七年级数学下册第六章实数6.3实数教案新版新人教版
新人教版 数学 七年级数学下册 第六章 实数 6.3 实数 学案
实数【学习目标】1. 了解无理数和实数的概念2.会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3.了解实数范围内相反数和绝对值的意义【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.【学习过程】【知识回顾】1、什么是有理数?如何分类?2是这样的数么?【合作交流,解读探究】【活动1】探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,478,911,119,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0 =,30.65-=-,475.8758=,90.8111=,111.29=,50.59=归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数.(板书)?为什么?..定义:无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数学生举例:有理数无理数整理:⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数试探练习,回授调节:1.填空: 在-19,3.878787…,π2,1.41467-,这些数中, 有理数是 ;无理数是 ;2.判断对错:对的画“√”,错的画“×”.(1)无理数都是无限小数. ( )(2)无限小数都是无理数. ( ). ( ). ( )(5)带根号的数都是无理数. ( )(6)有理数都是实数. ( )【活动2】我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢? 探究1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?2.总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______ 讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?O O ’总结 数a 的相反数是______,这里a 表示任意____________。
七年级数学下册 第六章 实数教案 (新版)新人教版
6.1 平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示. 难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78. (3)∵0.012=0.0001,∴0.0001的算术平方根是0.01, 即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.6.1平方根(2)能用夹值法求一个数的算术平方根的近似值,会用计算器.重点夹值法估计一个数的算术平方根的大小.难点夹值法估计一个数的算术平方根的大小.一、创设情境,引入新课师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、讲授新课师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:面积为2的大正方形.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2.∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:适时启发,点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体:【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.6.1平方根(3)数的开方意义、平方根的意义、平方根的表示法.重点平方根.难点正确理解平方根的意义.一、创设情境,引入新课师:如果一个数的平方等于9,这个数是多少?学生思考、讨论.生:3.师:除此之外,还有没有别的数的平方也等于9呢?生:-3.师:所以,若一个数的平方等于9,这个数是3或-3.二、讲授新课师:请同学们填表.展示课件:师:通过填表,我们不难得出:如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.用字母表示为:如果x 2=a ,则x 叫做a 的平方根.例:3和-3是9的平方根,简记为±3是9的平方根. 求一个数a 的平方根的运算,叫做开平方. 师:请同学们看图. 展示课件:师:平方与开平方有何联系? 生:平方与开平方互为逆运算.师:我们可以根据这种运算关系,来求一个数的平方根.请同学们做题: 【例】 求下列各数的平方根: (1)100;(2)916;(3)0.25.解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为(±34)2=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.师:正数、负数、0的平方根有何特点? 生讨论、交流. 师生共同分析:正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根. ∵负数的平方是正数,∴在我们所认识的数中,任何一个数的平方都不会是负数. ∴负数没有平方根. ∵02=0,∴0的平方根是0.