固体物理总结能带理论完全版

合集下载

量子力学第六章固体的能带理论优秀文档

量子力学第六章固体的能带理论优秀文档

2 3
N
Vc
➢ 在第一布里渊区内,波矢k的数目为
/N
N
➢ 在倒空间内波矢k的密度为
N
Vc
2 3
在二维情况下,波矢k的密度为
S c /2 2
在一维情况下,波矢k的密度为
Lc /2
其中,Vc、Sc、Lc分别为晶体的体积、面积、长度。 4、由于在第一布里渊区内k的数目为N,因此在每个能带内有N个
由于右边第二项一般不为零,因而k (x)不是动量算符-iħd/dx 的本征态,ħk不是动量算符的本征值。
➢ ħk在晶体中发生的许多过程中起电子动量作用,常被称为电子 的晶体动量(或准动量)。
五、周期性边界条件与波矢k的取值 1、周期性边界条件 晶格的周期性边界条件用于布洛赫波得
n ,k r n ,k r N ia i i 1 ,2 ,3
二、布洛赫定理 1、布洛赫定理
在周期性势场中,薛定谔方程的解(电子波函数)
krUkreikr
其中 Uk(r)UK(rRn)
2、布洛赫波 ➢ 具有 k (r) = Uk (r) eik·r形式的波函数称为布洛赫波。 ➢ 布洛赫定理表明,布洛赫波是自由电子的平面波eik·r被晶格周期
函数Uk(r) 调幅的平面波。
2=l2/N2
其中倒格矢Kh=h1b1+h2b2+h3b3
3=l3/N3
Ψn,K(r)=Ψn,K+Kh(r) 其中倒格矢Kh=h1b1+h2b2+h3b3 用软x射线发射谱可以研究态密度的特征 K空间的每一点对应于能带内的一个能量E,而一个给定的能量E对应着波矢空间的一系列k点,这些k点在波矢空间形成的曲面称为等 能面。
三、克龙尼克-潘纳模型 1、模型 ➢ 克龙尼克-潘纳模型是周期性势场为一维方势阱的特例。

固体物理chapter 5 固体能带论

固体物理chapter 5  固体能带论

VheiGhx VheiGh xa
h
h
倒格矢Gh
2
a
h
, eiGha 1
i 2 hx
V x V0 Vhe a
h0
其中
a
Vh
1 a
2
V
-a
x
i 2 hx
e a dx
2
a
V0
1 a
2
V
-a
x
dx
0
2
V x傅立展式 V x
i 2 hx
Vhe a
h0
2、处于周期性势场中的电子
波函数为
选择原点,
1
1 e ikx L
1 e ikx L
1
i h x
ea
L
1
i h x
e a
L
2
1 e ikx L
1 e ikx i L
2 sin h x
La
2 cos h x
La
三、近自由电子能量的讨论
E
自由电子 E ~ K 关系
E 2 k 2
2m
近自由电子 E ~ K 关系讨论
2 aa
a
(小量 变量)
a
aa
a
k h h h 1
aa
a
令Th
2 2m
h
a
2
Ek0
2 2m
h
a
1
2
Th 1
2
Ek0
2 2m
h
a
1
2
Th 1
2
代入(2)式得
[ ] [ ] E (k)
1 2
E
0
k
Ek0
1 2

固体物理 第五章能带论

固体物理 第五章能带论

该微分方程的解可写为:
( x)=Aexp[
ix 2mE ix 2mE ] B exp[ ]
固体物理第五章
(2)在一维无限深势阱中运动的电子
自由电子的波函数:
( x) A exp(ikx)
能量等于动能:
E h
动量: p k 统一粒子性和波动性 k值确定电子的运动状态, 自由电子的能量是连续 的能谱。
x

E hv or h P k
E h / 2 total energy of particle
固体物理第五章

2波函数与电子之间的关系是什么? 总的波函数是与位置相关或与时间无关的函数与时 间相关的函数之积:
( x, t ) ( x) (t ) ( x)e i ( E / )t



