无刷直流电机开题
电动车无刷直流电机驱动系统的设计的开题报告
电动车无刷直流电机驱动系统的设计的开题报告一、选题背景随着电动车技术的不断发展,电动车的使用越来越广泛。
当前市场上主要的电机驱动系统是直流电机驱动系统。
然而,传统的有刷直流电机存在电刷磨损等问题,而无刷直流电机可以避免这些问题,具有更高的效率和可靠性。
因此,本开题报告选取了电动车无刷直流电机驱动系统的设计为研究对象。
二、研究目的和意义本研究的主要目的是设计一种高效、可靠的电动车无刷直流电机驱动系统,并对其进行性能评估。
具体的研究目标如下:1. 了解无刷直流电机的原理及其优点;2. 设计一个电动车无刷直流电机驱动系统;3. 进行性能测试和评估。
本研究的意义在于提高电动车的效率和可靠性,减少电机维护成本,为电动车的发展做出贡献。
三、研究内容和方法本研究的主要内容包括以下三个方面:1. 研究无刷直流电机的原理及其特点;2. 设计电动车无刷直流电机驱动系统;3. 进行性能测试和评估。
为了达到以上研究目标和内容,采用以下方法进行研究:1. 文献资料法:阅读相关资料,了解无刷直流电机的原理及其特点,了解电动车无刷直流电机驱动系统的设计;2. 实验法:通过搭建实验平台,测试电动车无刷直流电机驱动系统的性能;3. 模拟法:采用MATLAB等软件模拟无刷直流电机的运行情况,验证设计方案的可行性。
四、研究进度安排本研究计划于2022年9月开始,于2023年6月完成。
具体研究进度如下:9月-10月:文献调研和资料收集;11月-12月:无刷直流电机的原理及其特点研究;1月-2月:电动车无刷直流电机驱动系统的设计;3月-4月:实验平台搭建;5月-6月:性能测试、数据分析和撰写论文。
五、预期研究成果本研究的预期成果为:1. 设计一种高效、可靠的电动车无刷直流电机驱动系统;2. 完成电动车无刷直流电机驱动系统的性能测试,对系统性能进行评估;3. 撰写一篇关于电动车无刷直流电机驱动系统的设计和性能评估的论文。
六、参考文献1. 许中杰. 无刷直流电机控制器在电动车上的应用研究[J]. 制造技术与机床, 2021(3):195-196.2. 徐峰, 刘志洋. 无刷直流电机技术在新能源汽车上的应用研究[J]. 车用发动机技术, 2021, 47(10):20-21.3. 王明珠, 刘德美. 无刷直流电机功率驱动控制技术的应用研究[J]. 电力科学与工程, 2020, 36(5):128-132.。
无刷直流电机的双闭环控制系统研究的开题报告
无刷直流电机的双闭环控制系统研究的开题报告题目:无刷直流电机的双闭环控制系统研究一、选题背景和意义现代工业中,无刷直流电机已经广泛应用于机器人、自动化生产线、风能、水力发电等领域。
无刷直流电机具有体积小、重量轻、高效率、低噪音等优点,已成为当前最为主流的电机之一。
但是,无刷直流电机的特性随负载变化较大,且不能够直接控制转速,因此需要采用闭环控制系统来实现精确控制。
双闭环控制系统引入了位置环和速度环,可实现更精确和稳定的电机控制,因此在工业应用中被广泛采用。
二、研究内容和目标本文旨在研究无刷直流电机的双闭环控制系统,主要包括以下内容:1. 无刷直流电机的基本原理和特性,以及闭环控制系统的基本概念和原理。
2. 双闭环控制系统的设计和实现,包括位置环和速度环的设计和选型,以及PID控制器参数的调整和优化。
3. 基于MATLAB/Simulink的仿真实验,验证双闭环控制系统的性能和稳定性,包括转速响应、转速波动、位置误差等指标。
4. 测试实验,实现双闭环控制系统的实际应用,包括负载响应能力与实际应用环境的适应性等方面的测试和评估。
本研究旨在实现无刷直流电机的双闭环控制系统,提高电机的精度和稳定性,为其在工业应用中的广泛应用奠定基础。
三、研究方法和进度安排1. 研究方法本研究采用理论分析和仿真实验相结合的方法。
首先对无刷直流电机的基本原理和闭环控制系统的基本概念进行理论分析,然后设计双闭环控制系统,采用MATLAB/Simulink进行仿真实验,最后进行实际测试实验。
2. 进度安排第一阶段:文献调研和理论分析。
2019年10月-2019年11月。
第二阶段:设计双闭环控制系统。
2019年11月-2020年2月。
第三阶段:基于MATLAB/Simulink的仿真实验。
2020年2月-2020年4月。
第四阶段:测试实验和性能评估。
2020年4月-2020年6月。
第五阶段:撰写毕业论文。
2020年6月-2020年7月。
基于DSC的无刷直流电机的模糊控制的开题报告
基于DSC的无刷直流电机的模糊控制的开题报告
一、研究背景
无刷直流电机(Brushless DC Motors)是一种高效率、环保型的电机,其在各种工业应用中被越来越广泛地采用,例如机器人、电动汽车、家电等领域。
而模糊控制(Fuzzy Control)是一种非精确控制方法,它可以避免传统控制方法中需要精确的数学模型的限制,具有较好的鲁棒性和适应性,因此在无刷直流电机的控制领域也被广泛地研究和应用。
二、研究目的
本研究的目的是探究基于DSC的无刷直流电机的模糊控制方法,通过改进控制算法,提高无刷直流电机的控制性能和智能化水平,为其应用在自动化生产和智能装备中提供技术支持。
三、研究内容
1. 基于DSC的无刷直流电机控制系统的设计与实现;
2. 模糊控制算法的分析与优化;
3. 仿真实验的设计与实现;
4. 硬件实验平台的搭建与测试;
5. 分析控制系统的性能指标,并进行性能评价。
四、研究方法
1. 文献调研法:对无刷直流电机、模糊控制等相关领域的学术文献进行查阅,了解国内外研究现状及发展趋势。
2. 算法设计法:根据文献调研的结果,设计基于DSC的无刷直流电机的模糊控制算法,并对其进行仿真和优化。
3. 实验研究法:建立硬件实验平台,进行实验验证,分析控制系统性能指标,并进行性能评价。
五、预期成果
完成本研究后,预期可以得到一种基于DSC的无刷直流电机的模糊控制算法,该算法具有更好的控制性能和智能化水平,可应用于自动化生产和智能装备等领域,提高生产效率和品质。
同时,也可以对无刷直流电机的控制理论和应用做出一定的贡献。
基于有限元分析的无刷直流电动机的性能研究的开题报告
基于有限元分析的无刷直流电动机的性能研究的开题报告一、选题背景和意义无刷直流电动机是当今电动机领域中一种非常受欢迎的电机。
由于它具有高效率、高功率密度、高可靠性、好的自控性能等优点,因此得到了广泛的应用。
在众多无刷直流电动机的应用场合中,传动系统稳定性是至关重要的,因此需要通过合理的设计和优化来满足不同应用场景的需求。
