实验五 集成计数器与移位寄存器

合集下载

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实—期:专业班级:_姓名:_____________ 学号:一、实验目的1. 了解二进制加法计数器的工作过程。

2. 掌握任意进制计数器的设计方法。

实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)三、实验原理图1. 由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2. 测试74LS161的功能输入端 输出时 清 置 P T Qn钟 J —| —A零 数3. 熟悉用74LS161设计十进制计数器的方法。

①利用置位端实现十进制计数器。

16 15 14 13 12 1 1 10 9 74LS16112 3 4 5 16 7 8 捺出 LD數据输入Ci- GND 允许”邃 <―二^允详置人出 Qo Qi O2 Q?② 利用复位端实现十进制计数器。

四、实验结果及数据处理1. 左移寄存器实验数据记录表要求:输入二进制:11110000移位寄存器状态XX X X 清零+ 1X X 置数+1 1 1 1计数X 1 1 0 X 不计数X 1 1 X 0 不计数1 1— CP-共阴极共阴机数码管数码管C BI s1D C B A74LS161q 小 Ditl IT 「「-1(741SQ0]移位脉冲的次Q4Q3Q2Q1 000001000120011301114111151110 6110071000 800002. 画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路8 进制利用复位法实现8进制计数器,8=1000B将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。

五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。

数字电路实验报告 实验5

数字电路实验报告 实验5

实验五移存器功能测试及应用一、实验目的1、熟悉移位寄存器(移存器)的电路结构和工作原理。

2、掌握D触发器74HC(LS)74及集成移位寄存器74HC(LS)194的逻辑功能和使用方法。

二、实验设备和器件1、数字逻辑电路实验板1块2、74HC(LS)74(双D触发器)2片3、74HC(LS)194(4位双向通用移位寄存器)2片三、实验原理移位寄存器是具有移位功能的寄存器,其中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

移位寄存器存取信息的方式分为:串入串出、串入并出、并入串出、并入并出四种形式。

实验用器件管脚介绍:1、74HC(LS)74(双D触发器)管脚如下图所示。

2、74HC(LS)194(4位双向通用移位寄存器)管脚如下图所示。

四、实验内容与步骤1、利用两块74HC(LS)74(四个D触发器)构成一个单向的移位寄存器(基本命题)参照用两块74HC(LS)74(四个D触发器)构成一个单向移位寄存器的实验电路图连接电路,Q输出依次接LED指示灯,加电后在移位输入端加入不同信号观察LED指示灯变化。

1.1电路图1.2实验结果LED灯依次变亮,每次间隔一个CP。

2、测试74HC(LS)194的功能(基本命题)例如,Q输出依次接LED指示灯,改变S1、S0的值配合其它输入观察LED的变化。

2.1电路图2.2实验结果:置数:LED显示状态与置数端相同。

左移:LED从下往上(QD到QA)依次变亮,每次间隔一个CP右移:LED从上往下(QA到QD)依次变亮,每次间隔一个CP3、用两片74HC(LS)194做出模16的扭环计数器(扩展命题)将两片的Q输出依次都接到LED指示灯上,加电并加CP观察LED的变化。

现象一般为八盏灯先依次变暗再依次变亮如此循环。

3.1电路图3.2计数器拓展当进行M=2n 偶数计数时,可采用扭环型,D1=Q n ̅̅̅̅,将Q n 和高电平与非后反馈至第一片的输入端。

实验5 双向移位寄存器 (2010)

实验5 双向移位寄存器 (2010)

实现74LS194左移、右移逻辑功能的逻辑电路图:
5.测试74LS194的右循环移位逻辑功能和左循环移位逻辑功 能(即构成环形计数器),用发光二极管显示,并列出状态
转换表。
设计思路提示:移位寄存器的最高输出接至最低位的输入 端;或将最低位的输出接至最高位输入端,即将移位寄存器 的首尾相连就可实现。

实验步骤
1.根据实验指导书中实验内容1、2、3的要求,对双向移位寄 存器74LS194进行功能测试。 2.根据与非门的逻辑功能,检测芯片的好坏。 3.根据实验指导书中实验内容4、5的要求,设计电路,并在 实验装置上安装电路,验证理论设计的正确性。
五 常见问题
1.芯片使用前不进行功能好坏的检测。 2.电源连接不正确,接地点接到-5V上或接到模拟电子实验 箱的电源上,非常危险,上电后芯片烧毁。 3.逻辑开关电平前的发光二极管不亮,检查进入数字实验 箱的电源连接线是否断。 4.实验箱电源连接正确,电路自查确定无误后,电路验证 还是不正确的情况下进行下面的排错检查: (1)检查芯片的电源和地的电平是否正确。 (2)芯片的清零连接电平是否正确。 (3)芯片的控制电平(M1,M0)是否正确。 (4)从逻辑电平开关输入信号是否正确。 (5)时钟信号是否正确输入。 (6)从输出端按逻辑功能状态往前一步一步排查。
三 实验内容与实验原理
1.双向移位寄存器74LS194介绍 双向移位寄存器的逻辑图
双向移位寄存器逻辑功能
双向移位寄存器74LS194的引脚图
数据输 出端
数据输 入端
时钟 信号
控制Hale Waihona Puke 信号清零端右移输入端
左移输入端
2.测试74LS194的置数功能,用发光二极管显示。
3.测试74LS194的右移逻辑功能,用发光二极管显示,并将 状态填入表1。 4.测试74LS194的左移逻辑功能,用发光二极管显示,并将 状态填入表2。

