算数平方根与平方根立方根综合题

合集下载

数学下册综合算式专项练习题平方根与立方根运算

数学下册综合算式专项练习题平方根与立方根运算

数学下册综合算式专项练习题平方根与立方根运算在数学中,平方根与立方根是两个常用的数学运算。

平方根指的是一个数的平方等于这个数本身的非负实数解;而立方根则是一个数的立方等于这个数本身的实数解。

掌握平方根与立方根的运算规则对于解决综合算式能力的提升非常重要。

本文将介绍几道综合算式专项练习题,旨在帮助读者加深对平方根与立方根的运算理解。

第一题:计算下列各式的平方根和立方根。

1. √1442. ∛643. √6254. ∛729解析:1. √144 = 12,因为12 × 12 = 144。

2. ∛64 = 4,因为4 × 4 × 4 = 64。

3. √625 = 25,因为25 × 25 = 625。

4. ∛729 = 9,因为9 × 9 × 9 = 729。

通过上述计算可见,计算平方根即找到一个数的平方等于这个数本身的非负实数解;计算立方根即找到一个数的立方等于这个数本身的实数解。

第二题:计算下列各式的各次方根。

1. 16的平方根2. 8的立方根3. 27的平方根4. 81的立方根解析:1. 16的平方根= √16 = 4,因为4 × 4 = 16。

2. 8的立方根 = ∛8 = 2,因为2 × 2 × 2 = 8。

3. 27的平方根= √27,不能简化为整数,因此答案为一个分数。

4. 81的立方根 = ∛81 = 3,因为3 × 3 × 3 = 81。

此题展示了求任意次方根的方法,其中有些数的次方根可以直接得到整数解,而有些数则需要通过分数来表示。

第三题:利用平方根求解以下几个几何问题。

1. 一片正方形田地的边长为4米,求其面积。

2. 一个圆形花坛的半径为6米,求其面积。

3. 一个正三角形的边长为10米,求其面积。

解析:1. 正方形田地的面积 = 边长 ×边长 = 4 × 4 = 16平方米。

平方根_立方根综合练习(二) (1).

平方根_立方根综合练习(二) (1).

第十章 平方根 立方根综合练习(二)一 平方根【例题精选】: 例1:求下列各数的平方根: (1)81 (2)1625(3)214(4)0.49解:(1)∵()±=9812,∴81的平方根是±9,即:±=±819(2)∵±⎛⎝ ⎫⎭⎪=4516252,∴1625的平方根是±45,即:±=±162545(3)∵2149432942=±⎛⎝ ⎫⎭⎪=,,∴214的平方根是±32,即:±=±=±2149432(4)∵()±=070492..,∴0.49的平方根是±07.,即:±=±04907..例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。

(1)-64(2)0(3)()-142 (4)102-解:(1)因为-64是负数,所以-64没有平方根。

(2)0有一个平方根,它是0。

(3)∵()-=>1419602,所以()-142有两个平方根,且()±-=±=±14196142(14)因为10110022-=>,所以102-有两个平方根,且±=±⎛⎝ ⎫⎭⎪=±-1011011022例3:求下列各数的算术平方根: (1)25 (2)4964(3)0.81 (4)81解:(1)∵5252=∴25的算术平方根是5即:255=(2)∵7849642⎛⎝ ⎫⎭⎪=,∴4964的算术平方根是78即:496478=(3)∵090812..= ∴0.81的算术平方根是0.9即:08109..=(4)∵819=(注:计算81的算术平方根,也就是计算9的算术平方根。

) ∵9的算术平方根是3∴81的算术平方根是3例4:求下列各式的值:(1)144(2)-36121 (3)±00001.(4)214116+解:(1)∵121442=,∴14412=(2)∵611361212⎛⎝ ⎫⎭⎪=,∴-=-36121611(3)∵()001000012..=,∴±=±00001001..(4)21411694116321474+=+=+= 例5:(1)已知正方形的边长为5cm ,求这个正方形的面积;(2)已知正方形的面积是25cm 2,求这个正方形的边长。

平方根立方根计算题50道计算题

平方根立方根计算题50道计算题

平方根立方根计算题50道计算题一、平方根计算题(25道)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. √(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. √(16)- 解析:4^2 = 16,则√(16)=4。

4. √(25)- 解析:因为5^2 = 25,所以√(25)=5。

5. √(36)- 解析:6^2 = 36,故√(36)=6。

6. √(49)- 解析:7^2 = 49,所以√(49)=7。

7. √(64)- 解析:8^2 = 64,则√(64)=8。

8. √(81)- 解析:9^2 = 81,所以√(81)=9。

9. √(100)- 解析:10^2 = 100,故√(100)=10。

10. √(121)- 解析:11^2 = 121,所以√(121)=11。

11. √(144)- 解析:12^2 = 144,则√(144)=12。

12. √(169)- 解析:13^2 = 169,所以√(169)=13。

13. √(196)- 解析:14^2 = 196,故√(196)=14。

14. √(225)- 解析:15^2 = 225,所以√(225)=15。

15. √(0.04)- 解析:0.2^2 = 0.04,所以√(0.04)=0.2。

16. √(0.09)- 解析:0.3^2 = 0.09,则√(0.09)=0.3。

17. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。

18. √(0.25)- 解析:0.5^2 = 0.25,故√(0.25)=0.5。

19. √(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

20. √(2frac{1){4}}- 解析:把带分数化为假分数,2(1)/(4)=(9)/(4),由于((3)/(2))^2=(9)/(4),所以√(2frac{1){4}}=(3)/(2)。

