简单的线性规划应用题解析

合集下载

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

高二数学北师大版必修作业:简单线性规划的应用含解析

高二数学北师大版必修作业:简单线性规划的应用含解析

4.3简单线性规划的应用一、非标准1.有5辆6吨的汽车,4辆4吨的汽车,需x辆6吨汽车y辆4吨汽车,要运送最多的货物,完成这项运输任务的线性目标函数为()A.z=6x+4yB.z=5x+4yC.z=x+yD.z=4x+5y答案:A2.已知点(x,y)构成的平面区域如图阴影部分所示,z=mx+y(m为常数)在平面区域内取得最大值的最优解有无数多个,则m的值为()A.-B.C.D.解析:观察平面区域可知直线y=-mx+z与直线AC重合,则-m=k AC==-,解得m=.答案:B3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆车至少运一次,则该厂所花的最少运输费用为()A.2 000元B.2 200元C.2 400元D.2 800元解析:设需甲型货车x辆,乙型货车y辆,由题意知,作出其可行域如图,描出阴影内部整点及部分边界整点.可知目标函数z=400x+300y,在点A处取最小值z=400×4+300×2=2 200(元).答案:B4.如图,目标函数z=ax-y的可行域为四边形OACB(含边界),若C是该目标函数z=ax-y的最优解,则a的取值范围是()A. B.C. D.解析:最优解为C点,则目标函数表示的直线斜率在直线BC与AC的斜率之间.因为k BC=-,k AC=-,所以a∈.答案:B5.某公司招收男职员x名,女职员y名,x和y需满足约束条件则z=10x+10y 的最大值是()A.80B.85C.90D.95解析:先画出满足约束条件的可行域,如图阴影部分所示.由解得但x∈N,y∈N,结合图知当x=5,y=4时,z max=90,选C.答案:C6.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为. 解析:由约束条件作出其可行域如图:由图可知当直线x=m过直线y=2x与x+y-3=0的交点(1,2)时m取得最大值,此时x=m=1. 答案:17.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产品50件,B类产品140件,则所需租赁费最少为元.解析:设甲种设备需要生产x天,乙种设备需要生产y天,此时该公司所需租赁费为z元, 则z=200x+300y.又因为即画出该不等式组表示的平面区域,如图阴影部分所示.解即点A(4,5).由z=200x+300y,得直线y=-x+过点A(4,5)时,z=200x+300y取得最小值,为2 300元.答案:2 3008.设不等式组表示的平面区域为D.若指数函数y=a x的图像上存在区域D上的点,则a的取值范围是.解析:画出可行域如图阴影部分,易知a∈(0,1)时不合题意,故a>1.两直线的交点为A(2,9).由图像可知,当y=a x通过该交点A时,a取最大值,∴f(2)=a2=9,∴a=3.故a∈(1,3].答案:(1,3]9.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z元,那么而z=0.28x+0.9y,如图,作出不等式组所表示的平面区域,即可行域.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A时,z最小,又直线x+y=35 000和直线y=x的交点A.即x=,y=时,饲料费用最低.答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.10.要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:钢板类型A规格B规格C规格规格类型第一种钢板 2 1 1第二种钢板 1 2 3今需要A,B,C三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需的三种规格成品,且使所用钢板张数最少?解:设需截第一种钢板x张,第二种钢板y张,可得且x,y都是整数,求目标函数z=x+y取最小值时的x,y.作可行域如图所示,平移直线z=x+y可知直线经过点,此时x+y=,但都不是整数,所以可行域内的点不是最优解.首先在可行域内打网格,其次描出A附近的所有整点,接着平移直线l:x+y=0,会发现当移至B(3,9),C(4,8)时,即z取得最小值12.故本题有两种截法:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法最少要截两种钢板共12张.答:截第一种钢板3张、第二种钢板9张,或截第一种钢板4张、第二种钢板8张时,所用钢板张数最少.。

