高三数学基础训练题集1-10套
高三数学基础训练题集1-10套(含答案)
图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5aA.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,则(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
高中数学基础训练测试及参考答案1-10
高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。
高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)
2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。
高三数学选择题专题训练(17套)含答案
(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。
那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高三数学试题及答案一轮
高三数学试题及答案一轮一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的图像与x轴有两个交点,则这两个交点的横坐标之和为:A. 1B. 2C. 3D. 42. 在等差数列{a_n}中,若a_1 + a_3 + a_5 = 9,a_2 + a_4 + a_6 = 15,则a_7的值为:A. 7B. 9C. 11D. 133. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1(a > 0,b > 0),若双曲线C的一条渐近线方程为y = √2x,则双曲线C的离心率为:A. √2B. √3C. 2D. 34. 函数f(x) = sin(x) + cos(x)的值域为:A. [-√2, √2]B. [-1, 1]C. [0, 2]D. [1, √2]5. 已知向量a = (1, 2),向量b = (2, -1),则向量a与向量b的数量积为:A. -1B. 0C. 1D. 36. 若直线l的方程为y = kx + 1,且直线l与圆x^2 + y^2 = 4相切,则k的值为:A. 1B. -1C. √3D. -√37. 已知函数f(x) = x^3 - 3x^2 + 2,若f'(x) = 0的根为x = 1或x = 2,则f(x)的极值点为:A. x = 1B. x = 2C. x = 1和x = 2D. 无极值点8. 已知抛物线C的方程为y^2 = 4x,若抛物线C上一点P到焦点的距离为5,则点P的横坐标为:A. 4B. 5C. 6D. 79. 已知三角形ABC的三边长分别为a、b、c,若a^2 + b^2 = c^2,且a = 3,b = 4,则三角形ABC的面积为:A. 3√3B. 4√3C. 6√3D. 8√310. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像开口向上,且f(1) = 0,f(2) = 0,则a + b + c的值为:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 已知等比数列{a_n}的首项为2,公比为3,其前n项和为S_n,则S_5 = ________。
高三数学基础练习题
A.1个B.2个C.3个D.4个
6.函数 为奇函数且 的周期为3, ,则 等于()
A.1B.0C.-1D.2
7.函数 的定义域是()
A. B.
C. D.
8.若 ,则 、 的值为()
A. =-5, = 4B. =1. =-2C. =4, =-5D. =-2 , =1
9.已知函数 且 ,满足 ,则 的值是()
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数
4.若 的图象按象量a平移得到 的图象,则向量a等于( )
A. B. C. D.
5.函数 的定义域为R,且 ,已知 为奇函数,当 时, ,那么当 时, 的递减区间是( )
A.充分但非必要条件B.必要但非充分条件
C.充要条件D.既非充分也非必要条件
4.一个年级有12个班,每一个班有50名学生,随机编号为1~50号,为了了解他们的课外兴趣爱好,要求每班的32号学生留下来进行问卷调查,这里运用的方法是()
A.分层抽样B.抽签法C.随机数表法D.系统抽样法
5.若直线x+ 2y+m= 0按向量 = (-1,-2)平移后与圆C:x2+y2+ 2x-4y= 0相切,则实数m的值等于()
13.如图,在四棱锥P-ABCD中,O为CD上的动点,四边形ABCD满足条件______时VP-AOB恒为定值.(写出你认为正确的一个即可)
14.若记号“*”表示求两个实数a与b的算术平均数的运算,即a*b= ,则两边均含有运算符号“*”和“+”,且对于任意三个实数a、b、c都能成立的一个等式是______.
15.设n≥2,若an是(1 +x)n展开式中含x2项的系数,则
等于.