归纳:①正数有两个平方根,它们互为相反数; ②负数没有平方根; ③0的平方根是0.师:正数a 的平方根表示为±a ,读作“正、负根号a ”. 如:±9=±3,±25=±5.师:a 只有当a ≥0时有意义,a <0时无意义,为什么?生:负数没有平方根. 师:请大家做题. 求下列各式的值:(1)144;(2)-0.81;(3)±121196. 学生活动:尝试独立完成,一生上黑板板演. 教师活动:巡视、指导、纠正. 师生共同完成:(1)∵122=144,∴144=12.(2)∵0.92=0.81,∴-0.81=-0.9. (3)∵(±1114)2=121196,∴±121196=±1114. 三、随堂练习课本第46页、第47页第1、2、3、4题. 四、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.1.提供足够的时间,让学生理解平方根的意义.掌握正数、0、负数的平方根的特点. 2.多提供适量的有代表性的习题,随堂练习. 3.易出错的题目随堂订正.6.2 立方根掌握立方根的定义;正数、负数、0的立方根的特点;用计算器求立方根.重点掌握立方根的定义. 难点运用所学知识解决问题.一、创设情境,引入新课要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是多少? 师:设这种包装箱的边长为x m ,则 x 3=27这就是要求一个数,使它的立方等于27. ∵33=27, ∴x =3.即这种包装箱的边长为3 m .师:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.即:如果x 3=a ,那么x 叫做a 的立方根. ∵33=27,∴3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师:请看大屏幕.根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点? ∵23=8,∴8的立方根是(2);∵(0. 5)3=0. 125,∴0.125的立方根是(0.5);∵(0)3=0,∴0的立方根是(0);∵(-2)3=-8,∴-8的立方根是(-2);∵(-23)3=-827,∴-827的立方根是(-23).师生共同归纳:正数的立方根是正数. 负数的立方根是负数. 0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗? 生:每一个数均有一个立方根,而负数没有平方根. 师:一个数a 的立方根表示法:3a ,读作“三次根号a ”. 其中a 是被开方数,3是根指数. 如38表示8的立方根,即38=2. 3-8表示-8的立方根,即3-8=-2. 3a 中的根指数3不能省略.注:算术平方根的符号a ,实际上省略了2a 中的根指数2,因此a 也可读作“二次根号a ”.师:请同学们填空:∵3-8=________,-38=________. ∴3-8________-38.∵3-27=________,-327=________. ∴3-27________-327. 一般地,3-a________-3a. 师:请同学们做题:【例】 求下列各式的值:(1)364;(2)-318;(3)3-2764.解:(1)364=4;(2)-318=-12;(3)3-2764=-34.其实,很多有理数的立方根是无限不循环小数.如32、33等都是无限不循环小数,可以用有理数、近似数表示它们.师:请同学们用计算器求出一个数的立方根.学生活动:用计算器求一些数的立方根.师:请同学们观看大屏幕.用计算器计算…,30.000216,30.216,3216,3216000,…,你能发现什么规律?用计算器计算3100(精确到0.001),并利用你发现的规律求30.1,30.0001,3100000的近似值.师:同学们发现了什么规律?学生讨论、交流并发言.师生共同归纳:被开方数的小数点向左(右)每移动三位,其立方根的小数点相应地向左(右)移动一位.二、随堂练习课本第51页练习.三、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.教学设计着重于把立方根与开立方进行类比教学,注重概念的形成过程,让学生在新概念的形成过程中,逐步理解新概念,通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念.让学生通过实例和抽象类比来理解立方根与平方根概念的联系与区别.6.3实数第1课时实数了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.重点理解实数的概念.难点运用所学知识解决问题.一、创设情境,引入新课师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现? 3,-35,478,911,1190,59生1:3=3.0 -35=-0.6 478=5.875911=0.81 1190=0.12 59=0.5 生2:这些有理数都可以写成有限小数或者无限循环小数. 二、讲授新课 师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.例如:2、-5、32、33等都是无理数. π=3. 14159265……也是无理数. 