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

专题简单的线性规划含答案

专题简单的线性规划含答案

专题简单(d e)线性规划含答案TPMK standardization office TPMK5AB- TPMK08- TPMK2C- TPMK18高考复习专题:简单(de)线性规划专题要点简单(de)线性规划:能从实际问题中抽象出二元一次不等式组. 理解二元一次不等式组表示平面(de)区域,能够准确(de)画出可行域.能够将实际问题抽象概括为线性规划问题,培养应用线性规划(de)知识解决实际问题(de)能力.线性规划等内容已成为高考(de)热点,在复习时要给于重视,另外,不等式(de)证明、繁琐(de)推理逐渐趋于淡化,在复习时也应是注意.考查主要有三种:一是求给定可行域(de)最优解;二是求给定可行域(de)面积;三是给出可行域(de)最优解,求目标函数(或者可行域)中参数(de)范围.多以选择填空题形式出现,不排除以解答题形式出现. 考纲要求了解二元一次不等式(de)几何意义,能用平面区域表示二元一次不等式组;了解线性规划(de)意义并会简单应用. 典例精析线性规划是高考热点之一,考查内容设计最优解,最值,区域面积与形状等,通常通过画可行域,移线,数形结合等方法解决问题. 考点1:求给定可行域(de)最优解例1.(2012广东文)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+(de)最小值为( )A .3B .1C .5-D .6- 解析:C.画出可行域,可知当代表直线过点A 时,取到最小值.联立11x y x =-⎧⎨=-⎩,解得12x y =-⎧⎨=-⎩,所以2z x y =+(de)最小值为5-. 例2.(2009天津)设变量x,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y(de)最小值为(A )6 (B )7 (C )8 (D )23解析:画出不等式3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩表示(de)可行域,如右图,让目标函数表示直线332zx y +-=在可行域上平移,知在点B 自目标函数取到最小值,解方程组⎩⎨⎧=-=+323y x y x 得)1,2(,所以734min =+=z ,故选择B.发散思维:若将目标函数改为求x y z =(de)取值范围;或者改为求3+=x yz (de)取值范围;或者改为求22y x z +=(de)最大值;或者或者改为求()221y x z ++=(de)最大值.方法思路:解决线性规则问题首先要作出可行域,再注意目标函数所表示(de)几何意义,数形结合找出目标函数达到最值时可行域(de)顶点(或边界上(de)点),但要注意作图一定要准确,整点问题要验证解决.练习1.(2012天津)设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y =-(de)最小值为( )A .5-B .4-C .2-D .3 解析做出不等式对应(de)可行域如图,由y x z 23-=得223zx y -=,由图象可知当直线223z x y -=经过点)2,0(C 时,直线223zx y -=(de)截距最大,而此时y x z 23-=最小为423-=-=y x z ,选B.练习2.在约束条件⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1下,(x -1)2+y 2(de)最小值为________.解析 在坐标平面内画出题中(de)不等式组表示(de)平面区域,注意到(x -1)2+y 2可视为该区域内(de)点(x ,y )与点(1,0)之间距离,结合图形可知,该距离(de)最小值等于点(1,0)到直线2y -x =1(de)距离,即为|-1-1|5=255. 答案 255练习3、(2011广东文、理数)已知平面直角坐标系xOy 上(de)区域D 由不等式组给定.若M (x,y )为D 上(de)动点,点A(de)坐标为,则z=•(de)最大值为( ) A 、3 B 、4 C 、3 D 、4 解答:解:首先做出可行域,如图所示: z=•=,即y=﹣x+z 做出l 0:y=﹣x,将此直线平行移动,当直线y=﹣x+z 经过点A 时,直线在y 轴上截距最大时,z 有最大值. 因为A (,2),所以z(de)最大值为4故选B练习4.(2011福建)已知O 是坐标原点,点A(-1,1),若点M(x,y)为平面区域⎩⎪⎨⎪⎧x +y≥2x≤1y≤2上(de)一个动点,则OA →·OM →(de)取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2] 分析 由于OA →·OM →=-x +y,实际上就是在线性约束条件⎩⎪⎨⎪⎧x +y≥2x≤1y≤2下,求线性目标函数z =-x +y(de)最大值和最小值.解析 画出不等式组表示(de)平面区域(如图),又OA →·OM →=-x +y,取目标函数z =-x +y,即y =x +z,作斜率为1(de)一组平行线.当它经过点C(1,1)时,z 有最小值,即zmin =-1+1=0;当它经过点B(0,2)时,z 有最大值,即zmax =-0+2=2.∴z(de)取值范围是[0,2],即OA →·OM →(de)取值范围是[0,2],故选C.考点2:求给定可行域(de)面积例3.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥+≥43430y x y x x 表示(de)平面区域(de)面积为( )A .23 B .32 C .34 D .43 答案c考点3:给出最优解求目标函数(或者可行域)中参数例4.(2012广州一模文数)在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示(de)平面区域(de)面积为4,则实数t (de)值为A .1B .2C .3D .4 答案B练习5.(2009福建卷文)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示(de)平面区域内(de)面积等于2,则a (de)值为A. -5B. 1C. 2D. 3 解析解析 如图可得黄色即为满足010101=+-≥-+≤-y ax y x x 的可行域,而与(de)直线恒过(0,1),故看作直线绕点(0,1)旋转,当a=-5时,则可行域不是一个封闭区域,当a=1时,面积是1;a=2时,面积是23;当a=3时,面积恰好为2,故选D. 练习6. 设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示(de)平面区域为M ,使函数y =a x (a >0,a ≠1)(de)图象过区域M (de)a (de)取值范围是c(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]练习7.设z =x +y ,其中x 、y 满足⎩⎪⎨⎪⎧x +2y ≥0x -y ≤00≤y ≤k ,若z (de)最大值为6,则z (de)最小值为A .-3B .3C .2D .-2解析 如图所示,作出不等式组所确定(de)可行域△OAB ,目标函数(de)几何意义是直线x +y -z =0在y 轴上(de)截距,由图可知,当目标函数经过点A时,取得最大值,由⎩⎨⎧x -y =0y =k解得A (k ,k ),故最大值为z =k +k =2k ,由题意,得2k =6,故k =3.当目标函数经过点B 时,取得最小值,由⎩⎨⎧x +2y =0y =3解得B (-6,3),故最小值为z =-6+3=-3.故选A.答案 A练习8.(2012课标文)已知正三角形ABC(de)顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+(de)取值范围是 ( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)命题意图本题主要考查简单线性规划解法,是简单题.解析有题设知C(1+3,2),作出直线0l :0x y -+=,平移直线0l ,有图像知,直线:l z x y =-+过B 点时,max z =2,过C 时,min z =13-,∴z x y =-+取值范围为(1-3,2),故选A. 练习9.(2012福建文)若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m (de)最大值为( )A .-1B .1C .32D .2答案B解析30x y +-=与2y x =(de)交点为(1,2),所以只有1m ≤才能符合条件,B 正确. 考点定位本题主要考查一元二次不等式表示平面区域,考查分析判断能力.逻辑推理能力和求解能力.练习10.(2012福建理)若函数2x y =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m (de)最大值为( ) A .12 B .1 C .32D .2答案B解析30x y +-=与2x y =(de)交点为(1,2),所以只有1m ≤才能符合条件,B 正确. 考点定位本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力 考点四:实际应用与大题例5(2009四川卷理)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是 A. 12万元 B. 20万元 C. 25万元 D. 27万元 解析:设甲、乙种两种产品各需生产x 、y 吨,可使利润z 最大,故本题即已知约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001832133y x y x y x ,求目标函数y x z 35+=(de)最大值,可求出最优解为⎩⎨⎧==43y x ,故271215max =+=z ,故选择D. 练习11. (2012四川理)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品(de)利润是300元,每桶乙产品(de)利润是400元.公司在生产这两种产品(de)计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产(de)甲、乙两种产品中,公司共可获得(de)最大利润是 ( ) A .1800元 B .2400元C .2800元D .3100元 [答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y 且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化(de)一族平行直线解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z[点评]解决线性规划题目(de)常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式(de)平行线)、四求(求出最优解).练习12.(2012广州二模文数)甲、乙、丙三种食物(de)维生素含量及成本如下表所示:食物类型 甲 乙 丙 维生素C (单位/kg ) 300 500 300 维生素D (单位/kg ) 700 100 300成本(元/kg ) 5 4 3别为(1)试以,x y 表示混合食物(de)成本P ;(2)若混合食物至少需含35000单位维生素C 及40000单位维生素D ,问,,x y z 取什么值时,混合食物(de)成本最少(本小题主要考查线性规划等知识, 考查数据处理能力、运算求解能力和应用意识)(1)解:依题意得100,543.x y z P x y z ++=⎧⎨=++⎩ …………… 2分由100x y z ++=,得100z x y =--,代入543P x y z =++, 得3002P x y =++. …………… 3分(1) 解:依题意知x 、y 、z 要满足(de)条件为0,0,0,30050030035000,70010030040000.x y z x y z x y z ≥≥≥⎧⎪++≥⎨⎪++≥⎩……… 6分把100z x y =--代入方程组得0,0,1000,250,25.x y x y x y y ≥≥⎧⎪--≥⎪⎨-≥⎪⎪≥⎩……如图可行域(阴影部分)(de)一个顶点为A (让目标函数2300x y P ++=在可行域上移动,由此可知3002P x y =++在A ()37.5,25………∴当37.5x =(kg),25y =(kg),37.5z =(kg)时, 点评解答线性规划应用题(de)一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,(2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示(de)直线与可行域边界直线斜率间(de)关系;(4)作答——就应用题提出(de)问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单(de)线性规划求最值问题。

高考数学考点24简单的线性规划试题解读与变式(new)

高考数学考点24简单的线性规划试题解读与变式(new)

考点24 简单的线性规划【考纲要求】1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.【命题规律】简单的线性规划是高考题中一定出现的,一般是在选择题或填空题中考查,有时会出现解答题中于其他知识结合考查.【典型高考试题变式】(一)求目标函数的最值例1。

【2017课标1,文7】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()A.0 B.1 C.2D.3【解析】如图,作出不等式组表示的可行域,则目标函数z x y=+经过(3,0)A时z取得最大值,故max 303z=+=,故选D.【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.【变式1】【改变结论】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最小值为()A .0B .1C .2D .3【答案】B【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(1,0)B 时z 取得最小值,故min 101z =+=,故选B .【变式2】【改变条件】变量x ,y 满足约束条件错误!则z =x +y 的最大值是( ) A .4- B .4 C .2 D .6 【答案】B(二)非线性目标函数的最值例2。