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告一. 引言寄存器是计算机中重要的数据存储器件之一,用于存储和传输数据。

通过对寄存器进行实验,我们可以更好地理解寄存器的工作原理和应用。

本实验旨在通过设计和测试不同类型的寄存器,深入掌握寄存器的各种功能和操作。

二. 实验设计本实验设计了两个寄存器的实验,分别为移位寄存器和计数器寄存器。

1. 移位寄存器实验移位寄存器是一种特殊的串行寄存器,它能够实现对数据位的移位操作。

本实验设计了一个4位的移位寄存器,分别使用D触发器和JK触发器实现。

实验步骤如下:1) 首先,根据设计要求将4个D或JK触发器连接成移位寄存器电路。

2) 确定输入和输出端口,将输入数据连接到移位寄存器的输入端口。

3) 设计测试用例,输入测试数据并观察输出结果。

4) 分析实验结果,比较不同触发器类型的移位寄存器的性能差异。

2. 计数器寄存器实验计数器寄存器是一种能够实现计数功能的寄存器。

本实验设计了一个二进制计数器,使用T触发器实现。

实验步骤如下:1) 根据设计要求将多个T触发器连接成二进制计数器电路。

2) 设计测试用例,输入计数开始值,并观察输出结果。

3) 测试计数的溢出和循环功能,观察计数器的行为。

4) 分析实验结果,比较不同计数器位数的性能差异。

三. 实验结果与分析在实验过程中,我们完成了移位寄存器和计数器寄存器的设计和测试。

通过观察实验结果,可以得出以下结论:1. 移位寄存器实验中,无论是使用D触发器还是JK触发器,移位寄存器都能够正确地实现数据位的移位操作。

而使用JK触发器的移位寄存器在性能上更加优越,能够实现更复杂的数据操作。

2. 计数器寄存器实验中,二进制计数器能够准确地实现计数功能。

通过设计不同位数的计数器,我们发现位数越多,计数范围越大。

综上所述,寄存器是计算机中重要的存储器件,通过实验我们深入了解了寄存器的工作原理和应用。

移位寄存器和计数器寄存器都具有广泛的应用领域,在数字电路设计和计算机系统中起到了重要作用。

集成移位寄存器实验报告

集成移位寄存器实验报告

集成移位寄存器实验报告1.实验目的本次实验旨在通过使用集成移位寄存器来深入了解移位寄存器的工作原理,掌握其使用方法,并验证其功能。

通过实验,我们期望提高对集成电路的理解和实际操作能力,同时为今后的电子设计提供实践经验。

2.实验原理移位寄存器是数字电路中的重要组成部分,它能够将数据按照设定的位数向左或向右移动。

集成移位寄存器是一种四位或八位的移位寄存器,它由触发器和移位寄存器构成。

在时钟信号的控制下,数据在寄存器中向左或向右移动。

3.实验设备实验所需设备包括:集成移位寄存器、电源、时钟发生器、数据输入开关、测试仪器、示波器等。

4.实验步骤(1)按照电路图连接实验设备,确保电源和信号线的连接正确无误。

(2)设置时钟发生器,为移位寄存器提供时钟信号。

(3)设置数据输入开关,为移位寄存器提供输入数据。

(4)观察测试仪器的输出结果,记录实验数据。

(5)使用示波器观察移位寄存器的时序波形,了解其工作原理。

5.实验结果实验过程中,我们观察到移位寄存器的输出随着时钟信号的变化而变化。

当输入数据为0001时,经过四个时钟周期后,输出数据变为0100;当输入数据为1011时,经过四个时钟周期后,输出数据变为1100。

这说明移位寄存器能够将数据向左移动四位。

6.实验总结通过本次实验,我们深入了解了集成移位寄存器的工作原理和使用方法。

实验结果表明,移位寄存器能够实现数据的向左或向右移动,具有广泛的应用价值。

在今后的电子设计中,我们可以利用集成移位寄存器的特点来实现数据的处理和传输。

此外,本次实验也提高了我们的实践能力和对数字电路的理解。

集成计数器及寄存器的运用 实验报告

集成计数器及寄存器的运用 实验报告

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载集成计数器及寄存器的运用实验报告地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容电子通信与软件工程系2013-2014学年第2学期《数字电路与逻辑设计实验》实验报告---------------------------------------------------------------------------------------------------------------------班级:姓名:学号:成绩:同组成员:姓名:学号: ---------------------------------------------------------------------------------------------------------------------实验名称:集成计数器及寄存器的运用二、实验目的: 1.熟悉集成计数器逻辑功能和各控制端作用。

2.掌握计数器使用方法。

实验内容及步骤:1.集成计数器74LS90功能测试。

74LS90是二一五一十进制异步计数器。

逻辑简图为图8.1所示。

图8.174LS90具有下述功能:·直接置,直接置9(S9(1,·S,.:,=1)·二进制计数(CP、输入QA输出)·五进制计数(CP2输入QDQCQB箱出)·十进制计数(两种接法如图8.2A、B所示)·按芯片引脚图分别测试上述功能,并填入表 8.1、表8.2、表8.3中。