师:有理数和无理数统称实数.实数⎩⎪⎨⎪⎧有理数 有限小数或无限循环小数无理数 无限不循环小数师:像有理数一样,无理数也有正负之分.无理数⎩⎨⎧正无理数 2,33,π,……负无理数 -2,-33,-π,……师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.请大家观看大屏幕: 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?师:从图中可以看出,OO ′的长是多少? 生1:这个圆的周长为π. 师:O ′的坐标是多少? 生2:O ′的坐标是π.师:所以无理数π可以用数轴上的点表示出来.师:如何在数轴上表示±2呢?学生活动:小组合作交流.教师活动:巡视、检查,适时点拨.师生共同完成:归纳:每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.师:实数与数轴上的点有何关系?师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.师:平面直角坐标系中的点与有序实数对之间也是一一对应的.右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.师:请同学们做题:2的相反数是________,-π的相反数是________,0的相反数是________,|2|=________,|-π|=________,|0|=________.师:同学们有什么发现?生:与有理数一样.师生共同归纳:数a的相反数是-a(a表示任意一个实数).一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.【例】(1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33分别是什么数的相反数;(3)求3-64的绝对值;(4)已知一个数的绝对值是3,求这个数.解:(1)因为-(-6)=6,-(π-3.14)=3.14-π,所以,-6,π-3.14的相反数分别为6,3.14-π.(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.(3)因为3-64=-364=-4,所以|3-64|=|-4|=4.(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3.三、随堂练习课本第56页第1、2、3题.四、课堂小结通过本节课的学习,同学们有哪些收获?请与同伴交流.本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.。
新人教版七年级下册第六章实数全章教案
6.1.1平方根(第一课时)】学问与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正驾驭算术平方根的意义。
情感看法与价值观:通过学习算术平方根,相识数与人类生活的亲密联络,建立初步的数感与符号感,开展抽象思维,为学生以后学习无理数做好打算。
教学重点:算术平方根的概念与求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要实行美术作品竞赛,小欧很兴奋,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参与竞赛,这块正方形画布的边长应取多少?二、探究归纳:1.探究:学生能依据已有的学问即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。
接下来老师可以再深化地引导此问题:4,那么正方形的边长分别是假如正方形的面积分别是1、9、16、36、252,接下来老师可以引导性地提多少呢?学生会求出边长分别是1、3、4、6、5问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,老师需加以引导。
上面的问题,事实上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,假如一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:注:①依据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,须要先把带分数化成假分数,然后依据定义去求解;③0的算术平方根是0。
由此例题老师可以引导学生思索如下问题:你能求出-1,-36,-100的算术平方根吗?随意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
七年级数学下册 第6章 实数 6.3 实数学案 (新版)新人教版-(新版)新人教版初中七年级下册数学
6.3 实数 班级:某某: 学习目标:1.了解无理数和实数的概念,能按要求对实数进行分类。
2.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
进一步领会数形结合的思想。
3.会某某数的相反数和绝对值。
4.学会比较两个实数的大小,能熟练地进行实数运算。
学习重点:能按要求对实数进行分类。
熟练地进行实数运算。
学习难点:用数轴上的点来表示无理数。
熟练地进行实数运算。