八年级数学上册综合算式专项练习题平方根与立方根的计算

八年级数学上册综合算式专项练习题平方根与立方根的计算

八年级数学上册综合算式专项练习题平方根与立方根的计算在八年级数学上册中,综合算式是非常重要的一部分内容。

而在综合算式中,平方根与立方根的计算也是一个关键的知识点。

本文将为大家提供一些关于平方根与立方根计算的专项练习题。

1. 题目一:计算下列算式的平方根(1) √169(2) √225(3) √400(4) √576(5) √100解析:(1) √169 = 13(2) √225 = 15(3) √400 = 20(4) √576 = 24(5) √100 = 102. 题目二:计算下列算式的立方根(1) ³√8(2) ³√64(3) ³√125(4) ³√216(5) ³√1000解析:(1) ³√8 = 2(2) ³√64 = 4(3) ³√125 = 5(4) ³√216 = 6(5) ³√1000 = 103. 题目三:计算下列算式(1) (√16)² + (√25)²(2) (√81)² - (√49)²(3) (√256)² ÷ (√16)²(4) (√121)² × (√9)²(5) (√400)² - (√625)²解析:(1) (√16)² + (√25)² = 16 + 25 = 41(2) (√81)² - (√49)² = 81 - 49 = 32(3) (√256)² ÷ (√16)² = 256 ÷ 16 = 16(4) (√121)² × (√9)² = 121 × 9 = 1089(5) (√400)² - (√625)² = 400 - 625 = -2254. 题目四:计算下列算式的平方根与立方根(1) √(a² + b²)(2) ³√(a³ + b³)(3) (√a) × (√b)(4) (√a) ÷ (√b)(5) ³√(a³ - b³)解析:(1) √(a² + b²):将两个数的平方相加,再开平方根(2) ³√(a³ + b³):将两个数的立方相加,再求立方根(3) (√a) × (√b):将两个数分别开平方根,再相乘(4) (√a) ÷ (√b):将两个数分别开平方根,再相除(5) ³√(a³ - b³):将两个数的立方相减,再求立方根通过以上综合算式的专项练习题,我们可以更加熟练地掌握平方根与立方根的计算方法。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

部编数学七年级下册专题09算术平方根与立方根的综合运用(解析版)含答案

部编数学七年级下册专题09算术平方根与立方根的综合运用(解析版)含答案

专题09 算术平方根与立方根的综合运用【例题讲解】已知4是32a -的算术平方根,215a b --的立方根为5-.(1)求a 和b 的值;(2)求24b a --的平方根.【详解】(1)解:∵4是32a -的算术平方根,∴3216a -=,∴6a =,∵215a b --的立方根为5-,∴215125a b --=-,∴2156125b -´-=-,∴37b =.(2)解:242376464b a --=´--=,64的平方根为8±,∴24b a --的平方根为8±.【综合解答】1270-=,那么6()a b +的立方根是( )A .-1B .1C .3D .7【答案】B【解析】【分析】根据非负数的性质,得出a ,b 的值,再代入计算即可.【详解】:270-=,0=,3270b -=∴3640a +=,3270b -=,∴a=-4,b=3,∴6()a b +=1,∴6()a b +的立方根为1,故答案为:B .【点睛】本题考查了非负数的性质和立方根,掌握非负数的性质是解题的关键.2的值为( )A .114-B .114±C .154D .134【答案】A【解析】【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.【详解】原式1300.52=---++11300.524=---++324=-;故答案为:A.【点睛】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.3 1.442=0.6694=等于( )A .57.68B .115.36C .26.776D .53.552【答案】C【解析】【分析】根据立方根的运算法则即可.【详解】440.669410426.776===´´=,故答案为:C .【点睛】进行正确的拆分.4.下列计算正确的是( ).A 3B 8=±C 7=-D 13=-【答案】D【解析】【分析】根据立方根、算术平方根、绝对值等知识逐项进行计算即可求解.【详解】,故原选项计算错误,不合题意;B.8=,故原选项计算错误,不合题意;C. 7=,故原选项计算错误,不合题意;D. 13=-,故原选项计算正确,符合题意.故选:D【点睛】本题考查了立方根、算术平方根等知识,理解立方根、算术平方根的意义并正确计算化简是解题关键.5.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C【解析】【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16Q 4(2)=16-,\16的4次方根是2±,故不符合题意;B.5232=Q ,5(2)32-=-,\32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y \> 且1,1,x y >>,x y \>\当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.6.已知a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,则x 和y 分别是( )A .,1001000a x y b ==B .1000,1000b x a y ==-C .,1000100a x y b ==-D .,1000100a x yb ==【答案】C【解析】【分析】根据题意,x 的算术平方根和-b 的立方根,然后根据x 的算术平方根和a 的算术平方根即可求出x 与a 的关系,根据-b 的立方根和y 的立方根关系即可求出y 与b 的关系.【详解】解:∵a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,∴x 的算术平方根是1.23,-b 的立方根是45.6∵1.23=110×12.3,456=10×45.6∴x =2110a æöç÷èø,y=103(-b )即,1000100a x yb ==-故选C .【点睛】此题考查的是平方根、算术平方根和立方根,根据两数算术平方根的关系推出这两数的关系和两数立方根的关系推出这两数的关系是解题关键.7.实数a ___________.【答案】8【解析】【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=,故答案为:8.【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.8.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.【答案】0.【解析】【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.9.已知21a -的平方根是±3,b +2 的立方根是2,则b a -的算术平方根是___________【答案】1【解析】【分析】先根据平方根,立方根的定义列出关于a 、b 的方程,求出a 、b 后再代入进行计算求出b a -的值,然后根据算术平方根的定义求解.【详解】解:根据题意得,2a-1=(±3)2=9,b+2 =23,∴a=5,b=6,∴b-a=1,∴b a-的算术平方根是1,故答案是:1.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.10.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.【解析】【分析】先根据2a−1的平方根是±3,3a+b+10的立方根是3得出21931027aa b-=ìí++=î,解之求出a、b的值,再利用算术平方根定义得出答案.【详解】解:∵2a−1的平方根是±3,3a+b+10的立方根是3,∴21931027aa b-=ìí++=î,解得a=5,b=2,∴a+b=7,则a+b【点睛】本题主要考查立方根、平方根、算术平方根,解题的关键是掌握立方根、平方根、算术平方根的定义.11.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,则a+2b+c的算术平方根为_____.【答案】4【解析】【分析】由题意首先根据平方根与立方根的概念可得2a-1与3a+b-9的值,进而可得a 、b 的大小,可得c 的值,进而可得a+2b+c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a-1=9,3a+b-9=8;解得:a=5,b=2;又有7<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.故答案为:4.【点睛】本题主要考查平方根、立方根、算术平方根的定义及无理数的估算能力,熟练掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法是解题的关键.12A B ,则A +B =________.【答案】【解析】【详解】===A+B=三、解答题13.()20151-.(2)已知∶2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.(3)已知a b -3是400.【答案】(1)114;(2)m +2n =13;=6【解析】【分析】(1)首先进行开方和乘方运算,再进行有理数的加减运算,即可求得;(2)根据平方根的定义得出方程,解方程即可分别求得m 、n 的值,据此即可解答;(3) 根据无理数的估算和算术平方根的定义,即可求得a 、b 的值,据此即可解答.【详解】解:(1) ()20151+-52314=+-- 114=(2)Q 2m +2的平方根是±4,3m +n +1的平方根是±5,2216m \+=,3m +n +1=25,解得m =7,n =3,272313m n \+=+´=;(3)\,13,13a \=,又Q b -3是400的算术平方根,400的算术平方根是20,320b \-=,解得b =23,6==.【点睛】本题考查了二次根式的加减混合运算,平方根和算术平方根的定义,无理数的估算,代数式求值问题,熟练掌握和运用各运算法则和方法是解决本题的关键.14.已知4是32a -的算术平方根,2+a b 的立方根是2.C 的整数部分.(1)求a ,b ,c 的值;(2)求2a b c -+的平方根.【答案】(1)6a =,1b =, 5c =(2)3±【解析】【分析】(1)根据算术平方根和立方根的定义列出式子,解出a ,b ,c 的值即可.(2)将(1)中所求数值代入,并计算平方根即可.(1)解:由题有2324a -=,322a b +=解得: 6a =;1b =.<∴5< ,∴5c =,即:6a =,1b =,5c =;(2)(2)解:把6a =,1b =,5c =,代入2a b c -+得26215a b c -+=-´+,29a b c -+=,∴2a b c -+的平方根是3±.【点睛】本题考查算术平方根,平方根,立方根的定义,无理数的整数部分,熟练理解平方根,算术平方根,立方根的定义是解题的关键.15.(1)计算:①②(2)求方程中的x 的值①()242160x +-=②()32621127x -+=【答案】(1)①12;②142)①0x =或4x =-;②23x =【解析】【分析】(1)根据算术平方根以及立方根进行计算即可;(2)根据算术平方根以及立方根解方程即可.【详解】(1)①解:原式=()442-´-48=+12=②解:原式=()())563114-----+-563114=-+++14=(2)①()242160x +-=()224x +=22x +=±解得0x =或4x =-②()32621127x -+=()312127x -=1213x -=解得23x =【点睛】本题考查了算术平方根以及立方根,掌握算术平方根以及立方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.16.(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分,求3a b c -+的平方根.(3)3a =,求a b +的立方根.【答案】(1)49;(2)4±;(3)-1【解析】【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根.【详解】解:(1)解:依题意:3210a a -++=,解得4a =-,37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34<<解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -³ìí-³î,得2b =,代入3a =,得3a =-1ab +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.17.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)=2.154=4.642,=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.18.观察下列各式,并用所得出的规律解决问题:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873» 1.225»»_____»______.(31=10=100=,……小数点的变化规律是_______________________.(4 2.154»0.2154»-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2 3.873» 1.225»12.25»0.3873»;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154»0.2154»-,0.2154»,0.2154»-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

