误差理论与数据处理第5版 费业泰答案.

合集下载

误差理论与数据处理作业答案 第五章

误差理论与数据处理作业答案 第五章

������1 X= ������ = C-1ATL 2 = 即解得 ������1 5.047 ������2 = 8.203 这就是 x1,x2 的最佳估计值,现在再求上述估计量的精度估计。 将最佳估计值代入误差方程可得 ������1 0.0834 ������2 0.0567 ������3 = −0.0399 ������4 −0.1145 得
6
������i = 0.00000451
i=1
设为等精度测量,测得数据标准差相同,为
1
误差理论与数据处理 作业
σ=
6 2 i=1 ������i
������ − ������ 0.00000451 6−3
=
=0.001226 为求出估计量 x1,x2,x3 的标准差,首先求出不定乘数 dij, 。dij 是矩阵 C-1 中各 元素,即 ������11 ������12 ������13 0.50 0.25 0.25 -1 ������ ������ ������ C = 21 = 0.25 0.50 0.25 22 23 ������31 ������32 ������33 0.25 0.25 0.50 则 d11=0.50,d22=0.50,d33=0.50 可得估计量的标准差为 σx1=σ ������11 =0.001226× 0.5= 0.000867 σx2=σ ������22 =0.001226× 0.5= 0.000867 σx3=σ ������33 =0.001226× 0.5= 0.000867
=
=0.112 为求出估计量 x1,x2 的标准差,首先求出不定乘数 dij, 。dij 是矩阵 C-1 中各元
3
误差理论与数据处理 作业
素,即 C-1= 则 d11=0.6276,d22=0.6659 可得估计量的标准差为 σx1=σ ������11 =0.112× 0.6276= 0.0887 σx2=σ ������22 =0.112× 0.6659= 0.0914 ������11 ������21 ������12 ������22 = 0.6276 −0.3278 −0.3278 0.6659

费业泰误差理论与数据处理课后答案全

费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

误差理论与数据处理第5版_费业泰答案

误差理论与数据处理第5版_费业泰答案

第一章 绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-4在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。

1-6检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-8用两种方法分别测量L 1=50mm ,L 2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。

《误差理论与数据处理(第)》费业泰主编习题答案

《误差理论与数据处理(第)》费业泰主编习题答案

1-4在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-6检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-8用两种方法分别测量L 1=50mm ,L 2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I >所以L 2=80mm 方法测量精度高。

1-10若用两种测量方法测量某零件的长度L 1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L 2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mmmI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mm m I μ123I I I <<第三种方法的测量精度最高2-4测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

168.41168.54168.59168.40168.505x ++++=168.488()mA =)(082.015512mA vi i=-=∑=σ0.037()x mA σ=== 或然误差:0.67450.67450.0370.025()x R mA σ==⨯= 平均误差:0.79790.79790.0370.030()x T mA σ==⨯=2-5在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

费业泰误差理论与数据处理课后答案全

费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章绪论1・7用二等标准活塞压力计测最某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的最值当作实际值。

故二等标准活塞压力计测最值的绝对误差二测得值一实际值==:・(Pa) o03相对误差二一一100% 0.3%100.5221 -9使用凯特摆时,g由公式g=4 n (hi+h2)/T给定。

今测出长度(hi+h2)为(士)m,振动时间T为(士)2s。

试求g及其最大相对误差o如果(hi+h2)测岀为(士)m,为了使g的误差能小于0.001 m/s,T的测量必须精确到多少?【解】测得(hi+h2)的平均值为(m),T的平均值为(s)。

42由g〒亍(h h2),得:当(hi h2)有微小变化(gh2)、T有T变化时,令h h2g的变化量为:g的最大相对误差为:如果(hl h2 )测出为(士)为使g的误差能小于0.001 m/s2,即:g 0.001422T9^2 [(hi h2)T(hl h2)] 0.001也即求得:T 0.00055(s)检定级(即引用误差为%)的全量程为100V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电压表是否合格?【解】引用误差二示值误差/测量范围上限o所以该电压表的引用误差为:rm vu® —2% 由于:2%<%Um 100所以该电压表合格。