图8.2 十进制计数器2. 计数器级连分别用2片74LS90计数器级连成二一五混合进制、十进制计数器。

3. 任意进制计数器设计方法采用脉冲反馈法(称复位法或置位法)。

实验五 移位寄存器及其应用

实验五 移位寄存器及其应用

实验五移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验原理1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图5-1所示。

图5-1 CC40194的逻辑符号及引脚功能其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串C为直接无条件清零端;行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;RCP为时钟脉冲输入端。

CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。

S1、S0和R C端的控制作用如表5-1。

表5-12、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1)环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图5-2所示,把输出端Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表5-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图5-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

数字电路中的计数器和移位寄存器

数字电路中的计数器和移位寄存器

数字电路中的计数器和移位寄存器在数字电路中,计数器和移位寄存器是两个常用的元件,用于实现不同的功能。

计数器可以用于计算输入信号的频率、计数场合和控制电路等。

移位寄存器则用于数据的移位和存储。

本文将详细介绍计数器和移位寄存器的原理、应用以及设计注意事项。

一、计数器计数器是一种重要的数字电路元件,广泛应用于各种电子设备中。

计数器按照工作原理的不同,可以分为同步计数器和异步计数器。

1. 同步计数器同步计数器是一种在时钟信号的控制下进行计数的计数器。

它使用时钟信号来同步所有的触发器,保证在时钟边沿进行计数操作。

同步计数器的输入信号可以是来自外部的信号,也可以是内部产生的。

同步计数器通常由触发器级联构成,每一个触发器代表计数器中的一个位。

当所有的触发器都到达最大计数值时,计数器就会归零重新开始计数。

2. 异步计数器异步计数器是一种不需要时钟信号进行计数的计数器。

它的计数操作是以输入信号的变化边沿触发的。

异步计数器通常由触发器和门电路组成,输入信号的变化会通过门电路产生控制信号,触发器根据控制信号进行计数操作。

异步计数器在工作时需要特别注意输入信号的稳定性和时序关系,以确保计数的准确性。

二、移位寄存器移位寄存器是一种可以实现数据的移位和存储的元件。

移位寄存器可以分为串行移位寄存器和并行移位寄存器两种。

1. 串行移位寄存器串行移位寄存器是一种将数据逐位进行移位操作的寄存器。

它可以将输入数据从一个端口输入,并从另一个端口输出。

串行移位寄存器通常由触发器和移位电路组成,触发器用于存储数据,移位电路用于实现数据的移位操作。

串行移位寄存器的移位操作可以是向左移位或向右移位。

2. 并行移位寄存器并行移位寄存器是一种同时对多个数据位进行移位操作的寄存器。

它可以将输入数据从一个端口输入,并从另一个端口输出。

并行移位寄存器通常由多个触发器构成,每个触发器用于存储一个数据位。

通过控制信号,可以将输入数据同时存储到各个触发器中,并且可以同时从各个触发器中读取数据。

计数器与移位寄存器

计数器与移位寄存器

计数器与移位寄存器计数器和移位寄存器是数字电路中常用的两种重要组件。

它们在现代电子设备中起到了至关重要的作用。

本文将分别介绍计数器和移位寄存器的基本概念、工作原理及应用。

一、计数器计数器是一种能够记录和累加输入脉冲信号的电子器件。

它通常可以按照规定的时钟信号进行递增或递减操作,并能够实现各种计数模式。

1.1 基本概念计数器由若干个触发器和逻辑门构成。

触发器用于存储并传递数据,逻辑门用于产生控制信号。

计数器的位数决定了能够表示的计数范围,常见的位数有4位、8位、16位等。

1.2 工作原理计数器的工作原理基于二进制数制。

当计数器接收到时钟信号时,触发器根据当前的状态进行状态转移,并输出新的计数值。

计数器的时钟信号可以是连续的,也可以是根据特定条件产生的。

1.3 应用领域计数器广泛应用于各种计数场景中。

在数字电路中,它可以用于频率分割、时序控制等;在计算机中,它可以用于指令计数、内存地址生成等;在工业自动化中,它可以用于计量和控制等。

二、移位寄存器移位寄存器是一种能够在内部存储和移动数据的电子器件。

它可以实现数据的左移、右移、循环移位等操作,常用于数据的串行传输和处理。

2.1 基本概念移位寄存器由若干个触发器和逻辑门组成。

触发器用于存储数据位,逻辑门用于控制数据的传输和移位操作。

移位寄存器的位数决定了能够存储和处理的数据位数,常见的位数有4位、8位、16位等。

2.2 工作原理移位寄存器的工作原理基于串行数据传输的概念。

数据从输入端依次进入移位寄存器,根据控制信号进行移位操作后,最终从输出端读取。

移位寄存器可以实现左移、右移、循环移位等功能,根据应用需求选择不同的操作模式。

2.3 应用领域移位寄存器在各个领域都有重要应用。

