公式。
概述一、运动学公式1.位移公式:s=v0t+(1/2)at^22.速度公式:v=v0+at3.加速度公式:a=(vv0)/t4.时间公式:t=(vv0)/a5.加速度与位移公式:s=v0t+(1/2)a(t^2)二、牛顿力学公式1.牛顿第一定律:F=ma2.牛顿第二定律:F=dp/dt=m(dv/dt)3.动量公式:p=mv4.力与位移公式:W=Fdcosθ5.原动力学公式:F=ma=m(dv/dt)三、能量和功的公式1.功公式:W=Fdcosθ2.重力势能公式:PE=mgh3.动能公式:KE=(1/2)mv^24.动能定理:ΔKE=W_net5.功率公式:P=W/t四、电动力学公式1.电流公式:I=Q/t2.电压公式:V=W/Q3.电阻公式:R=V/I4.电功率公式:P=IV=I^2R5.电容公式:C=Q/V五、光学公式1.光速公式:c=λf2.光的折射公式:n1sinθ1=n2sinθ23.焦距公式:1/f=1/v+1/u4.薄透镜成像公式:(1/f)=(1/v)+(1/u)5.杨氏双缝干涉公式:dsinθ=mλ总结通过本文对大学物理学中常见公式的总结,我们可以看到这些公式在解决问题中起到至关重要的作用。
运动学公式帮助我们了解物体的运动,牛顿力学公式帮助我们理解物体受力的原理,能量和功的公式帮助我们理解能量的转化和传递,电动力学公式帮助我们理解电路中的电流、电压和电阻的关系,光学公式帮助我们理解光的传播和成像的原理。
在学习这些公式时,我们需要深入理解它们的物理意义,并能够熟练地运用到实际问题中。
只有通过不断的练习和实践,才能真正掌握这些公式。
希望本文对读者学习大学物理学中的公式有所帮助,能够更好地应用于解决实际问题。
物理公式大全—大学物理篇
物理公式大全——大学物理篇第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理下波动光学部分总结
k = 1,2,...
rk
kR n
l0 2 f a
单缝衍 射
f x k a
k = 1,2,...
l0 2l
其他公式: 1、迈克尔逊干涉仪:
N 2 d d 2 N
' 2(n 1)t N
2 、光学仪器最小分辨角和分辨本领:
爱里斑的半角宽度:
1.22
D
光栅衍射:光栅衍射条纹是单缝衍射和多光束 干涉的综合效果。 光栅方程
(a b) sin k (k 0,1,2...)
缺级现象 最高级次满足:
ab k k' a
kmax
ab
重
类别 杨氏双 缝 劈尖干 涉 牛顿环 明纹
x
要
公
暗纹
4n 2 4n 2
例4.一束波长为 550 nm的平行光以 30º 角入射到相距为 d =1.00×10 – 3 mm 的双缝上,双缝与屏幕 E 的间距为 D=0.10m。在缝 S2上放一折射率为1.5的玻璃片,这时双缝 的中垂线上O 点处出现第8 级明条纹。求:1)此玻璃片的 厚度。2)此时零级明条纹的位置。 E S1 解:1)入射光到达双缝时已有光程差:
x
式
条纹宽度
x D nd
D k nd
D ( 2k 1) nd 2
k = 0,1,2,...
k = 0,1,2,...
2k 1 e 4n
k = 1,2,...
e
k 2n
e
k = 0,1,2,...