1- 13多级弹导火箭的射程为10000km时,其射击偏离预定点不超过,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高0 0(.00001 伽 0 帧術 0.001%■ 0.002% 附加1- 1测得某三角块的三个个角度之和为180。

0(?解:相对误差等于:2 2 20.00000308641 0.000031%解: 多级火箭的相对误差为: 绝对误差等于: 180°00 02 180° 2 射手的相对误差为:多级火箭的射击精度高。

《误差理论与数据处理(第5版)》费业泰主编习题答案

《误差理论与数据处理(第5版)》费业泰主编习题答案

1-4在测量某一长度时,读数值为2.31m,其最大绝对误差为20m,试求其最大相对误差。

相对误差max绝对误差max测得值100% -620102.31100%8.66-410%1-6检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V刻度点的示值误差2V为最大误差,问该电压表是否合格?最大引用误差某量程最大示值误差测量范围上限100%2100100%2%2.5%该电压表合格1-8用两种方法分别测量L1=50mm,L2=80mm。

测得值各为50.004mm,80.006mm。

试评定两种方法测量精度的高低。

相对误差50.450L1:50mm100%0.008%I15080.680L2:80mm100%0.0075%I280I所以L2=80mm方法测量精度高。

1I211-10若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为11m和9m;而用第三种测量方法测量另一零件的长度L2=150mm。

其测量误差为12m,试比较三种测量方法精度的高低。

相对误差11mI1mm1102.32%I 9m2mm1100.0082%I 12m3mm1508.67%I第三种方法的测量精度最高3II212-4测量某电路电流共5次,测得数据(单位为mA)为50.5,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

x 80.7168.54168.59168.40168.505168.488(mA)5vi2i1510.82( m A)0.82x0.037(mA)n5或然误差:R0.67450.67450.0370.025(mA)x 2平均误差:T0.79790.79790.0370.030(mA)x2-5在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,2.33,20.0011。

费业泰误差理论与数据处理课后答案全

费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

费业泰误差理论与数据处理课后答案_百度文库(精)

费业泰误差理论与数据处理课后答案_百度文库(精)

《误差理论与数据处理》练习题参考答案第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。

1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。

第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。

现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。

误差理论与数据处理(费业泰)最全课后答案

误差理论与数据处理(费业泰)最全课后答案

误差理论习题答案1-4 在测量某一长度时,读数值为2.31m ,其最大绝对误差为 20um ,试求其最大相对误差。

解:最大相对误差≈(最大绝对误差)/测得值,所以642010 100%=8.6610%2.31--⨯≈⨯⨯最大相对误差1-5 使用凯特摆时,由公式21224h h g T π+=()给定。

今测出长度12()h h + 为(1.042300.00005)m ±, 振动时间 T 为(2.04800.0005)s ±,试求g 及最大相对误差。

如果 12()h h +测出为(1.042200.0005)m ±,为了使g 的误差能小于20.001/m s ,T 的 测量必须精确到多少?解:由21224()h h g T π+=得224 1.042309.81053/2.0480g m s π⨯== 对 21224()h h g T π+=进行全微分,令12h h h =+ 并令g h T ∆∆∆,,代替d d d g h T ,,得222348h h T g T T ππ∆∆∆=-从而2g h T g h T ∆∆∆=-的最大相对误差为:4max max max 0.000050.000522 5.362510%1.04230 2.0480g h T g h T -∆∆∆-=-=-⨯=⨯由21224()h h g Tπ+=,得T =,所以 2.04790T = 1-7 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为0~n X ,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差≤%n X S ,相对误差≤%n X S X,一般n X X ≤ ,故当X 越接近n X 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。

1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km,优秀选手能在距离50m 远处准确射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:火箭射击的相对误差:30.1100%10%10000-⨯= 选手射击的相对误差:20.02100%410%50-⨯=⨯ 所以,相比较可见火箭的射击精度高。

误差理论与数据处理第5版费业泰答案

误差理论与数据处理第5版费业泰答案

《误差理论与数据处理》练习题参考答案第一章 绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-4在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。