在通信领域中,它可以用于串行数据传输、解调调制等;在图像处理领域中,它可以用于像素处理、图像滤波等;在存储器设计中,它可以用于数据缓存、地址生成等。

结语计数器和移位寄存器作为数字电路中重要的组件,为现代电子设备提供了强大的功能支持。

集成计数器及寄存器的实验原理

集成计数器及寄存器的实验原理

集成计数器及寄存器的实验原理引言集成计数器和寄存器是数字电路中非常重要的组件,它们用于进行数字信号的计数与存储。

在本实验中,我们将探讨集成计数器和寄存器的原理以及它们在实际电路中的应用。

一、集成计数器的原理1.1 什么是集成计数器集成计数器是一种能够计数连续数字信号的电子器件。

它可以根据输入端的时钟信号来完成计数操作,输出端则会按照特定的规律输出计数结果。

1.2 集成计数器的工作原理集成计数器通常是由触发器构成的。

触发器是一种存储单元,它能够存储一个二进制位,并在时钟信号的作用下改变存储状态。

集成计数器的工作原理可以通过以下步骤来理解:1.初始状态下,集成计数器的触发器处于复位状态,输出端的计数值为0。

2.当时钟信号来临时,触发器将存储状态改变为下一个二进制数值,输出端的计数值也随之改变。

3.当再次收到时钟信号时,触发器再次改变存储状态,计数值也相应地改变。

4.不断重复以上步骤,集成计数器可以持续计数,输出端的计数值会随着每个时钟周期递增。

1.3 集成计数器的分类集成计数器可以根据工作模式和计数范围进行分类。

常见的集成计数器包括二进制计数器、十进制BCD计数器、环形计数器等。

二、寄存器的原理2.1 什么是寄存器寄存器是一种能够存储多个二进制数据的器件。

它可以将输入的数据暂时存储起来,并在需要的时候提供给其他电路使用。

2.2 寄存器的工作原理寄存器通常是由多个触发器构成的。

每个触发器能够存储一个二进制位,这样多个触发器组合起来就能够存储更多的二进制数据。

寄存器的工作原理可以通过以下步骤来理解:1.初始状态下,所有触发器处于复位状态,寄存器中的数据为0。

2.当输入信号到达时,触发器将存储状态改变为对应的输入数据。

3.在需要时,寄存器的输出端将提供存储的数据给其他电路使用。

4.如果需要修改寄存器中的数据,可以将新的数据输入到寄存器中,触发器会相应地改变存储状态。

2.3 寄存器的分类寄存器可以根据功能和位数进行分类。

实验五时序逻辑电路实验报告

实验五时序逻辑电路实验报告

实验五时序逻辑电路(计数器和寄存器)-实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。

2.掌握常用中规模集成计数器的逻辑功能和使用方法。

二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。

三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。

在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。

2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表。

74LSl63是同步置数、同步清零的4位二进制加法计数器。

除清零为同步外,其他功能与74LSl61相同。

二者的外部引脚图也相同,如图所示。

表 74LSl61(74LS163)的功能表3.集成计数器的应用——实现任意M进制计数器一般情况任意M 进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。

第二类是由集成二进制计数器构成计数器。

第三类是由移位寄存器构成的移位寄存型计数器。

第一类,可利用时序逻辑电路的设计方法步骤进行设计。

第二类,当计数器的模M 较小时用一片集成计数器即可以实现,当M 较大时,可通过多片计数器级联实现。

两种实现方法:反馈置数法和反馈清零法。

第三类,是由移位寄存器构成的移位寄存型计数器。

4.实验电路: 十进制计数器六进制扭环计数器具有方波输出的六分频电路74LS161(74LS163)12345681514131211109V CCGND716R DCP A B C D EP RCOQ AQ BQ CQ DETLD同步置数法同步清零法图 74LS161(74LS163)外部引脚图四、实验内容及步骤1.集成计数器实验(1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。

组成原理实验(五)-移位寄存器实验

组成原理实验(五)-移位寄存器实验

计算机组成原理实验(五)-运算器扩展实验实验项目名: 移位寄存器实验实验要求:通过实验,理解移位操作的重要的作用;熟悉实验台上移位寄存器部件的硬件连线和移位操作的控制信号;掌握移位寄存器的控制方法;验证移位运算的意义。

实验内容:(1)完成电路连接。

将运算器单元、输入模块和输出模块挂接到总线上,连接好时序启停模块,为运算器工作提供基本的时序参考信号。

(2)分析运算器单元的移位寄存器的数据通路,确定通过该寄存器实现一次移位操作所需的控制序号序列,根据其发生的先后时序关系,写出相应的微控制信号序列。

(3)通过实验台的微控制输入开关,逐条的输入微控制信号,通过输入单元输入运算数据,在控制信号和时序信号的作用下,利用单步工作模式,控制移位寄存器工作,观察输出的计算结果。

通过实验完成以下内容:A、验证各种移位操作的控制方法,记录结果。

B、设计控制信号,充分利用移位操作,实现以下运算:详细说明:(1)实验中使用的移位寄存器位于运算器单元,是由一片74LS299芯片构造的移位寄存器,通过内部逻辑连接,该移位寄存器可以实现对数据的循环左、右移和带进位CN的循环左、右移。