高三数学练习题及答案
高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。
A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。
A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。
A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。
A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。
A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。
2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。
3. 不等式2x 3 > x + 1的解集为______。
4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。
5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。
三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。
2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。
3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。
4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。
5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。
6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。
7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。
高三数学小题专项训练10套(附答案)
高三数学小题专项训练(1)1.sin600︒ = ( )(A) –23 (B)–21. (C)23. (D) 21. 2.设A = { x| x ≥ 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2](C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( ) (A)23. (B)3. (C)32. (D)21. 4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为( ) (A)b. (B)2c b +. (C)2cosB. (D)2sinB. 5.当x ∈ R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a ≤ f ( x ) ≤ b, 则a + b 等于 ( ) (A)0 (B) 1 + 22. (C)1–22. (D)22–1.6、函数1232)(3+-=x x x f 在区间[0,1]上是( ) (A )单调递增的函数. (B )单调递减的函数.(C )先减后增的函数 . (D )先增后减的函数.7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )(A)1. (B)2 . (C)3 . (D)4.10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π < x< 0, 则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB >sinC.(4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B >C..其中,正确命题的个数是( )(A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是0.5元/km , 如果超过100km , 超过100km 部分按0.4元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .11、 . 12.高三数学小题专项训练(2)班级学号姓名得分1.函数1=(x>1)的反函数是()y-2x(A)y=1+log2x (x>1) (B)y=1+log2x (x>0)(C)y=-1+log2x (x>1) (D)y=log2(x-1) (x>1)2.设集合A={(x, y)| y=2si n2x},集合B={(x, y)| y=x},则()(A)A∪B中有3个元素(B)A∪B中有1个元素(C)A∪B中有2个元素(D)A∪B=R3.焦点在直线3x-4y-12=0上的抛物线的标准方程为()(A)x2=-12y(B)y2=8x或x2=-6y(C)y2=16x(D)x2=-12y或y2=16y4.在△ABC 中“A >B ”是“cos A <cos B ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既不充分也不必要条件5.已知mn ≠0,则方程mx 2+ny 2=1与mx +ny 2=0在同一坐标系下的图象可能是( )6.在数列{a n }中,已知1n n c a n +=+(c ∈R ),则对于任意正整数n 有( ) (A )a n <a n +1 (B )a n 与a n +1的大小关系和c 有关(C )a n >a n +1 (D )a n 与a n +1的大小关系和n 有关二.填空题:7.函数f (x)=12log (1)x -的定义域为 。
高三数学复习练习题及答案x
停课辅导期间数学专用材料一、集合与简易逻辑1.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,B≠∅,则函数m 的取值范围是____ A .-3≤m ≤4 B .-3<m <4 C .2<m <4 D . m ≤42.已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。
则实数P 的取值范围为 。
3.命题“若△ABC 有一内角为3π,则△ABC 的三内角成等差数列”的逆命题是( )A .与原命题真值相异B .与原命题的否命题真值相异C .与原命题的逆否命题的真值不同D .与原命题真值相同【参考答案】1. P ∈(-4,+∞) 2. D 3. D二、函数: 研究函数的问题一定要注意定义域优先的原则。