基于有限元分析的无刷直流电动机的性能研究,可以探究无刷直流电动机的结构特征、工作原理、电场分布和电磁场特性等,从而深入了解其性能和影响因素。
这将为无刷直流电动机的设计和制造提供重要的理论和实践指导。
因此,进行基于有限元分析的无刷直流电动机的性能研究,具有非常重要的工程意义。
二、研究内容和研究方法1. 研究内容:本课题将研究无刷直流电动机的电气特性、机械特性以及热特性等重要性能参数,以及各项性能参数之间的关系,并从理论和实践两个角度进行分析和验证。
2. 研究方法:本课题将采用有限元仿真方法进行研究。
该方法可以对无刷直流电动机的电场和电磁场进行仿真、分析,并可直观地了解无刷直流电动机的结构和性能。
具体的分析内容包括:电容、电感、磁场和电机效率等电学性能;转矩、转速和损耗等机械性能;温度和热损耗等热学性能。
并通过实验验证仿真研究结果的准确性。
三、研究目标和成果1. 研究目标:本课题旨在深入研究无刷直流电动机的性能特性,通过有限元仿真方法进行电学、机械和热学仿真分析,理清无刷直流电动机各性能参数之间的影响关系,进而优化设计无刷直流电动机的性能,提高其整体性能水平。
2. 研究成果:本课题将得出一系列无刷直流电动机的性能表征参数和影响因素,为无刷直流电动机性能的优化设计提供重要理论和实践指导。
研究成果可用于无刷直流电动机行业的技术研究和产品设计,推动无刷直流电动机技术的普及和进步。
基于ST7的直流无刷电机控制系统设计与实现的开题报告
基于ST7的直流无刷电机控制系统设计与实现的开题报告一. 研究背景随着现代工业的发展,直流无刷电机已经广泛应用于自动化控制领域。
直流无刷电机具有高效、可控性好、响应速度快等优点,已经成为现代工业自动化控制的首选。
为了实现直流无刷电机的可靠控制,需要开发一种高效、稳定的控制系统。
本研究基于ST7微控制器,设计并实现了一种针对直流无刷电机的控制系统,能够实现高效、稳定的电机控制和运动控制。
二. 研究目的本研究的目的是设计并实现一种基于ST7的直流无刷电机控制系统,通过分析电机控制原理,设计算法并实现系统功能,以达到电机控制的高效性、稳定性和精度。
三. 研究内容1. 直流无刷电机的结构和工作原理2. ST7微控制器的原理和特点3. 电机控制算法的设计和实现4. 控制系统的硬件设计和实现5. 控制系统的软件设计和实现6. 控制系统的测试和优化四. 研究方法1. 理论分析法:根据直流无刷电机和ST7微控制器的原理及其特点,分析电机控制的实现方法。
2. 算法设计法:通过Matlab和Simulink等工具,设计控制算法,进行仿真验证。
3. 硬件设计法:根据控制系统的功能需求,设计电路原理图,并进行PCB设计,并进行气压泄漏测试、电气安全测试以及EMC测试等。
4. 软件设计法:编写控制系统的软件,实现对电机控制和运动控制的高效稳定实现。
5. 系统测试法:对控制系统进行测试和优化,评估系统控制效果和精度。
五. 研究预期成果1. 完成基于ST7的直流无刷电机控制系统的设计和实现。
2. 实现对电机的高效稳定控制,精度符合要求。
3. 完成系统测试和优化,掌握控制系统的设计和实现方法。
六. 研究意义和价值1. 增强电机控制的智能化和自动化水平,提高工作效率,降低生产成本。
2. 推动控制系统技术的发展,为控制系统的应用提供技术支持。
3. 可以应用到各种需要电机控制的场合,例如机械处理、自动化设备等。
七. 研究难点1. 电机控制算法的实现2. 控制系统的硬件设计和实现3. 控制系统的软件设计和实现4. 接口稳定性和可靠性的设计八. 研究计划1. 第一年:掌握电机控制的基本原理和ST7微控制器的特点,进行控制算法设计和仿真验证。
基于自适应算法的无刷直流电机控制器的研究与设计的开题报告
基于自适应算法的无刷直流电机控制器的研究与设计的开题报告一、选题背景及意义:无刷直流电机(BLDC)具有高效、高速、快速启停等优点,在航空航天、军事、汽车、家电等领域有着广泛应用。
在实际应用过程中,BLDC的控制器通常采用PID控制算法,但是存在在抗干扰性能、响应速度、系统稳定性等方面仍有提升的问题。
因此,设计一种基于自适应算法的无刷直流电机控制器,可实现更高效、稳定、精确的控制,具有较大的实用价值。
二、研究内容:本项目旨在设计一种基于自适应算法的无刷直流电机控制器,探索自适应算法在BLDC控制中的应用。
具体研究内容包括:1. 建立无刷直流电机数学模型,包括电机本体模型、电机传动系统模型等;2. 深入探究自适应算法原理,选择合适的自适应算法,并将其应用到无刷直流电机控制器中;3. 根据自适应算法的特点,设计适合该算法的控制器结构,并建立电路原理图;4. 进行电路仿真,对设计的控制器进行性能测试,比较其与传统PID控制器的不同之处;5. 对实验样机进行验证,测试其控制性能和实用效果。
三、研究方法:本研究采用理论分析、数学建模、电路设计、电路仿真、实验验证等方法,分别进行系统分析、建模和仿真、设计、测试和评估等研究环节,以实现对基于自适应算法的无刷直流电机控制器的研究和设计。
四、预期结果:通过本次研究,预计可以实现以下预期结果:1. 建立基于自适应算法的无刷直流电机控制系统,实现快速响应、高效转速控制等特点;2. 通过与传统PID控制器的比较,验证自适应算法的优越性和实用性;3. 将该控制器应用于实际工程项目中,提高无刷直流电机的控制效率和稳定性。
五、可行性分析:本研究基于自适应算法的无刷直流电机控制器,借鉴了已有的文献和研究成果,有一定的可行性。
同时,本研究中涉及的模型建立、电路设计和仿真实验等环节都有相关的理论和技术支持,可以保证研究的可行性。
六、研究计划:2021年11月-2022年3月:开题策划、文献研究、模型建立;2022年4月-2022年8月:控制器设计、电路仿真、性能测试;2022年9月-2022年10月:数据处理、实验验证、结论总结;2022年11月-2023年2月:论文撰写、论文答辩、论文修改、毕业设计。
无刷直流电动机设计开题报告
开题报告填写要求1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效。
2.开题报告内容必须用黑墨水笔工整书写或按此电子文档标准格式(可从电气系网页或各教研室FTB上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。
3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册),其中至少应包括1篇外文资料;对于重要的参考文献应附原件复印件,作为附件装订在开题报告的最后。