平方根算术平方根立方根的求法习题集

平方根算术平方根立方根的求法习题集

平方根立方根的计算一、填空题1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4既 的平方根是 5.非负的平方根叫 平方根6.如果9=x ,那么x =________;如果92=x ,那么=x ________; 7.若一个实数的算术平方根等于它的立方根,则这个数是_________; 8.算术平方根等于它本身的数有________,立方根等于本身的数有________.9. x ==则 ,若,x x =-=则 。

10.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ; 11.当______m 时,m -3有意义;当______m 时,33-m 有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 13.21++a 的最小值是________,此时a 的取值是________.14_______;9的平方根是_______. 15.144的算术平方根是 ,16的平方根是 ; 16.327= , 64-的立方根是 ; 17.7的平方根为 ,21.1= ;18.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 19.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 20.当x= 时,13-x 有意义;当x= 时,325+x 有意义; 21.若164=x ,则x= ;若813=n,则n= ; 22.若3x x =,则x= ;若x x -=2,则x ; 23.若0|2|1=-++y x ,则x+y= ; 24.计算:381264273292531+-+= ;25.2)8(-= , 2)8(= 。

26.9的算术平方根是 ,16的算术平方根是 ;27.210-的算术平方根是 ,0)5(-的平方根是 ; 28.一个正数有 个平方根,0有 个平方根,负数 平方根. 29.一个数的平方等于49,则这个数是 30.16的算术平方根是 ,平方根是 31.一个负数的平方等于81,则这个负数是32.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 33.25的平方根是 ; (-4)2的平方根是 。

平方根与立方根的综合应用试题

平方根与立方根的综合应用试题

平方根与立方根的综合运用平方根和立方根的区别与联系:个数叫做例题1 的立方根是( ) A. -8B. -4C. -2D. 不存在解析:先根据算术平方根的定义求出,再根据立方根的定义进行计算。

答案:解:∵-=-8,∴-的立方根是-2。

故选C 。

点拨:本题考查了立方根的定义、算术平方根的定义,先化简-是解题的关键。

例题2 (高淳一模)在①2的平方根是;②2的平方根是±;③2的立方根是;④2的立方根是±中,正确的结论有几个( )A. 1个B. 2个C. 3个D. 4个解析:根据立方根、平方根的定义分别求出2的平方根与立方根,则可求得答案。

答案:解:∵2的平方根是±,2的立方根是,∴②③正确,①④错误;∴正确的结论有2个。

故选B。

点拨:此题主要考查了平方根与立方根的定义和性质。

注意熟记定义是解此题的关键。

满分训练判断下列各式是否正确成立。

(1)=2(2)=3•(3)=4(4)=5判断完以后,你有什么体会?你能否得到更一般的结论?若能,请写出你的一般结论。

解析:经过对上述式子的计算,可得出式子均正确,故可得出结论为=n。

答案:解:能。

由已知(1)=2(2)=3•(3)=4(4)=5经观察发现,上述的等式均满足这样的规律:=n,故推广后可得=n。

点拨:本题要求学生具有一定的观察能力和总结规律的能力。

1. 如果一个有理数的平方根和立方根相同,那么这个数是()A. ±1B. 0C. 1D. 0和12. 如果是数a的立方根,-是b的一个平方根,则a10×(-b)9等于()A. 2B. -2C. 1D. 13. 要使,则a 的取值范围是( )A. 4a ≥B. 4a ≤C. 4a =D. 任意数4. 下列说法:(1)1的平方根是1;(2)-1的平方根是-1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根。

其中正确的有( )A. 1个B. 2个C. 3个D. 4个5.(黄冈)下列说法中正确的是( )A.是一个无理数B. 函数的自变量x 的取值范围是x >1C. 8的立方根是±2D. 若点P (-2,a )和点Q (b ,-3)关于x 轴对称,则a +b 的值为5 6. 一个自然数a 的算术平方根为x ,则a +1的立方根是( ) A.B.C.D.7. 若一个数的平方根为±8,则这个数的立方根为____________。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