【2016高考山东文数】若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是( )A.4 B 。

9 C 。

10 D.12 【解析】画出可行域如图所示,点31A -(,)到原点距离最大,所以 22max ()10x y +=,选C 。

3.5.2简单的线性规划应用问题

3.5.2简单的线性规划应用问题

关于取整数解的问题
例 要将两种大小不同规格的钢板截成A、B、C三种规格,每 张钢板可同时截得三种规格的小钢板的块数如下表所示 :
规格类型 钢板类型
A规格 2 1
B规格 1 2
C规格 1 3
第一种钢板 第二种钢板
今需要A,B,C三种规格的成品分别为15,18,27块,问各截 这两种钢板多少张可得所需三种规格成品,且使所用钢板张 数最少。
课堂练习
x 0 不等式组 y 0 表示的平面区域内的整数点共有 y 4 x 3 y 12
4 3
( 3 )个
2
1
0
1
2
3
4 4x+3y=12
x
课堂练习
3 x 2 y 10 x 4 y 11 2. 设变量x, y满足条件 x 0, y 0 x, y Z 求S 5 x 4 y的 最 大 值 。
简单线性规划的应用问题
高二数学组
例题分析
某货运公司拟用集装箱托运甲、乙两种货物,甲种货 物每袋体积是5m3,质量是1百千克;乙种货物每袋体积 是4m3,质量是2.5百千克。甲种货物每袋可获得的利润 为20百元,乙种货物每袋可获得的利润是10百元,一个 大集装箱能够装所托运货物的总体积不能超过24m3,总 质量不能低于6.5百千克。问:在一个大集装箱内,这两 种货物各装多少袋(不一定都是整袋)时,可获得最大 利润?
所以z最大值为 240百元
例题分析 变式3、将例题中的问改为:在一个大集装箱内,这两 种货物各装多少整袋时,可获得最大利润? 此时,C点正 好为整点,即 为所求。
几个结论:
1. 可行域可以是封闭的多边形,也可以是一侧开放的 无限大的平面区域.

简单的线性规划问题(含解析)

简单的线性规划问题(含解析)

简单的线性规划问题班级___________ 姓名_____________ 学号_________层级一 学业水平达标1.设点P (x ,y ),其中x ,y ∈N ,满足x +y ≤3的点P 的个数为( ) A .10 B .9 C .3 D .无数个 2.在3x +5y <4表示的平面区域内的一个点是( )A .(2,0)B .(-1,2)C .(1,1)D .(-1,1)3.不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -3≤0表示的平面区域为( )4.已知点M (2,-1),直线l :x -2y -3=0,则( ) A .点M 与原点在直线l 的同侧 B .点M 与原点在直线l 的异侧 C .点M 与原点在直线l 上D .无法判断点M 及原点与直线l 的位置关系 5.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥0,x -y ≥1,x +2y ≤4,则该不等式组所表示的平面区域的面积为( )A.12 B.32 C .2D .36.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x -y ≥-2,4x +3y ≤20,x ≥0,y ≥0表示的平面区域的公共点有________个.7.平面直角坐标系中,不等式组⎩⎪⎨⎪⎧2x +2y -1≥0,3x -3y +4≥0,x ≤2表示的平面区域的形状是________.8.已知实数x ,y 满足不等式组Ω:⎩⎪⎨⎪⎧2x +3y -6≤0,x -y -1≤0,x -2y +2>0,x +y -1>0.(1)画出满足不等式组Ω的平面区域; (2)求满足不等式组Ω的平面区域的面积.层级二 应试能力达标1.如图阴影部分用二元一次不等式组表示为( )A.⎩⎪⎨⎪⎧ 2x -y ≥0x +y ≥3y ≥1 B.⎩⎪⎨⎪⎧2x -y ≥0x +y ≤3y ≥1C.⎩⎪⎨⎪⎧2x -y ≤0x +y ≤3y ≥1D.⎩⎪⎨⎪⎧2x -y ≤0x +y ≥3y ≥12.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .453.4支水笔与5支铅笔的价格之和不小于22元,6支水笔与3支铅笔的价格之和不大于24元,则1支水笔与1支铅笔的价格之差的最大值是( )A .0.5元B .1元C .4.4元D .8元4.某学校用800元购买A ,B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A ,B 两种用品应各买的件数为( )A .2,4B .3,3C .4,2D .不确定5.若点P (m ,n )在由不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -2y +5≤0,2x -y +1≥0,所确定的区域内,则n -m 的最大值为________.6.若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________. 7.若实数x ,y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x+2y的最小值是________.参考答案1.设点P (x ,y ),其中x ,y ∈N ,满足x +y ≤3的点P 的个数为( ) A .10 B .9 C .3D .无数个解析:选A 作⎩⎪⎨⎪⎧x +y ≤3,x ,y ∈N 的平面区域,如图所示,符合要求的点P 的个数为10.2.在3x +5y <4表示的平面区域内的一个点是( ) A .(2,0) B .(-1,2) C .(1,1)D .(-1,1)解析:选D 将点(-1,1)代入3x +5y <4,得2<4,所以点(-1,1)在不等式3x +5y <4表示的平面区域内,故选D.3.不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -3≤0表示的平面区域为( )解析:选C 取满足不等式组的一个点(2,0),由图易知此点在选项C 表示的阴影中,故选C.4.已知点M (2,-1),直线l :x -2y -3=0,则( ) A .点M 与原点在直线l 的同侧 B .点M 与原点在直线l 的异侧 C .点M 与原点在直线l 上D .无法判断点M 及原点与直线l 的位置关系解析:选B 因为2-2×(-1)-3=1>0,0-2×0-3=-3<0,所以点M 与原点在直线l 的异侧,故选B.5.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥0,x -y ≥1,x +2y ≤4,则该不等式组所表示的平面区域的面积为( )A.12 B.32 C .2D .3解析:选B 根据题中所给的不等式组,画出其对应的平面区域,如图中阴影部分的三角形区域所示.解方程组可以求得三角形三个顶点的坐标分别为(1,0),(2,1),(4,0),根据三角形的面积公式可以求得S =12×(4-1)×1=32.故选B.6.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x -y ≥-2,4x +3y ≤20,x ≥0,y ≥0表示的平面区域的公共点有________个.解析:画出不等式组⎩⎪⎨⎪⎧x -y ≥-2,4x +3y ≤20,x ≥0,y ≥0表示的平面区域,如图中阴影部分所示.因为直线2x +y -10=0过点A (5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点(5,0).答案:17.平面直角坐标系中,不等式组⎩⎪⎨⎪⎧2x +2y -1≥0,3x -3y +4≥0,x ≤2表示的平面区域的形状是________.解析:画出不等式组表示的平面区域,如图中阴影部分所示,由图易知平面区域为等腰直角三角形.答案:等腰直角三角形8.已知实数x ,y 满足不等式组Ω:⎩⎪⎨⎪⎧2x +3y -6≤0,x -y -1≤0,x -2y +2>0,x +y -1>0.(1)画出满足不等式组Ω的平面区域; (2)求满足不等式组Ω的平面区域的面积.解:(1)满足不等式组Ω的平面区域如图中阴影部分所示.(2)解方程组⎩⎪⎨⎪⎧2x +3y -6=0,x -2y +2=0,得A ⎝⎛⎭⎫67,107, 解方程组⎩⎪⎨⎪⎧2x +3y -6=0,x -y -1=0,得D ⎝⎛⎭⎫95,45, 所以满足不等式组Ω的平面区域的面积为S 四边形ABCD =S △AEF -S △BCF -S △DCE =12×(2+3)×107-12×(1+2)×1-12×(3-1)×45=8970.层级二 应试能力达标1.如图阴影部分用二元一次不等式组表示为( )A.⎩⎪⎨⎪⎧ 2x -y ≥0x +y ≥3y ≥1 B.⎩⎪⎨⎪⎧2x -y ≥0x +y ≤3y ≥1C.⎩⎪⎨⎪⎧2x -y ≤0x +y ≤3y ≥1D.⎩⎪⎨⎪⎧2x -y ≤0x +y ≥3y ≥1解析:选B 由图易知平面区域在直线2x -y =0的右下方,在直线x +y =3的左下方,在直线y =1的上方,故选B.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45解析:选C 作出不等式组所表示的可行域如图中阴影部分所示,由z =3x +5y 得y =-35x +z 5.设直线l 0为y =-35x ,平移直线l 0,当直线y =-35x +z 5过点P 时,z 取得最大值.联立⎩⎪⎨⎪⎧-x +y =1,x +y =5,解得⎩⎪⎨⎪⎧x =2,y =3,即P (2,3),所以z max =3×2+5×3=21.3.4支水笔与5支铅笔的价格之和不小于22元,6支水笔与3支铅笔的价格之和不大于24元,则1支水笔与1支铅笔的价格之差的最大值是( )A .0.5元B .1元C .4.4元D .8元解析:选B 设1支水笔与1支铅笔的价格分别为x 元、y 元, 则⎩⎪⎨⎪⎧4x +5y ≥22,6x +3y ≤24,x ,y ≥0.不等式组表示的可行域如图中阴影部分.设1支水笔与1支铅笔的价格之差为z =x -y ,即y =x -z ,则直线经过点A (3,2)时,z 取得最大值,为3-2=1,所以1支水笔与1支铅笔的价格之差的最大值是1元.故选B.4.某学校用800元购买A ,B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A ,B 两种用品应各买的件数为( )A .2,4B .3,3C .4,2D .不确定解析:选B 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N *.求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3). 5.若点P (m ,n )在由不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -2y +5≤0,2x -y +1≥0,所确定的区域内,则n -m 的最大值为________.解析:作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为A (1,3),B (2,5),C (3,4),设目标函数为z =y -x ,则y =x +z ,其纵截距为z ,由图易知点P 的坐标为(2,5)时,n -m 的最大值为3.答案:36.若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________.解析:由条件得⎩⎪⎨⎪⎧ x +1≤y ,y ≤2x ,即⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,作出不等式组所表示的可行域如图中阴影部分所示. 设z =2y -x ,即y=12x +12z ,作直线l 0:y =12x 并向上平移,显然当l 0过点A (1,2)时,z 取得最小值,z min =2×2-1=3.答案:37.若实数x ,y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x+2y的最小值是________.解析:不等式组表示的可行域如图阴影部分所示, 设t =x +2y ,则y =-12x +t 2,当x =0,y =0时,t 最小=0. z =3x+2y的最小值为1.答案:1。