4.统一用A4纸,并装订单独成册,随《毕业设计说明书》等资料装入文件袋中。
毕业设计(论文)开题报告1.文献综述:结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写3000字左右的文献综述,文后应列出所查阅的文献资料。
文献综述----无刷直流电动机的设计湖南工程学院郭孟军关键词无刷电机直流电动机发展史引言:无刷直流电机既有交流电机的结构简单、运行可靠、维护方便等一系列优点,又能象直流电机那样,运行效率高,无励磁损耗,调速性能好,所以在仪器仪表、化工、轻纺、医疗仪器和家用电器等各个领域特别是在高新技术领域有着日益广泛的应用。
由于无刷直流电机是一种特殊的永磁同步电动机,其定子由三相绕组组成,电源通过驱动电路供给定子绕组脉宽调制(PWM)形的方波电流,其转子由瓦型永久磁铁制成并进行特别的磁路处理,以产生梯形波的气隙磁场,从而使转子在合成磁场力的作用下产生转动。
因此一般的无刷直流电机都应配备转子磁极位置检测器如霍尔元件或其它检测传感器,要根据转子磁极位置的变化及时对组成驱动电路的三相逆变器换相,同时形成转速反馈环进行转速控制。
定子电流则通过主回路的电流传感器检测并反馈构成电流环.一、无刷直流电动机发展历史与趋势无刷直流电动机是在有刷直流电机的基础上发展起来的。
电动车无刷直流电动机控制技术研究与应用的开题报告
电动车无刷直流电动机控制技术研究与应用的开题报告题目:电动车无刷直流电动机控制技术研究与应用一、研究背景随着社会经济的不断发展和人们生活水平的提高,汽车已经成为人们生活中不可或缺的一部分。
而随着环保意识的逐渐加强和国家政策的支持,新能源汽车成为了未来发展的趋势。
其中,电动车得到了广泛的认可和关注,其作为一种环保、节能的代表车型,正在逐渐替代传统燃油车。
无刷直流电动机作为电动车的关键动力部件,对电动车的性能、噪音以及电量消耗等方面起着至关重要的作用。
二、研究目的与意义研究针对电动车无刷直流电动机的控制技术,旨在提高电动车的性能和节能效果,降低噪音和环境污染等方面的问题。
同时,研究无刷直流电动机的控制技术,也能为电动车的制造和推广提供技术支持和理论依据。
此外,研究成果还将推动我国电动汽车产业的发展,助力于我国新能源汽车产业整体实力的提升。
三、研究内容本研究主要包括以下方面的内容:1. 对无刷直流电动机的构造和工作原理进行研究分析,深入了解电动机的管理和控制方法。
2. 对电动车无刷直流电动机控制技术的发展现状和趋势进行了全面了解,包括传统的控制方法和现今流行的控制技术。
3. 对无刷直流电动机控制器的结构及其工作原理进行研究,了解其控制逻辑和调节方法。
4. 针对无刷直流电动机控制器中的调节问题,针对性地提出解决方案,研究开发适用的控制策略和技术,提升电动车无刷直流电动机的性能和稳定性。
5. 在实际电动车中进行无刷直流电动机控制技术的应用和验证,评估和分析其效果和优缺点。
四、预期成果通过对电动车无刷直流电动机控制技术的研究,我们将能够:1. 深入了解无刷直流电动机的控制原理和方法,熟悉无刷直流电动机控制器的结构和工作原理;2. 熟悉电动车无刷直流电动机的调节过程,掌握其控制策略和技术;3. 在实际电动车中进行无刷直流电动机控制技术的应用和验证,了解其效果和优缺点;4. 提出相应的优化建议和措施,以提高无刷直流电动机的性能和稳定性。
无刷直流电机控制系统开发的开题报告
无刷直流电机控制系统开发的开题报告1. 研究背景和意义无刷直流电机具有高效、高速、高精度等特点,在各种自动控制系统和工业生产设备中得到广泛应用。
随着无刷直流电机市场的不断扩大,无刷直流电机控制系统研发成为了当前电机控制系统研究的热点之一。
因此,本文旨在研究无刷直流电机控制系统的关键技术问题,并基于此开发一种高性能的无刷直流电机控制系统,为该领域的技术发展做出贡献。
2. 研究内容和方法本文的研究内容主要包括以下几个方面:1)无刷直流电机的结构原理及特性分析2)无刷直流电机的数学模型建立及控制策略分析3)无刷直流电机控制系统硬件及软件设计4)无刷直流电机控制系统性能测试及评估研究方法主要包括理论分析、实验研究和仿真模拟等。
对于无刷直流电机的结构原理及特性分析,主要采用文献研究的方法进行;对于无刷直流电机的数学模型建立及控制策略分析,采用系统动力学建模及仿真模拟的方法进行;对于无刷直流电机控制系统硬件及软件设计,采用开发板实验及软件编程的方法进行;对于无刷直流电机控制系统性能测试及评估,采用实验测试及性能指标分析的方法进行。
3. 预期成果和创新点本文的预期成果主要包括以下几个方面:1)针对无刷直流电机的特性和需求,设计出一种高效、高精度的控制系统,具有良好的动态响应和稳态性能。
2)通过对无刷直流电机的数学模型建立及控制策略分析,实现对无刷直流电机控制的自动化和智能化。
3)通过对无刷直流电机控制系统的硬件及软件设计,实现对无刷直流电机的控制和调试。
4)通过无刷直流电机控制系统的性能测试及评估,验证系统的可行性及优越性。
本文的创新点主要体现在以下几个方面:1)研究无刷直流电机控制系统的关键技术问题,实现了对无刷直流电机控制的自动化和智能化。
2)采用系统动力学建模及仿真模拟的方法,提高了系统的控制精度和稳定性。
3)设计出一种高效、高精度的无刷直流电机控制系统,具有较好的动态响应和稳态性能。
4. 研究进度安排本文的研究计划分为以下几个阶段:第一阶段:对无刷直流电机的结构原理及特性进行深入研究,并建立相应的数学模型。
无刷直流电机开题报告
毕业设计(论文)开题报告题目:无刷直流电机调速控制系统
院(系)
专业班级
姓名
学号
导师
2012年02月27日
测问题。
但是位置传感器的存在增加了系统的成本和体积,降低了系统可靠性,限制了无刷直流电动机的应用范围,对电机的制造工艺也带来了不利的影响。
因此,国内外对无刷直流电动机的无位置运行方式给予高度重视。
无机械式位置传感器转子位置检测是通过检测和计算与转子位置有关的物
理量间接地获得转子位置信息,主要有反电动势检测法、续流二极管工作状态检测法、定子三次谐波检测法和瞬时电压方程法等。
4.控制器
控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:
(1)对转子位置检测器输出的信号、PWM调制信号、正反转和停车信号进行逻辑综合,为驱动电路提供各开关管的斩波信号和选通信号,实现电机的正反转及停车控制。
(2)产生PWM调制信号,使电机的电压随给定速度信号而自动变化,实现电机开环调速。
(3)对电动机进行速度闭环调节和电流闭环调节,使系统具有较好的动态和静态性能。