4.判断函数f(x)=(x -1)x x-+11的奇偶性为_______________5.函数y=3472+++kx kx kx 的定义域是一切实数,则实数k 的取值范围是_________6.设函数f(x)=132-+x x ,函数y=g(x)的图象与函数y=f -1(x+1)的图象关于直线y=x 对称,则g (3)=_____________7. 方程log 2(9x -1-5)-log 2(3 x -1-2)-2=0的解集为______________【参考答案】4. k ⎪⎭⎫⎢⎣⎡∈43,0 5. 非奇非偶 6. g ( 3 ) = 27 7. {x x = 2}三、数列8.x=ab 是a 、x 、b 成等比数列的( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 9.已知数列{a n }的前n 项和S n =a n -1(a 0,≠∈a R ),则数列{a n}___________ A.一定是A ²P B.一定是G ²PC.或者是A ²P 或者是G ²PD.既非等差数列又非等比数列10.A ²P {a n }中, a 1=25, S 17=S 9,则该数列的前____项之和最大,其最大值为_____。
高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3
高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高三数学试卷题目及答案
一、选择题(每题5分,共50分)1. 若函数$f(x) = x^3 - 3x + 2$在$x=1$处的切线斜率为2,则$f(x)$的导函数$f'(x)$在$x=1$处的值为:A. 1B. 2C. 3D. 42. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 4n^2 - 3n$,则该数列的首项$a_1$为:A. 5B. 6C. 7D. 83. 下列函数中,在定义域内单调递增的是:A. $f(x) = x^2 - 2x + 1$B. $f(x) = -x^2 + 2x - 1$C. $f(x) = 2x^3 - 3x^2 + 2x - 1$D. $f(x) = \frac{1}{x} + x$4. 若复数$z = a + bi$(其中$a, b \in \mathbb{R}$)满足$|z| = 1$,则$\text{arg}(z)$的取值范围是:A. $[0, \frac{\pi}{2}]$B. $[0, \pi]$C. $[-\frac{\pi}{2}, \frac{\pi}{2}]$D. $[-\pi, \pi]$5. 已知圆$C: x^2 + y^2 = 1$,点$P(1, 0)$到圆$C$的最短距离为:A. $\sqrt{2}$B. $1$C. $\frac{\sqrt{2}}{2}$D.$\frac{1}{\sqrt{2}}$6. 下列命题中,正确的是:A. 函数$y = \log_2(x-1)$的图像关于$y$轴对称B. 方程$x^3 - 3x + 2 = 0$的实根只有一个C. 等差数列$\{a_n\}$的前$n$项和$S_n$是关于$n$的二次函数D. 等比数列$\{a_n\}$的通项公式为$a_n = a_1 \cdot r^{n-1}$7. 若不等式$x^2 - 4x + 3 > 0$的解集为$A$,不等式$|x-2| < 1$的解集为$B$,则$A \cap B$为:A. $\{x | x < 1 \text{ 或 } x > 3\}$B. $\{x | 1 < x < 3\}$C. $\{x | x < 1 \text{ 或 } x > 2\}$D. $\{x | 1 < x < 2\}$8. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (2, -1)$,则$\vec{a} \cdot\vec{b}$的值为:A. 3B. -3C. 5D. -59. 已知函数$f(x) = e^x - x$,则$f'(x)$的值域为:A. $[1, +\infty)$B. $(-\infty, 1]$C. $[1, 0]$D. $[0, +\infty)$10. 若等差数列$\{a_n\}$的前$n$项和为$S_n = \frac{n(3n+1)}{2}$,则该数列的公差$d$为:A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)1. 函数$f(x) = x^3 - 3x + 2$的极值点为__________。
高三数学试题大全
高三数学试题答案及解析1.点P是以F1、F2为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为()A.B.C.D.【答案】D【解析】略2.已知正数满足,则的最大值为A.B.C.D.【答案】C【解析】略3.已知焦点在轴上的双曲线的渐近线方程是,则该双曲线的离心率为().【答案】【解析】略4.有6个座位连成一排,三人就座,恰有两个空位相邻的概率是()A.B.C.D.【答案】B【解析】略5.在用样本频率估计总体分布的过程中,下列说法正确的是A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确【答案】C【解析】略6.已知p:2+3=5,q:5<4,则下列判断错误的是( )A.“p或q”为真,“¬p”为假B.“p且q”为假,“¬q”为真C.“p且q”为假,“¬p”为假D.“p且q”为真,“p或q”为假【答案】D【解析】略7.已知向量,向量,且,则实数等于(A.9B.C.D.【答案】A【解析】略8.已知函数是定义在R上的奇函数,其最小正周期为3, 且()A.4B.2C.-2D.【答案】C【解析】略9.若集合,则A∩B=()A.[-1,0]B.[0,+)C.[1,+)D.(- ,-1)【答案】B【解析】略10.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)【答案】D【解析】略11.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是()A. 6cm3B. 12 cm3C. 16 cm3D. 18 cm3【答案】A【解析】略12.选修4-1:几何证明选讲如图,圆O的直径AB=10,弦DE⊥AB于点H,AH=2。
高三数学专题训练- 椭圆的定义、标准方程及性质
高三数学专题练习30 椭圆的定义、标准方程及性质小题基础练○30一、选择题1.椭圆x 24+y 2=1的离心率为( ) A.12 B.32C.52 D .2 答案:B解析:由题意得a =2,b =1,则c =3,所以椭圆的离心率e =c a =32,故选B.2.[2019·佛山模拟]若椭圆mx 2+ny 2=1的离心率为12,则m n =( )A.34B.43C.32或233D.34或43 答案:D解析:若焦点在x 轴上,则方程化为x 21m +y 21n =1,依题意得1m -1n 1m=14,所以m n =34;若焦点在y 轴上,则方程化为y 21n +x 21m=1,同理可得m n =43.所以所求值为34或43.故选D.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2答案:B解析:因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.故选B.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3C.3-12 D.3-1 答案:D解析:在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D.5.