【教学随笔】线性规划典型题例解析

【教学随笔】线性规划典型题例解析

线性规划典型题例归类解析简单的线性规划”是在学习了直线方程的基础上, 介绍直线方程的一个简单应用,考中占有一席之地,既有考查线性规划自身理论系统知识的试题, 究实际应用问题的试题,同时也有与其它知识相结合的交汇性试题 题型进行分类解析.一、求约束条件下的平面区域的面积r x+y — 2>0例1在平面直角坐标系中,不等式组 \ x — y+2 >0,表示的平面区域的面积是I x < 2(A)4W(B)4(C)2 羽(D)2分析:先根据约束条件作出平面区域,然后根据区域的图形特征求面积 解:由条件作图可知可行域为△ABC ,求出各个交点坐标为 A(2 ,4)、0)、C(0, 2),贝y S^ABC = 1|AB | • |OB| = 14-2 = 4,故选择 B.面积;如果平行区域不是一个三角形,可将区域划分为几个易求面积三角 形.二、求解与约束条件下与平面区域相关的距离问题I X A 1例2已知1 x — y+1 w 0 ,则X 2+ y 2的最小值是 ___________ .[2x — y — 2 w 0分析:先根据约束条件作出平面区域, 然后根据X 2+ y 2(平面区域内的点到原点的距离的平方)的几何意义进行求解.〔X > 1解:由$ X — y+1w 0 ,画出可行域,求得交点A(1 , 2), B(3 , 4),则[2x- y — 2w 0 由图观察知,平面区域内的点到原点距离最小的点为 A 点,而|OA| = 0T P =^/5,所以X 2+ y 2的最小值是5.点评:解答本题的关键就是要明确的几何意义 面区域内的点到原点距离的平方.三、求解与约束条件下的平面区域相关的斜率问题「y A 0例3实数X, y 满足不等式组S X — yA0 ,、2x — y — 2 A 0 分析:因为表达式 巳与斜率的坐标公式类似,x+ 1 来解决.解:满足已知不等式的可行域如图所示, 视(x ,y)为坐标平面可行域内y — 1的点,贝y u= --表示动点(x , y)与定点(一1, 1)连线的斜率,A. I I由条件求得各交点的坐标 0(0, 0) , A(2 , 2)、B(1 , 0),11在咼也有考查利用线性规划研 .下面就线性规划的常x 2+y 2,即X 2+ y 2表示平因此可转化为斜率问题u = 2的取值范围.x+ 1由斜率公式得 k pA= R k op=— 1,所以一1W uw T.3 3点评:此类题型在确定斜率的取值范围时遵循: 如果垂直于x 轴的直线满足条件, 则所求的斜率在两条边界直线的斜率之外; 如果垂直于x 轴的直线不满足条件, 则所求的斜率在两条边界直线的斜率之间,注意“等号”是否可取 . 四、求解约束条件下的线性目标函数的最值问题 例4在约束条件 r y+x < s { y+2x w 4 下,当3W s< 5时,目标函数z= 3x + 2y 的最大值的变化I x> 0, y > 0 范围是( A.[6 , 分析: ) 15]由于约束条件中含有参数B.[7 , 15]C.[6 , 8]D.[7 , 8]s,因此可行域是一个动态的区域,因此 y+2x=4 杪 在确定最大值时要注意分类 . X E(0,4)x=4 — s -r ',所以各交点坐标分别为 A(0 , 2), B(0 , y=2s — 4s), E(0 , 4), x+y=sy+2x=4,得s), C(4 — s, 2s — 4), D(0 ,(1) 当3w SV 4时可行域是四边形 OACD ,此时,目标函数在 C 点取得 ^G(4 -S ,23-4) 最大值 z = 3(4— s) + 2(2s — 4) = s + 4,所以 7w zv 8; (2) 当4w sw 5时可行域是△ OAE,此时,目标函数在 E 点取得最大值 4= 8,所以 Z max = 8,故选 D. 点评:对参数的处理是解答本题的一个关键, 进行分类讨论的标准是根据由约束条件所 形成的可行域的不同形状.在解答过程中要注意将目标函数 z 转化为关于s 的函数进行求解. 五、 求解在约束条件下目标函数中参数的问题 例5已知变量x, y 满足约束条件1 w x + yw 4,— 2w x — yw 2.若目标函数 中a> 0)仅在点(3 , 1)处取得最大值,贝y a 的取值范围为 ____________ . 解析:变量x, y 满足约束条件1 w x+ yw 4, — 2w x — yw 2在坐标系中 画出可行域,如图为四边形 ABCD ,其中A(3 , 1), k AD = 1, k AB =— 1, 由目标函数z= ax+y (其中a> 0)得y=— ax+z,则z 表示斜率为一a 的直线系中的截距的大小,若仅在点 A(3 , 1)处取得最大值,则直线 y=—ax+ z 应在直线x + y= 4与直线x = 3之间,直线斜率应小于 k AB =— 1, 即卩' —av — 1,所以a 的取值范围为(1 ,+s ).点评:本题的目标函数对应的直线的斜率是变化的, 一般求解目标函数 的最值时要将目标函数对应的直线的斜率与线性约束条件下的对应的直线的斜率进行比较, 若目标函数对应的直线过两条直线的交点, 且位于两直线之间,则其对应的斜率也就在两个 相交直线的斜率之间.另外解答本题的一个关健是挖掘出— a 与z 的几何意义. 六、 求平面区域的约束条件 例6双曲线x 2— y 2= 4的两条渐近线与直线 不等式组是( ) j x — y>0 (A) S x + y 》0 \ 0w xw 3 x — y > 0 (B) S x + y w 00< x w 3 z= 3X0+2X z= ax+ y(其 z^ax+y * \ 盘 y= (3-1)x=3围成一个三角形区域,表示该区域的 K+y=l \ Xx+yMx — yw 0 j x — y w 0 (C) x + yw 0 (D 门 x + y >0 _ 0w xw 3 I 0w xw 3 然后确定各边界所在的直线方程, 再 分析:本题要从根据题设条件作出平面区域入手, 确定其所对应的代数式的符号 . 解:双曲线x 2— y 2= 4的两条渐近线方程为 y =± x,与直线x = 3围成 一个三角形区域,如图所示, 在区域内取点 A(1 , 0),代入代数式:x — y 、x + y 、x 得x — y = 1, xr X — y > 0+ y = 1, x= 1,则该区域的约束条件为 \ X + y > 0,故选A.I 0w Xw 3点评:本题是一道逆向思维性题, 其难点主要是确定各边界所在的直线方程 Ax +By+ C =0对应的代数式 Ax + By+ C 的符号,一般根据平面区域的一个特殊点的坐标代入 Ax+ By+ C 即可确定.另外要注意边界所在直线的虚实 .七、求解可行域内的最优整数解问题直线90x + 100y = t 中的截距最大,但不是整数解.整数解X = 1与X = 2两条直线上,而离点 M 较近的两个点为(1 ,「X = 1代入z= 90x + 100y 比较可知当{ C 时,z = 90x + 100取得最大值390.,=3点评:在求使目标函数的最优整数解时,如果使目标函数取得最值的点 M (X 0, y 。