(完整版)平方根、立方根综合练习题

(完整版)平方根、立方根综合练习题

平方根、立方根综合练习题、填空题1 .如果x 9,那么x = ___________ 如果X 9,那么x ____________2 •如果x的一个平方根是7.12,那么另一个平方根是__________ .3 .一个正数的两个平方根的和是 ___________ .一个正数的两个平方根的商是4. ________________________________________________________ 若一个实数的算术平方根等于它的立方根,则这个数是 ______________________ ;5. _________________________________ 算术平方根等于它本身的数有___ 立方根等于本身的数有 ___________________ .6 .阿的平方根是__________ ,百的算术平方根是__________ , 10 2的算术平方根是_________ ; J16的平方根是_________ ;9的立方根是 _____ ; _______ 的平方根是H 037.若一个数的平方根是8,则这个数的立方根是___________ ;8 .当m ______ 时,、3 m有意义;当m _______ 时,Vm 3有意义;9. ___________________________________________ 若一个正数的平方根是2a 1和a 2,则a __________________________________ ,这个正数是________ ;11. _________________________ a 1 2的最小值是_________ 此时a的取值是;10.已知2a 1 (b 3)212. 2x 1的算术平方根是2,则x= __________ ;13. _______________________________ .5 2的相反数是_______________ ;绝对值是 __________________________________14. 在数轴上表示______________________ .3的点离原点的距离是o二、选择题1. 9的算术平方根是()A . -3B . 3C . ± 3D . 812 •下列计算不正确的是()A. -.4=± 2 B . , ( 9)2.81=9C. 3 0.064 =0.4 D . \ 216 =-63.下列说法中不正确的是( )A . 9的算术平方根是3B . . 16的平方根是土 2C . 27的立方根是土D .立方根等于-1的实数是-14 . 3 64的平方根是( A . ± 8 B . ± 4 5.-1的平方的立方根是81A . 4 B86 .下列说法错误的是(A. ,( 1)2 1B.313C.2的平方根是D.81的平方根是7 . ..( 3)2的值是(A. 38 .设x 、y 为实数,且y则x y 的值是(A. 1B. 9C. 49.下列各数没有平方根的是D. 5 ).10. 计算' 25 3 8的结果是()A.3B.7C.-3D.-711. 若a= \3 ,b=- I —. 2 I , c= VT2)3,则a、b、c的大小关系是()A.a >b>cB.c >a>bC.b >a>cD.c > b> a12 .如果3x 5有意义,则x可以取的最小整数为().A. 0 B . 1 C . 2 D . 313. 一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1 B . x2+1 C . X+1 D . x2114. 若2m-4与3m-1是同一个数的平方根,则m的值是()A . -3B . 1C . -3 或 1D . -115 .已知x, y是实数,且.3x 4 + (y-3 ) =0,则xy的值是()9 9A . 4B . -4C . —D .--4 416 .若一个数的平方根是2m-4与3m-1,则m的值是()A . -3 B.1C.3 D . -117 .已知x, y是实数,且3x 4 +(y-3) 2=0, 则xy的值是()A . 4 B.-4C9 D .--44三、计算、求值1 .求下列各数的平方根.9 15(1) 100; (2) 0; (3)旦;(4) 1; (5) 1竺;(6) 0 . 09 .25 49A . —( —2 )B .( 3)3C ..(_1)2D . 11.13、解方程(4)、(2x-1 ) 2-169=0;(5)、丄 2(x+3) 3=4.(6)、x 3 -10= 17(7) x 2 182(8) 2x3 5(9) - (x+3) 2=8.2四.比较大小,并说理由。

七年级数学专题06 平方根、立方根知识讲解(解析版)

七年级数学专题06 平方根、立方根知识讲解(解析版)