l
2 n
2n
(2k 1) R rk 2n
大学物理公式大全(大学物理所有的公式应有尽有)
第一章 质点运动学和牛顿运动定律1。
1平均速度 v =t△△r1。
2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1。
6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1。
8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1。
12变速运动速度 v=v 0+at 1。
13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a (x —x 0) 1。
15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1。
17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=gav 2sin 21.20射高Y=gav 22sin 201。
21飞行时间y=xtga-g gx 21。
22轨迹方程y=xtga-av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21。
27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1。
31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式全集
大学物理公式全集基本概念(定义和相关公式)位置矢量:r ,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角位置:θ速度:dtr d V =平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω加速度:dtV d a=或22dt r d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a an+=ττ其中dtdV a =τ(=rβ),rV na 2=(=r2 ω)1.力:F =ma(或F =dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)2.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)3.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )4.动能:mV 2/25.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P6.热量:CRT M Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ωn tSISF P 32=∆==8.分子平均平动能:k T 23=ω;理想气体内能:RT s r t M E )2(2++=μ9.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率) 10.平均速率:πμRTNdNdV V Vf V V80)(==⎰⎰∞方均根速率:μRTV22=;最可几速率:μRTpV 3=11.熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)mg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →r Mm G - =E p r r Qq ˆ420πε(静电力) →r Qq 04πε12.电场强度:E =F /q 0 (对点电荷:rr q Eˆ420πε=) 13.电势:⎰∞⋅=aar d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW) 14. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 15. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。
大学物理公式大全
大学物理公式大全大学物理公式大全(上)1. 运动学公式1.1 一维运动公式- 平均速度(v):v = Δx / Δt- 匀变速直线运动:v = v0 + at,x = v0t + (1/2)at^2,v^2 = v0^2 + 2aΔx- 重力加速度(g):g = 9.8 m/s^21.2 二维运动公式- 向心加速度(a):a = v^2 / r- 圆周运动速度(v):v = 2πr / T- 圆周运动周期(T):T = 2πr / v- 圆周运动角度(θ):θ = s / r2. 力学基本公式1.3 牛顿定律- 牛顿第一定律:物体静止或匀速直线运动时,合力 F = 0- 牛顿第二定律:物体的加速度与作用力成正比,反比于质量,F = ma- 牛顿第三定律:作用力与反作用力大小相等,方向相反,分别作用于两个物体1.4 摩擦力公式- 静摩擦力(fs):fs ≤μsN(µs为静摩擦因数,N为垂直于接触面的合力)- 动摩擦力(fd):fd = μdN(µd为动摩擦因数,N为垂直于接触面的合力)1.5 弹力公式- 弹簧定律:F = -kx(k为弹簧劲度系数,x为弹簧伸长量)3. 动量和能量1.6 动量公式- 动量(p):p = mv(m为质量,v为速度)- 冲击力(F):F = Δp/Δt1.7 动能公式- 动能(K):K = (1/2)mv^21.8 动能定理- 动能定理:W = ΔK = FΔx(W为外力所做的功,ΔK为动能变化量,F为力,Δx为力的位移)4. 旋转运动1.9 角度和弧度- 弧长(s)与半径(r)的关系:s = rθ(θ为角度)- 角度与弧度(rad)的转换关系:θ(rad) = θ(°) x (π/180)1.10 角速度公式- 角速度(ω):ω = ∆θ / ∆t1.11 角加速度公式- 角加速度(α):α = ∆ω / ∆t大学物理公式大全(下)5. 静电学1.12 库仑定律- 库仑定律(静电力):F = k |q1q2| / r^2(q1、q2为电荷,r为距离,k 为库仑常数)1.13 电场强度- 电场强度(E):E = F / q(F为电场力,q为测试电荷)1.14 电势能- 电势能(U):U = k |q1q2| / r(U为电势能,q1、q2为电荷,r为距离,k为库仑常数)6. 电磁感应1.15 法拉第电磁感应定律- 法拉第电磁感应定律:ε = -dΦ / dt(ε为感应电动势,Φ为磁通量,t 为时间变化率的负值)1.16 洛伦兹力公式- 洛伦兹力(F):F = q(v x B)(q为电荷,v为电荷的速度,B为磁场的磁感应强度)7. 光学1.17 折射公式- 折射定律:n1sinθ1 = n2sinθ2(n1、n2为介质的折射率,θ1、θ2为入射角和折射角)1.18 薄透镜公式- 薄透镜公式:1/f = 1/do + 1/di(f为透镜焦距,do为物距,di为像距)1.19 光的干涉- 杨氏双缝干涉:dsinθ = mλ(d为缝宽,θ为干涉角,m为干涉级次,λ为波长)8. 热学1.20 热传导公式- 热传导定律:Q = kA (∆T / L)(Q为传热量,k为导热系数,A为截面积,∆T为温差,L为长度)1.21 热膨胀公式- 线膨胀公式:∆L = αL∆T(∆L为长度变化,α为线膨胀系数,L为初始长度,∆T为温差)以上是大学物理的一些基本公式,希望对你的学习有所帮助。
大学物理第二章 行波波动方程
除了取决 t o 外,
还应与质元的位置坐标有关
下面来写出平面简谐波的表达式
假设一平面简谐波在理想的、不吸收振动能量的 均匀无限大媒质中传播。
波传播的速度为 u ,方向如图 u
●
o
x
选择平行波线方向的直线为 x 轴。
u
●
o
x
在垂直 x 轴的平面上的各质元(振动状态相同),
即应变,则有
K 叫体变弹性模量,它由物质的性质决定,
“-”表示压强的增大总导致体积的减
§2.1 行波
一. 机械波的产生 1. 机械波产生的条件
振源 作机械振动的物体——波源 媒质 传播机械振动的物体 在物体内部传播的机械波,是靠物体的弹性形成的, 因此这样的媒质又称弹性媒质。
什么是物质的弹性?
