第一章 原子结构与键合
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(covalent bonding)
物理键 (physical bonding)
次价键(Secondary bonding) 亦称Van der Waals bonding
氢键 (Hydrogen-bonding) 介于化学键和范德华力之间
一、金属键(Metallic bonding)
金属中的自由电子和金属正离子相互作用所构 成键合称为金属键(图1.3-1.4)。金属键的基本特 点是电子的共有化。 金属键既无饱和性又无方向性,因而每个原子 有可能同更多的原子相结合,并趋于形成低能量的 密堆结构。当金属受力变形而改变原子之间的相互 位置时,不至于使金属键破坏,这就使金属具有良 好延展性,并且,由于自由电子的存在,金属一般 都具有良好的导电和导热性能。
图1.2 元素周期表
1.2 原子间的键合( Bonding type with other atom)
金属键 (Metallic bonding) 化学键 (Chemical bonding)
离子键 (Ionic bonding) 共价键
,
主价键
primary interatomic bonds
一、物质的组成 一切物质都是由无数微粒按一定的方式聚集
而成的。这些微粒可能是分子、原子或离子。
原子结构直接影响原子间的结合方式。 分子(Molecule):单独存在 保存物质化学特性 原子(Atom): 化学变化中最小微粒
二 原子的结构
原子核(nucleus):位于原子中心、带正电
质子(proton):正电荷m=1.6726×10-27kg 中子(neutron):电中性m=1.6748×10-27kg
四、 元素周期表
具有相同核电荷数的同一类原子为一种元素。 元素周期表是元素周期律的具体表现形式,它反
映了元素之间相互联系的规律,元素在周期表中的位
置反映了那个元素的原子结构和一定的性质。
元素周期表(图1.2)共有七个横行,每一横行为
一个周期,共有七个周期。元素在周期表中所属周期
数等于该元素基态原子的电子层数,也等于元素基态 原子的最外电子层的主量子数。 元素周期表中各周期所包含元素的数目,等于相 应能级组中的原子轨道所能容纳的电子总数。
角量子数 l 决定原子轨道的形状,它的取值为 0、 1、2….n-1。在多电子原子中,当 n 相同而 l 不同时,
电子的能量还有差别又常将一个电子层分为几个亚层。
当 l = 0、1、2、3 时,分别称为 s、p、d、f 亚层。 在多电子原子中, l 也决定着原子轨道的能量。 当 n 相同时,随 l 的增大,原子轨道的能量升高。
(s电子除外) 性质:熔点高、质硬脆、脆性大。其导电性 取决于共价键的强弱。 弱共价键的Sn是导体,Si是半导体,金刚石 就是绝缘体。
© 2003 Brooks/Cole Publishing / Thomson Learning™
© 2003 Brooks/Cole Publishing / Thomson Learning™
Foundations of Materials Science
上课班级:材料11级 主讲教师: 吴 菊 E-mail: lawuju@wxc.edu.cn QQ:584591352 2012-2013学年第二学期
(64学时,4学分)
第一章 原子结构与键合
1.1
1.2 1.3
原子结构
原子间的键合 高分子链
图1.6 共价键与原子晶体
四、范德华力(Van der waals bonding) 分子中由于共价电子的非对称分布,使分子的 某一部分比其他部分更偏于带正电或带负电。一个 分子的带正电部分会吸引另一个分子的带负电部分,
这种结合力称为分子键或范德瓦耳力。
Hale Waihona Puke Baidu+ +
Atomic or molecular dipoles
它是属物理键,系一种次价键,没有方向性
和饱和性(图1.7)。比化学键的键能少1~2个