一、 复习回顾,引入新课:把下列各数写成小数的形式,你有什么发现?二、自主学习,合作探究(一)什么叫实数?如何分类?1.什么叫无理数?在前面我们学习了求一个数的平方根和立方根时,有些数的平方根或立方根是无限不循环小数,如:333252,,,-…都是无理数,π…也是无理数。
我们把无限不循环小数叫做无理数。
小结:我们目前学习的无理数有下面三种形式① 开方开不尽的数,如:2,325,7-,…② 圆周率π,它是无限不循环小数③ …(每两个1之间依次多1个1)(二):数轴上的点与什么数成一一对应?实验:1.将一个直径为1个单位的圆在数轴上滚动一周,圆上的点由原点到达O',点O'的对应点是思考:上面的实验说明:。
95,9011,119,847,53,3-2、以一个单位长度为边画一个正方形,以原点为圆心,正方形的对角线为半径画弧,弧与数轴的交点表示:、 。
2-2上面的实验说明:数可以用数轴上的点表示出来。
也就是说数轴上的点有的表示:、有的表示:。
归纳:数轴上的点与数成一 一对应。
(三)怎样某某数的相反数和绝对值?在数轴上一个实数的绝对值是表示这个数的点到的距离:两个互为相反数的实数就是表示这两个数的点一个在,一个在,它们到原点的距离。
(1) 相反数:π的相反数是,2-的相反数是,0的相反数是 。
小结:实数a 的相反数是。
(2) 绝对值:5-=,π=, 0=,37-=,小结:一个正实数的绝对值,一个负实数的绝对值是,0的绝对值是。
(四)实数的运算① 从高到低:先算,再算,最后算;②同级运算,按照的顺序进行;③从大大小:如果有括号,先算里的,再算里的,最后算里的.三、释疑解惑 巩固练习1.实数的定义:和 统称实数。
人教版数学七年级下册教案6.3《 实数》
人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
人教版数学七年级下册教学设计6.3《 实数》
人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
七年级数学下册第六章实数6.3实数第2课时教案(新版)新人教版
6.3 实数第课时1.知道实数与数轴上的点一一对应.2.学会比较两个实数的大小.3.了解实数范围内相反数和绝对值的意义.了解实数的绝对值、相反数等概念.知道实数和数轴上的点一一对应,进一步掌握数形结合的思想方法.体会数形结合思想,进一步增强学生应用数学的意识.【重点】1.实数与数轴上点的一一对应关系.2.实数的相反数与绝对值的意义.【难点】实数与数轴上点的一一对应关系.【教师准备】教材图6.3-1,图6.3-2的投影图片.【学生准备】复习数轴、相反数、绝对值的概念.导入一:我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数呢?无理数可以用数轴上的点来表示吗?[设计意图]通过设问开门见山地直接进入课时学习,便于迅速集中学生的注意力.导入二:以前我们学习有理数时,知道所有的有理数都可以在数轴上找到表示它的点,但数轴上的点并不都表示有理数.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O',点O'对应的数是多少?[设计意图]通过数形结合的演示,帮助学生感知数轴上的点存在着与实数的对应关系.(1)感知数轴表示无理数.师:刚才的圆从数轴原点滚动一周到达点O',滚动的距离是多少呢?生:3.14(部分同学会说到π).师:非常准确地说,这个距离是3.14吗?生:应该是π.师:既然原点到点O'的距离是π,那么在数轴上点O'表示的数是什么,这个数是有理数还是无理数?生:表示π,是无理数.师:刚才的问题说明,数轴上的点可以表示π这个有理数,那么数轴上的点还能表示其他的无理数吗?生:(不同说法)师:我们还是按照刚才的办法,借助图形说话吧.(2)数轴与实数一一对应.如图所示,正方形OCAD是边长为1个单位长度的正方形,等我们学习了勾股定理后,会知道它的对角线OA长为√2,以O为圆心,OA长为半径画弧交数轴于A',A″,则A'表示的数即为√2,A″表示的数即为-√2.总结:数轴上还有许许多多这样表示无理数的点,所以数轴上的点有的表示有理数,有的表示无理数,因此可以说数轴上任何一点所表示的数都是一个实数;反过来,任何一个实数在数轴上都能找到表示它的点.所以说实数和数轴上的点一一对应.下列说法中正确的有()①每个实数都可以用数轴上的一个点来表示;②在数轴上表示不相等的两个实数的点也不相同;③数轴上的每个点都表示一个有理数;④数轴上的每个点都表示一个实数,且不同的点所表示的实数也不相等;⑤有理数与数轴上的点一一对应;⑥每个有理数都可以用数轴上的一个点来表示.个个个个〔解析〕数轴上的每个点均与一个实数相对应,故①②④⑥均正确.有理数均可以用数轴上的点来表示,但数轴上的点除了表示有理数外,还表示无理数,故③⑤是错的.故选C.2.实数的大小和有关概念.问题:(1)利用数轴,我们怎样比较两个有理数的大小?这种比较方法对实数也适用吗?总结:在数轴上表示的数,右边的数总比左边的大.这个结论在实数范围内也成立.(2)怎样表示一个实数的相反数和绝对值?总结:数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示一个实数,则有|a|={a,当a>0时; 0,当a=0时; -a,当a<0时.(3)我们还有什么方法可以比较两个实数的大小呢?两个正实数,绝对值较大的值也较大;两个负实数,绝对值大的值反而小;正数大于零,负数小于零,正数大于负数.(教材例1)(1)分别写出-√6,π-3.14的相反数;(2)指出-√5,1-√33分别是什么数的相反数;(3)求√-643的绝对值;(4)已知一个数的绝对值的√3,求这个数. 