( x) *( x)dx 1
其中,n=1,2,3
这个解表示无限深势阱中的电子,为驻波解。 其中常数 K 必须具有分立值,表明粒子的总能 量只能具有分值,这一结果意味着粒子的总 能量是量子化的。 局域的自由粒子由波包确定,由具有不同动量 的波函数叠加而成。 固体物理第五章
固体物理第五章
1)电子的波函数 电子受力场作用,电子的能量: E Ek U ( x ) (Ek为电子的动能, U(x) 为力场的势能) 薛定谔方程:
E
k 2m
2
2
2 ( x) 2mE 2 ( x) 0 x 2
这个方程的一个特解为:
( x) A1 cos Kx A2 sin Kx
与时间相关的解的部分: (t ) e i ( E / )t 波函数总的解为:
( x)=Aexp[ ( x 2mE Et ] B exp[

固体物理_第4章_能带理论

固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。

固体物理-能带理论

固体物理-能带理论

三维晶体中单个电子在周期性势场中的运动问题处理
电子波函数的计算
—— 根据能量本征值确定电子波函数展开式中的系数 得到具体的波函数
—— 在不同的能带计算模型和方法中 采取的理论框架相同,只是选取不同的函数集合
能带理论的局限性
一些过渡金属化合物晶体
—— 价电子的迁移率小 自由程与晶格常数相当__电子不为原子所共有 周期场失去意义__能带理论不适用了
第四章 能带理论
能带理论 —— 研究固体中电子运动的主要理论基础 —— 定性阐明了晶体中电子运动的普遍性的特点
—— 说明了导体、非导体的区别 —— 晶体中电子的平均自由程为什么远大于原子的间距 —— 半导体理论问题的基础,推动了半导体技术的发展
能带理论 —— 单电子近似的理论
每个电子的运动 —— 看成是独立的 在一个等效势场中的运动
TT T T
平移算符和哈密顿量对易 对于任意函数

微分结果一样
T H HT
T和H存在对易关系 —— 具有共同本征函数
H E T1 1 T2 2 T3 3
—— 平移算符的本征值
—— 周期性边界条件
对于 对于 对于
—— 整数
2 i l1
1 e N1
2 i l2
2 e N2
2 i l3
—— 本征值相同
为了使简约波矢 的取值和平移算符的本征值一一对应
—— 取值限制第一布里渊区
bj 2
kj
bj 2
简约波矢
k
l1 N1
b1
l2 N2
b2
l3 N3
b3
第一布里渊区体积
简约波矢
k
l1 N1
b1
l2 N2
b2

固体物理学:第四章总结

固体物理学:第四章总结
2
(r
ki
Rn)
bi 2
eik
,(i
Rn
(r ),
1,2 ,3 )
(r ) (r )
k
kKh
在此范围内k共有N个值(N为晶体原胞数) 。
近自由电子近似
1.模型: 假定周期场起伏较小,而电子的平均动能比其势
能的绝对值大得多。作为零级近似,用势能的平均值V0代替
V(x),把周期性起伏V(x)-V0作为微扰来处理。
Rs
5.能带宽度: E Emax Emin
费米面的构造法
1.画出布里渊区的广延区图形;
2.画出自由电子费米面(费米面的广延区图);
N
kF
Z(k )dk
0
kF 0
2N A
2πkdk
πk
2 F
2N A
kF
A
1
2

3.将落在各个布里渊区的费米球片断平移适当的倒格矢进
入简约布里渊区中等价部位;
3.结论:
发生能量不连续的波矢 k 满足的条件可改写为:
Kn
(k
Kn 2
)
0
k'
k
Kn
0
Kn
对于三维的情况,沿各个方向在布里渊区边界E(k)函数是 间断的,但不同方向断开时的能量取值不同,因而有可能使能 带发生重叠。
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V
(r
Rm
)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
V r V (r Rm )
'V
(r
Rn
)

第五章 固体的能带理论

第五章 固体的能带理论

第五章固体的能带理论1.布洛赫电子论作了哪些基本近似?它与金属自由电子论相比有哪些改进?解:布洛赫电子论作了3条基本假设,即①绝热近似,认为离子实固定在其瞬时位置上,可把电子的运动与离子实的运动分开来处理;②单电子近似,认为一个电子在离子实和其它电子所形成的势场中运动;③周期场近似,假设所有电子及离子实产生的场都具有晶格周期性。