机械振动是如何靠弹性来传播呢?
T
将上式改写
u
表明:波的频率等于单位时间内通过媒质 某一点的“完整波”的个数。
4. 波速 u
振动状态或振动位相的传播速度,也称相速度
波速的大小决定于媒质的性质,
(1) 固体中的横波
(2) 固体棒中的纵波
u
G
u E
G — 切变模量
E — 杨氏弹性模量 — 体密度
∵G < E, 固体中 u横波 <u纵波
a
2. 表达式也反映了波是振动状态的传播
y( x x,t t) y( x, t)
x ut
y
o●
u
t
ut
●
●
x
x x x
y Acos( t 2 x )
大学物理(波动光学知识点总结)
1 N ab
8、在单缝的夫琅和费衍射示意图中所画的各条正入射光线间距 相等,那么光线1 和 3 在屏上P点相遇时的相位差为 2 , P点应为 暗 点。 P 2 4 1
2
13
P点为暗点 2 13 2
2 3 4 5
2
f
9、在光学各向异性的晶体内部有一确定的方向,沿这一方向 寻常光O光和非常光e 光的 速度 相等,该方向称为晶体的 光轴,只有一个光轴方向的晶体称为 单轴 晶体。
k = 1,2,...
rk
kR n
l0 2 f a
单缝衍射
f x k a
k = 1,2,...
l0 2l
其他公式: 1、迈克尔逊干涉仪:
N 2 d d 2 N
' 2(n 1)t N
2 、光学仪器最小分辨角和分辨本领:
min 1.22
大学物理
知识点总结
(波动光学)
波 动 光 学 小 结
波动光学
光的干涉
光的衍射
光的偏振
马吕斯定律
光程差与相位差
n2 r2 n1r1
干涉条纹明暗条件
2
最大光程差
Hale Waihona Puke a sin衍射条纹 明暗条件
I 2 I1 cos2
布儒斯特定律
k ( 2k 1) 2
C )宽度不变,且中心强度不变 D )宽度不变,但中心强度变小
f l0 2 a
7、一束自然光自空气射向一块平板玻璃,设以布儒斯特角i 0 入射,则在界面 2 上的反射光: i0 A)自然光 。 B) 完全偏振光且光矢量的振动方向垂直于入射面。 C)完全偏振光且光矢量的振动方向平行于入射面。 D )部分偏振光。
物理(波动学知识点总结)
2)加强与减弱的条件:
干涉加强: 2 k ( k 0,1,2,...)
若 10 20 r2 r1 k
干涉减弱(若用2K-1,则K从1开始取值):
(2k 1) (k 0,1,2,...)