[2019·河南豫北重点中学联考]已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△P AB 的面积为( )A .2 B.24 C.12 D .1 答案:D解析:由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △P AB =12×2a ×22=1,故选D.6.[2019·河南安阳模拟]已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1→·(OF1→+OP →)=0(O为坐标原点).若|PF1→|=2|PF 2→|,则椭圆的离心率为( ) A.6- 3 B.6-32C.6- 5D.6-52 答案:A解析:以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由PF 1→·(OF 1→+OP →)=0知此平行四边形的对角线互相垂直,则此平行四边形为菱形,∴|OP |=|OF 1|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则⎩⎪⎨⎪⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴⎩⎪⎨⎪⎧a =2+12x ,c =32x ,∴e =c a =32+1=6-3,故选A.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3C .6D .8 答案:C解析:由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x+3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.故选C.8.[2019·黑龙江大庆模拟]已知直线l :y =kx 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,其中右焦点F 的坐标为(c,0),且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫22,1B.⎝⎛⎦⎥⎤0,22C.⎝⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22 答案:C解析:由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA |=|OF |=c ,由|OA |>b ,即c >b ,可得c 2>b 2=a 2-c 2,即c 2>12a 2,可得22<e <1.故选C.二、非选择题9.[2019·河南开封模拟]如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q .则动点Q 的轨迹Γ的方程为________.答案:x 24+y 2=1解析:连接QF ,因为Q 在线段PF 的垂直平分线上,所以|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4.又|EF |=23<4,得Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆即x 24+y 2=1.10.[2019·金华模拟]如果方程x 2+ky 2=2表示焦点在x 轴上,且焦距为3的椭圆,则椭圆的短轴长为________.答案: 5解析:方程x 2+ky 2=2可化为x 22+y 22k=1,则⎝ ⎛⎭⎪⎫322+2k =2⇒2k =54,∴短轴长为2×52= 5.11.[2019·陕西检测]已知P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2取最大值时cos ∠F 1PF 2=13,则椭圆的离心率为________.答案:33解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y 2b 2=1与y轴的交点,由余弦定理及椭圆的定义得2a 2-2a23=4c 2,即a =3c ,所以椭圆的离心率e =c a =33.12.[2019·“超级全能生”联考]已知椭圆C :x 28+y 22=1与圆M :x 2+y 2+22x +2-r 2=0(0<r <2),过椭圆C 的上顶点P 作圆M 的两条切线分别与椭圆C 相交于A ,B 两点(不同于P 点),则直线P A 与直线PB 的斜率之积等于________.答案:1解析:由题可得,圆心为M (-2,0),P (0,2).设切线方程为y =kx + 2.由点到直线的距离公式得,d =|-2k +2|1+k2=r ,化简得(2-r 2)k 2-4k +(2-r 2)=0,则k 1k 2=1.课时增分练○30一、选择题 1.[2019·河北省五校联考]以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案:D解析:设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,12×2cb =1⇒bc =1,2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时,等号成立.故选D.2.[2019·深圳模拟]过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1B.x 210+y 215=1 C.x 215+y 210=1 D.x 210+y 25=1答案:C解析:椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y210=1.故选C.3.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12, 又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.故选A.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 答案:D解析:如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2,tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14. 故选D. 5.[2019·广西桂林柳州联考]已知点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点.若PF 1⊥PF 2,tan ∠PF 2F 1=2,则椭圆的离心率e 为( )A.53B.13C.23D.12 答案:A解析:∵点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,PF 1⊥PF 2,tan ∠PF 2F 1=2,∴|PF 1||PF 2|=2.