布洛赫电子论相比于金属自由电子论,考虑了电子和离子实之间的相互作用,也考虑了电子与电子的相互作用。

2.周期场对能带形成是必要条件吗?解:周期场对能带的形成是必要条件,这是由于在周期场中运动的电子的波函数是一个周期性调幅的平面波,即是一个布洛赫波。

由此使能量本征值也称为波矢的周期函数,从而形成了一系列的能带。

3.一个能带有N个准连续能级的物理原因是什么?解:这是由于晶体中含有的总原胞数N通常都是很大的,所以k的取值是十分密集的,相应的能级也同样十分密集,因而便形成了准连续的能级。

4.禁带形成的原因如何?您能否用一物理图像来描述?解:对于在倒格矢K中垂面及其附近的波矢k,即布里渊区界面附近的波矢k,由于h采用简并微扰计算,致使能级间产生排斥作用,从而使)E函数在布里渊区界面处“断开”,(k即发生突变,从而产生了禁带。

5.近自由电子模型与紧束缚模型各有何特点?它们有相同之处?解:所谓近自由电子模型就是认为电子接近于自由电子状态的情况,而紧束缚模型则认为电子在一个原子附近时,将主要受到该原子场的作用,把其它原子场的作用看成微扰作用。

这两种模型的相同之处是:选取一个适当的具有正交性和完备性的布洛赫波形式的函数集,然后将电子的波函数在所选取的函数集中展开,其展开式中有一组特定的展开系数,将展开后的电子的波函数代入薛定谔方程,利用函数集中各基函数间的正交性,可以得到一组各展开系数满足的久期方程。

这个久期方程组是一组齐次方程组,由齐次方程组有解条件可求出电子能量的本征值,由此便揭示出了系统中电子的能带结构。

固体物理-第四章 能带理论

固体物理-第四章 能带理论

V* , v, V分别是倒易原胞,晶格原胞和整个晶体的 体积, N = N1N2N3是原胞总数。
k-空间中单位体积中的状态密度为V/(2p)3 .每个 布里渊区k的数目为: V*/(V*/N)=N
4.1.基本概念
4.1.4.定态微扰简述 处于定态的粒子体系,受到一个微小的恒定的扰动后体 系的状态和能量等发生微小的变化。对于简并和非简并 情况处理方法不同。 1.非简并微扰 体系的哈密顿算符为 Ĥ=Ĥ0+ĥ (4.1.4.1) Ĥ0的本征值和本征函数是已知的或者可以精确求解的且 不存在简并。Ĥ0的本征方程为: Ĥ0y n (0) = En (0)y n (0) (4.1.4.2) n能级序号,ĥ 微扰项。为便于比较,令ĥ=lĤ’ , l<<1, Ĥ’ 的作用相当于Ĥ0,但Ĥ’不等于Ĥ0。。于是 Ĥ=Ĥ0+ lĤ’
第四章 能带理论

4.1.基本概念 4.2.近自由电子近似 4.3.紧束缚近似 4.4.晶体中电子的速度、准动量及有效质量 4.5.固体导电性能的能带理论解释 4.6.晶体中电子的态密度 4.7.能带理论的局限性
4.1.基本概念
4.1.1.能带理论的基本假定 晶体由离子实(原子核+内层电子)和外层的价电子组成。 价电子的哈密顿量应该考虑:价电子的动能,离子实的动 能,价电子之间,离子实之间,价电子与离子实之间的相 互作用势能。 为了简化用单个电子在静止的周期势场中的运动,来描述 晶体中所有等同电子的状态. 在上述假定下,晶体中价电子的哈密顿算符 Ĥ=-ħ22/2m +V(r) ( 4.1.1.1) 其中, V(r+Rn)=V(r), 它包含代替价电子相互作用的平均势 与离子实的周期势。 格矢,Rn=n1a1+ n2a2 + n3a3, n1, n2, n3为整数, a1,a2 ,a3 为晶胞 的单位矢量. r ,电子的位矢.