2020年高中数学 人教A版 必修5 同步作业本《简单线性规划的应用》(含答案解析)

2020年高中数学 人教A版 必修5 同步作业本《简单线性规划的应用》(含答案解析)

2020年高中数学 人教A 版 必修5 同步作业本《简单线性规划的应用》一、选择题1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( )A .z=6x +4yB .z=5x +4yC .z=x +yD .z=4x +5y2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈N z=20x +40yB.⎩⎪⎨⎪⎧x +y≥10,2x +y≥10,x +y≤6,x ,y ∈Nz=20x +40yC.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,z=20x +40y D.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈Nz=40x +20y3.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y≥0,则z=y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,505.某学校用800元购买A 、B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少, A 、B 两种用品应各买的件数为( ) A .2,4 B .3,3 C .4,2 D .不确定6.某厂生产甲、乙两种产品每吨所需的煤、电和产值如表所示:但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,则该厂最大日产值为( )A .120万元B .124万元C .130万元D .135万元二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z=x +y 的最大值为________.8.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.9.满足|x|+|y|≤2的点(x ,y)中整点(横纵坐标都是整数)有________个.三、解答题10.某研究所计划利用“神十一”宇宙飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?11.某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min,生产一个骑兵需7 min,生产一个伞兵需4 min,已知总生产时间不超过10 h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?答案解析1.答案为:A ;解析:设需x 辆6吨汽车,y 辆4吨汽车.则运输货物的吨数为z=6x +4y ,即目标函数z=6x +4y.2.答案为:A ;解析:由题意可知选A.3.答案为:D ;解析:作出可行域,如图所示,y -1x的几何意义是点(x ,y)与点(0,1)连线l 的斜率,当直线l 过B(1,0)时k 1最小,最小为-1.又直线l 不能与直线x -y=0平行,所以k l <1. 综上,k ∈[-1,1).4.答案为:B ;解析:设黄瓜、韭菜的种植面积分别为x ,y 亩,则总利润z=4×0.55x +6×0.3y-1.2x -0.9y=x +0.9y. 此时x ,y 满足条件 ⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,画出可行域如图,得最优解为A(30,20),故选B.5.答案为:B ;解析:设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y≤800,x ≥1,y ≥1,x ,y ∈N *.求z=800-100x -160y 取得最小值时的整数解(x ,y),用图解法求得整数解为(3,3).6.答案为:B ;解析:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值z=8x +12y ,线性约束条件为⎩⎪⎨⎪⎧7x +3y≤56,20x +50y≤450,x ≥0,y ≥0,作出可行域如图所示,把z=8x +12y 变形为一簇平行直线系l :y=-812x +z12,由图可知,当直线l 经过可行域上的点M 时,截距z12最大,即z 取最大值,解方程组⎩⎪⎨⎪⎧7x +3y =56,20x +50y =450,得M(5,7),z max =8×5+12×7=124,所以,该厂每天安排生产甲产品5吨,乙产品7吨时该厂日产值最大,最大日产值为124万元.7.答案为:32;解析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z=x +y 经过点A ⎝ ⎛⎭⎪⎫1,12时取得最大值,即z max =1+12=32.8.答案为:216 000;解析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么 ⎩⎪⎨⎪⎧1.5x +0.5y≤150,x +0.3y≤90,5x+3y≤600,x ≥0,y ≥0① 目标函数z=2 100x +900y.二元一次不等式组①等价于⎩⎪⎨⎪⎧3x +y≤30010x+3y≤900,5x +3y≤600,x ≥0,y ≥0.②作出二元一次不等式组②表示的平面区域(如图),即可行域.将z=2 100x +900y 变形,得y=-73x +z 900,平行直线y=-73x ,当直线y=-73x +z900经过点M 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600得M 的坐标(60,100).所以当x=60,y=100时,z max =2 100×60+900×100=216 000. 故生产产品A 、产品B 的利润之和的最大值为216 000元.9.答案为:13;解析:|x|+|y|≤2可化为⎩⎪⎨⎪⎧x +y≤2(x≥0,y ≥0),x -y≤2(x≥,y<0),-x +y≤2(x<0,y ≥0),-x -y≤2(x<0,y<0),作出可行域,为如图所示的正方形内部(包括边界),容易得到整点个数为13个.10.解:设“神十一”宇宙飞船搭载产品A ,B 的件数分别为x ,y ,最大收益为z ,则目标函数为z=80x +60y ,根据题意可知,约束条件为⎩⎪⎨⎪⎧20x +30y≤300,10x +5y≤110,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧2x +3y≤30,2x +y≤22,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,作出直线l :80x +60y=0,并平移直线l ,由图可知,当直线过点M 时,z 取得最大值,解⎩⎪⎨⎪⎧2x +3y =30,2x +y =22,得M(9,4),所以z max =80×9+60×4=960,即搭载A 产品9件,B 产品4件,可使得总预计收益最大,为960万元.11.解:设空调和冰箱的月供应量分别为x ,y 台,月总利润为z 元,则⎩⎪⎨⎪⎧3 000x +2 000y≤30 000,500x +1 000y≤11 000,x ,y ∈N *,z=600x +800y ,作出可行域(如图所示).因为y=-34x +z 800,表示纵截距为z 800,斜率为k=- 34的直线,当z 最大时z 800最大,此时,直线y=-34x +z800必过四边形区域的顶点.由⎩⎪⎨⎪⎧3 000x +2 000y =30 000,500x +1 000y =11 000,得交点(4,9), 所以x ,y 分别为4,9时,z=600x +800y=9 600(元).所以空调和冰箱的月供应量分别为 4台、9台时,月总利润最大,最大值为9 600元.12.解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W=5x +6y +3(100-x -y)=2x +3y +300. (2)约束条件为:⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y≥0,x ∈N ,y ∈N ,整理得⎩⎪⎨⎪⎧x +3y≤200,x +y≤100,x ∈N ,y ∈N.目标函数为W=2x +3y +300,如图所示,作出可行域,初始直线l 0:2x +3y=0,平移初始直线经过点A 时,W 有最大值, 由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50. 最优解为A(50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.。