设|PF 2|=x ,则|PF 1|=2x ,由椭圆定义知x +2x =2a ,∴x =2a 3,∴|PF 2|=2a3,则|PF 1|=4a 3.由勾股定理知|PF 2|2+|PF 1|2=|F 1F 2|2,解得c =53a ,∴e =c a =53.故选A.6.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为 ( )A .6B .5C .4D .3 答案:A解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.故选A.7.[2019·贵州遵义联考]已知m 是两个数2,8的等比中项,则圆锥曲线x 2+y2m =1的离心率为( )A.32或52B.32或 5C.32 D. 5 答案:B解析:由题意得m 2=16,解得m =4或m =-4.当m =4时,曲线方程为x 2+y 24=1,故其离心率e 1=c a = 1-b 2a 2= 1-14=32;当m =-4时,曲线方程为x 2-y 24=1,故其离心率e 2=c a = 1+b 2a 2= 1+4= 5.所以曲线的离心率为32或 5.故选B.8.若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A.⎝ ⎛⎭⎪⎫55,35B.⎝⎛⎭⎪⎫0,25C.⎝ ⎛⎭⎪⎫25,35D.⎝ ⎛⎭⎪⎫35,55答案:A解析:由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外,则⎩⎨⎧a >b2+c ,b <b2+c ,整理得⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c ,解得55<e <35.故选A.二、非选择题9.[2019·铜川模拟]已知椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆交于点A 、B ,当△F AB 的周长最大时,△F AB 的面积是________.答案:3 解析:如图,设椭圆的右焦点为E ,连接AE 、BE .由椭圆的定义得,△F AB 的周长为|AB |+|AF |+|BF |=|AB |+(2a -|AE |)+(2a -|BE |)=4a +|AB |-|AE |-|BE |.∵|AE |+|BE |≥|AB |,∴|AB |-|AE |-|BE |≤0,∴|AB |+|AF |+|BF |=4a +|AB |-|AE |-|BE |≤4a .当直线AB 过点E 时取等号,此时直线x =m =c =1,把x =1代入椭圆x 24+y 23=1得y =±32,∴|AB |=3.∴当△F AB 的周长最大时,△F AB的面积是12×3×|EF |=12×3×2=3.10.[2019·辽宁沈阳东北育才学校月考]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A ,B 是C 的长轴的两个端点,点M 是C 上的一点,满足∠MAB =30°,∠MBA =45°.设椭圆C 的离心率为e ,则e 2=________.答案:1-33 解析:由椭圆的对称性,设M (x 0,y 0),y 0>0,A (-a,0),B (a,0).因为∠MAB =30°,∠MBA =45°,所以k BM =y 0x 0-a =-1,k AM =y 0x 0+a=33.又因为x 20a 2+y 20b 2=1,三等式联立消去x 0,y 0可得b 2a 2=33=1-e 2,所以e 2=1-33.11.[2019·云南昆明一中月考]已知中心在原点O ,焦点在x轴上的椭圆E 过点C (0,1),离心率为22.(1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解析:(1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0).当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝⎛⎭⎪⎫-1,22,此时|AB |=2,则S △OAB =12×2×1=22,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 2),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0, 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23得|y 1-y 2|=43.11因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k ·-4k 21+2k 2+2k =2k 1+2k 2, y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k 21+2k 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4k 2(1+2k 2)2+4k 21+2k 2=43,所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.。
高三数学高考附加题专项练习套卷(10套)
高考附加题专项练习(一)1.过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t tt y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数相交于A 、B 两点.求线段AB 的长.2.已知(n x 的展开式中前三项的系数成等差数列.(Ⅰ)求n 的值;(Ⅱ)求展开式中系数最大的项.3.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且点P 到点F (0,1)和直线l 的距离之和为4.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)过点Q (0,-1)作曲线C 的切线,求所作的切线与曲线C 所围成的区域的面积.4.如图,正方题1111D C B A ABCD -中,M 是棱1BB 的中点。
⑴求直线M A 1与平面1AMC 所成角的正弦值; ⑵求二面角11A MC A --的余弦值。
BEAFDC高考附加题专项练习(二)1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,1AB AF ==.(Ⅰ) 求二面角A-DF-B 的大小;(Ⅱ) 在线段AC 上找一点P,使PF 与AD 所成的角为600,试确定点P 的位置.2.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程;(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.3. 某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (2)求η的分布列及期望E η.4. 求曲线x x x y 223++-=与x 轴所围成的图形的面积高考附加题专项练习(三)1.已知圆的极坐标方程为θθρsin 5cos 35-=,求它的半径和圆心的极坐标。