固体物理6-2 能带理论

固体物理6-2 能带理论

波矢群中的对称操作 4z,mx,my,σ1,σ2 2z, mx,my 4z,mx,my,σ1,σ2 my
σ2
mx
简单立方晶格Oh (m3m)点群:
特殊位置 Γ点 R S ΔT X Γ Z Σ M Λ X点 M点 R点 Δ轴 Z轴 Σ轴 S轴 T轴 Λ轴 k (0, 0, 0) (π/a, 0, 0) (π/a, π/a, 0) (π/a, π/a, π/a) (k, 0, 0) (π/a, k, 0) (k, k, 0) (π/a, k, k) (π/a, π/a, k) (k, k, k) β群 Oh (m3m) D4h (4/mmm) D4h (4/mmm) Oh (m3m) C4V (4mm) C2V (mm2) C2V (mm2) C2V (mm2) C4V (4mm) C3V (3m)
T (α )ψ n ,k ( r ) = T (α ) eikr un ,k ( r )
=e
ik α 1r
un ,k (α 1r )
′ = eiα kr un ,α k ( r ) = ψ n ,α k ( r )
un ,k (α 1r ) 仍以格矢Rl为周期, 由于
可以改写为 由于α是正交变换,
∴ k α 1r = α k r
V = 2 3 8π
∫∫
等能面
dSdk⊥
dE = k E dk⊥
dZ V ∴N (E) = = 3 dE 4π
2. 近自由电子的能态密度 对于自由电子:
∫∫
dS k E
h2k 2 E (0) ( k ) = 2m
的球面
2mE 能量为E的等能面是半径为 k = h2
在球面上
dE h 2 k E = = k dk m

固体物理总结能带理论完全版

固体物理总结能带理论完全版

固体物理总结能带理论完全版目录一、本章难易及掌握要求 (1)二、基本内容 (1)1、三种近似 (1)2、周期场中的布洛赫定理 (2)1)定理的两种描述 (2)2)证明过程: (2)3) 波矢k的取值及其物理意义 (3)3、近自由电子近似 (3)A、非简并情况下 (4)B、简并情况下 (5)C、能带的性质 (6)4、紧束缚近似 (6)5、赝势 (9)6、三种方法的比较 (10)7、布里渊区与能带 (11)8、能态密度及费米面 (11)三、常见习题 (14)简答题部分 (14)计算题部分 (15)一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设与出发点;2)布洛赫定理的描述及证明;3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念与能带的意义及应用;6)会计算能态密度及明白费米面的概念。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。

了解内容:1)能带的成因及对称性;2)费米面的构造;3)赝势方法;4)旺尼尔函数概念;5)波函数的对称性。

二、基本内容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,瞧作就是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)周期场近似:假定所有离子产生的势场与其它电子的平均势场就是周期势场,其周期为晶格所具有的周期。

单电子在周期性场中。

2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()nik R n r R e r ψψ⋅+=r u u r r v u u v ,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik rr e u r ψ⋅=r r r r ,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k ϖ调制的平面波表示、其中()()n u r u r R =+r v u u v ,nR ρ取布拉 菲格子的所有格矢成立。

固体物理(第14课)能带理论

固体物理(第14课)能带理论
i k Rn
根据布洛定理,有 k ( r Rn ) e e e 因而有:
k (r)
e uk ( r ) uk ( r )
i k Rn i k r i k ( Rn r )
uk ( r Rn ) uk ( r )
i k r
上式表明,在周期场中 运动的单电子,其能量 本征函数
l1、l2、l3 Z
为了确定本征值,引入玻恩-卡门边界条件
( r ) ( r N1a1 ), ( r ) ( r N 2a2 ), ( r ) ( r N 3a3 ),
N1
N N1 N 2 N 3
( r N1a1 ) T1 ( r ) 1 ( r ),
(r) u(r) eikr
比较
势场为0
正离子
周期势场 正离子
电子波函数
周期性势场
势场中电子的波函数
6.1.1 布洛赫定理的证明
平移对称性
晶体势场的周期性是晶格平移对称性的反映,即晶格 在平移对称操作下是不变的。 T(Rn)平移算符表示使r到r+Rn的平移操作相当的算符。 其意义是使T(Rn)作用在任意函数f(r)上产生新的函数 f(Rn+r)。 T(Rn) f(r)= f(Rn+r) 晶体中的平移算符共有N1×N2×N3种 平移算符彼此对易,即:
k ( r N1a1 N 2a2 N 3a3 ) eik( N a N a N a ) k ( r ) 因此有:N1a1 N 2a2 N 3a3 2 n
1 1 2 2 3 3
l1 l2 l3 而此仅当 k b1 b2 b3 N1 N2 N3 时才能满足。