专题06 平方根、立方根知识讲解知识点一:算术平方根、平方根、立方根概念【例1-1】(2020·广东东莞月考)在下列各式中正确的是( )A 3=-B .2=C 8=D 3=【答案】D.3, ∴选项A 错误;∵±2, ∴选项B 错误;4, ∴选项C 错误;3,∴选项D 正确. 故答案为:D .【例1-2】(2021·河北邯郸期末) ) A .0.2的平方根 B .0.2-的算术平方根 C .0.2的负的平方根 D .0.2-的平方根【答案】C.【解析】解:由平方根的定义可得0.2的平方根为:,其中为0.2的负的平方根 故答案为:C .【例1-3】(2020·四川通江县月考)下列说法中,正确的是( ) A .9的平方根是3 B .25-的平方根是5-C .任何一个非负数的平方根都是非负数D .一个正数的平方根有2个,它们互为相反数 【答案】D.【解析】解:A 、9的平方根是±3,错误; B 、−25的没有平方根,错误;C 、任何一个非负数的算术平方根都是非负数,错误;D 、一个正数的平方根有2个,它们互为相反数,正确. 故答案为:D .【例1-4】(2020·鹿邑县期末)若3109,b a =-且b 的算术平方根为4,则a =__________. 【答案】5.【解析】解:∵b 的算术平方根为4, ∴b=16, ∴16=a 3-109 ∴a =5. 故答案为:5.【变式1-1】(2020·福建永春月考)下列说法中,不正确的是( ) A .非负数才有平方根B .非负数的算术平方根是非负数C .任何数都有两个平方根D .负数没有平方根【答案】C.【解析】解:A. 非负数才有平方根,正确; B. 非负数的算术平方根是非负数,正确; C. 0只有1个平方根,错误; D. 负数没有平方根,正确. 故答案为:C .【变式1-2】(2020·山东济南期中)若30a ++=,则+a b 的立方根是______. 【答案】-1.【解析】解:∵30a ++=, ∴3+a=0, 2-b=0, ∴a=-3,b=2 ∴a+b=-1∴a+b 的立方根-1. 故答案为:-1.【变式1-3】(2019·河北邢台期末)有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m . 【答案】1.【解析】解:设正方体集装箱的棱长为a , ∵体积为64m 3,∴=4m ;设体积达到125m 3的棱长为b ,则=5m , ∴b-a=5-4=1(m ). 故答案为:1.【变式1-4】对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2与的值互为相反数,求1- 【答案】见解析.【解析】解:(1)答案不唯一.0=, 8与﹣8互为相反数; (2)由已知,得(3﹣2x )+(x +5)=0, 解得x =8,∴1=1﹣4=﹣3.【变式1-5】(2020·________,2________.【答案】32.,9的算术平方根为33.22,故答案为:32.【变式1-6】(2019·海南海口月考)已知a 的整数,31a b +-的平方根是4±, (1)求,a b 的值; (2)求2+a b 的平方根.【答案】(1)a=5;b=2;(2)±3.<<,且a 的整数, ∴a=5∵3a+b-1的平方根是±4, ∴3a+b-1=16 ∴b=2(2)当a=5,b=2时,a+2b=9 ∴a+2b 的平方根为:±3.知识点二:算术平方根、平方根、立方根性质【例2-1】(2020·海伦市期中)某数x 的两个不同的平方根是23a +与15a -,则x 的值是( ) A .11 B .121C .4D .11±【答案】B.【解析】解:由题意得:2a+3+a-15=0 解得:a=4当a=4时,2a+3=11 则x=112=121. 故答案为:B .【变式2-1】已知一个正数m 的平方根为2n +1和4﹣3n . (1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少? 【答案】(1)121;(2)2.【解析】解:(1)由正数m 的平方根互为相反数,得: 2n +1+4﹣3n =0, ∴n =5, ∴2n +1=11, ∴m =112=121;(2)∵|a ﹣3|(c ﹣n )2=0, ∴a =3,b =0,c =n =5, ∴a +b +c =3+0+5=8, ∴a +b +c 的立方根是2.【变式2-2】(2021·河北唐山期末)如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.【答案】36.【解析】解:由题意得: 2x-2+6-3x=0, 解得x=4,a=62=36 故答案为:36.【例2-2】(2020·江苏南通月考)若x ,y 为实数,且20x +=,则2021x y ⎛⎫⎪⎝⎭的值为( ) A .1 B .-1C .2D .-2【答案】B.【解析】解:由题意得: x+2=0,y-2=0 ∴x=-2,y=2∴2021202122x y ⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭=-1故答案为:B.【例2-3】﹣2x ﹣1=0,则x =_____. 【答案】0或﹣1或﹣12.﹣2x ﹣1=0,=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0, 解得x =0或x =﹣1或x =﹣12. 故答案为:0或﹣1或﹣12. 知识点三:综合题型【例3-1】(渠县月考)求下列各式中的x 的值 (1)21(1)82x +=;(2)3(21)270x -+= 【答案】(1)x=3或x=5;(2)x=-1.【解析】解:(1)两边乘以2得,(x+1)2=16, x+1=4或x+1=-4(2)(2x-1)3=-27 2x-1=-3 x=-1【变式3-1】(2020·江苏苏州月考)求下列各式中的x . (1)24120x -= (2)()216281x -= 【答案】见解析. 【解析】解:(1)4x 2=12 x 2=3(2)(x-2)2=8116 x-2=94或x-2=-94x=174或x=-14【变式3-2】(2020·剑阁县月考)(1)已知:m 3=8,n 2=9,且mn <0,求m 2-2mn+n 2的值. (2)已知a =5,b 2=9,(c-1)2=4,且ab >0,bc <0,求式子ab-bc-ca 的值. 【答案】(1)25;(2)23或39. 【解析】解:(1)由m 3=8,得m=2, 由n 2=9,得n=±3, 由mn <0,得:m=2,n=-3 当m=2,n=-3时, m 2-2mn+n 2=4+12+9=25 (2)由题意知a=±5, 由b 2=9得:b=±3, 由(c-1)2=4,得:c=3或-1 ∵ab >0,bc <0 ∴a 、b 同号,b 、c 异号当a=5,b=3,c=-1时,原式=15+3+5=23 当a=-5,b=-3,c=3时,原式=15+9+15=39. 【例4-1】(2020·浙江杭州期中)解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -+=,求d +c 的平方根. 【答案】(1)x =5,169或x=-21,1521;(2)±3. 【解析】解:(1)解:①由题意得:2x+3+x-18=0, 解得:x=5这个数是(2×5+3)2=169. ②2x+3=x-18,解得x=-21 这个数是(-21-18)2=1521; (2)由题意得:2c -d =0,d 2-36=0, 解得:d=±6,c=±3. 当d =-6,c =-3时,d +c =-9(没有平方根), 当d=6,c=3时,d+c=9,平方根为±3. 【例4-2】(2020·河南周口期中)在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品. 下面我们用四个卡片代表四名同学(如图):(1)列式,并计算:①﹣3经过A ,B ,C ,D 的顺序运算后,结果是多少? ②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是55,a 是多少? 【答案】(1)①7;②206;(2)-1或-11. 【解析】解:(1)①()23256-⨯--+⎡⎤⎣⎦ =(-6+5)2+6=1+7 =7②()25526--⨯+⎡⎤⎣⎦, =(5+5)2×2+6 =100×2+6 =206(2)由题意得:2(a+6)2-(-5)=55, 整理得:(a+6)2=25, a+6=5或a+6=-5 ∴a=-1或a=-11.【变式4-1】已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的值. 【答案】12.【解析】解:∵2x +1的算术平方根是0, ∴2x +1=0, ∴2x =﹣1,=4,∴y =16,∵z 是﹣27的立方根, ∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12.