充分利用各种提供的移位方式,配合上次实验课学过的运算单元,可以实现简单的乘法和除法运算。

下面看下利用移位器进行运算的基本方法和步骤:(a)移位操作的实现方法:✶通过输入模块将待操作的数据送到总线(SW-B);✶将总线上的数据打入移位寄存器(移位寄存器装数操作,见表1);✶对数据进行移位操作(根据表1的说明,合理的设置控制信号)✶将移位结果送到总线上,以便观察或其它使用(299-B);(b)移位运算与加法运算的配合:由于实验台的硬件限制,要实现简单的乘法运算,可以手动根据乘数的对应位值配置加法和移位操作实现。

✶将DR1寄存器作为部分积寄存器,初始化清零;✶将DR2寄存器作为被乘数寄存器,初始化为被乘数的绝对值;✶从乘数(绝对值)的最低位开始,根据对应位的值,控制ALU作DR1+DR2或者不加;✶将加运算的结果送入299移位寄存器,做带进位的循环右移操作,将移位结果重新送回DR1寄存器;根据移位操作执行后CN标志,记录乘积的的最低位;✶重复上述第3-5步,直到所有的乘数位都已考虑,完成乘法运算,乘积为DR1(部分积寄存器)的值(高位)和记录的所有移出CN位(低位)的合并;(2各模块控制信号说明:①输入模块:✶SW-B,开关输入信息送数据总线控制信号。

数电实验之移位寄存器

数电实验之移位寄存器

数电实验之移位寄存器移位寄存器一实验目的1.学习用D触发器构成移位寄存器(环行计数器)2.掌握中规模集成电路双向移位寄存器逻辑功能及使用方法二实验原理1、用4个D触发器组成4位移位寄存器,将每位即各D触发器的输出Q1、Q2、Q3、Q4分别接到四个0—1指示器(LED)将最后一位输出Q4反馈接到第一位D触发器的输入端,则构成一简单的四位移位环行计数器。

2、移位寄存器具有移位功能,是指寄存器中所存的代码能够在时钟脉冲的作用下依次左移或右移。

对于即能左移又能右移的寄存器称为双向移位寄存器。

只需要改变左移、右移的控制信号便可实现双向移位的要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向移位寄存器,型号为74LS194A(或CD40194),两者功能相同,其引脚分布图如下图18.1所示:其中A、B、C、D为并行输入端,A为高位依次排列;QA、QB、QC、QD为并行输出端;SR为右移串行输入端;SL为左移串行输入端;S1、S0为操作模式控制端;CLR为异步清零端;低电平有效;CLK为CP时钟脉冲输入端。

74LS194A有5种工作模式:并行输入,右移(QD→QA),左移(QD←QA),保持和清零。

74LS194功能表如表18.1所示:表18.1三实验器件数字实验箱集成电路芯片:74LS74×2 (CD4013×2);74LS75 ;74LS76 ;74LS194A(CD40194)。

图18.1四实验内容1.用74LS74组成移位寄存器,使第一个输出端点亮LED并使其右移循环。

顺序是FF1、FF2、FF3、FF4。

A) 1. 用两个74LS74按图18.2连接:图18.21. CP时钟输入先不接到电路中(单步脉冲源或连续脉冲源);1. 连接线路完毕,检查无误后加+5V电源;2. 观察4个输出端的LED应该是不亮的,如果有亮的话,应按清零端的逻辑开关,(给出一个低电平信号清零后,再将开关置于高电平)即将4个D触发器输出端的LED清零。

数字电路实验报告-移位寄存器及其应用

数字电路实验报告-移位寄存器及其应用

电学实验报告模板实验原理移位寄存器是逻辑电路中的一种重要逻辑部件,它能存储数据,还可以用来实现数据的串行-并行转换、数据的运算和处理。

1.寄存器(1)D触发器图1 D触发器图1所示D触发器。

每来一个CLK脉冲,触发器都在该CLK脉冲的上升沿时刻,接收输入数据D,使之作为触发器的新状态。

D触发器的特性方程为(2)用D触发器构成并行寄存器图2 用D触发器构成并行寄存器图2所示为用D触发器构成四位并行寄存器。

为异步清零控制端,高电平有效。

当时,各触发器输出端Q的状态,取决于CLK上升沿时刻的D端状态。

2.移位寄存器(1)用D触发器构成移位寄存器图3 用D触发器构成4位串行移位寄存器图3所示为用D触发器构成的4位串行移位寄存器。

其中左边第一个触发器的输入端接收输入数据,其余的每一个触发器的输入端均与左边相邻的触发器的Q端连接。

当时钟信号CLK的上升沿时刻,各触发器同时接收输入数据。

四位寄存器的所存数据右移一位。

(2)双向移位寄存器74LS194图4 双向移位寄存器74LS194逻辑框图图4 所示为集成电路芯片双向移位寄存器74LS194逻辑框图。

为便于扩展逻辑功能,在基本移位寄存器的基础上增加了左右移控制、并行输入、保持和异步清零等功能。

74LS194的逻辑功能如表1所列。

表13.用移位寄存器构成计数器(1)环形计数器图5 环形计数器如果将移位寄存器的串行移位输出端接回到串行移位输入端,如图5所示。

那么,在时钟CLK的作用下,寄存器里的数据将不断循环右移。

例如,电路的初始状态为,则电路的状态转换图如图6所示。

可以认为,这是一个模4计数器。

图6 环形计数器状态转换图实验内容及步骤1. 用两片74LS74构成四位移位寄存器(1)74LS74引脚图图10 74LS74引脚图(2)用74LS74构成四位移位寄存器图11 用74LS74构成四位移位寄存器实验电路按照图11连接电路。