1-6检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-8用两种方法分别测量L 1=50mm ,L 2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。

1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

费业泰误差理论与数据处理课后解答全

费业泰误差理论与数据处理课后解答全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.042302.0480T T h h h h g h TTTT Tg h Th h hTT ππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈±如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001T g h h h h T Tπ∆∆=∆+-+<22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

误差理论及数据处理第5版第4章费业泰

误差理论及数据处理第5版第4章费业泰

第4章4-1 解:(1) 标准不确定度2342r r r 3C S V πππ=== 周长、面积、体积c 2s 23dc u ==20.0314drdsu ==20.0984drdvu =40.616drσπσσπσσπσ∴≈≈=≈r r r r v r r cmr cm r cm (2) 展伸不确定度p=0.99,v=9,查t 分布表得()0.99t 9=3.25则:23c c s s v v ku 0.1021cm、ku 0.3198cm 、ku 2.002cm U U U =≈=≈=≈4-2 解:111120.125Du f f σσ∂===∂ 12212220.1547f Du f f σσ∂==≈∂ 因两个分量相互独立,即0ij ρ=, 则放大率D的标准不确定度0.1989c u =≈4-3 解:10.0117U U Iu V U R σσ∂==≈∂ 220.0182R R U Iu R Rσσ∂==≈Ω∂则0.0177c u A =≈4-4 解:由题意知xx U u k=,查正态分布表得t=2.6,则k=2.6该电阻器的标准不确定度12949.622.6x x U u k μμΩ==≈Ω,属于B 类评定4-5 解:查正态分布表得t=3.00,则1230.450.300.250.15、0.10、0.083333m m mu m u m u m μμμμμμ====== 因三个分量互不相关,则0.1985c u m μ=≈4-6 解:(1) 1V 测量时电压表的标准不确定度只由电压表的示值误差引起,则6611015100.2V u V --⨯⨯==⨯(2) 分析测量方法,可知在标准条件下测量,对电压测量不确定度影响的主要因素有:标准电压表的示值稳定度引起的不确定度u 1;标准电压表的示值误差引起的不确定度u 2;电压测量重复性引起的不确定度u 3。

分析这些不确定度特点可知,u 1、u 2应采用B 类评定法,u 3应采用A 类评定。

费业泰误差理论与数据处理课后答案全

费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。

误差理论与数据处理 第五版第六单元 课后答案

误差理论与数据处理 第五版第六单元 课后答案

N
∑ xt yt = 1442.294 °C
t =1
∑ ∑ 1
N
⎛ ⎜⎝
N t =1
xt
⎞⎛ ⎟⎠ ⎜⎝
N t =1
yt
⎞ ⎟⎠
= 1606.392
°C
∑ ∑ ∑ lxy
=
N t =1
xt yt

1 N
⎛ ⎜⎝
N i =1
xt
⎞⎛ ⎟⎠ ⎜⎝
N i =1
yt
⎞ ⎟⎠
=
−164.098
°C
b = lxy = −353.4 °C lxx
Q υQ = 8.97
U
F=
υU
Q υQ
=6465.13
总计
S = lyy
= 58604
υS = N −1
(2)残余标准差
σ = Q υQ = 8.97°C = 2.99 °C
查表得
F0.01(υU ,υQ )
=F0.01(1,8) =11.26<F 故,高度显著
图 6-2
由概率论知 ( y − yˆ) σ 1+ 1 + (x − x)2 服从 t(N − 2) 分布,故 y 的 (1− α ) 置信区间为
4
5
6
1
0.0060 134.42 134.68 134.77 134.60 134.58 134.78
2
0.0084 137.66 137.74 137.72 137.41 137.56 137.55
3
0.0096 137.99 138.20 138.24 138.42 138.47 138.30
22150.37
2.50034

东南大学《误差理论与数据处理(第)》费业泰习题及答案

东南大学《误差理论与数据处理(第)》费业泰习题及答案

啊啦啦啦啦1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm0.008%100%5050004.501=⨯-=IL 2:80mm0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。

1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。

1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高第二章 误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