数量级。不同的高分子聚合物有不同的性能,分
子间的范德华力不同是一个重要因素。
实质:近邻原子相互作用→电荷位移→偶极子
(dipoles) 偶极矩的感作用
电应
范德华力 静电力(electrostatic) 诱导力(induction) 色散力(dispersive force)
处的量子壳层。它的取值为1、2、3…n 越大,电子离
原子核的距离越远,电子的能量越高。在一个原子中,
常称 n 相同的电子为一个电子层。当 n=1、2、3、4、
5、6、7 时,分别称为第一、二、三、四、五、六、
七电子层,相应地用符号 K、 L、 M 、 N、 O、 P、 Q
表示。
2. 轨道角量子数li
3. 磁量子数mi 磁量子数m 决定原子轨道在空间的取向。它的 取 值为0,±1,±2,±3因此有2l+1种取向。
l =0时,m只能取0,s亚层只有1个轨道;
l =1时,m可取-1、0、+1,p亚层有3个轨道。
同理,d亚层有5个轨道,f亚层有7个轨道。n和l相同, 但m不同的各原子轨道的能量相同,称为简并轨道或 等价轨道。
描述原子中一个电子的空间位置和能量可用四 个量子数表示。 多电子的原子中,核外电子的排布规律遵循三 原则,即能量最低原理、Pauli不相容原理和Hund 规则。 从内到外,依次为K壳层(n=1),L壳层(n=2), M壳层(n=3)。例如Na的原子结构(图1.1)。
1. 主量子数 n
决定原子中电子能量以及与核的平均距离,即电子所
以自由运动,即呈现离子导电性。
构成物质:多数盐类、碱类和金属氧化物
实质:
金属原子 非金属原子
带正电的正离子(Cation) 带负电的负离子(anion)
特点:以离子而不是以原子为结合单元,要求正负
离子相间排列,且无方向性,无饱和
性质:熔点和硬度均较高,
良好电绝缘体
© 2003 Brooks/Cole Publishing / Thomson Learning™
结构特点 力学特点 热学特点
电学特点 光学特点
表 2-1 结合键的特性 离子键 共价键 无方向性或方向性不 方向性明显,配位数 明显,配位数大 小,密度小 强度高,膨胀系数小, 强度高,硬度大 劈裂性良好,硬度大 熔点高,膨胀系数小, 熔点高,膨胀系数 熔体中有离子存在 小,熔体中有的含有 分子 绝缘体,熔体为导体 绝缘体,熔体为非导 体 与各构成离子的性质 折射率大,同气体的 相同, 对红外线的吸收 吸收光谱很不同 强, 多是无色或浅色透 明的
图1.5 离子键与离子晶体
三、共价键(covalent bonding)
两个或多个电负性相差不大的原子间通过共用电子
对而形成的化学键就是共价键(图 1.6 )。共价键键合
的基本特点是核外电子云达到最大的重叠,形成“共用
电子对”,有确定的方位,且配位数较小。
共价键在亚金属(碳、硅、锡、锗等)、聚合物和无 机非金属材料中均占有重要地位。共价键晶体中各个键 之间都有确定的方位,配位数比较小。共价键的结合极 为牢固,故共价晶体具有结构稳定、熔点高、质硬脆等
重点和难点
• 描述原子中电子的空间位置和能量的四个量子数
• 核外电子排布遵循的原则
• 元素性质、原子结构和该元素在周期表中 的位置, 三者之间的关系
• 原子间结合键分类及其特点
• 高分子链的近程和远程结构
学习方法指导
高度认识本章内容的重要性 本章是该课程的入门内容,初次接触较多的名 词术语,要从概念上掌握该章的内容。 对指标性内容采用记忆和推算结合的方式进行 掌握。这类指标如四个量子数、元素性质、原子 结构原子间结合键分类及其特点、高分子链的近 程和远程结构等,有的记忆相对容易,有的通过 画图计算的方式较为简单,可以结合自己的特长 进行选择。
原子的核外电子排布: 原子的核外电子排布遵守:泡利不相容原理、能
量最低原理。
1. 泡利不相容原理:在一个原子中,不可能存在四
个量子数完全相同的两个电子。
由泡利不相容原理,可知一个原子轨道最多只能容
纳两个电子,而且这两个电子的自旋必须相反。
2.