(4)实现短路、过暗自流、过电压和欠电压等故障保护电路。
5.基本原理
通过位置传感器的对电机的位置进行检测,将其位置信号传入微控制器,微控制器对其信号进行逻辑出来,产生相应的脉冲驱动信号,经功率驱动单元放大,放大控制信号对逆变电路进控制,通过电力全控晶体管的开通达到将交流电流转变为直流电流的工作
3.关于无刷直流电机调速系统的设计基本思路重点和难点。
电动车用无刷直流电机控制器的研究的开题报告
电动车用无刷直流电机控制器的研究的开题报告电动车用无刷直流电机控制器的研究开题报告一、研究背景随着环保意识的提高,电动车逐渐成为人们出行的一种新选择。
而电动车的关键部件之一——电机控制器也越来越受到人们的关注。
无刷直流电机控制器是目前电动车主流的电机控制器,具有控制精度高、能耗低、寿命长等优点。
因此,对电动车用无刷直流电机控制器的研究具有重要意义。
二、研究内容本研究将重点研究以下内容:1、无刷直流电机控制器的工作原理及控制策略研究。
2、基于FPGA硬件平台的无刷直流电机控制器设计。
3、基于MATLAB/Simulink的无刷直流电机控制算法仿真。
4、无刷直流电机控制器的试制与实验验证。
三、研究意义本研究具有以下意义:1、提高无刷直流电机控制器的控制精度和效率,提高电动车的行驶性能和节能性。
2、建立电动车用无刷直流电机控制器设计和仿真的理论和方法。
3、为我国电动车产业的发展提供技术支持和解决方案。
四、研究方法本研究将采用理论研究和实验验证相结合的方法。
具体来讲,理论研究阶段将通过文献研究和模型构建来探究无刷直流电机控制器的工作原理和控制策略,以及FPGA硬件平台和MATLAB/Simulink仿真平台的应用。
实验验证阶段将通过试制无刷直流电机控制器,并在实际电动车中进行试验,验证研究成果。
五、预期成果本研究的预期成果包括:1、无刷直流电机控制器的工作原理、控制策略及仿真分析报告。
2、基于FPGA硬件平台的无刷直流电机控制器设计方案和实现报告。
3、基于MATLAB/Simulink的无刷直流电机控制算法仿真方案和实现报告。
4、无刷直流电机控制器的试制报告及实验结果分析报告。
六、研究进展本研究目前处于前期准备阶段,正在进行文献搜集和模型构建,预计将在未来6个月内完成理论研究,开始设计和实现控制器,并逐步进行仿真和试验验证。
七、论文结构本研究将包括以下主要部分:1、绪论:介绍本研究的背景、研究内容和研究意义,以及研究方法和预期成果。
电动摩托车无刷直流驱动电机的控制方法的开题报告
电动摩托车无刷直流驱动电机的控制方法的开题报告一、选题背景:随着环保理念的深入人心,电动摩托车逐渐走进人们的生活中。
其中,无刷直流驱动电机相比传统的刷式直流驱动电机,具有无刷磨损、高效节能、低噪音等特点,逐渐成为电动车行业的发展趋势。
然而,如何对无刷直流驱动电机进行有效控制,提高其性能和稳定性,是当前电动车技术研究和发展的重要课题。
二、选题意义:无刷直流驱动电机由于具有高效率、低噪音、低维护成本等优点,成为电动车领域的重要技术之一,因此针对无刷直流驱动电机的控制方法的研究,对于提高电动车的性能和稳定性,降低电动车制造成本,具有重要的现实意义。
此外,无刷直流驱动电机的控制方法研究也可以推动电动车产业的快速发展和提高我国电动车技术的核心竞争力。
三、研究目标和内容:针对无刷直流驱动电机的控制方法研究,本项目拟从以下几个方面进行研究:1.电机参数识别和建模;2.控制器硬件设计和软件开发;3.速度和转矩控制算法研究;4.控制器测试和实际应用验证。
四、研究方法:研究方法主要包括理论分析和实验验证两个方面。
其中,理论分析主要针对无刷直流驱动电机的电机参数建模和控制器控制算法研究;实验验证主要包括控制器硬件设计、控制器软件开发和实验测试等环节。
通过理论分析和实验验证相结合的方法,不断优化电机控制策略和算法,提高电动摩托车的性能和稳定性。
五、研究预期成果:1.无刷直流驱动电机的电机参数建模和控制器控制算法研究成果;2.无刷直流驱动电机的控制器硬件设计和软件开发成果;3.速度和转矩控制算法优化成果;4.无刷直流驱动电机控制器的实际应用验证成果。
六、总结:针对电动摩托车无刷直流驱动电机的控制方法研究,是电动车技术发展的重要领域之一,也是当前电动车行业的发展趋势。
本项目旨在通过理论分析和实验验证的方法,优化电机控制策略和算法,提高电动车的性能和稳定性,为电动车行业的发展做出贡献。
高压直流无刷电机驱动设计的开题报告
高压直流无刷电机驱动设计的开题报告
一、选题背景
随着工业自动化和数字化技术的不断发展,高效、低噪音、低能耗、智能控制的电机系统在各行各业中得到了广泛应用。
无刷直流电机 (BLDC) 由于具有高效、寿命长、小体积、高功率密度、良好的低速性能等优点,已成为目前众多领域中最经典的电机类型之一。
在实际应用中,由于 BLDC 电机中需要通过切换器控制逆变器输出电流波形,因此在电机驱动中会存在大量的电磁干扰和噪音问题。
如何完成高效地控制 BLDC 电机系统,提高其实时响应性能以及稳定性,是当前电机驱动技术研究的重点方向之一。
二、研究内容
本文以 BLDC 电机驱动技术为研究对象,主要包括以下内容:
1. 针对 BLDC 电机的特点,分析其组成结构、运转原理、控制策略等相关理论。
2. 探索基于高压直流无刷电机的驱动模型及其电路结构。
设计电机驱动所需的硬件并完成相应的电路图和 PCB 布局。
3. 基于特定控制策略算法和 FPGA 实现控制器的开发。
设计并实现符合实际电机系统要求的控制策略。
通过仿真分析、理论推导和实验验证,提高系统的实时响应性能和稳定性。
4. 对实验采集到的数据进行处理分析,得出结论,总结研究成果。
三、研究意义
本研究的结果,将能够提高高压直流 BLDC 电机驱动技术的现实应用性。
在电机系统控制、动态响应、运转稳定性等方面,实现优化和提升。
此外,本研究所涉及的控制系统中需要用到 FPGA 等硬件电路部件,也将能够提高 FPGA 相关研究领域中的实际应用性,有助于推进 FPGA 技术在工业和自动化控制领域中的应用。
直流无刷电机控制系统的DSP实现的开题报告
直流无刷电机控制系统的DSP实现的开题报告一、选题的背景和意义直流无刷电机因为具有高效、低噪音、长寿命等特点,广泛地应用于自动控制领域中,如自动控制系统、机器人、自动化生产线等。
对于直流无刷电机来说,其控制方法非常关键,目前已经有多种控制方法,如基于模型的PID控制、模糊控制、神经网络控制等。
因此,如何采用高效而稳定的控制方法对直流无刷电机进行控制,是现代工业自动化技术的一个重要研究课题。