固体物理总结能带理论完全版

固体物理总结能带理论完全版


J (Rs )eikRs
s
Rs Rn Rm
利用归一化条件则得:晶体中电子的波函数
k
(r )
1 N
eik Rm
i
(r
Rm
)
m
考虑用简约波失表示有
k
(r )
1 N
eikr [
m
e ik (r Rm
)i
(r
Rm
)],由此可得
对于确定
k

E(k )
i
J (Rs
)e ik Rs
一、本章难易及掌握要求 要求重点掌握:
1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)一维近自由电子近似的模型、求解及波函数讨论,明白
三维近自由电子近似的思想; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度及明白费米面的概念。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的
场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。
2、周期场中的布洛赫定理
1)定理的两种描述
当晶体势场具有晶格周期性时,电子波动方程的解具有以下性
质:
形式一: (r Rn) eik Rn (r) ,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差
形式二: (r) eikru(r) ,亦称布洛赫函数,反映了周期场的波函数可
对于外层电子,能级和能带的对应关系较为复杂。
5)瓦尼尔函数
紧束缚近似中,能带中电子波函数可以写成布洛赫和
i k
(k ,
r)
化。同时也可以得出如果一个势场是周期场,那么可以把其波函数设

第7章_固体能带理论-总结

第7章_固体能带理论-总结
对入射波的传播无什么影响,与x-ray在晶体中的传播
是相同的。
π 但当 k n 时,如k a

, a
此时平面波
e
ikx
满足Bragg条件,波程差为2a,相位差为2π,从相邻的
原子反射的波有相同的位相,发生相长干涉,产生向反
方向传播的波 Bragg反射,再一次反向,这样就形成了向相反方向传 播的两列行进波,平衡时两波叠加形成驻波。
ik r
晶体中的电子既有共有化运动也有原子内运动,因
此,电子的能量取值就表现为由能量的允带和禁带 相间组成的能带结构。
需要指出的是,在固体物理中,能带论是从周期性 势场中推导出来的。但是,周期性势场并不是电子具有
能带结构的必要条件,在非晶固体中,电子同样有能带
结构。 电子能带的形成是由于当原子与原子结合成固体时, 原子之间存在相互作用的结果,而并不取决于原子聚集 在一起是晶态还是非晶态,即原子的排列是否具有平移 对称性并不是形成能带的必要条件。
G
2k 2 k 2m
因此用一组代数方程取代了原来的微分方程。该方程组的方程数目巨大,看 起来难以求解,但实际上常常只要解少数几个就足够了
能隙的起因
能隙的起因 对于一维点阵(点阵常数为a),电子的波函数 e
ikx
π 若k远离Bz边界时(即 k a n 时 ),电子波不受
Bragg反射,从各原子散射的波没有确定的位相关系,
bi bi ki , ( i 1, 2, 3) 2 2
k ( r ) k K ( r )
h
在此范围内k共有N个值(N为晶体原胞数) 。
由Bloch定理可得两个重要结论: 〈1〉Bloch定理表明周期势场中电子的本征函数有Bloch函数