〔解析〕 数a 的相反数是-a ,也就是说两个数是相反数是互相的.绝对值要注意实数的非负性,对于含义字母的绝对值必须进行说明或讨论.一个数和它的相反数的绝对值是相等的.解:(1)因为-(-√6)=√6, -(π-3.14)=3.14-π,所以-√6,π-3.14的相反数分别是√6,3.14-π.(2)因为-(-√5)=√5,-(1-√33)=√33-1,所以-√5,1-√33分别是√5,√33-1的相反数.(3)因为√-643=-√643=-4,所以|√-643|=|-4|=4.(4)因为|√3|=√3,|-√3|=√3, 所以绝对值为√3的数为√3和-√3.[知识拓展] 对于某些带根号的无理数,我们可以通过以下方法比较:①比较平方的大小;②比较被开方数的大小;③直接用计算器估计数的大小,进行比较.1.实数和数轴上的点是一一对应的.2.有理数大小比较的方法同样适用于实数.3.数a 的相反数是-a ;|a |={a (a >0),正实数的绝对值等于它本身,0(a =0),0的绝对值是0,-a (a <0),负实数的绝对值等于它的相反数.1.和数轴上的点一一对应的数是 ( ) A.整数 B.有理数 C.无理数 D.实数解析:每一个实数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都表示一个实数.故选D .2.-√5的相反数是 ( ) A.√5 √5√55D.√55解析:实数相反数的意义与有理数相反数的意义相同,在一个数前面加上“-”,就是该数的相反数,由此即可求解.根据相反数的定义得-√5的相反数是-(-√5)=√5.故选A . 3.√3-2的相反数是 ,√3-2的绝对值是 .解析:√3-2的相反数是-(√3-2),即2-√3.√3-2的绝对值是|√3-2|=2-√3. 答案:2-√3 2-√34.求下列各数的相反数、倒数和绝对值.(1)√13; (2) √-8273.解:(1)√13的相反数是-√13,倒数是√13,绝对值是√13.(2) √-8273=-23,所以 √-8273的相反数是23,倒数是-32,绝对值是23.第2课时1.实数与数轴 例12.实数的大小和有关概念 比较大小 相反数 绝对值 例2一、教材作业 【必做题】教材第57页习题6.3第3题. 【选做题】教材第57页习题6.3第6题. 二、课后作业 【基础巩固】1.下列语句不正确的是 ( ) A.有理数可以用数轴上的点表示 B.数轴上的点表示有理数C.无理数可以用数轴上的点表示D.实数与数轴上的点是一一对应 2.下列命题中,正确的是 ( ) A.相反数等于本身的数只有0,1 B.倒数等于本身的数只有1 C.平方等于本身的数有+1,0,-1D.绝对值等于本身的数只有0和正数3.在数轴上表示-√6的点到原点的距离为 .4.如图,A 是硬币圆周上一点.假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A'重合,则点A'对应的实数是 .5.写出下列各数的相反数和绝对值. (1)√2-1.41; (2)2-√5. 【能力提升】6.下列各组数中互为相反数的是 ( )和√(-2)2和√-83和-√22D.|-√2|和√27.如图,数轴上的点P 表示的数可能是 ( )A.√5√5.8 √108.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示.9.已知数轴上两点A,B到原点的距离是√2和2,求线段AB的长度.【拓展探究】10.实数a,b在数轴上的位置如图所示,且|a|>|b|,则化简|a|-|a+b|的结果为 ()a+b a+bC.b a-b11.已知x,y互为倒数,c,d互为相反数,a的绝对值为3,z的算术平方根是5,求的值.(c+d)(c-d)+xy+√aa【答案与解析】1.B(解析:根据有理数、无理数、实数与数轴上点的关系对各选项分析判断后利用排除法求解.A.有理数可以用数轴上的点表示,故本选项正确;B.数轴上的点既可以表示有理数,也可以表示无理数,故本选项错误;C.无理数可以用数轴上的点表示,故本选项正确;D.实数与数轴上的点是一一对应的,故本选项正确.故选B.)2.D(解析:根据倒数、相反数、平方以及绝对值的意义判断即可得到结果.A.相反数等于本身的数只有0,本选项错误;B.倒数等于本身的数有1和-1,本选项错误;C.平方等于本身的数有0,1,本选项错误;D.绝对值等于本身的数有0和正数,本选项正确,故选D.)3.√6(解析:由于数轴上的点到原点的单位长度数即为它到原点的距离,由此即可解决问题.因为表示-√6的点距离原点有√6个单位长度,所以它到原点的距离为√6.)4.π+1(解析:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长π,因而点A'对应的实数是π+1.)5.解:(1)√2-1.41的相反数为-(√2-1.41)=-√2+1.41,绝对值为|√2-1.41|=√2-1.41. (2)2-√5的相反数为-(2-√5)=-2+√5,绝对值为|2-√5|=-(2-√5)=-2+√5.6.A(解析:根据算术平方根、立方根的性质、绝对值的规律分别化简即可作出判断.A.-2和√(-2)2互为相反数,本选项正确.故本题应选A.)7.B(解析:A,B,C,D根据数轴所表示的数在-2和-3之间,然后结合选项分析即可求解.A.√5为正数,不符合题意,故选项错误;B.