简单的线性规划(含答案、详解)

简单的线性规划(含答案、详解)

简单的线性规划一、点与直线的位置关系1、若点)1,2(a 在直线01=--y x 的左上方,则实数a 的取值范围是2、已知点(-2,1)和点(1,1)在直线023=--a y x 的两侧,则a 的取值范围是3、在下列各点中,不在..不等式532<+y x 表示的平面区域内的点为 ①. )1,0( ②. )0,1( ③. )2,0( ④. )0,2(4、下列给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩表示的平面区域内的点是①、(0,2) ②、(2,0)- ③、(0,2)- ④、(2,0)5、原点和点()1,1在直线0=-+a y x 的同侧,则a 的取值范围是6、点(1,1)在下面各不等式表示的哪个区域中①、2≤-y x ②.022>--y x ③.0≤y ④.2≥x7、已知点()3,1和点()4,6-在直线320x y m -+=的两侧,则m 的取值范围是__________.二、简单的线性规划之不等式表示的平面区域8、在平面直角坐标系中,不等式组表示的平面区域的面积是9、不等式组201022x y x y -≤⎧⎪-≤⎨⎪+≥⎩所表示的平面区域的面积是10、1x y +≤表示的平面区域的面积是________________.11、已知不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为__________. 三、简单的线性规划之最值12、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为13、设变量y x ,满足约束条件⎪⎩⎪⎨⎧->-<+>+144222y x y x y x 则目标函数y x z -=3的取值范围是________.⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x14、已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤+≤,0,2,y y x x y 那么目标函数y x z 3+=的最大值是 .15、已知实数满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x b =的取值范围是16、若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .17、已知,则的最大值为18、若变量,x y 满足约束条件,则3log (2)w x y =+的最大值是19、已知实数,x y 满足约束条件20,350,1,x y x y y -≤⎧⎪-+≥⎨⎪≥⎩则212x y z +-⎛⎫= ⎪⎝⎭的最大值等于 20、某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?简单线性规划(参考答案)1、试题分析:因为直线01=--y x 的左上方的点满足不等式10x y --<,所以1210a--<,即01a <<. 2、试题分析:因为点(-2,1)和点(1,1)在直线023=--a y x 的两侧,所以(3(2)21)(31a a ⨯--⨯-⨯-⨯-<,解得8 1.a -<<3、③解决该试题的关键是理解,不满足平面区域内的点不满足不等式。

(推荐)简单的线性规划应用题解析

(推荐)简单的线性规划应用题解析

简单的线性规划应用题解析1.某人有楼房一幢,室内面积共180㎡,拟分隔两类房间作为旅游客房.大每间面积为18㎡,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15㎡,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?设应隔出大、小房间分别为x ,y 间,此时收益为z 元,则18151801000600800000x y x y xy +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 200150z x y =+将上述不等式组化为6560534000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 作出可行域,如图⑴,作直线l:200x+150y=0,即l:4x+3y=0. 将直线l 向右平移,得到经过可行域的点B ,且距原点最远的直线l 1. 解方程组65605340x y x y +=⎧⎨+=⎩图⑴得最优解2076072.98.6 xy=≈⎧⎨=≈⎩但是房间的间数为整数,所以,应找到是整数的最优解.①当x=3时,代入5x+3y=40中,得401525338y-==>,得整点(3,8),此时z=200×3+150×8=1800(元);②当x=2时,代入6x+5y=60中,得601248559y-==>,得整点(2,9),此时z=200×2+150×9=1750(元);③当x=1时,代入6x+5y=60中,得606545510y-==>,得整点(1,10), 此时z=200×1+150×10=1700(元);④当x=0时,代入6x+5y=60中,得60512y==,得整点(0,12),此时z=150×12=1800(元).由上①~④知,最优整数解为(0,12)和(3,8).答:有两套分隔房间的方案:其一是将楼房室内全部隔出小房间12间;其二是隔出大房间3间,小房间8间,两套方案都能获得最大收益为1800元.2.某家具厂有方木料90m3,五合板60㎡,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3、五合板2㎡,生产每个书橱需要方木料0.2 m3、五合板1㎡,出售一张书桌可获得利润80元,出售一个书橱可获得利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使所得利润最大?【解析】将已知数据列成下表:用完五合板,此时获利润为80×300=24000(元);⑵只生产书橱因为90÷0.2=450,600÷1=600,所以,可产生450个书橱,用完方木料.此时获利润为120×450=54000(元); ⑶若既安排生产书桌,也安排生产书橱 设安排生产书桌x 张,安排生产书橱y 个,可获利润z 元,则 0.10.290260000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩80120z x y =+,作出可行域如图⑵,并作直线l :80x+120y=0,即 2x+3y=0.将直线l 向右平移,得到经过可行域的定点B 且距原点最远的直线l 1.解方程组0.10.2902600x y x y +=⎧⎨+=⎩ 得最优解100400x y =⎧⎨=⎩此时,8010012040056000z =⨯+⨯=(元).答:由上面⑴⑵⑶知:只安排生产书桌,可获利润24000元;只生产书橱,可获利润为54000元;当生产书桌100张,书橱400个时,刚好用完方木料和五合板,且此时获得最大利润,为56000元.(注:文档可能无法思考全面,请浏览后下载,供参考。

八种经典线性规划例题最全总结(经典)讲解学习

八种经典线性规划例题最全总结(经典)讲解学习

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七、比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

专题25 简单的线性规划(解析版)

专题25 简单的线性规划(解析版)

第七章 不等式、推理与证明专题25 简单的线性规划考点1 线性规划1.【2020年高考浙江卷3】若实数,x y 满足约束条件310,30x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是( )A .(],4-∞B .[)4,+∞C .[)5,+∞D .(),-∞+∞ 【答案】D【解析】首先作出不等式表示的平面区域,令0z =,画出初始目标函数表示的直线2y x =-,由图象可知不等式表示的平面区域是两条直线相交形成的开放区域,∴2z x y =+的取值范围是(),-∞+∞,故选D .2. 【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A .−7B .1C .5D .7【答案】C【解析】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C .3. 【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩,则目标函数4z x y =-+的最大值为 A .2B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.4. 【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示。

因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值. 联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩. 即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.5. 【2018年高考天津卷理数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C【解析】绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.6. 【2017年高考全国II 卷理数】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2()3)56(1z --=⨯+=-,故选A .7. 【2017年高考北京卷理数】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为A .1B .3C .5D .9【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.8. 【2017年高考天津卷理数】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为A.23 B .1 C .32D .3【答案】D【解析】作出约束条件表示的可行域如图中阴影部分所示,由z x y =+得y x z =-+,作出直线y x =-,平移使之经过可行域,观察可知,最优解在(0,3)B 处取得,故max 033z =+=,选D.9. 【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .10. 【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.11. .【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.12. 【2020年高考上海卷5】已知,x y 满足202300x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为 .【答案】-1【解析】首先画出可行域,和初始目标函数2y x =,当直线2y x =平移至点()1,1A 时,取得最大值,max 1211z =-⨯=-故答案为:-1。

简单的线性规划典型例题精析(一)

简单的线性规划典型例题精析(一)