固体物理总结能带理论、固体物理知识点总结

固体物理总结能带理论、固体物理知识点总结

一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。

原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。

每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。

晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。

WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。

4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。

六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。

固体物理6-1 能带理论

固体物理6-1 能带理论

h2 d 2 H0 = − + U0 2 2m dx
⎛ 2π nx ⎞ H ′ = ∑U n exp ⎜ i ⎟ a ⎠ ⎝ n ≠0
—— 零级近似 —— 微扰项
分别对电子能量E(k)和波函数ψ(k)展开
E ( k ) = Ek(0) + Ek(1) + Ek(2) + ⋅⋅⋅
ψ k = ψ k(0) + ψ k(1) + ψ k(2) + ⋅⋅⋅
将以上各展开式代入Schrödinger方程中,得
H 0ψ k(0) = Ek(0)ψ k(0) H 0ψ k(1) + H ′ψ k(0) = Ek(0)ψ k(1) + Ek(1)ψ k(0)
H 0ψ k(2) + H ′ψ k(1) = Ek(0)ψ k(2) + Ek(1)ψ k(1) + Ek(2)ψ k(0)
一级微扰方程: H 0ψ k(1) + H ′ψ k(0) = Ek(0)ψ k(1) + Ek(1)ψ k(0) 令:
ψ k(1) = ∑ al(1)ψ l(0)
l
l
(1) al El(0)ψ l(0) + H ′ψ k(0) = Ek(0) ∑ al(1)ψ l(0) + Ek(1)ψ k(0) ∑
周期性势场: U ( x ) = U ( x + a )
a:晶格常数
⎛ 2π nx ⎞ Fourier展开: U ( x ) = U 0 + ∑U n exp ⎜ i ⎟ ⎝ a ⎠ n ≠0
1 L U 0 = ∫ U ( x ) dx —— 势能平均值 L 0 1 L ⎛ 2π nx ⎞ U n = ∫ U ( x ) exp ⎜ −i ⎟dx L 0 a ⎠ ⎝

固体结构及能带理论总结

固体结构及能带理论总结
a a a
c
c a a
120o
a
a
立方
三方
六方
四方
c
c
a
a
c b

a b
b
a
正交
单斜
三斜
这7个晶系分为3个晶族,即高级晶族,指立 方晶系;中级晶系,包括六方、四方和三方 3 个 晶系;低级晶系,包括正交、单斜和三斜 3 个晶 系。 立方晶系有立方简单点阵P (立方P ) 、立方 体心点阵I (立方I ) 、立方面心点阵F (立方F );四 方晶系只有四方简单点阵P (四方P ) 、四方体心 点阵I (四方I ); 正交晶系有正交P 、正交I 、正交 F 、正交C (或侧心A和B); 单斜晶系有单斜P 、 单斜C ; 三方、六方、三斜都只有素格子。
所属晶系: 立方; 点阵: 立方P; 结构基元及每个晶胞中结构基元的数目: CsCl, 1个; 离子的分数坐标: A为(0,0,0), B为(1/2,1/2,1/2)。 Cs离子的配位数是8,Cl离子 的配位数也是8。
NaCl型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元 的数目: NaCl, 4个; Na和Cl离子的配位数都是6; 离子的分数坐标:ຫໍສະໝຸດ a a ac
b
Simple
Face-centered CUBIC
Body-centered
a
Simple
End face-centered
MONOCLINIC
a
c a
a
b
a
a
Simple
End face-centered
Body-centered ORTHORHOMBIC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档目录一、本章难易及掌握要求 (1)二、基本内容 (1)1、三种近似 (1)2、周期场中的布洛赫定理 (2)1)定理的两种描述 (2)2)证明过程: (2)3)波矢k的取值及其物理意义 (3)3、近自由电子近似 (3)A、非简并情况下 (4)B、简并情况下 (5)C、能带的性质 (6)4、紧束缚近似 (6)5、赝势 (9)6、三种方法的比较 (10)7、布里渊区与能带 (11)8、能态密度及费米面 (11)三、常见习题 (14)简答题部分 (14)计算题部分 (15)一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设和出发点;2)布洛赫定理的描述及证明;3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念和能带的意义及应用;6)会计算能态密度及明白费米面的概念。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。

了解内容:1)能带的成因及对称性;2)费米面的构造;3)赝势方法;4)旺尼尔函数概念;5)波函数的对称性。

二、基本内容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。

单电子在周期性场中。

2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()nik R n r R e r ψψ⋅+=r u u r r v u u v ,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik rr e u r ψ⋅=r r r r ,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k ϖ调制的平面波表示.其中()()n u r u r R =+r v u u v ,n R ρ取布拉菲格子的所有格矢成立。