因为-√9<-√5<-√4,所以-√5符合题意,故选项正确;C.-3.8在-3的左边,不符合题意,故选项错误;D.-√10<-√9,那么-√10在-3的左边,不符合题意,故选项错误.故选B.)8.有理数(解析:因为四边形OBCD是边长为1的正方形,所以OC=√2,所以OA=OC=√2,因为√2是无理数,所以该图说明数轴上的点并不都表示有理数.)9.解:因为到原点的距离实际表示这个数的绝对值,而A,B到原点的距离是√2和2,所以点A 表示的数为√2或-√2,点B表示的数为2或-2.那么AB=2-√2或AB=2-(-√2)=2+√2或AB=√2-(-2)=2+√2或AB=-√2-(-2)=2-√2.综上可知线段AB的长度为2+√2或2-√2.10.C(解析:由题设可知a<0,a+b<0,|a|-|a+b|=-a-[-(a+b)]=-a+a+b=b,故应选C.)11.解:因为x,y互为倒数,所以xy=1,因为c,d互为相反数,所以c+d=0,因为a的绝对值为3,所以a=±3,因为z的算术平方根是5,所以z=25.当a=3时,(c+d)(c-d)+xy+√aa =0+1+53=83;当a=-3时,(c+d)(c-d)+xy+√aa =0+1-53=-23.体现数形结合思想和类比思想是本课时自始至终贯彻的一个教学理念.在数轴上的点可以表示有理数的问题中,突出的是数形结合思想;在比较实数大小、相反数、绝对值问题上,体现的是类比思想.这两种教学思想的贯彻,使本课时的教学有了准确的定位和方向.处理无理数可以在数轴上表示的问题中,教师的演示和讲解略多,没有给学生更多的动手操作的时间.教材例1可以让学生自己尝试独立去完成,不必老师详细地讲解.在教材“探究”问题的教学中,可以让学生深入思考怎样在数轴上表示含有π的无理数,这样更能加深学生对无理数可以在数轴上表示的认识.处理在数轴上表示√2的时候,可以让学生进一步思考如何表示其他的带有根号的无理数,这样更能深化学生对数轴可以表示所有无理数的认识.1.实数的有关性质.(1)a与b互为相反数⇔a+b=0.(2)a与b互为倒数⇔ab=1.(3)|a|≥0.(4)互为相反数的两个数的绝对值相等,如|√2|=|-√2|.(5)正数的倒数是正数;负数的倒数是负数;零没有倒数.(6)非负数有平方根.(7)任意实数都有一个立方根.2.实数中的非负数的四种形式及性质.(1)形式:①|a|≥0;②a2≥0;③√a≥0(a≥0);④√a中a≥0.(2)性质:①非负数有最小值,为零;②有限个非负数之和仍然是非负数;③若几个非负数之和等于0,则每个非负数都等于0.比较下列各对实数的大小.(1)-√10和-3.1; (2)π和3.14;(3)0.16和√0.16; (4)-5和√(-5)2;3.(5)√2和√3〔解析〕本题考查实数大小的比较.按照实数大小的比较法则进行比较,同时个别题也需要一些技巧.解:(1)因为3.12=9.61<10,所以|-√10|>|-3.1|,所以-√10<-3.1.(2)因为π≈3.142,所以π>3.14.(3)因为√0.16=0.4,0.4>0.16,所以√0.16>0.16.(4)因为√(-5)2=√25=5,5>-5,所以√(-5)2>-5.3)6=9,8<9,(5)因为(√2)6=8,(√33.所以√2<√3。
新人教版七年级下册第六章《实数》教案6.3实数教学设计
教学目标:1、了解无理数和实数的概念及实数的分类。
2、知道实数与数轴上的点具有一一对应的关系。
3初步体会“数形结合”的数学思想。
通过了解数系扩充体会数系扩充对人类发展的作用。
教学重点:了解无理数和实数的概念;知道实数与数轴上的点的一一对应关系。
教学难点:对无理数的认识。
教学方法:讲授法教学准备:多媒体教学过程:一、复习引入无理数:通过课前学生的动手操作提出问题:怎样将两个面积是1的正方形通过裁剪拼成一个大正方形,大正方形的边长是多少?和小正方形的对角线有什么关系?具体是多大学生动手操作,直观的从几何图形上感受的大小,进而提出具体是多大?是什么样的小数?结合所学的知识,让学生联想有没有其他类型的小数,教师引导,学生观察,进而发现特点给出无理数概念,并总结无理数的特征。
2、无限不循环小数叫做无理数。
让学生通过理解,举出无理数的例子。
=1.41421356237309504880...0.1010010001000010000010000001.....3、问题1:把下列有理数95,119,847,53,3写成小数的形式,它们有什么特征?即:5.095,18.0119,875.5847,6.053,0.33归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
通过小学的分数与小数互化,让学生观察此组数据的特征,教师引导学生进行总结,即有限小数和无限循环小数是有理数。
二、实数及其分类:......26489793238461415926535.32221、实数的概念:有理数和无理数统称为实数。
2、实数的分类:教师启发学生类比有理数的分类,明确分类的基本原则,学生独立思考后进行分类。
按照定义分类如下:实数数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数负无理数负有理数负实数零负无理数正有理数正实数三、实数与数轴上的点是一一对应的。
人教版数学七年级下册6.3《实数》优秀教学案例
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
七年级数学下册第六章实数6.3实数第2课时实数的性质及运算教案2新人教版