若 10 20
(2k 1)
2
3)驻波(干涉特例) 能量不传播
波节:振幅为零的点,波节两侧的点反相 180;两波节之间的点同相,且振幅不同
波腹:振幅最大的点
多普勒效应: (记得听我视频或讲义里写的方 法忆,以下面为例)
21012?????kk??????krr????????12212??????????k2加强与减弱的条件
大学物理
知识点总结
(机械振动与机械波)
机械波的产生
1、产生的条件:波源及弹性媒质。 2、分类:横波、纵波。
3、描述波动的物理量:
①波长 λ :在同一波线上两个相邻的相位差为2 的质元
之间的距离。Leabharlann ②周期T :波前进一个波长的距离所需的时间。
波动过程中能量的传播
1)能量密度: w A 2 2
2)平均能量密度:
w1 2
3)能流密度(波的强度): I
sin 2[ (
A 2 2 w u
t
1 2
x) u
0]
2 A 2 u
波在介质中的传播规律
基本原理:传播独立性原理,波的叠加原理。 现象:波的反射(波疏媒质 波密媒质 界面处存在半波损失)
③频率ν(有时也用符号f) :单位时间内通过介质中某点的 完整波的数目。 ④波速u :波在介质中的传播速度为波速。 ω为角速度,单位时间转过的角度
大学物理 波粒二象性(2)粒子的波动性和概率幅
18
单个粒子在哪一处出现是偶然事件; 单个粒子在哪一处出现是偶然事件; 大量粒子的分布有确定的统计规律。 大量粒子的分布有确定的统计规律。
电 子 双 缝 干 涉 图 样
出现概率小
N=70000 N=20000 N=3000 N=100 电子数 N=7
出现概率大
19
思考:怎样理解电子的双缝衍射实验呢? 思考:怎样理解电子的双缝衍射实验呢 (1)是一个电子的一部分通过一个缝,另一部分通过另 是一个电子的一部分通过一个缝, 是一个电子的一部分通过一个缝 一缝, 射图样吗? 一缝,这两部分干涉形成衍 射图样吗? 这和电子的整体性(不可分割性 矛盾. 不可分割性)矛盾 这和电子的整体性 不可分割性 矛盾 (2)是同时通过两条缝的两个电子相互干涉吗? 是同时通过两条缝的两个电子相互干涉吗? 是同时通过两条缝的两个电子相互干涉吗 波动性是单个电子的属性, 波动性是单个电子的属性,不是电子间 相互作用 形成的。 形成的。 (3)两个缝是否同时打开对衍射图样有影响吗? 两个缝是否同时打开对衍射图样有影响吗? 两个缝是否同时打开对衍射图样有影响吗 双缝同时打开时, 双缝同时打开时,概率波预言的是同时存在电子通 过两条缝的概率,两条缝同时起作用, 过两条缝的概率,两条缝同时起作用,无法预言电子 从哪条缝通过。 从哪条缝通过。 20
16
4.概率波波函数和经典波函数的区别 概率波波函数和经典波函数的区别 经典波函数: 经典波函数 可测, 直接物理意义. (1) Ψ 可测,有直接物理意义 (2) Ψ 和 cΨ 不同 不同. 概率波波函数: 概率波波函数: (1) Ψ 不可测,无直接物理意义, 不可测, 直接物理意义, | Ψ |2才可测; 才可测; (2) Ψ 和 cΨ 描述相同的概率分布 描述相同的概率分布. 相同的概率分布 (c是常数 是常数). 是常数 ·玻恩的波函数的概率解释 --玻恩的波函数的概率解释 量子力学的基本原理之一(基本假设 基本假设) 量子力学的基本原理之一 基本假设
大学物理波动学公式集
大学物理波动学公式集波动学1.定义和概念简谐波方程: x 处t 时刻相位 振幅简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)相位Φ——决定振动状态的量振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /周期T ——振动一次的时间 单摆ω=l g /波速V ——波的相位传播速度或能量传播速度。
决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B波的干涉:同振动方向、同频率、相位差恒定的波的叠加。
光程:L=nx(即光走过的几何路程与介质的折射率的乘积。
相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。
拍:频率相近的两个振动的合成振动。
驻波:两列完全相同仅方向相反的波的合成波。
多普勒效应:因波源与观察者相对运动产生的频率改变的现象。
衍射:光偏离直线传播的现象。
自然光:一般光源发出的光偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。
部分偏振光:各振动方向概率不等的光。
可看成相互垂直两振幅不同的光的合成。
2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ϖ在x方向的投影。
相干光合成振幅: A=φ∆++cos 2212221A A A A其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1)②惠更斯原理:波面子波的包络面为新波前。
(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一点的振动。
④*马吕斯定律:I 2=I 1cos 2θ ⑤*布儒斯特定律:当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。
大学物理公式总结归纳全