【变式4-2】(2020·乐清市月考)有一个数值转换器,流程如下:当输入的x 值为64时,输出的y 值是( )A .4BC .2D 【答案】B.,是有理数,8的立方根是2,是有理数,2 故答案为:B .【例5-1】(2020·浙江期中),( ) A .287.2 B .28.72 C .13.33 D .133.3【答案】C.1.3331013.33==≈⨯=. 故答案为:C .【例5-2】(2020· 2.449≈7.746≈≈______. 【答案】0.07746.7.746=0.0774*******≈ 故答案为:0.07746.【例5-3】(2020·余干县月考)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<34<<,可得3040<<, 由此能确定59319的立方根的十位数是3 因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.【答案】(1)①两;②8;③5;④58;(2)①24;②56.==,1000<195112<1000000【解析】解:(1100∴<100,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,83=512,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<,<<,∴56<<,可得5060由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.===,则【变式5-1】(2020·0.5325______________________.【答案】11.47【解析】解:=1.147,===⨯=1.1471011.47故答案为: 11.47.【变式5-2】(2019· 1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10)C.D【答案】B.1之后,扩大10倍即可实现,故答案为:B.【变式5-3】(2020·山西大同月考)观察下表,回答问题:(1)表格中x=_________________,y=_________________;(2)用一句话描述你发现的规律:_________________;(3)根据你发现的规律填空:≈≈≈,2.714=_________________;②58.48≈,则a=_________________.【答案】(1)0.1,10;(2)在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;(3)①0.2714;②200000.【解析】解:(1)根据题意,立方根的被开方数扩大1000倍,立方根扩大10倍;∴x=0.1,y=10;故答案为:0.1;10.(2)在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;==≈;(30.2714≈,0.5848∴1001000.584858.48≈⨯=,≈,58.48≈=100∴a=200000;故答案为:①0.2714;②200000.【例6-1】(2020·成都双流月考)定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[=﹣2,按此规定,[1﹣=_____.【答案】-4.∴4<5,∴﹣4>﹣5,∴﹣3>1﹣4,故,[1﹣=﹣4.故答案为:﹣4.【例6-2】(2020·x的所有整数x的和是_____.【答案】2.【解析】解:∵﹣21,2<3,x的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【例6-3】(2020·太原市月考)比较大小______0.5 .(填“>”,“<”或“= ”)【答案】>.1>1故答案为:>.【例6-4】对于实数x,我们规定[]x表示不大于x的最大整数,如==-=-,现对85进行如下操作:[5]5,1,[ 3.5]4第1次第2次第3次,这样对85只需3次操作后−−−→=−−−→=−−−→=85931就变为1.类似地,按照以上操作只需进行3次操作后变为1的所有整数中,最大的正整数是________.【答案】255.=,x为正整数,则1≤,【解析】解:设1∴1≤y<4,即最大正整数是3;=,y为正整数,则3≤,设3∴9≤y<16,即最大正整数是15;=,z为正整数,则15≤,设15∴225≤z<256,即最大正整数是255.∴只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【例7-1】(2020·舟山普陀区期中)我们规定,对数轴上的任意点P进行如下操作:先将点P表示的数乘以-1,再把所得数对应的点向右平移2个单位,得到点P的对应点P′,现对数轴上的点A,B进行以上操作,分别得到点A′,B′.(1)若点A 对应的数是1,则点A ′对应的数x =_________, 若点B ′对应的数是4,则点B 对应的数y =_________; (2)在(1)的条件下,求代数式x -4y 算术平方根. 【答案】(1)x=1,y=-2;(2)3.【解析】解:(1) 设P 点表示的数为x ,P′表示的数为-x+2,点A 对应的数是1,则点A ′对应的数x =-1+2=1,点B ′对应的数是4,则点B 对应的数y =4×(-1)+2=-4+2=-2, 故答案为:x=1;y=-2,(2)由(1)求出,x=1,y=-2,代数式x -4y 的值为=1-4×(-2)=9, 代数式x -4y 算术平方根为3.【例7-2】(2019·河北保定期中)先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数).【解析】解:(1)14−141+=1120,=1120(2)=1+1 n−1 n 1+=1+()1n n 1+ (n 为正整数). 【变式7-1】(2019·北京昌平期中)如图,是一个无理数筛选器的工作流程图. (1)当x 为16时,y 值为_____;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y x值是否唯一,如果不唯一,请写出其中的两个.【答案】(1)(2)存在,当x=0,1时,始终输不出y值;(3)x<0;(4)x的值不唯一.x=3或x=9.【解析】解:(1)当x=16,则(2)当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)当x<0时,导致开平方运算无法进行;(4)x的值不唯一.x=3或x=9.【例8-1】(2020·湖北黄冈期末)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间t(单位:s)与细线的长度l(单位:m)之间满足关系2t=0.4m时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】1.3.【解析】解:把l=0.4m代入关系式2t=得,∴12=0.45tπππ=⨯≈1.3(秒).【变式8-1】(2020·陕西宝鸡月考)自由下落的物体的高度h(m)与下落时间t(s)的关系为h=4.9t2.有一学生不慎让一个足球从19.6m高的楼上自由落下,刚好另有一学生站在与下落的足球在同一直线的地面上,在足球下落的同时,楼上的学生惊叫一声,若楼下的学生听到惊叫后开始躲.问:这时楼下的学生听到惊叫后能躲开下落的足球吗?(声音的速度为340m/s)【答案】能躲开.【解析】解:足球下落的时间:,学生的声音传播到楼下的时间:t=19.6340=0.06s由2>0.06所以楼下的学生能躲开.【变式8-2】(汉中南郑区期中)如图,每个小正方形的边长均为1,阴影部分是一个正方形.(1)阴影部分的面积是__________,边长是____________;(2)写出不大于阴影正方形边长的所有正整数;(3)a为阴影正方形边长的小数部分,b的整数部分,求+a b的值.【答案】(1)13(2)1,2,3;(3【解析】解:(1)阴影部分面积为:1554232512132⨯-⨯⨯⨯=-=,∵阴影部分是一个正方形,故答案为:13(21,2,3.(3)∵34<,∴3a =,∵34<< ∴b=3∴33+=【例9-1】(2020·四川月考)实数a ,b 在数轴上的位置如图所示,那么化简a b a ++-的结果为( )A .2a -B .22b a -C .0D .2b【答案】A.【解析】解:由图可知:a<0<b ,a+b<0, 原式=-a-b+(-a )+b =-2a故答案为:A .【变式9-1】(2020·江苏徐州月考)如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c |-|a c【答案】2a-c.【解析】解:由数轴得a<b<0<c , ∴a-c<0,a+b<0, 原式=-b-(c-a )+(a+b) =-b-c+a+a+b =2a-c.。