能量最低原理:在不违背泡利不相容原理的前提
下,核外电子总是尽可能排布在能量最低的轨道上, 当能量最低的轨道排满后,电子才依次排布在能量较 高的轨道上。 依据上述原理,电子从低的能量水平至高的能量 水平,依次排列在不同的量子状态下。决定电子能量 水平的主要因素是主量子数和次量子数、各个主壳层 及亚壳层的能量水平在图1.1中示意画出。
第一章 原子结构与键合
实践和研究表明:
决定材料性能的最根本的因素是组成材料的各元素
的原子结构,原子间的相互作用、相互结合,原子
或分子在空间的排列分布和运动规律以及原子集合
体的形貌特征等。为此我们需要了解材料的微观构
造,即其内部结构和组织状态,以便从其内部的矛
盾性找出改善和发展材料的途径。
1.1 原子结构
实质: 典型金属原子结构,最外层电子数很少,即价电
子(valence electron)极易挣脱原子核之束缚而成为自 金属中自由电子与金属正离子之间构成键合称为金属键。 特点:电子共有化,既无饱和 性又无方向性,形成低能量密 堆结构 性质:良好导电、导热性能,
由电子(Free electron),形成电子云(electron cloud)
金属键 无方向性,配位数 大,密度大 有各种强度,有塑 性 有各种熔点,导热 性好,液态的温度 范围宽 导电体 不透明,有金属光 泽
材 料 中 的 键
共价键
半导体 聚合物
金属键
范德瓦尔键(二次键)
金属
离子键
陶瓷和玻璃
1.3 高分子链(High polymer Chain )
高分子结构包括高分子链结构和聚集态结构两方
特点。共价形成的材料一般是绝缘体,其导电性能差。
构成物质:亚金属(C、Si、Sn、 Ge),聚合物和无机非 金属材料 实质:由二个或多个电负性差不大的原子间通过共用电子对而 成 极性(Polar bonding):共用电子对偏于某成键原子 分类 非极性(Nonpolar bonding): 位于两成键原子中间 特点:饱和性 配位数较小 ,方向性
分类
特点:属物理键 ,系次价键,不如化学键强大,但能
很大程度改变材料性质;分子键结合力弱,使得材料熔点
和硬度都比较低,是良好的绝缘体材料。
五、氢键(Hydrogen bonding)
它是一种特殊的分子间作用力(图1.8)。它
是由氢原子同时与两个电负性很大而原子半径较 小的原子(O,F,N等)相结合而产生的具有比 一般次价键大的键力,具有饱和性和方向性。氢 键在高分子材料中特别重要。
电子(electron):核外高速旋转,带负电, 按能量高低排列,如电子云(electron cloud), m =9 .11×10-31kg,约为质子的 1/1836
原子的体积很小,直径约为10-10 m数量级,而
-27 -27
其原子核直径更小,仅为10-15 m数量级。
) ´
-31
三、原子的电子结构
面。链结构又分近程结构和远程结构。近程结构属于
化学结构,又称一级结构。远程结构又称二级结构,
是指单个高分子的大小和形态、链的柔顺性及分子在
各种环境中所采取的构象。
大多数盐类、碱类和金属氧化物主要以离子键的方
式结合。离子键键合的基本特点是以离子而不是以原子
为结合单元(图1.5)。 因此。其熔点和硬度均较高。另外,在离子晶体中很难
一般离子晶体中正负离子静电引力较强,结合牢固。
产生自由运动的电子,因此,它们都是良好的电绝缘体。
但当处在高温熔融状态时,正负离子在外电场作用下可
延展性好
© 2003 Brooks/Cole Publishing / Thomson Learning™
图1.3 金属键与金属晶体
© 2003 Brooks/Cole Publishing / Thomson Learning™
图1.4 金属键与金属晶体
二、离子键(Ionic bonding )
4. 自旋角量子数si
自旋量子数ms描述电子的自旋方向,它的取值
为 +1/2 和 -1/2,常用箭号 ↑和 ↓表示电子的两种
自旋方向。 ms不能从求解薛定谔方程得到,它是
后来实验和理论进一步研究中引入的。
综上所述,n、 l 、m 三个量子数可以确定一 个原子轨道,而 n、 l、m 、 ms 四个量子数可以 确定电子的运动状态。