2某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。
2012届深圳中学高三数学基础练习1
深圳中学2012届数学基础练习1(理科)命题人: 郭本龙一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U R =,集合{}37A x x =≤<,{}27100B x x x =-+<,则()R C A B =IA .(,3)(5,)-∞+∞UB .(,3)[5,)-∞+∞UC .(,3][5,)-∞+∞UD .(,3](5,)-∞+∞U2.设集合1{|,24k M x x k ==+∈Z },1{|,42k N x x k ==+∈Z },则 A .N M =B.M NC. M ND.∅=N M3.集合{M x x =∈Z 且1210x∈-N },则M 的非空真子集的个数是 A .30 B.32 C.62 D.64 4.命题“2,210x R x x ∃∈-+<”的否定是A .2,210x R x x ∃∈-+≥B .2,210x R x x ∃∈-+>C .2,210x R x x ∀∈-+≥D .2,210x R x x ∀∈-+<5.设命题23:|23|1,:12x p x q x --<≤-,则p 是q 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数34(2)()2(2)1x x f x x x ⎧-≤⎪=⎨>⎪-⎩,则当()1f x ≥时,自变量x 的取值范围为A .5[1,]3B .5[,3]3C .5(,1)[,)3-∞+∞D .5(,1][,3]3-∞7.设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是A. [2,)+∞B. [2,)+∞C. (0,2]D. [2,1][2,3]--⋃ 8.设()11xf x x +=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +=== 则()2009=f x A .1x - B .x C .11x x -+ D .11x x+-二、填空题:(本大题共6小题,每小题5分,共30分.)9.阅读如图所示的程序框图,若输出y 的值为0,则输入x 的值为_________.10.不等式|1||2|x x k +-->的解集为R ,则实数k 的取值范围为_____________.11.若2()2f x x ax =-+与()1ag x x =+在区间[1,2] 上都是减函数,则a 的取值范围是____________. 12.若,m n 是关于x 的方程2260x ax a -++=的两个 实根,则22(1)(1)m n -+-的最小值是_________.13.方程220x ax +-=在区间[1,5]上有解,则a 的取值范围是__________.14.设2,||1(),||1x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[0,)+∞,则()g x 的值域是_________________.深圳中学2012届数学基础练习1(文科)命题人: 郭本龙一、选择题(本大题共10小题,每小题5分,共50分。
高三数学等差数列选择题专项训练单元 期末复习测试基础卷(1)
一、等差数列选择题1.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019 B .4040C .2020D .4038解析:B 【分析】由等差数列的性质可得52012016024a a a a +==+,则()15202020202016202010102a a a a S +=⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+()12020202052016202010104101040402a a a a S +===⨯=+⨯⨯ 故选:B2.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .9解析:A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A3.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C4.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.5.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48C .56D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.6.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .5解析:A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A7.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<解析:D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D.8.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11C .50D .55解析:D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D.9.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161C .141D .151解析:B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B10.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .103解析:D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.11.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36C .48D .64解析:B 【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B12.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .919解析:D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D13.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .0解析:A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.14.