典例剖析[例1]画出不等式-x+2y-4<0表示的平面区域.【解】先画直线-x+2y-4=0(画成虚线),取原点(0,0),代入-x+2y-4,因为0+2×0-4<0,所以,原点在-x+2y-4<0表示的平面区域内.不等式-x+2y-4<0表示的区域如图7—21所示.图7—21【点评】由于对在直线Ax+By+C=0的同一侧的所有点(x,y),实数Ax+By+C的符号相同,所以只须在此直线的某侧任取一点(x0,y0),把它的坐标代入Ax+By+C,由其值的符号即可判断Ax+By+C>0(或<0)表示直线的哪一侧,当C≠0时,常把原点作为此特殊点.此题也可先把不等式-x+2y-4<0化为x-2y+4>0,因为A>0,B<0,所以x-2y+4>0表示直线x-2y+4=0右下方的平面区域.[例2]画出不等式组表示的平面区域.【解】不等式x<3表示直线x=3左侧点的集合.不等式2y≥x,即x-2y≤0表示直线x-2y=0上及左上方点的集合.图7—22不等式3x+2y≥6,即3x+2y-6≥0表示直线3x+2y-6=0上及右上方点的集合.不等式3y<x+9,即x-3y+9>0表示直线x-3y+9=0右下方点的集合.综上可得,不等式组表示的平面区域为如图7-22所示的阴影部分.【点评】不等式组表示的平面区域是各个不等式表示的平面区域的公共部分,在画这一部分区域时应注意其边界的虚实.[例3]已知直线l的方程为Ax+By+C=0,M1(x1,y1)、M2(x2,y2)为直线l 异侧的任意两点,M1、M3(x3,y3)为直线l同侧的任意两点,求证:(1)Ax1+By1+C与Ax2+By2+C同号;(2)Ax1+By1+C与Ax3+By3+C同号.图7—23【证明】(1)因M1、M2在l异侧,故l必交线段M1M2于点M0.设M0分M1M2所成的比为λ,则分点M0的坐标为x0=,y0=代入l的方程得,从而得Ax1+By1+C+λ(Ax2+By2+C)=0.解出λ,得λ=-∵M0为M1M2的内分点,故λ>0.∴Ax1+By1+C与Ax2+By2+C异号.(2)∵M3、M1在l同侧,而M1、M2在l异侧,故M3、M2在l异侧,利用(1)得Ax3+By3+C与Ax2+By2+C异号,又∵Ax1+By1+C与Ax2+By2+C异号,∴Ax1+By1+C与Ax3+By3+C同号.【点评】此例从理论上证明了二元一次不等式Ax+By+C>0,在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.。

专题33 线性规划问题(解析版)

专题33 线性规划问题(解析版)

专题33 线性规划问题例1.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为(0)x x 千万元,投资远洋捕捞队的资金为(0)y y 千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望E ξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.【解析】解:(1)随机变量ξ的可能取值为0.6y ,0,0.3y -, 随机变量ξ的分布列为,0.360.060.3E y y y ξ∴=-=;(2)根据题意得,x ,y 满足的条件为61200x y xy x y +⎧⎪⎪⎪⎨⎪⎪⎪⎩①,由频率分布直方图得本地养鱼场的年平均利润率为:0.30.20.5(0.1)0.20.50.10.2 1.00.30.22.00.50.2 1.00.20-⨯⨯+-⨯⨯+⨯⨯+⨯⨯+⨯⨯=,∴本地养鱼场的年利润为0.20x 千万元, ∴明年连个个项目的利润之和为0.20.3z x y =+,作出不等式组①所表示的平面区域若下图所示,即可行域. 当直线0.20.3z x y =+经过可行域上的点M 时,截距0.3z最大,即z 最大.解方程组612x yx y+=⎧⎪⎨=⎪⎩,得24xy=⎧⎨=⎩z∴的最大值为:0.2020.304 1.6⨯+⨯=千万元.即公司投资本地养鱼场和远洋捕捞队的资金应分别为2千万元、4千万元时,明年两个项目的利润之和的最大值为1.6千万元.例2.某渔业公司为了解投资收益情况,调查了旗下的养鱼场和远洋捕捞队近10个月的利润情况.根据所收集的数据得知,近10个月总投资养鱼场一千万元,获得的月利润频数分布表如下:近10个月总投资远洋捕捞队一千万元,获得的月利润频率分布直方图如下:(Ⅰ)根据上述数据,分别计算近10个月养鱼场与远洋捕捞队的月平均利润;(Ⅱ)公司计划用不超过6千万元的资金投资于养鱼场和远洋捕捞队,假设投资养鱼场的资金为(0)x x千万元,投资远洋捕捞队的资金为(0)y y千万元,且投资养鱼场的资金不少于投资远洋捕捞队的资金的2倍.试用调查数据,给出公司分配投资金额的建议,使得公司投资这两个项目的月平均利润之和最大.【解析】解:(Ⅰ)近10个月养鱼场的月平均利润为:0.220.11020.140.310.0210-⨯-⨯+⨯+⨯+⨯=(千万元)...⋯(3分) 近10个月远洋捕捞队的月平均利润为:0.30.20.50.20.110.10.210.30.2 1.50.50.210.16-⨯⨯-⨯⨯+⨯⨯+⨯⨯+⨯⨯=(千万元).(6分) (Ⅱ)依题意得x ,y 满足的条件为0062x y x y x y⎧⎪⎪⎨+⎪⎪⎩,..⋯(8分)设两个项目的利润之和为z ,则0.020.16z x y =+,⋯.⋯.(9分)如图所示,作直线0:0.020.160l x y +=,平移直线0l 知其过点A 时,z 取最大值,(10分) 由62x y x y +=⎧⎨=⎩,得42x y =⎧⎨=⎩,所以A 的坐标为(4,2),..⋯(11分)此时z 的最大值为0.080.320.4z =+=(千万元),所以公司投资养鱼场4千万元,远洋捕捞队2千万元时,两个项目的月平均利润之和最大...⋯(12分)例3.小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC (国际电工委员会)风能风区分类标准如表:某公司计划用不超过100万元的资金投资于A 、B 两个小型风能发电项目.调研结果是,未来一年内,位于一类风区的A 项目获利40%的可能性为0.6,亏损20%的可能性为0.4;B 项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.假设投资A 项目的资金为(0)x x 万元,投资B 项目资金为(0)y y 万元,且公司要求对A 项目的投资不得低于B 项目.(1)请根据公司投资限制条件,写出x ,y 满足的条件,并将它们表示在平面xOy 内; (2)记投资A ,B 项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望E ξ,E η; (3)根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z E E ξη=+的最大值,并据此给出公司分配投资金额建议.【解析】解:(Ⅰ)由题意,公司计划用不超过100万元的资金投资于A 、B 两个小型风能发电项目,公司要求对A 项目的投资不得低于B 项目可得 10000x y y x x y +⎧⎪⎪⎨⎪⎪⎩,表示的区域如图所示;(Ⅱ)随机变量ξ的分布列为0.240.080.16E x x x ξ∴=-=;随机变量η的分布列为0.210.020.19E y y y η∴=-=;(Ⅲ)0.160.19z E E x y ξη=+=+ 100x y y x +=⎧⎨=⎩,可得50x y == 根据图象,可得50x y ==时,估计一年后两个项目的平均利润之和z E E ξη=+的最大值为17.5万元. 例4.小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC (国际电工委员会)风能风区的分类标准如下: 某公司计划用不超过100万元的资金投资于A 、B 两个小型风能发电项目.调研结果是:未来一年内,位于一类风区的A 项目获利40%的可能性为0.6,亏损20%的可能性为0.4;B 项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.假设投资A 项目的资金为(0)x x 万元,投资B 项目资金为(0)y y 万元,且公司要求对A 项目的投资不得低于B 项目.(Ⅰ)记投资A ,B 项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望E ξ,E η; (Ⅱ)根据以上的条件和市场调研,试估计一年后两个项目的平均利润之和z E E ξη=+的最大值,并据此给出公司分配投资金额建议. 【解析】解:(1)A 项目投资利润ξ的分布列0.240.080.16E x x x ξ=-=B 项目投资利润η的分布列:0.210.020.19E y y y η=-=(2)0.160.19z E E x y ξη=+=+ 而100,0x y x y x y +⎧⎪⎨⎪⎩,作出可行域如右图, 由图可知,当50x =,50y =,公司获得获利最大,最大为17.5万元. 故建议给两公司各投资50万.例5.据IEC (国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:假设投资A 项目的资金为(0)x x 万元,投资B 项目资金为(0)y y 万元,调研结果是:未来一年内,位于一类风区的A 项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B 项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.(1)记投资A ,B 项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望E ξ,E η; (2)某公司计划用不超过100万元的资金投资于A ,B 项目,且公司要求对A 项目的投资不得低于B 项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z E E ξη=+的最大值. 【解析】解:(1)投资A 项目的资金为(0)x x 万元, 未来一年内,位于一类风区的A 项目获利30%的可能性为0.6, 亏损20%的可能性为0.4,A ∴项目投资利润ξ的分布列:0.180.080.1E x x x ξ∴=-=.投资B 项目资金为(0)y y 万元,未来一年内,位于二类风区的B 项目获利35%的可能性为0.6, 亏损10%的可能性是0.1,不赔不赚的可能性是0.3.B ∴项目投资利润η的分布列:0.210.010.2y y y η∴=-=.⋯(6分)(2)由题意知x ,y 满足的约束条件为100,0x y x y x y +⎧⎪⎨⎪⎩,⋯(9分)由(1)知,0.10.2z E E x y ξη=+=+, 当50x =,50y =,z ∴取得最大值15.∴对A 、B 项目各投资50万元,可使公司获得最大利润,最大利润是15万元.⋯(12分)例6.某矿业公司对A 、B 两个铁矿项目调研结果是:A 项目获利40%的可能性为0.6,亏损20%的可能性为0.4;B 项目获利35%的可能性为0.6,亏损10%的可能性为0.2,不赔不赚的可能性为0.2.现计划用不超过100万元的资金投资A 、B 两个项目,假设投资A 项目的资金为(0)x x 万元,投资B 项目的资金为(0)y y 万元,且公司要求对A 项目的投资不得低于B 项目.(1)请根据公司投资限制条件,写出x ,y 满足的条件,并将它们表示在平面xOy 内;(2)记投资A 、B 项目的利润分别为M 和N ,试写出随机变量M 与N 的分布列和期望()E M ,()E N ; (3)根据(1)的条件和调研结果,试估计两个项目的平均利润之和()()z E M E N =+的最大值. 【解析】解:(Ⅰ)由题意,公司计划用不超过100万元的资金投资于A 、B 两个小型风能发电项目,公司要求对A 项目的投资不得低于B 项目可得1000,0x y x y x y +⎧⎪⎨⎪⎩,表示的区域如图所示; (Ⅱ)随机变量ξ的分布列为0.240.080.16E x x x ξ∴=-=;随机变量η的分布列为0.210.020.19E y y y η∴=-=;(Ⅲ)0.160.19z EM EN x y =+=+,100x y x y +=⎧⎨=⎩,可得50x y ==,根据图象,可得50x y ==时,估计一年后两个项目的平均利润之和z EM EN =+的最大值为17.5万元.例7.假设每天从甲地去乙地的旅客人数X 是服从正态分布(800N ,250)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为0p .(Ⅰ)求0p 的值;(参考数据:若2~(,)X N μσ,有()0.6826P X μσμσ-<+=,(22)0.9544P X μσμσ-<+=,(33)0.9974P X μσμσ-<+=.)【解析】解:(Ⅰ)由于随机变量X 服从正态分布(800N ,250),故有800μ=,50σ=,(700900)0.9544P X <=.由正态分布的对称性,可得011((900)(800)(800900)(700900)0.977222p P X P X P X P X ==+<=+<= (Ⅱ)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为16002400x y +. 依题意,x ,y 还需满足:21x y +,7y x +,0(3660)P X x y p +. 由(Ⅰ)知,0(900)p P X =,故0(3660)P X x y p +等价于3660900x y +. 于是问题等价于求满足约束条件2173660900,0,,x y y x x y x y x y N+⎧⎪+⎪⎨+⎪⎪∈⎩且使目标函数16002400z x y =+达到最小值的x ,y .作可行域如图所示,可行域的三个顶点坐标分别为(5,12)P ,(7,14)Q ,(15,6)R .由图可知,当直线16002400z x y =+经过可行域的点P 时,直线16002400z x y =+在y 轴上截距2400z最小,即z 取得最小值.故应配备A型车5辆,B型车12辆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划应用题解析
1.某人有楼房一幢,室内面积共180㎡,拟分隔两类房间作为旅游客房.大每间面积为18㎡,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15㎡,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?
设应隔出大、小房间分别为x ,y 间,此时收益为z 元,则
1815180
1000600800000
x y x y x
y +≤⎧⎪+≤⎪