168.41168.54168.59168.40168.505x ++++=168.488()mA =)(082.015512mA v i i=-=∑=σ0.037()x mA σ=== 或然误差:0.67450.67450.0370.025()x R mA σ==⨯=平均误差:0.79790.79790.0370.030()x TmA σ==⨯=2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

误差理论与数据处理费业泰-课后答案全

误差理论与数据处理费业泰-课后答案全

《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=-=-( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(±)m ,振动时间T 为(±)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(±)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少【解】测得(h 1+h 2)的平均值为(m ),T 的平均值为(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(±)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定级(即引用误差为%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格【解】 引用误差=示值误差/测量范围上限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与数据处理》练习题参考答案第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-4在测量某一长度时,读数值为2.31m,其最大绝对误差为20,试求其最大相对误差。

1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。

1-6检定2.5级(即引用误差为2.5%)的全量程为100V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电压表是否合格?该电压表合格1-8用两种方法分别测量L1=50mm,L2=80mm。

测得值各为50.004mm,80.006mm。

试评定两种方法测量精度的高低。

相对误差L1:50mmL2:80mm所以L2=80mm方法测量精度高。

1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高? 解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。

1-10若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为和;而用第三种测量方法测量另一零件的长度L2=150mm。

其测量误差为,试比较三种测量方法精度的高低。

相对误差第三种方法的测量精度最高第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。

现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-4测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

或然误差:平均误差:2-5在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

正态分布p=99%时,测量结果:2-7用某仪器测量工件尺寸,在排除系统误差的条件下,其标准差,若要求测量结果的置信限为,当置信概率为99%时,试求必要的测量次数。

正态分布 p=99%时,2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。

2-10某时某地由气压表得到的读数(单位为Pa)为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

2-11测量某角度共两次,测得值为,,其标准差分别为,试求加权算术平均值及其标准差。

2-12甲、乙两测量者用正弦尺对一锥体的锥角各重复测量5次,测得值如下:试求其测量结果。

甲:乙:2-14重力加速度的20次测量具有平均值为、标准差为。

另外30次测量具有平均值为,标准差为。

假设这两组测量属于同一正态总体。

试求此50次测量的平均值和标准差。

2-15对某量进行10次测量,测得数据为14.7,15.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。

按贝塞尔公式按别捷尔斯法由得所以测量列中无系差存在。

2-16对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线圈比较得到的,测得结果如下(单位为mH):50.82,50.83,50.87,50.89;50.78,50.78,50.75,50.85,50.82,50.81。

试判断前4次与后6次测量中是否存在系统误差。

使用秩和检验法:排序:序号 1 2 3 4 5第一组第二组50.7550.78 50.78 50.81 50.82 序号 6 7 8 9 10第一组50.82 50.83 50.87 50.89 第二组50.85T=5.5+7+9+10=31.5 查表所以两组间存在系差2-19 对某量进行两组测量,测得数据如下:x i0.62 0.86 1.13 1.13 1.16 1.18 1.20 1.21 1.22 1.30 1.34 1.39 1.41 1.57 y i0.99 1.12 1.21 1.25 1.31 1.31 1.38 1.41 1.48 1.59 1.60 1.60 1.84 1.95试用秩和检验法判断两组测量值之间是否有系统误差。

解:按照秩和检验法要求,将两组数据混合排列成下表:T12345678910x i0.62 0.86 1.13 1.13 1.16 1.18 1.20y i0.99 1.12 1.21 T11121314151617181920x i 1.21 1.22 1.30 1.34 1.39 1.41 y i 1.25 1.31 1.31 1.38T2122232425262728x i 1.57y i 1.41 1.48 1.59 1.60 1.60 1.84 1.95现nx=14,ny=14,取xi的数据计算T,得T=154。

由;求出:现取概率2,即,查教材附表1有。

由于,因此,可以认为两组数据间没有系统误差。

第三章误差的合成与分配3-1相对测量时需用的量块组做标准件,量块组由四块量块研合而成,它们的基本尺寸为,,,。

经测量,它们的尺寸偏差及其测量极限误差分别为,,,。

试求量块组按基本尺寸使用时的修正值及给相对测量带来的测量误差。

修正值===0.4测量误差:===3-2 为求长方体体积,直接测量其各边长为,,,已知测量的系统误差为,,,测量的极限误差为,,,试求立方体的体积及其体积的极限误差。