2)证明过程:a. 定义平移算符µT ,)()()()(332211321a T a T a T R T mmmm ϖϖϖϖ= b . 证明µT 与ˆH的对易性。

ααHT H T =c.代入周期边界条件,求出µT 在µT 与ˆH共同本征态下的本征值λ。

即⎪⎩⎪⎨⎧+=+=+=)()(()()()(332211a N r r a N r r a N r r ϖϖϖϖϖϖϖϖϖψψψψψψ321321,,a k i a k i a k i eeeϖϖϖϖϖϖ⋅⋅⋅===λλλd. 将λ代入µT 的本征方程中,注意µT 定义,可得布洛赫定理。

)()(321321r R r m m m m ϖϖϖψλλλψ=+)()(332211r ea m a m a m k i ϖϖϖϖϖψ++⋅=)()(r u e r k rk i ϖϖϖϖ⋅=!3) 波矢k 的取值及其物理意义333222111b N l b N l b N l k ϖϖϖϖ++= (2)2jj j N l N ≤<-,k 是第一布里渊区的波失,称简约波矢。

其是平移算符本征值量子数,而)()()(m m R r r R T ϖϖϖϖ+=ψψ)(r e mR k i ϖϖϖψ⋅=反映了原胞之间电子波函数位相的变化。

同时也可以得出如果一个势场是周期场,那么可以把其波函数设为布洛赫函数。

3、 近自由电子近似1)思想:假设将周期场的周期起伏看作自由电子稳定势场的微扰 2)条件要求:原子的动能大于势能以使电子可以自由运动,势函数的的起伏很小,以满足微扰论适用,外层电子以满足电子可以自由运动。

3)模型建立过程:首先,在零级近似下,考虑到周期性边界条件得到了波矢的允许取值,推出了能量的准连续性;其次,由于考虑到二级微扰,而推出能量在布区边界处分裂,且发生了能级间的“排斥作用”,于是形成能带和带隙。

A 、非简并情况下1)由假设1>,2>可得系统的哈密顿量和薛定谔方程:'0H H H +=,V dxd m H +-=22202η, 微扰项:V V x V H ∆=-=)(',满足的方程式: ψψE H =.2)利用微扰论方法有设:.)2()1(0Λ+++=k k k k E E E E ,其中:V m k E k +=2220η,0|'|)1(>==<k H k E k ,∑-><='0'02)2(|'|'k k k k E E k H k E (K K ≠') 设:.)()()()1(0Λ++=x x x k k k ψψψ 其中:ikx k e Lx 1)(0=ψ, 0'''0)1(|'|'k k k k k E E k H k ψψ∑-><= (K K ≠') 4)结论:能量本征值:∑+-++=nn k an k k m V V m k E ])2([2'22222220πηη 波函数:xani nnikxikxk eank k m V eLeLx ππψ2222])2([211)(∑+-+=η5)波函数的意义:第一项是波矢为k 的前进的平面波,第二项是平面波受到周期性势场作用产生的散射波 再令xani nnk eank k m V x u ππ2222])2([21)(∑+-+=η,则有)(1)(x u e Lx k ikx k =ψ具有布洛赫函数形式,其中用到)()(x u ma x u k k =+B 、简并情况下1)n k k V E E >>-0'0此时波矢k 离an π-较远,k 状态的能量和状态k’差别较大把3*按2002'4()nk k V E E -泰勒级数展开得20'00'2000'n k k k n k k k V E E E E V E E E ±⎧+⎪-⎪=⎨⎪-⎪-⎩ 由于能级间“排斥作用”,量子力学中微扰作用下,两个相互影响的能级总是原来较高的能量提高了,原来较低的能量降低了2)n k k V E E <<-0'0时,波矢k 非常接近an π-,k 状态的能量和k’能量差别很小按将3*式220'04)(nk k V E E -泰勒级数展开得00200''()1{2}24k k k k n nE E E E E V V ±-=+±+ 代入相应的 0k E ,0'k E 得222(1)2(1)n n n n n n n n n n T V T V T V E T V T V T V ±⎧+++∆+⎪⎪=⎨⎪+--∆-⎪⎩ 22)(2an m T n πη=可得如下结论两个相互影响的状态k 和k’微扰后,能量变为E+和E-,原来能量高的状态能量提高,原来能量低的状态能量降低。