现有的直流无刷电机控制方法以电磁控制器为核心,利用PWM技术进行控制,这种方法容易出现交流干扰、噪声干扰等问题,且控制精度不够高,针对这一问题,我们采用数字信号处理(DSP)技术,对直流无刷电机进行控制,以实现控制精度的提高,抑制噪声干扰并保证系统稳定性。
二、选题的主要内容和技术路线本论文旨在研究直流无刷电机的DSP实现控制系统,实现对直流无刷电机的高效精准控制,主要内容和技术路线如下:1. 深入了解直流无刷电机的基本原理和工作模式,结合现有研究成果,分析直流无刷电机的特点与优势,制定控制方案,并选取合适的硬件进行控制实现。
2. 研究DSP系统的基本原理,了解其工作方式、特点与板卡结构等方面,选取合适的DSP控制器,设计并实现直流无刷电机控制系统。
3. 利用C语言编写控制程序,并嵌入DSP平台,完成PWM波生成、PID控制、速度控制等功能,在保证电机运转的同时精确调节各项参数,实现高效控制。
4. 进行实验验证控制系统的控制效果,并对其进行分析和评价,不断优化控制算法和调节参数,完善直流无刷电机控制系统。
三、预期目标和成果本文主要目标是通过DSP技术,实现对直流无刷电机的高效控制,达到以下预期目标和成果:1. 建立一套稳定可靠的直流无刷电机控制系统,可精准控制电机的转速、转向、负载等参数,提高电机的效率。
2. 在理论和实验验证的基础上,针对直流无刷电机控制系统进行分析和评价,探索其优化方法,为今后工业控制系统的发展提供理论依据和实践指导。
基于DSP的无刷直流电机控制系统的设计与仿真研究的开题报告
基于DSP的无刷直流电机控制系统的设计与仿真研究的开题报告一、选题背景及意义无刷直流电机(BLDC)具有高效率、高功率密度、高速调节性能和低成本等优势,被广泛应用于电动汽车、工业自动化、家用电器、航空航天等领域。
而DSP芯片由于具有高效的算法处理能力、丰富的外设资源和可编程性,常常被用于电机控制等工业控制领域。
因此,基于DSP的无刷直流电机控制系统的设计与仿真研究具有重要的理论和实践意义。
二、研究内容本研究将围绕基于DSP的无刷直流电机控制系统进行设计与仿真研究,具体研究内容包括以下几方面:1.无刷直流电机控制原理与模型建立。
研究无刷直流电机的工作原理及其数学模型,建立电机的转速、转矩和电流之间的数学关系模型。
2.DSP芯片的应用。
选择一款适合于电机控制的DSP芯片进行分析,了解其主要特点、性能参数以及常用的控制方法,分析其可实现性和稳定性。
3.基于DSP的电机控制算法设计。
针对无刷直流电机的数学模型,采用PID控制算法、FOC控制算法等进行控制,探究不同控制算法的控制性能及应用范围。
4.基于Simulink的无刷直流电机控制仿真。
利用Simulink软件搭建无刷直流电机的控制系统仿真平台,对控制系统进行仿真验证,分析系统的稳定性、动态性能和鲁棒性等指标。
三、研究方法本研究将采用理论分析、数学建模、电路设计和仿真验证的方法进行研究。
具体做法包括:1.理论研究: 阅读相关文献,学习无刷直流电机控制原理、DSP芯片应用、控制算法等方面的理论知识。
2.数学建模:建立无刷直流电机的数学模型,包括电机的转速、转矩和电流之间的数学关系模型等。
3.电路设计:设计控制电路,并选用适当的控制算法进行系统实现。
4.仿真验证:利用Simulink搭建无刷直流电机的控制系统仿真平台,对控制系统进行仿真验证,分析系统性能指标。
四、预期成果1.针对无刷直流电机的控制系统的设计与仿真研究,掌握电机控制系统的设计流程和方法,为电机控制系统的实际应用提供参考。
无刷直流电机伺服控制系统的研究与设计的开题报告
无刷直流电机伺服控制系统的研究与设计的开题报告一、选题的背景和意义随着科学技术的不断发展,机械制造业、电子工程等领域的进步越来越快,无刷直流电机伺服控制系统也越来越受到重视。
无刷直流电机是以永磁体为转子,通过电子换向电路控制转子运动的一种电机类型。
与传统的有刷直流电机相比,无刷直流电机具有结构简单、效率高、寿命长以及噪音小等优点,因此在电动车、家电、工业自动化、机器人等领域得到广泛的应用。
伺服控制系统是指对运动目标进行追踪或者保持某种特定状态的控制系统,通常由传感器、控制器和执行器组成。
伺服控制系统在工业生产过程中,可以准确控制各种机械设备的位置、速度、角度等参数,有效提高了生产效率和质量。
因此,研究和设计一种高效可靠的无刷直流电机伺服控制系统,对于提高机械设备的运动精度和控制精度,优化生产效率和降低生产成本具有重要意义。
二、研究的内容和目标本课题主要研究和设计一种基于单片机的无刷直流电机伺服控制系统,主要包括以下内容:(1)大力率无刷直流电机的选型和参数配置,包括电机的额定电压、额定电流、转速和转矩等参数;(2)搭建无刷直流电机伺服控制系统实验平台,包括硬件设计和软件设计,主要包括控制器、电机驱动器、传感器等部分。
(3)进行无刷直流电机伺服控制系统的调试和优化,包括调试控制器的参数、设置伺服控制系统的PID参数、优化电机驱动器,使得控制系统具有更高的精度和可靠性。
三、研究的方法和步骤本研究采用以下的方法和步骤进行:(1)文献综述。
通过查阅相关的文献,了解无刷直流电机伺服控制系统的基本原理、组成结构和应用领域等方面的知识和经验,为后续的设计和分析提供理论基础。
(2)选型和参数配置。
根据实验要求,选择适合的无刷直流电机,配置相关参数。
(3)硬件设计。
搭建无刷直流电机伺服控制系统的实验平台,包括控制器、电机驱动器、传感器等部分。
(4)软件设计。
编写控制器程序,配置伺服控制系统的PID参数,进行控制器调试和优化。
开题报告(直流无刷电动机系统设计)
一、题目来源题目来源于生产实际二、设计的意义及国内外状况1.1设计的意义一个多世纪以来,电机作为机电能量转换装置,其应用遍及国民经济的各个领域以及人们的日常生活中。
电机的主要类型有:直流电机、感应电机和同步电机。
传统的直流电机因具有非常优秀的线性机械特性,较宽的调速范围,良好的启动性以及简单的控制电路等优点,长期以来一直广泛地在各种驱动装置和伺服系统中。
无刷直流电机的组成:无刷直流电动机(Brushless DC Motor,简称BLDCM)是一种典型的机电一体化产品,它是由电动机本体、位置检测器、逆变器和控制器组成的自同步电动机系统或自控式变频同步电动机。
位置检测器检测转子磁极的位置信号,控制器对转子位置信号进行逻辑处理并产生相应的开关信号,开关信号以一定的顺序触发逆变器中的功率开关器件,将电源功率以一定的逻辑关系分配给电动机定子各相绕组,使电动机产生持续不断的转矩。