体积V系统误差为:立方体体积实际大小为:测量体积最后结果表示为:3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、σ3 。

试求体积的标准差。

解:长方体的体积计算公式为:体积的标准差应为:现可求出:;;若:则有:若:则有:3-4 测量某电路的电流,电压,测量的标准差分别为,,求所耗功率及其标准差。

成线性关系3—9 按公式V=πr2h求圆柱体体积,若已知r约为2cm,h约为20cm,要使体积的相对误差等于1%,试问r和h测量时误差应为多少?解:若不考虑测量误差,圆柱体积为根据题意,体积测量的相对误差为1%,即测定体积的相对误差为:即现按等作用原则分配误差,可以求出测定r的误差应为:测定h的误差应为:3-11对某一质量进行4次重复测量,测得数据(单位g为428.6,429.2,426.5,430.8。

已知测量的已定系统误差测量的各极限误差分量及其相应的传递系数如下表所示。

若各误差均服从正态分布,试求该质量的最可信赖值及其极限误差。

序号极限误差/g 误差传递系数随机误差未定系统误差1 2 3 4 5 6 7 8 2.1---4.5-1.0--1.51.00.5-2.2-1.8111111.42.21最可信赖值测量结果表示为:第四章测量不确定度4—1 某圆球的半径为r,若重复10次测量得r±σr =(3.132±0.005cm,试求该圆球最大截面的圆周和面积及圆球体积的测量不确定度,置信概率P=99%。

解:①求圆球的最大截面的圆周的测量不确定度已知圆球的最大截面的圆周为:其标准不确定度应为:=0.0314cm确定包含因子。

查t分布表t0.01(9)=3.25,及K=3.25故圆球的最大截面的圆周的测量不确定度为:U=Ku=3.25×0.0314=0.102②求圆球的体积的测量不确定度圆球体积为:其标准不确定度应为:确定包含因子。

查t分布表t0.01(9)=3.25,及K=3.25最后确定的圆球的体积的测量不确定度为U=Ku=3.25×0.616=2.0024-4某校准证书说明,标称值10的标准电阻器的电阻R在20时为(P=99%),求该电阻器的标准不确定度,并说明属于哪一类评定的不确定度。

由校准证书说明给定属于B类评定的不确定度R在[10.000742-129,10.000742+129]范围内概率为99%,不为100%不属于均匀分布,属于正态分布当p=99%时,4-5在光学计上用52.5mm的量块组作为标准件测量圆柱体直径,量块组由三块量块研合而成,其尺寸分别是:,,,量块按“级”使用,经查手册得其研合误差分别不超过、、(取置信概率P=99.73%的正态分布),求该量块组引起的测量不确定度。

4—6 某数字电压表的说明书指出,该表在校准后的两年内,其2V量程的测量误差不超过±(14×10-6 读数+1×10-6×量程V,相对标准差为20%,若按均匀分布,求1V测量时电压表的标准不确定度;设在该表校准一年后,对标称值为1V的电压进行16次重复测量,得观测值的平均值为0.92857V,并由此算得单次测量的标准差为0.000036V,若以平均值作为测量的估计值,试分析影响测量结果不确定度的主要来源,分别求出不确定度分量,说明评定方法的类别,求测量结果的合成标准不确定度及其自由度。

622202*************22336115-1测量方程为试求x、y的最小二乘法处理及其相应精度。

误差方程为列正规方程代入数据得解得将x、y代入误差方程式测量数据的标准差为求解不定乘数解得x、y的精度分别为5-5不等精度测量的方程组如下:试求x、y的最小二乘法处理及其相应精度。

列误差方程正规方程为代入数据得解得将x、y代入误差方程可得则测量数据单位权标准差为求解不定乘数解得x、y的精度分别为6-1材料的抗剪强度与材料承受的正应力有关。

相关文档
最新文档