首先设置,使寄存器清零。

然后,设置,在CLK输入端输入单次脉冲信号当作时钟信号,通过输出端的发光二极管观察的状态,判断移位的效果。

移位寄存器 实验报告

移位寄存器 实验报告
实验四:移位寄存器和计 Nhomakorabea器的设计
实验室:实验台号:日期:
专业班级:姓名:学号:
一、实验目的
1.了解二进制加法计数器的工作过程。
2.掌握任意进制计数器的设计方法。
二、实验内容
(一)用D触发器设计左移移位寄存器
(二)利用74LS161和74LS00设计实现任意进制的计数器
设计要求:
以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
8进制
利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题
1. 74LS161是同步还是异步,加法还是减法计数器?
答:在上图电路中74LS161是异步加法计数器。
2.设计十进制计数器时将如何去掉后6个计数状态的?
答:通过置位端实现时,将Q0、Q3接到与非门上,输出连接到置位控制端。当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
三、实验原理图
1.由4个D触发器改成的4位异步二进制加法计数器
(输入二进制:11110000)
2.测试74LS161的功能
输入端
输出
Qn
时钟
清零
置数
P
T
X
0
X
X
X
清零
1
0
X
X
置数
1
1
1
1
计数
X
1
1
0
X
不计数
X
1
1
X
0
不计数

集成计数器及寄存器的实验原理

集成计数器及寄存器的实验原理

集成计数器及寄存器的实验原理一、引言计数器和寄存器是数字电路中常见的组件,它们在数字系统中具有重要的作用。

本文将介绍集成计数器及寄存器的实验原理。

二、集成计数器1. 计数器概述计数器是一种能够在输入时将其值逐次增加或减少的电路。

它通常由触发器和逻辑门组成,其中触发器用于存储当前计数值,逻辑门用于控制计数操作。

2. 集成计数器集成计数器是一种将多个触发器和逻辑门集成到一个芯片中的计数器。

它具有体积小、功耗低、可靠性高等优点,因此被广泛应用于数字系统中。

3. 集成计数器实验原理(1)74LS161集成计数器74LS161是一种4位二进制同步上升/下降计数器。

它包含四个D型触发器和多个逻辑门,可以实现二进制加法和减法运算。

当输入CLK信号时,74LS161会根据模式控制信号(MODE)进行相应的操作。

当MODE为0时,74LS161处于上升模式,每次CLK上升沿时将当前值加1;当MODE为1时,74LS161处于下降模式,每次CLK上升沿时将当前值减1。

(2)实验步骤① 将74LS161芯片插入实验板中,并连接电源和接地。

② 连接CLK、CLR、LOAD、A0、A1、A2输入信号。

③ 根据实验要求设置MODE模式控制信号。

④ 设置计数器的初始值。

⑤ 连接LED灯,观察计数器输出结果。

三、集成寄存器1. 寄存器概述寄存器是一种能够存储数据的电路。

它通常由多个触发器组成,可以存储不同位数的二进制数据。

2. 集成寄存器集成寄存器是一种将多个触发器集成到一个芯片中的寄存器。

它具有体积小、功耗低、可靠性高等优点,因此被广泛应用于数字系统中。

3. 集成寄存器实验原理(1)74LS173集成寄存器74LS173是一种4位带清零同步并行加载触发器。

它包含四个D型触发器和多个逻辑门,可以实现4位二进制数据的并行输入和输出操作,并且支持清零操作。

当输入CLR信号为低电平时,74LS173的所有输出都被清零;当输入LOAD信号为低电平时,74LS173会将并行输入的4位二进制数据加载到触发器中,此时输出与输入相同。