无刷直流电机具有以下优点:1)低噪声:因为没有了机械电刷或滑环式电刷,无刷直流电机消除了除支承、连接以及负载以外的机械噪声.2)高效率:无刷直流电机是目前电机中最高效率的一种电机,这要归功于其利用永磁体长生的恒定、持续的磁场的缘故。
在合适的操作条件下永磁无刷直流电机的永磁体具有非常小的去磁系数.3)无励磁需要:如上所述,无刷直流电机利用永磁体产生恒定磁场,省去了传统电机的电励磁部分.4)易维护、寿命长:消除了机械电刷和换相器的无刷直流电机比传统直流电机构造简单,更易维护,而且电机寿命更长.5)控制结构简单:无刷直流电机的转矩正比于电机电流,反馈装置简单,不需要采用绝对位置编码器或旋转变压器,因此较之交流电机更易于控制。
正式因为这个原因,目前已有很多半导体厂家生产了适合无刷直流电机控制需要的专用集成电路控制芯片.目前,无刷直流电机的应用越来越普遍,国内近年来在无刷直流电机的设计和控制方面有很多的研究,但与国外成熟的产品化相比还有很多地方只得提高。
三相无刷直流电机控制系统设计的开题报告
三相无刷直流电机控制系统设计的开题报告一、背景介绍无刷直流电机是一种电动机,其优点包括高效率、高功率、高转矩、高转速、低噪音、长寿命等;同时,由于其数字化控制,可以实现诸如速度调节、位置控制等复杂的运动控制,因此得到了广泛的应用,特别是在机械自动化、机器人、航空航天等高精度领域。
二、研究内容本文主要研究三相无刷直流电机控制系统的设计,包括硬件和软件两个方面。
具体内容如下:1.硬件设计在硬件设计方面,首先需要选用合适的电机、电机驱动器以及控制器。
其中,电机需要满足高功率、高效率、高转矩等要求;电机驱动器需要具有高精度、高可靠性、低噪音、低功耗等特点;控制器需要能够提供丰富的控制接口、快速响应、良好的稳定性等。
同时,本文还需要进行电路设计,包括电源电路、电流检测电路、PWM输出电路等。
其中,电源电路需要满足电机和控制器的电源供应要求;电流检测电路需要利用电机输出电流进行反馈控制;PWM输出电路需要实现高频率、高精度的PWM波输出,以控制电机的转速和转向等。
2.软件设计在软件设计方面,本文主要需要进行嵌入式程序设计。
具体而言,需要实现以下功能:(1)传感器采集,包括电机转速、输出电流、温度等参数的采集;(2)控制算法设计,根据采集的电机参数,通过PID算法等对电机进行控制;(3)通信接口设计,实现与上位机的通信接口,以便于实时监测电机运行状态、修改参数等。
三、研究意义三相无刷直流电机控制系统是一种新兴的运动控制方式,由于其高效率、高精度、低噪音等特点,被广泛应用于机械自动化、机器人、航空航天等领域。
本文研究三相无刷直流电机控制系统的设计,可以进一步提高电机驱动器的控制精度、响应速度和稳定性,为这些应用提供更好的技术支持。
四、研究方法本文将采用实验研究和数据分析相结合的方法,首先在实验室中搭建三相无刷直流电机控制系统,对其硬件和软件进行详细的测试和优化,然后通过数据分析,对系统的性能进行评估和比较。
五、预期成果本文预期可以完成三相无刷直流电机控制系统的设计和实现,包括硬件和软件两个方面。
无刷直流电机控制系统的设计与实现的开题报告
无刷直流电机控制系统的设计与实现的开题报告一、选题背景和意义随着现代工业的发展,各种机械设备也越来越多地使用无刷直流电机,其主要优点是具有高效率、高可靠性、低噪声、高速度和快速响应等特点。
因此,开发和设计一种有效的无刷直流电机控制系统对现代化工业的发展具有重要意义。
二、选题的目的和任务本文的目的是设计一种无刷直流电机控制系统,通过对无刷直流电机进行调速和控制,在实际的工业生产中提高设备的运行效率,降低能耗,提高生产效率。
要完成这样的目标,需要完成以下任务:1. 确定无刷直流电机控制的基本原理,包括电机的控制方式和工作原理。
2. 确定控制系统的硬件结构,包括采用的芯片、传感器和控制模块等。
3. 设计控制系统的软件程序,包括程序的编写和算法的设计。
4. 对控制系统的实现进行模拟,并对其进行仿真,分析其性能和可行性。
5. 对系统进行验证和应用测试,通过实际应用情况进行系统优化和调整。
三、选题内容和研究方法本文的主要内容包括:1. 无刷直流电机控制的基本原理研究,包括电机的工作原理、调速原理和控制模式等。
2. 控制系统的硬件结构设计,包括选择合适的芯片、传感器和控制模块以及进行硬件电路的布局和连接。
3. 控制系统的软件设计,包括程序的编写和算法的设计,如PID等常见控制算法的应用。
4. 对控制系统的实现进行模拟,并对其进行仿真,分析控制系统的性能和可行性。
5. 对系统进行验证和应用测试,通过实际应用情况进行系统的优化和调整。
本文的研究方法主要包括理论研究、仿真模拟和实验验证等方法,通过这些方法综合分析无刷直流电机控制系统的性能和可行性,为未来的控制系统设计提供参考。
四、预期结果和意义预期的结果是设计和实现一种高效、可靠、稳定的无刷直流电机控制系统,通过对系统的实验验证和应用测试,得到高效节能,可靠性好的系统,并为今后无刷直流电机控制领域的发展提供了更多的研究思路和方向。
五、研究难点和解决方案本文研究的难点主要包括:1. 无刷直流电机的控制方式和控制原理不同于传统的电机控制,需要深入研究其控制原理和控制方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文题目 : 无刷直流电动机转矩脉动抑制的研究姓名 :专业名称 : 控制理论与控制工程研究方向 : 交流传动与伺服控制指导教师 :日期:2011年12月30日青岛大学硕士研究生学位论文开题报告一选题的目的和意义现代社会中,电能是最常用且最为普遍的二次能源。
而电机作为机电能量转换装置,经过一个多世纪的发展,其应用范围已遍及现代社会和国民经济的各个领域及环节。
为了适应不同的实际应用,各种类型的电机应运而生,其中包括直流电机、异步电机、同步电机、开关磁阻电机和各种其他类型的电机,其容量小到几毫瓦,大到百万千瓦。
相比之下,直流电机具有运行效率高和调速性能好等诸多优点,但是传统直流电机均采用电刷以机械方式换向,因而存在机械摩擦,使电机寿命缩短,并带来了噪音、火花以及无线电干扰等问题,且制造成本高及维修困难。
异步电机结构简单、制造方便、运行可靠、价格便宜,但其机械特性软、启动困难、功率因数低,不能经济地实现范围较广的平滑调速,且必须从电网吸收滞后的励磁电流,从而降低电网功率因数。
他控式变频同步电机具有转矩大、效率和精度高、机械特性硬等优点,但调速困难、容易“失步”等弱点大大限制了它的应用范围。
开关磁阻电机转子既无绕组也无永磁体,其结构简单、成本低廉,在低速时具有较大的转矩,控制换相时无上下桥直通等问题,但其噪声和转矩波动相对较大,这在某种程度上限制了该类型电机的推广应用。