综合算式专项练习题平方根与立方根的运算挑战

综合算式专项练习题平方根与立方根的运算挑战

综合算式专项练习题平方根与立方根的运算挑战综合算式专项练习题:平方根与立方根的运算挑战在数学学习中,平方根和立方根是常见的数学运算概念。

平方根是指一个数的平方能得到该数的算术运算,而立方根则是指一个数的立方能得到该数的运算。

本文将为大家提供一些综合算式专项练习题,旨在巩固平方根与立方根的运算技巧。

练习题一:平方根的运算1. 求以下数的平方根:a) √4 =b) √9 =c) √16 =d) √25 =2. 求以下数的平方根(结果保留两位小数):a) √2 =b) √7 =c) √11 =d) √18 =3. 求以下数的平方根(结果保留整数):b) √49 =c) √64 =d) √81 =4. 求以下数的平方根(结果保留三位小数):a) √5 =b) √13 =c) √17 =d) √23 =练习题二:立方根的运算1. 求以下数的立方根:a) ³√8 =b) ³√27 =c) ³√64 =d) ³√125 =2. 求以下数的立方根(结果保留两位小数):a) ³√2 =b) ³√10 =c) ³√15 =3. 求以下数的立方根(结果保留整数):a) ³√64 =b) ³√125 =c) ³√216 =d) ³√343 =4. 求以下数的立方根(结果保留三位小数):a) ³√5 =b) ³√12 =c) ³√17 =d) ³√22 =练习题三:综合运算1. 求以下算式的值:a) √4 + √9 =b) √16 - √4 =c) √25 + √36 =2. 求以下算式的值:a) √4 + ³√8 =b) √9 - ³√27 =c) √16 + ³√64 =3. 求以下算式的值:a) √2 + ³√10 =b) √7 - ³√15 =c) √11 + ³√20 =4. 求以下算式的值(结果保留两位小数):a) √5 + ³√12 =b) √13 - ³√17 =c) √17 + ³√22 =答案:练习题一:平方根的运算1. 求以下数的平方根:a) √4 = 2b) √9 = 3c) √16 = 4d) √25 = 52. 求以下数的平方根(结果保留两位小数):a) √2 = 1.41b) √7 = 2.65c) √11 = 3.32d) √18 = 4.243. 求以下数的平方根(结果保留整数):a) √36 = 6b) √49 = 7c) √64 = 8d) √81 = 94. 求以下数的平方根(结果保留三位小数):a) √5 = 2.236b) √13 = 3.606c) √17 = 4.123d) √23 = 4.796练习题二:立方根的运算1. 求以下数的立方根:a) ³√8 = 2b) ³√27 = 3c) ³√64 = 4d) ³√125 = 52. 求以下数的立方根(结果保留两位小数):a) ³√2 = 1.26b) ³√10 = 2.15c) ³√15 = 2.466d) ³√20 = 2.7143. 求以下数的立方根(结果保留整数):a) ³√64 = 4b) ³√125 = 5c) ³√216 = 6d) ³√343 = 74. 求以下数的立方根(结果保留三位小数):a) ³√5 = 1.71b) ³√12 = 2.289c) ³√17 = 2.571d) ³√22 = 2.828练习题三:综合运算1. 求以下算式的值:a) √4 + √9 = 2 + 3 = 5b) √16 - √4 = 4 - 2 = 2c) √25 + √36 = 5 + 6 = 112. 求以下算式的值:a) √4 + ³√8 = 2 + 2 = 4b) √9 - ³√27 = 3 - 3 = 0c) √16 + ³√64 = 4 + 4 = 83. 求以下算式的值:a) √2 + ³√10 = 1.41 + 2.15 = 3.56b) √7 - ³√15 = 2.65 - 2.466 = 0.184c) √11 + ³√20 = 3.32 + 2.714 = 6.0344. 求以下算式的值(结果保留两位小数):a) √5 + ³√12 = 2.236 + 2.289 = 4.525b) √13 - ³√17 = 3.606 - 2.571 = 1.035c) √17 + ³√22 = 4.123 + 2.828 = 6.951通过以上综合算式专项练习题,我们可以巩固和提高对平方根和立方根的运算能力。

平方根与立方根的练习题及解析

平方根与立方根的练习题及解析

平方根与立方根的练习题及解析一、平方根的练习题1. 求以下数的平方根:a) 16b) 25c) 36d) 49e) 64解析:a) 16的平方根是4,因为4 × 4 = 16b) 25的平方根是5,因为5 × 5 = 25c) 36的平方根是6,因为6 × 6 = 36d) 49的平方根是7,因为7 × 7 = 49e) 64的平方根是8,因为8 × 8 = 642. 求以下数的平方根:a) 100b) 144c) 121d) 256e) 169解析:a) 100的平方根是10,因为10 × 10 = 100b) 144的平方根是12,因为12 × 12 = 144c) 121的平方根是11,因为11 × 11 = 121d) 256的平方根是16,因为16 × 16 = 256e) 169的平方根是13,因为13 × 13 = 169二、立方根的练习题1. 求以下数的立方根:a) 8b) 27c) 64d) 125e) 216解析:a) 8的立方根是2,因为2 × 2 × 2 = 8b) 27的立方根是3,因为3 × 3 × 3 = 27c) 64的立方根是4,因为4 × 4 × 4 = 64d) 125的立方根是5,因为5 × 5 × 5 = 125e) 216的立方根是6,因为6 × 6 × 6 = 2162. 求以下数的立方根:a) 1000b) 1728c) 1331d) 4096e) 6859解析:a) 1000的立方根是10,因为10 × 10 × 10 = 1000b) 1728的立方根是12,因为12 × 12 × 12 = 1728c) 1331的立方根是11,因为11 × 11 × 11 = 1331d) 4096的立方根是16,因为16 × 16 × 16 = 4096e) 6859的立方根是19,因为19 × 19 × 19 = 6859综上所述,我们通过练习题计算了一些数的平方根和立方根。