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B.二、等差数列多选题16.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小 B .130S =C .49S S =D .70a =解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.17.题目文件丢失!18.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 19.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 20.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为12解析:ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.21.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值解析:BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.22.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.23.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.24.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ;D .{}n a 的前n 项和21n S n n =++(*n N ∈).解析:AC【分析】直接利用等差数列的定义性质判断数列是否为等差数列.【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误.故选:AC【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.25.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( )A .0d <B .70a >C .{}n S 中5S 最大D .49a a <解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学基础训练一一.选择题:1.复数,则在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,则A.16 B.16或-16 C.32 D.32或-32 3.已知向量a =(x,1),b =(3,6),ab ,则实数的值为( )A. B. C.D.4.经过圆的圆心且斜率为1的直线方程为( )A. B.C.D.5.已知函数是定义在R上的奇函数,当时,,则( )A.B.C. D.6.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.65 7.下列函数中最小正周期不为π的是A.B.g(x)=tan()C. D.8.命题“”的否命题是A. B.若,则C. D.9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A.6 B.24 C.12 D.3210.已知抛物线的方程为,过点和点的直线与抛物线没有公共点,则实数的取值范围是A.B.C.D.二.填空题:11.函数的定义域为.12.如图所示的算法流程图中,输出S的值为.13.已知实数满足则的最大值为_______.14.已知,若时,恒成立,则实数的取值范围______ 三.解答题:已知R.(1)求函数的最小正周期;(2)求函数的最大值,并指出此时的值.高三数学基础训练二一.选择题:1.在等差数列中, ,则其前9项的和S9等于 ( )A.18 B.27 C.36 D.92.函数的最小正周期为 ( )A. B. C. D.3.已知命题p: ,命题q :,且p是q的充分条件,则实数的取值范围是:( )A.(-1,6) B.[-1,6] C. D.4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
,153~160号)。
若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是 ( ) A.4 B.5 C.6 D.75.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是( )A. B. C.24 D.486.在右图的程序框图中,改程序框图输出的结果是28,则序号①应填入的条件是 ( ) A. K>2 B. K>3 C.K>4 D.K>57.已知直线l与圆C:相切于第二象限,并且直线l在两坐标轴上的截距之和等于,则直线l与两坐标轴所围城的三角形的面积为( )A.B.C.1或3D.8.设是两个平面,.m是两条直线,下列命题中,可以判断的是( )A.B.C.D..9.若定义在R上的函数图像关于点(-,0)成中心对称,对任意的实数都有,且,,则的值为( )A.-2 B.-1 C.0 D.110.函数的图像恒过定点A,若A在直线mx+ny+1=0上,其中m.n均为正数,则的最小值为( )A.2B.4C.6D.8二.填空题:11.在复平面内,复数1+i与-1+3i分别对应向量其中O为坐标原点,则||=12.设等比例的前n项和为=13.在△ABC中,角A.B.C所对的边分别为a.b.c,若则cosA=14.已知F1 F2是双曲线(a>0,b>0)的两个焦点,以线段F1 F2为边作正△M F1 F2,若边MF1的中点在双曲线上,则双曲线的离心率e= .三.解答题:若函数的图像的任意两条对称轴之间的距离的最小值为,(1)当时,求f(x)的减区间;(2)若将函数f(x)的图像向右平移(0<<)个单位后所得函数为g(x),若g(x)为偶函数,求高三数学基础训练三一、选择题:1.设集合{2,1,0,1,2},{|12},()S T x R x ST =--=∈+≤=S 则C ( )A .∅B .{2}C .{1,2}D .{0,1,2}2.已知向量(1)(12)n n ==--,,,a b ,若a 与b 共线,则n 等于( )A .1B C .2D .43.函数221y x x =++在x =1处的导数等于( )A .2B .3C .4D .54.设p :0m ≤,q :关于x 的方程20x x m +-=有实数根,则p ⌝是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.已知函数()sin 4f x x πω⎛⎫=+⎪⎝⎭()0>ω的最小正周期为π,则该函数的图象( ) A .关于点⎪⎭⎫⎝⎛0,4π对称B .关于直线8π=x 对称C .关于点⎪⎭⎫⎝⎛0,8π对称 D .关于直线4π=x 对称 6.一个四边形的四个内角成等差数列,最小角为40,则最大角为( )A .140B .120C .100D .80 7.函数xe xf x1)(-=的零点所在的区间是( ) A .)21,0( B .)1,21( C .)23,1( D .)2,23(8.