无刷直流电机在保持传统直流电机优越的调速性能基础上,克服了原来机械换向和电刷引起的一系列问题,且具有效率高、功率密度大、功率因数高、体积小、控制精度高等明显优点。
但是位置传感器的安装与使用,一般会增加电机的成本,并影响无刷直流电机控制系统的可靠性和工作寿命;另外,位置传感器装入电机内部,还可能会增大电机的体积,在汽车,航空航天,家用电器,办公自动化领域等对电机体积有严格要求与限制的行业中更适于使用无传感器无刷直流电机。
于是对于无刷无位置传感器直流电动机的转矩脉动抑制的研究就有了很大的意义。
五参考文献[1] 夏长亮.无刷直流电机控制系统.科学出版社,2009[2] 彭冠炎,杨向宇,张惺.无刷直流电机换相转矩脉动抑制方法综述.防爆电机.2008.5[3] 纪志成,姜建国,沈艳霞,薛花.永磁无刷直流电动机转矩脉动及其抑制方法.微特电机.2003.5[4] 周杰,侯燕.无刷直流电机转矩脉动抑制方法综述.机床电器.2007.6[5] Hwang SM, Lieu DK. Reduction of torque ripple in brushless DC motors [J]. IEEE Trans. on Magnetics,1995.31 (6): 3737-3739.[6] Yoon-Ho Kim, Yoon-Sang Kook, Yo Ko. A new technique of reducing torque ripples for BDCM drives[J]. IEEE Trans. on Industrial Electronics,1997,44 (5): 735-739.[7] Yoon—Ho Kim,Byung—Guk Cho,Yo Ko.Generalized techniques of reducingtorque ripples in BDCM drives[C].Proceedings from IECON, 1994:514 —519.[8] BH Ng,NF Rabmant,TS Low,et a1.An Investigation Into the Efects of Machine Parameters on Torque Pulsations in a Brushless Dc Drive[C].Proceedings from IECON,1988:749 —754.[9] Hung JY,Ding Z.Design of currents to reduce torque ripple in brushless perm anent magnet motors[J].IEE Proceedings~ B,1993.140(4):260—266.[10] Low TS,LeeT,TsengK,eta1.Servo performance of a BLDC drive wit Il instantaneous torque control[J].IEEE Trans.on Industry Applications,1992,28(2):45—462.[11] Lee T,Low T,Tseng K.An intelligent indirect dynamic torque sensor for permanent magnet brushless DC drives[J].IEEE Trans.on Industrial Electronics,1994,41(2):191—200.[12] Batzel TD,Lee KY.Commutation torque ripple minimization for permanent magnet synchronous machines with Hall efect position feedback[J].IEEE Trans.on Energy Conversion,1998,13(3):257—262.[13] Tan Hui.Controllability analysis of torque ripple due to phase conmutation in brushless DC motors[C].Proceedings form ICEMS,200l:l3l7 一l322.[14] Chang—hee Won,Joong—Ho Song,Ick Choy.Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor[C].Proceedings form PESC,2002:985—990.[15] Berendsen CS,Champenois G,Pavione J.Commutation strategies for brushless DC motors influence on instant torque[J].IEEE Trans.on Power Electronics,1993,8(2):231—236.[16] Gwang—Heon Kim,Seog—Jeo,Jong—Soo Won.Analysis of the commutation torq ue ripple efect for BLDCM fed by HCRPW MVSI(brushless DC motors)[C].Proceedings form APEC,1992:277 —284.[17] Yilmaz Sozer,David A.Torrey.Adaptive torque ripple control of permanent magnet brushless DC motors[C].Proceedings form APEC.1998:86 —92.[18] Yoshida M,Murai Y,Takada M.Noise reduction by torque ripple suppression in brushless DC motor[C].Proceedings form PESC Record.1998:1397 — 1401[19] Yoshihiro Mural,Yoshihim Kawase,Kazuharu Ohashi,et a1.Torque ripple improvement for brushless DC miniature motors[J].IEEE Trans.on Industry Applications,1989,25(3):44l一450.