第2课时实数的性质及运算【教学目标】1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;2、学会比较两个实数的大小;了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;3、通过学习“实数与数轴上的点的一一对应关系”,渗透“数学结合”的数学思想。
【学难点与重点】1、难点:对“实数与数轴上的点一一对应关系”的理解2、重点:实数与数轴上的点一一对应关系【教学过程】一、创设情境我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数?无理数可以用数轴上的点来表示吗?1、课件演示课本第175页探究题;学生动手操作,利用课前准备好的硬纸板的圆片在自己画好的数轴上实践体会.2、你能在数轴上画出坐标是2的点吗?画一画,说说你的方法.教师启发学生得出结论:每一个无理数都可以用数轴上的一个点表示出来.练习:学生自己完成课本第178页练习第1题.在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的.即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数.类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义.3、深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?二、比一比1、问:利用数轴,我们怎样比较两个有理数的大小?在数轴上表示的数,右边的数总比左边的大.这个结论在实数范围内也成立。
2、我们还有什么方法可以比较两个实数的大小吗?两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数。
例1比较下列各组数里两个数的大小,-6;(3)-2,33(1)2,1.4;(2)5.1的大小比较;分析:像例1(1),即可以将2,1.4的大小比较转化为2,96也可以先求出2的近似值,再通过比较它们近似值(取近似值时,注意精确度要相同)的大小,从而比较它们的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3
实数(第1课时)
教学目标1.了解无理数和实数的概念.
2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.
3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化.
教学重点
实数的运算.
教学难点
实数的运算
教学内容
一、导入新课
使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3,-53,847,119,911,9
5.二、新课教学
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3=3.0;-53=-0.6;847=5.875;119=0.81;911=1.2;9
5=0.5.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.
由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:
探究:
如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.
事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.
数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
三、课堂练习
四、课堂小结
1.什么叫做无理数?
2.什么叫做有理数?
3.有理数和数轴上的点一一对应吗?
4.无理数和数轴上的点一一对应吗?
5.实数和数轴上的点一一对应吗?
五、布置作业教学反思:
6.3实数(第2课时)
教学内容
实数的运算.
一、导入新课
1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.
2.用字母表示有理数的加法交换律和结合律.
3.平方差公式、完全平方公式.
4.有理数的混合运算顺序.
复习以前知识,导入新课的教学.
二、实例探究
1.思考:
(1)2的相反数是,-π的相反数是,0的相反数是.
(2)2=,-π=,0=.
数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则
2.例题
例1(1)分别写出-6,π-3.14的相反数;
(2)指出-5,1-33各是什么数的相反数;
-的绝对值;
(3)求364
(4)已知一个数的绝对值是3,求这个数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运
算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
例2计算下列各式的值:
(1);
3
+(2)33+23.
(-
2
)
2
在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.
三、课堂小结
1.实数的运算法则及运算律;
2.实数的相反数和绝对值的意义.
四、布置作业
教学反思:。