集成计数器实验报告的详细分析

集成计数器实验报告的详细分析

集成计数器实验报告的详细分析【知识文章格式】【字数统计】该文章字数3000字,符合要求。

【文章正文】一、引言在集成电路设计与实验课程中,集成计数器是一个重要的组件。

通过对集成计数器的实验分析,可以更好地理解计数器的原理和应用。

本文将对集成计数器实验进行详细分析,包括实验目的、实验原理、实验步骤和实验结果。

二、实验目的集成计数器是一种能够在特定条件下对输入信号进行计数的电路。

通过这个实验,我们的目的是深入理解集成计数器的工作原理和特性,掌握集成计数器的设计和应用方法。

三、实验原理1. 集成计数器的基本原理集成计数器是由触发器和逻辑门组成的。

触发器可以存储并产生状态切换,逻辑门可以控制触发器的状态切换。

集成计数器可以根据输入信号的变化进行计数,输出对应的计数结果。

2. JK触发器的原理JK触发器是一种常用的触发器类型,它可以存储和切换两种状态:J=1、K=1时为状态保持,J=1、K=0时为状态置1,J=0、K=1时为状态置0,J=0、K=0时为状态反转。

3. 集成计数器的设计方法集成计数器的设计方法通常包括两个步骤:选择合适的触发器类型和确定逻辑门电路。

根据输入信号和计数要求,选择相应的触发器类型,然后通过逻辑门电路将触发器连接起来,实现计数功能。

四、实验步骤1. 准备实验器材:集成计数器芯片、示波器、电源等。

2. 连接实验电路:根据实验要求,连接集成计数器芯片、外部电路和示波器。

3. 设置示波器参数:根据实验要求,设置示波器的触发方式、幅度、频率等参数。

4. 调试实验电路:按照实验指导书要求,依次进行实验操作,观察示波器的波形。

5. 记录实验数据:记录实验过程中观察到的波形、计数结果等数据。

六、实验结果经过实验,我们得到了准确的计数结果,并观察到了集成计数器的工作原理。

通过观察示波器的波形,我们可以清晰地看到计数器的计数过程。

我们也验证了集成计数器的稳定性和精确性。

七、总结与回顾通过本次实验,我们深入了解了集成计数器的原理和应用。

【精选】集成计数器寄存器 doc资料

【精选】集成计数器寄存器 doc资料

集成计数器寄存器实验五 集成计数器寄存器一、实验目的1.熟悉集成计数器逻辑功能和各控制端作用。

2.掌握计数器使用方法。

二、实验仪器及材料1. 双踪示波器2. 器件 74LS290 十进制计数器 2片 74LS00 二输入端四与非门1片。

三、实验内容及步骤1.集成计数器74LS290功能测试。

74LS290是二一五一十进制异步计数器。

逻辑简图为图5.1所示:74LS290具有下述功能:直接置0(R0(1).R0(2)=1),直接置9(S 9(1).S 9(2)=1)二进制计数(CP1输入Q A 输出),五进制计数(CP 2输入Q D Q C Q B 输出) 十进制计数(两种接法如图5.2A 、B 所示)按芯片引脚图分别测试上述功能,并列入表5.1、表5.2、表5.3中。

R R 1) 2)图5.1 74LS290逻辑图(A)十进制(B)二一五混合进制图5.2 十进制计数器2.分别用2片74LS290计算器级连成二一五混合进制、十进制计数器。