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r1.2瞬时速度 v=lim△t →△t △r =dtdr速度v=dtds ==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtr d匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2速度随坐标变化公式:v 2-v 02=2a(x-x 0)自由落体运动 竖直上抛运动 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=gav 2sin 2射高Y=ga v 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=22n t a a + 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dt dvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v ==a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理波动学公式集
波动学
1.定义和概念
简谐波方程: x 处t 时刻相位 振幅
ξ
) 简谐振动方程:ξ=Acos(
ωt+φ)
波形方程:ξ=Acos(2πx/λ+φ′)
相位Φ——决定振动状态的量
振幅A ——振动量最大值 决定于初态 x0=Acos φ
初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数
圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /
周期T ——振动一次的时间 单摆ω=l g /
波速V ——波的相位传播速度或能量传播速度。
决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B
波的干涉:同振动方向、同频率、相位差恒定的波的叠加。
光程:L=nx(即光走过的几何路程与介质的折射率的乘积。
相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。
拍:频率相近的两个振动的合成振动。
驻波:两列完全相同仅方向相反的波的合成波。
多普勒效应:因波源与观察者相对运动产生的频率改变的现象。
衍射:光偏离直线传播的现象。
自然光:一般光源发出的光
偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。
部分偏振光:各振动方向概率不等的光。
可看成相互垂直两振幅不同的光的合成。
2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A
在x方向的投影。
相干光合成振幅: A=φ∆++cos 2212221A A A A
其中:Δφ=φ1-φ
2–λπ
2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1
②惠更斯原理:波面子波的包络面为新波前。
(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一
点的振动。
④*马吕斯定律:I 2=I 1cos 2
θ ⑤*布儒斯特定律:
当入射光以I p 入射角入射时则反射光为垂直入射面振动的
完全偏振光。
I p
称布儒斯特角,其满足:
tg i p = n 2/n 1
3. 公式
振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2
/2
E p =kx 2
/2= (t) *波动能量:222
1A ρωω=
I=V A V 2
221ρωω=∝A 2
*驻波:
波节间距d=λ/2 基波波长λ0=2L
基频:ν0=V/λ0=V/2L; 谐频:ν=nν0
*多普勒效应:
机械波ννs
R V V V V -+='(V R ——观察者速度;V s ——波源速度) 对光波ν
νr
r V C V C +-=
'其中V r 指光源与观察者相对速度。
杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd
单缝衍射(夫琅禾费衍射):
asin θ=kλ(暗纹)
θ≈sin θ≈y/f
瑞利判据:
θmin =1/R =λ/D (最小分辨角) 光栅: dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f d=1/n=L/N (光栅常数)
薄膜干涉:(垂直入射)
δ反=2n2t+δ0 δ0= 0 中 λ/2
极 增反:δ反=(2k+1)λ/2 增透:δ反=k λ
其中:2
2
11c v
-=
γ因V 总小于C 则γ≥0所以称其为膨胀因子;称β=2
21c v -
为收缩
因子。
3.狭义相对论的时空观:
①同时的相对性:由Δt=γ(Δt’+vΔx’/c 2),Δt’=0时,一般Δt ≠0。
称x’/c 2
为同时性因子。
②运动的长度缩短:Δx=Δx’/γ≤Δx ′ ③运动的钟变慢:Δt=γΔt’≥Δt ′ 4.几个重要的动力学关系: ① 质速关系m=γm 0
② 质能关系E=mc 2 E 0=m 0c 2
粒子的动能为:E K =mc 2
– m 0c 2
= ++=
--
2
402
0212
082)111(
2
2
c
V m V
m c m c v 当V<<c 时,E K ≈mV 2
/2
*③ 动量与能量关系:E 2–p 2c 2=E 02
*5.速度变换关系:
Σ’系→Σ系: '
1'2x c v x x u v
u u ++= '11'2
2
x c v
c v y y u u u +-=
'
11'2
2
x c v
c v z z u u u +
-=
Σ系→Σ’系:
'
1'2x c v x x u v
u u --=
'
11'2
2
x c v c v y y u u u -
-=
'
11'2
2
x c v c v z z u u u -
-=。