周期性 ()()n n n E k E k G =+r r r[周期为 倒格矢,由晶格平移对称性决定]反演对称性 ()()n n E k E k =-r r[()n E k r是个偶函数 ] 宏观对称性 ()()n n E k E k α=r r[ α为晶体的一个点群对称操作]C 、能带的性质简约波矢的取值被限制在简约布里渊区,要标志一个状态需要表明:1)它属于哪一个能带(能带标号) 2)它的简约波矢 k 是什么?3) 能带底部,能量向上弯曲;能带顶部,能量向下弯曲 2) 禁带出现在波矢空间倒格矢的中点处 3) 禁带的宽度n g V V V V E 2,2,2,2321Λ=4)各能带之间是禁带, 在完整的晶体中,禁带内没有允许的能级5)计入自旋,每个能带中包含2N 个量子态 4、紧束缚近似1)紧束缚近似的假设:电子在原子附近,主要受该原子势场作用,其它原子势场视为微扰作用。

故此时不能用自由电子波函数,而用所有原子的同一电子波函数的线性组合来表示。

不考虑不同原子态间的作用。

它一般要求原子之间的距离较大。

2)模型实现对于简单格子电子在格矢332211a m a m a m R m ϖϖϖρ++=处原子附近运动)(r ϖψ满足的薛定谔方程:)()()](2[22r E r r U mϖϖϖηψψ=+∇-)(r U ϖ是晶体的周期性势场___所有原子的势 场之和。

对方程进行变换有)()()]()([)()](2[22r E r R r V r U r R r V m m m ϖϖϖϖϖϖϖϖηψψψ=--+-+∇-)()(m R r V r U ϖϖϖ--即是微扰作用。

设晶体中电子的波函数∑-=mm i m R r a r )()(ϖϖϖϕψ(此法的本质),代入上得:∑∑-=---+mm i m mmi m i m R r a E R r R r V r U a )()()]()([ϖϖϖϖϖϖϖϕϕε 考虑到当原子间距比原子半径大时,不同格点的)(m i R r ϖϖ-ϕ重叠很有 ,nm n i m i r d R r R r δϕϕ=--⎰ϖϖϖϖϖ)()(*用)(*n i R r ϖϖ-ϕ左乘上面方程5*,得到 ∑⎰-=----mni m i m n i m a E r d R r R r V r U R r a )()()]()()[(*εϕϕϖϖϖϖϖϖϖϖ)()()]()()][([*m n i m n iR R J d V U R R ϖϖϖϖϖϖϖϖϖ--=---⎰ξξϕξξξϕ则得∑-=--m n i m n m a E R R J a )()(εϖϖ,考虑到周期性的势场,应有mR k i m Cea ϖϖ⋅=,(k ϖ是任意常数矢量),则有∑⋅--=-sR k i s i s e R J E ϖϖϖ)(ε,m n s R R R ϖϖϖ-=利用归一化条件则得:晶体中电子的波函数∑-=⋅mm i R k i k R r eNr m)(1)(ϖϖϖϖϖϕψ考虑用简约波失表示有])([1)()(∑-=-⋅-⋅mm i R r k i r k i k R r e e N r m ϖϖϖϖϖϖϖϖϕψ,由此可得 对于确定k ϖ,∑⋅--=sRk i s i s e R J k E ϖϖϖϖ)()(ε,而且实现了N 个晶体中的电子波函数与束缚态的波函数的幺正变换换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅)()()(,,,12121222121211121N ii i R k i R k i R k i R k i R k i R k i R k i R k i R k i k k k R r R r R r ee ee e e ee e N NN N N NN N ϖϖM ϖϖϖϖΛM M ΛΛM ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϕϕϕψψψ 3)模型简化:考虑ξξϕξξξϕϖϖϖϖϖϖϖd V U R R J i s i s })()]()()[()(*⎰--=-的化简:当)()(*ξϕξϕϖϖϖi s iR 和-有重叠时,积分不为0。

相关文档
最新文档