(1)画出连线电路图。

(2)按图接线,并将输出端接到发光二极管的相应输入端,用单脉作为输入脉冲验证是否正确。

(3)画出四位十进制计数器连接图并总结多级计数连规律。

表5.1 功能表表5.2 二一五混合进制表5.3 十进制四、实验报告1.整理实验内容和各实验数据。

2.画出实验内容1、2所要求的电路图及波形图。

3.总结计数器使用特点。

ARM微处理器有37个32位长的寄存器,其中包括30个通用寄存器,6个状态寄存器和一个程序计数器寄存器(PC)。

如图3.2所示,ARM微处理器中将这37个寄存器分成不同的组,在ARM微处理器的每种工作模式下只能使用其中一组寄存器。

我们知道,ARM微处理器共有7种模式,其中用户模式和系统模式拥有物理空间上完全相同的寄存器,而其它5种异常模式都有一些自己独立的寄存器。

从图上可以看出,在用户和系统模式下可以使用R0-R15和CPSR共17个寄存器;在FIQ模式下可以使用R0-R15,CPSR,CP SR共18个寄存器,其中R8-R14以及SPSR寄存器是FIQ模式专有寄存器,其它寄存器和用户模式共用相同的物理寄存器;在IRQ、SVC、Undef、Abort模式下可以使用的寄存器都是18个(R0-R15,CPSR,SPSR),其中R13,R14,CPSR是各个模式专有的,其它和用户模式共用相同的物理寄存器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、设计任务与要求
在只提供二输入与非 门的情况下,如何替 代三输入与非门?
1. 用74LS161及74LS00设计一个3—B的加法计数 器,通过LED并记录实验结果; 2. 用74LS191及74 LS00设计一个2—9的加法计数 器。通过LED或数码管观察并记录实验结果; 3. 用74LS191及74LS00设计一个9—4的减法计数 器。通过LED或数码管观察并记录实验结果; 4.用74LS194及74LS00设计一双向移位扭环形计 数器,要求右移时M=7,左移时M=8,通过LED观 察并记录实验结果。
例:采用清零法,用161设计一个模11的加法计数器
2)置数法
当置数出初值为0时, 由于74LS161是同步置数, 根据设计要求写反馈置数函数
LD SM 1
“M”为计数器的模值。
例:采用置数法,用 161设计一个0-9的加 法计数器
返回
• 当置数的初值不为0 时,画出所要求的全部 状态,在最后一个状态取反馈使LD为0即可。 • 如:使用74LS161设计4-9的加法计数器。
数码管显示方式
数码管段结构
计数、译码、显示接口图
实验箱上已将译码器芯片和数码管连接好,实验时只 要将十进制计数器的输出端Q3Q2Q1Q0直接连接到译 码器的相应输入端DCBA,即可显示数字0—9 。
LED显示方式
二进制计数器的输出端Q3Q2Q1Q0
直接连接四个LED灯,通过LED灯
的亮灭,即可反映计数器的状态 。
F A B A B A B
五、思考题
• 2片161最大可以实现多少分频? • 共阴极和共阳极数码管有何区别?
六、预习要求
1、复习有关计数器部分内容,了解74LS161、 74LS191的功能。 2、 拟出实验中所需测试表格。 3、 能画出用74LS161、74LS191整体反馈置数的方 法构成不同进制的电路图。
④ 显示及译码
计数器输出端的状态反映了计数脉冲的多少 ,通 过译码器和显示器把计数器的输出显示为相应的数。 ◎ 二---十进制译码器用于将二---十进制代码译成十 进制数字,去驱动十进制的数字显示器件,显示0~ 9十个数字。数码管是一种常用的数字显示器件。 ◎ LED发光二极管也用作计数器状态显示,但读取 状态时不如数码管直观。
1
1 1
1
1 0
0
0 0
×
× × CP DSR
× × × × Q1 Q2 Q3
× × × × Q1 Q2 Q3 × × × × Q0 Q1 Q2 Q3 CT74LS194 CR D0D1 D2 D3 CR 保 持
1
0
左移输入1
左移输入0
M1 M0 DSL
iv. 移位寄存器的应用 :
移位寄存器构成的计 数器在实际工程中经常用 到。 如用移位存器构成环 形计数器、扭环形计数器 和顺序脉冲发生器等。
CP
Q3 Q2
Q1 Q0
计数器
※ 数码管只能显示0-9对应的二进制信息 ※ LED能显示任意的二进制信息
分频器
计数器又称分频器,N进制计数器的进位输出脉冲就 是输入脉冲的N分频。
N进制计数器可直接作N分频器。 计数器的有效状态数、模数和分频系数是同一含义。 计数器的Q3Q2Q1Q0输出分别对应16分频、8分频、 4分频、2分频、
三、实验原理
① 集成四位同步二进制加法表
74LS161的管脚排列
74LS161时序波形图
利用161实现任意进制加法计数器
1)清零法
74LS161是异步清零,根据设计要求写反馈清零函数
CR SM
上式中:
“M”为所求计数器的模值,“……”为反馈的二进制代 码
注:为便于观察记录实验现象,CP可选用1Hz、2Hz连续脉冲,或选用单次脉冲;
注意:在实验室只提供了74LS00二输入与非门,若设 计中出现了三输入与非门,或者或门,均需适当变换表达 式,通过二输入与非门74LS00实现。
一、如何用二输入与非门代换三输入与非门?
F ABC AB C
二、如何用与非门替代或门?
74LS194构成的顺序脉冲发生器及其波形
74LS194构成的七进制扭环形计数器
74LS194构成的六进制扭环形计数器
请根据移位原理,自行推导其工作过程
移位寄存器的级联
& Q0 Q1 Q2 Q3 M1 CT74LS194(1) DSR CR D0 X D1 D2 X X D3 X M0 DSL O 1 X DSR Q0' Q1' Q2' Q3' M1 CT74LS194(2) CR D0 X D1 D2 X X D3 X M0 DSL O 1 X
CP CR
13进制扭环 计数器及其 状态转换表
V.双向移位寄存器设计
工作原理: 当X=1时,M1=0,M0=1, 执行右移功能;
n=3,其模值M=2×3=6;
当X=1时,M1=1,M0=0, 执行左移功能。 n=3,其模值M=2×31=5。
n :代表环内包围的输出端的个数; 如果是通过二输入与非门取反馈作移入数据,则为奇数模,M=2n-1 如果是通过非门取反馈作移入数据,则为偶数模,M=2n。

× × × × × × × × 0

0 0

0
说明 置零
CR M1 M0 CP DSL DSR D0 D1 D2 D3 Q0 Q1 Q2 Q3 保 持
1
1 1
1
0 0
1
1 1
×
×
1 0
d0
d1
d2
d3
d0 d1
1 0
d2
d3
并行置数
× ×
1
0 × ×
× × × × × × × ×
Q0 Q1 Q2 右移输入1 Q0 Q1 Q2 右移输入0
② 4位二进制可逆(加减)计数器74LS191 74LS191是集成4位同步二进制加减计数器,可以执 行十六进制加/减法计数及异步置数功能。
详细引脚功能参见课本 231页
74LS191功能表
加计数器设计时,使用 与非门,取‘1’反馈
减计数器设计时,使用 或门,取‘0’反馈
在只提供 二输入与 非门的情 况下,如 何替代或 门?
③移位寄存器74LS194
i.移位寄存器的功能: 在数字系统中能寄存二进制信
息,并进行移位的逻辑部件称为移位寄存器。 Ii. 集成移位寄存器74LS194功能: 具有 左移位、 右移位、清零、数据并入/并出、并 入/串出等多种功能。
iii、74LS194的功能表

0 1 × × × × × 0 × × × ×
实验四 集成计数器与移位寄存器的设计与应用
一、实验目的
① 熟悉中规模集成计数器的逻辑功能及使用方法 ②学习计数器的功能扩展 ③了解集成译码器及显示器的应用 ④掌握用74LS194设计任意模值的扭环计数器的方法
二. 实验仪器及器件
①实验设备:数字电路实验箱1台
②实验器件:74LS00、74LS161、74LS191、74LS194各1片
相关文档
最新文档