≥⎪⎪≥⎩ 200150z x y =+
将上述不等式组化为
6560
534000
x y x y x y +≤⎧⎪+≤⎪

≥⎪⎪≥⎩ 作出可行域,如图⑴,作直线l:200x+150y=0,即l:4x+3y=0. 将直线l 向右平移,得到经过可行域的点B ,且距原点最远的直线l 1. 解方程组
6560
5340
x y x y +=⎧⎨
+=⎩ 图⑴
得最优解
20
7
60
7
2.9
8.6 x
y
=≈


=≈

但是房间的间数为整数,所以,应找到是整数的最优解.
①当x=3时,代入5x+3y=40中,得401525
338
y-
==>,得整点(3,8),此时z=200×3+150×8=1800(元);
②当x=2时,代入6x+5y=60中,得601248
559
y-
==>,得整点(2,9),此时z=200×2+150×9=1750(元);
③当x=1时,代入6x+5y=60中,得60654
5510
y-
==>,得整点(1,10),此时z=200×1+150×10=1700(元);
④当x=0时,代入6x+5y=60中,得60
512
y==,得整点(0,12),此时
z=150×12=1800(元).
由上①~④知,最优整数解为(0,12)和(3,8).
答:有两套分隔房间的方案:其一是将楼房室内全部隔出小房间12间;其二是隔出大房间3间,小房间8间,两套方案都能获得最大收益为1800元.
2.某家具厂有方木料90m3,五合板60㎡,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3、五合板2㎡,生产每个书橱需要方木料0.2 m3、五合板1㎡,出售一张书桌可获得利润80元,出售一个书橱可获得利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使所得利润最大?
【解析】将已知数据列成下表:
用完五合板,此时获利润为80×300=24000(元);
⑵只生产书橱因为90÷0.2=450,600÷1=600,所以,可产生450个书橱,用完方木料.此时获利润为120×450=54000(元);
⑶若既安排生产书桌,也安排生产书橱 设安排生产书桌x 张,安排生产书橱y 个,可获利润z 0.10.290
260000
x y x y x y +≤⎧
⎪+≤⎪⎨
≥⎪⎪≥⎩
80120z x y =+,作出
可行域如图⑵,并作直
线l :80x+120y=0,即 2x+3y=0.将直线l 向右平移,得到经过可行
域的定点B 且距原点最远的直线l 1.
解方程组
0.10.290
2600
x y x y +=⎧⎨
+=⎩ 得最优解
100
400x y =⎧⎨
=⎩
此时,8010012040056000z =⨯+⨯=(元).
答:由上面⑴⑵⑶知:只安排生产书桌,可获利润24000元;只生产书
橱,可获利润为54000元;当生产书桌100张,书橱400个时,刚好用完方木料和五合板,且此时获得最大利润,为56000元.
(300,0),(0,600)
图⑵。

相关文档
最新文档