算术平方根--平方根--立方根测试题

算术平方根--平方根--立方根测试题

算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。

平方根和立方根的求解的综合应用题

平方根和立方根的求解的综合应用题

平方根和立方根的求解的综合应用题在数学中,平方根和立方根是常见的数学运算,它们在生活中有着广泛的应用。

本文将通过一系列综合应用题,展示平方根和立方根的求解方法,并探讨它们在实际问题中的应用。

问题一:某图书馆馆员需要将图书按照边长为√2米的正方形进行整齐摆放。

已知图书馆内有120本图书,请问最多能摆放多少个正方形?解析:我们可以先求出边长为√2米的正方形的面积。

根据正方形面积的公式S = a^2,其中a表示边长,我们可以得到(√2)^2 = 2平方米。

接下来,我们可以计算可以摆放的正方形个数,即120(图书数量)除以2。

所以最多能摆放60个正方形。

问题二:某建筑师需要设计一个边长为4米的立方体花坛,用来种植鲜花。

每株花需要0.5立方米的土壤供养,请问这个花坛最多能种植多少株花?解析:我们可以先求出边长为4米的立方体的体积。

立方体的体积公式为V = a^3,其中a表示边长。

将4代入公式,我们可以得到4^3 = 64立方米。

接下来,我们可以计算可以种植的花的数量,即64(体积)除以0.5。

所以这个花坛最多能种植128株花。

问题三:某园艺爱好者种植一种变异植物,其长度每天呈现立方增长。

已知开始时,植物的长度为1厘米。

请问经过10天,这种变异植物的长度将达到多少?解析:根据题意,变异植物的长度每天呈现立方增长。

我们可以通过立方根来求解。

首先,我们计算10天内植物的长度的增量:10^3 - 1^3 = 1000 - 1 = 999。

接下来,我们可以求得经过10天,植物的长度将达到立方根的值,即∛999。

通过计算得知,经过10天,这种变异植物的长度将达到约9.965厘米。

通过以上综合应用题的求解过程,我们可以看到平方根和立方根在实际问题中的应用。

无论是计算摆放图书的数量、确定花坛能够种植的花的数量,还是计算植物的长度,平方根和立方根都是不可或缺的数学工具。

它们能够帮助我们解决各种实际问题,为我们的生活提供便利。

数学综合算式练习题平方根与立方根运算

数学综合算式练习题平方根与立方根运算

数学综合算式练习题平方根与立方根运算在数学学习中,算式练习题是提高数学综合能力的重要方法之一。

本文将针对平方根与立方根的运算,提供一些综合算式练习题,帮助读者巩固相关概念并提升运算能力。

一、平方根的运算练习题1. 计算下列各式的平方根:(1) √9(2) √16(3) √25(4) √36(5) √492. 求下列各式的平方根,并化简结果:(1) √18(2) √32(3) √50(4) √72(5) √983. 根据给定条件,计算下列各式的平方根:(1) 若x² = 121,则√x = ?(2) 若y² = 169,则√y = ?(3) 若a² = 144,则√a = ?(4) 若b² = 196,则√b = ?(5) 若c² = 225,则√c = ?4. 计算下列各式,并化简结果:(1) √(9 + 16)(2) √(25 - 9)(3) √(16 × 4)(4) √(36 ÷ 6)(5) √((18 + 15) ÷ 7)二、立方根的运算练习题1. 计算下列各式的立方根:(1) ³√8(2) ³√27(3) ³√64(4) ³√125(5) ³√2162. 求下列各式的立方根,并化简结果:(1) ³√16(2) ³√32(3) ³√48(4) ³√72(5) ³√1003. 根据给定条件,计算下列各式的立方根:(1) 若x³ = 64,则³√x = ?(2) 若y³ = 125,则³√y = ?(3) 若a³ = 216,则³√a = ?(4) 若b³ = 343,则³√b = ?(5) 若c³ = 512,则³√c = ?4. 计算下列各式,并化简结果:(1) ³√(27 - 8)(2) ³√(64 + 8)(3) ³√(125 × 4)(4) ³√(216 ÷ 6)(5) ³√((100 - 64) ÷ 9)三、综合运算练习题1. 计算下列各式的值:(1) √4 + ³√8(2) √9 + ³√27(3) √16 - ³√64(4) √25 × ³√125(5) √36 ÷ ³√2162. 求解下列等式:(1) √(x + 4) = 5(2) √(2y + 1) = 3(3) √(3z - 5) = 2(4) √(4w + 9) = 7(5) √(5t - 16) = 43. 根据给定条件,求解下列等式:(1) (√x)² + 5 = 14(2) 2(√y)² - 4 = 12(3) (√z)² - 7 = 18(4) 3(√w)² + 2 = 35(5) 4(√t)² - 6 = 58通过以上综合算式练习题的训练,相信读者对平方根与立方根的运算能力会得到有效提升。

数学下册综合算式专项练习题平方根与立方根的运算

数学下册综合算式专项练习题平方根与立方根的运算

数学下册综合算式专项练习题平方根与立方根的运算数学下册综合算式专项练习题:平方根与立方根的运算在数学中,平方根与立方根是常见的数学运算。

它们在解决实际问题、推导公式以及在科学研究中都有广泛的应用。

本文将通过综合算式专项练习题,帮助读者加深对平方根与立方根运算的理解和应用。

1. 平方根的运算平方根运算是求一个数的平方根。

下面我们通过练习题来熟悉平方根的运算。

题目一:求下面数的平方根。

(1)√16;(2)√25;(3)√36。

答案与解析:(1)√16 = 4,因为4的平方等于16;(2)√25 = 5,因为5的平方等于25;(3)√36 = 6,因为6的平方等于36。

题目二:求下面数的平方根。

(1)√9;(2)√144;(3)√225。

答案与解析:(1)√9 = 3,因为3的平方等于9;(2)√144 = 12,因为12的平方等于144;(3)√225 = 15,因为15的平方等于225。

通过以上练习题,我们可以总结出求平方根的规律:如果一个数的平方等于给定的数,那么这个给定的数就是该数的平方根。

2. 立方根的运算立方根运算是求一个数的立方根。

下面我们通过练习题来熟悉立方根的运算。

题目一:求下面数的立方根。

(1)∛8;(2)∛27;(3)∛64。

答案与解析:(1)∛8 = 2,因为2的立方等于8;(2)∛27 = 3,因为3的立方等于27;(3)∛64 = 4,因为4的立方等于64。

题目二:求下面数的立方根。

(1)∛1;(2)∛64;(3)∛125。

答案与解析:(1)∛1 = 1,因为1的立方等于1;(2)∛64 = 4,因为4的立方等于64;(3)∛125 = 5,因为5的立方等于125。

通过以上练习题,我们可以总结出求立方根的规律:如果一个数的立方等于给定的数,那么这个给定的数就是该数的立方根。

综合算式专项练习题中的平方根与立方根的运算能够帮助我们巩固对这两个数学概念的理解,并且提高我们解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知15的整数部分为a ,b 是25的平方根,求ab 的值.
2.已知x-1是64的算术平方根,求x 的算术平方根.
3.若4m+1的算术平方根为3,求m 的值.
4.已知a 的平方根是±3,b 的算术平方根是4,求a+b 的平方根.
5.已知|a|=6,b 2=16,求a+b 的平方根.
6.已知3+x =3,求7x+7的算术平方根.
7.已知9的算术平方根为a ,|b|=4,求a-b 的值.
8.若2x-4的平方根为±3,求x 的值.
9.如果3x+12的立方根是3,求2x+6的平方根.
10.计算:若5x+19的立方根是4,求2x+18的平方根.
11.已知x 的算术平方根为3,y 的立方根是-3,求x-y 的平方根.
12.已知a 为17的整数部分,b-1是8的立方根,求ab 的值.
(2)若4a+1的算术平方根是5,则a²的算术平方根是______.
(3)一个自然数的算术平方根是a ,则下一个自然数的算术平方根是______.
(4)一个自然数的平方是b,那么比这个自然数大1的数是______.
13、若2+x =2,求(x+2)2的平方根.
14.已知x 2=4,y 3=8,求x+y 的值.
15.若9的平方根是a ,3b =4,求a+b 的值.
16、36的平方根是______,64的立方根是______.
17.已知x 没有平方根,且|x-3|=6,求x 的值.
18.一个正数的平方根是2a-7和a+4,求这个正数.
19.已知一个正数的平方根是3a+1和a+11,求这个数的立方根.
20.若5x-19的算术平方根是4,求3x+9的平方根.
21.已知y =2-x +x -2+3,求yx 的平方根.
22.已知y =x -3+
3-x +2,求xy+yx 的平方根
(1)若x x -+有意义,则=+1x ___________.
(2) 若x x -+-91有意义,求()+-29x 1-x 的值 23.已知3-a +4-b =0,求b
a 的平方根. 24.已知a 31-与27-
b 互为相反数,求ab 的算术平方根.
(1 和 | y -
| 互为相反数,则x =____,y =____.
25.化简:
(1)、631226---+-
(2)、2a =a 吗?你发现其中的规律了吗?
23=_____,25=_____,
()26-=____, 2
43⎪⎭⎫ ⎝⎛-=_______,20=______ 根据计算结果,回答: (1)2a 一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.
(2)利用你总结的规律,计算:
①若x <2,则
()22-x =__________; ②()214.3π-=_________;
(3)若a ,b 在数轴上的位置如图所示,化简
()--2a b 2a ﹣2b .。

相关文档
最新文档