函数2log log 21x y x =++的值域是( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞9.如果我们定义一种运算:g g h h ⎧⊗=⎨⎩ (),(),g h g h ≥<已知函数()21xf x =⊗,那么函数(1)f x -的大致图象是( )10.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定 二、填空题:11.函数3()31f x x x =-+的单调减区间是 ;12.定义在R 上的奇函数f (x )满足(1)()f x f x +=-,若(0.5)1,f =则(7.5)f =________; 13.知抛物线和双曲线都经过点(1,2)M ,它们在x 轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是 .14.设n S 是等比数列{}n a 的前n 项和,对于等比数列{}n a ,有真命题:p 若396,,S S S 成等差数列,则4107,,a a a 成等差数列 。
请将命题q 补充完整,使它也是真命题,命题q 若,,m n l S S S 成等差数列,则 成等差数列(只要一个符合要求的答案即可) 三、解答题已知数列{}n a 是等差数列,且355,9a a ==,n S 是数列{}n a 的前n 项和. (I) 求数列{}n a 的通项公式n a 及前n 项和n S ; (II) 若数列{}n b满足n b =,且n T 是数列{}n b 的前n 项和,求n b 与n T .高三数学基础训练四一、选择题1.函数x x f 21)(-=的定义域为( )A .]0,(-∞B .),0[+∞C .)0,(-∞D .),(+∞-∞2.已知集合{}{}032,422<--=<=x x x N x x M ,则集合=N M ( )A .{}2-<x xB .{}3>x xC .{}32<<x xD .{}21<<-x x 3.函数lg ||x y x=的图象大致是 ( )A .B .C .D .4.已知定义域为)1,1(-的奇函数)(x f y =又是减函数,且0)9()3(2<-+-a f a f ,则a 的取值范围是( )A .)3,22(B .)10,3(C .)4,22(D .)3,2(- 5.m 、n 是不同的直线,γβα,,是不同的平面,有以下四个命题①γβγαβα//////⇒⎩⎨⎧ ②βαβα⊥⇒⎩⎨⎧⊥m m //③βαβα⊥⇒⎩⎨⎧⊥//m m ④αα////m n n m ⇒⎩⎨⎧⊂ 其中为真命题的是 ( )A .①④B .①③C .②③D .②④6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )正视图侧视图俯视图A.34000cm 3 B.38000cm 3C.32000cm D.34000cm 7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 8.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示 B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示9.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫作总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大10.从装有2个红球和2个黒球的袋内任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个黒球与都是黒球 B .至多有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 A.{3,4,5} C. {3,4,5,6} D. {5,6,7,8} 二、填空题:11.函数)34(log 221+-=x x y 的递减区间为______________.12.如果数据x 1、x 2、…、x n 的平均值为x ,方差为S 2,则3x 1+5、3x 2+5、…、3x n +5 的平均值为 ,方差为 .13.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是 . 14.在圆x 2+y 2-5x=0内,过点(23,25)有n 条长度成等到差数列的弦,最小弦长为a 1,最大弦长为a n.若公差d ]31,61[∈,那么n 的取值集合是三、解答题:已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1) 当l 经过圆心C 时,求直线l 的方程; (2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.高三数学基础训练五一、选择题:1.已知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=( )A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+2.设复数121212z i z bi z =+=+⋅,,若z 为实数,则b= ( ) A .2 B .1 C .-1 D .-23.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += ( ) A .135 B .100 C .95 D .804.在边长为1的等边△ABC 中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则( ) A .32-B .0C .32D .3 5.在△中,,则等于( ) A .6π B .3πC .23πD .56π6.已知直线l m n ,,及平面α,下列命题中是假命题的是 ( ) A .若l ∥m ,m ∥n ,则l ∥n ; B .若l ∥α,n ∥α,则l ∥n . C .若l m ⊥,m ∥n ,则l n ⊥; D .若,l n α⊥∥α,则l n ⊥;7.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 ( ) A .(1)f p +>0 B .(1)f p +<0 C .(1)f p +=0 D .(1)f p +的符号不能确定 8.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为( )A .2 B .2 C .2 D .109.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 ( ) A .13 B .23 C .19 D .2910.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数;能使命题甲、乙均为真的所有函数的序号是 ( )A .①②B .①③C .②D .③ 二、填空题:11.在),(41,,,,,,222a cb Sc b a C B A ABC -+=∆若其面积所对的边分别为角中 A ∠则= 。