[20] Min Dai,Ali Keyhani,Tomy Sebastian.Torque ripple analysis of aperm anent magn et brushless DC motor using finite element method[C].Proceedings form IEMDC 2001,2001:241—245.[21] Tomy Sebastian,Vineeta Gangla.Analysis of induced EMF waveforms and torque ripple in a brushless perm anent magn et machine[J].IEEE Trans.on Industry Applications,1996,32(1):195—200.[22] Sunia Murthy,Benoit Demuane,Buyun Liu,et a1.Minimization of torque pulsations in a trapezoidal back —EMF perm anent magnet brushless DC motor[C].Proceedings form Thirty—Fourth IAS Annual Meeting,1999:1237 — 1242.[23] Sangmoon Hwang,Dennis K Lieu.Design techniques for reduction of reluctance torque in brushless permanent magnet motors[J].IEEE Trans.on Magnetics,1994,30(6):4287—4289.[24] Breton C,Bartolome J,Benito JA,et a1.Influence of machine symmetry on reduction of cogging torq ue in perm anent—-magnet brushless motors[J].IEEE Trans.on Magnetics,2000,36(5):3819—3823.[25] Aengns Murray.Torque and EMF ripple reduction in brushless machines[J].IEE Colloquium on Permanent Magnet Machines and Drives,1993,8(5):8/1—8/4.[26] Takeo Ishikawa,Gordon R.Slemon.A method of reducing ripple torque in permanent magnet motors without skewing[J].IEEE Trans.on Magnetics,1993,29(2):2028—2031.[27] Favre E,Cardoletti L,Jufer M.Permanent—magnet synchronous motors a comprehensive approach to cogging torq ue suppression[J].IEEE Trans.on Industry Applications,1993,29(6):1141一l149.[28] Fukuda T,Shibata T.Theory and application of neural networks for industrisal control system[J].IEEE Trans.on Industrial Electronics,1992,39(6):432—489.[29] Ahmed R,Kotaru,Raj.Neural net—based robust controller design for brushless DC motor drives[J].IEEE Trans.on Applications and Review,1999,29(3):460—474.[30] Kwok ST,Lee CK.Torque ripple reduction for brushless DC motor speed control system[C].Proceedings form PESC,1991:702—7o6.[31] Lee CK,Kwok NM.Torque ripple reduction in BLDC motor velocity control systems using an optimal controller[C].Proceedings form Sixth International Conference on(Conf.Pub1.No.376),1993:600—605.[32] Lee CK,Kwok NM.Torque ripple reduction in brushless DC motor velocity contro l systems using a cas cade modified mod el reference compensator[C].Proceedings form PESC,1993:458—464.[33] Kim GwangHeon,Kang SeogJO0,Won JongSoo.Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWMVSI[C].Boston,MA,USA:Applied Power Electronics Conference and Exposition,1 992,Seventh Annual,23—27 Feb.1992.[34] 杨进,杨向宇.一种减小无刷直流电机纹波转矩的新方法[J].微电机,2005,(1).[35] 张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J].电机与控制学报,2003,(2).[36] 齐蓉,琳辉,陈明.无刷直流电机换相转矩脉动分析与抑制[J].电机与控制学报,2006,(3).[37] 林平,韦鲲,张仲超.新型无刷直流电机换相转矩脉动抑制控制方法[J].中国电机工程学报,2006,(3).[38] 邱建琪,林瑞光.永磁无刷直流电机转矩脉动抑制的SVPWM控制[J].中小型电机,2003,(2).[39] Petrovic V,Ortega R,Stankovic AM。