3第三章 烯烃与炔烃
第三章烯烃和炔烃
2CH3CH2CH=CH2 CH2=CH-CH=CH2
2H2 Ni
2CH3CH2CH2CH3
△H= -254KJ/mol
CH3CH2CH2CH3
△H= -239KJ/mol 1.共扼体系的特点: 共扼体系的特点: 共扼体系的特点 参与共扼的原子共平面 ① π键离域 多个平行重叠的 轨道 内部 多个平行重叠的P轨道 条件 P电子 电子 交替极化
有机化合物
一诱导效应 Inductive effect ----- 静电诱导 由于分子中电负性 电负性不同的原 诱导效应 ---- 由于分子中电负性不同的原 子或原子团的影响使整个分子中成键的电 子云沿分子链向一个方向偏移的现象. 一个方向偏移的现象 子云沿分子链向一个方向偏移的现象. 诱导效应 吸电子诱导效应 (-I效应 效应) 效应 效应) 斥电子诱导效应 (+I效应 效应
+ + + δ δ δ δ 交替极化: 交替极化: + CH2=CH-CH=CH2 +
-
②键长趋于平均化 键长趋于平均化 趋于 ③体系能量降低 2. 共扼效应类型
外部表现
π-π共扼 π p- π共扼 σ-π共扼 π σ-p共扼
1,3-丁二烯 丁二烯
碳自由基 注意: 注意:当饱和碳原子 →→正碳离子 负碳离子
H C-CH=CH2 H
σ-p共扼 共扼
H H
C
+
C
H
CH3 CH3
H C H
+ C-CH
CH3
3
∴正电荷分散程度:叔碳>仲碳>伯碳; 正电荷分散程度:叔碳>仲碳>伯碳; 正碳离子稳定性: 正碳离子稳定性:叔>仲>伯
烯烃和炔烃的命名
CH2CH3
2 CH3HC CH C CCH3
.
CH3
•如双键位置在第一个碳上,双键位置数据可省.
CH3
32 1
CH3CCH=CH2
C4 H2C5 H3
1
23 4 5 6
(CH3)2C=CHCH2CHCH3
CH3
3,3-二甲基-1-戊烯
2,5-二甲基-2-己烯
3,3-dimethyl-1-pentene 2,5-dimethyl-2-hexene
烯基:烯烃去掉一个氢,称某烯基,编号从自由价的碳开始。
CH2 CH
CH3CH CH
CH2 CHCH2
普通命名: 乙烯基 IUPAC命名:乙烯基
Vinyl
丙烯基 1-丙烯基 1-propenyl
烯丙基 (allyl) 2-丙烯基 2-propenyl
CH2 C CH3
异丙烯基 isopropenyl
3.1.2 炔烃的异构和命名
CH3CHC CH CH3 3-甲基-1-丁炔
(2) 炔烃的命名 • 系统命名:
炔烃的系统命名法与烯烃相似;以包含叁键在内的最长碳链为 主链,按主链的碳原子数命名为某炔,代表叁键位置的阿拉伯数 字以取最小的为原则而置于名称之前,侧链基团则作为主链上的 取代基来命名.
含有双键的炔烃在命名时,一般 先命名烯再命名炔 .碳
34 5 6 7
CH3CH2CH2-C-CH2CH2CH2CH3 2 CH 1 CH3 3-丙基-2-庚烯
• (2)碳链编号时,应从靠近双键的一端开始; • (3)烯前要冠以官能团位置的数字(编号最小);即双键的
位次写于母体名称之前,并加一短线。n-某烯 • (4)其它同烷烃的命名规则,如取代基位次及名称写于
3章-烯烃和炔烃
H
O H C H H
H C H H C C H H C H H H
H C C H H C H H H
H
1
2
3
4
CH3 H3C
1 H HO H HH C H 3C H H C C C C C
CH2OH * CH3 CH2Cl
2 C H H H H C C H H 3 4
H C
HH H H H Cl H
1) 催化加氢
a. 提高汽油的稳定性
植物油
人造黄油
b. 改良油脂的性质
c. 判断烯烃的稳定性(氢化热的测量)
CH3CH2CH CH2 CH3 H CH3 H C C CH3 C C CH3 H H -115.5 H2 -126.8 kJ/mol -119.7 CH3CH2CH2CH3
故稳定性:反-2-丁烯 > 顺-2-丁烯 > 1-丁烯 同理有: R2C=CR2 > R2C=CHR > RCH=CHR > RCH=CH2 > CH2=CH2
1)定义:分子因共轭而产生的各种效应, 称做共轭效应。 具有单双(重)键交替出现的分 子,称为 共轭分子。如
CH2=CH-CH=CH-CH-CH=CH 2 O
2)特点和表示:
(1)π 键电子是离域的。
(2)共轭效应的影响可沿着共轭体系传递很 远,并出现极性交替现象。如
dCH2
d+
d-
d+
d-
d+
CH
公差为CH2
通式为:CnH2n(n = 2,3,4…..正整数)
1. 乙烯的结构
C原子的sp2 杂化
激发 2px,2py,2pz 2s 2px,2py,2pz
第三章-烯烃、炔烃、二烯烃
以反式加成产物为主
Br
Br
CH2 CH2 + Br2 NaCl水溶液 CH2 CH2 + CH2 CH2
Br
Cl
亲电试剂:试剂带有正电荷,或者电子云密度较低,在
反应中进攻反应物上带部分负电荷的位置,这种试剂叫
做亲电试剂,例如X+(卤素)、R+、H +等。详见课本 P54-56。
亲电加成反应:由亲电试剂进攻而引起的加成反应。
1埃 = 0.1纳米(nm) = 10-10米(m)
1
键的特点: 1.成键原子不能绕两核连线自由旋转。
2.键比键易断裂。
3.电子云易极化。
PS:极化(polarization),指事物在一定条件下发生两极 分化,使其性质相对于原来状态有所偏离的现象
烯烃的同分异构
构造异构:碳链异构;官能团位置异构 构型异构:顺反异构 (几何异构or立体异构)
链终止 CH3CH· CH2Br +Br· CH3CHBrCH2Br
注:过氧化物只对HBr有影响,不影响HCl和HI。
诱导效应:受分子中电负性不同的原子或基团的影响,整个分 子中成键的电子云向着一个方向偏移,分子发生极化的效应。
δ+ δ- δ+ δH3C CH CH2 + HBr
CH3CHCH2 Br
电负性差别:O:3.5 Cl:3.1 O> Cl
由于次氯酸不稳定,反应中常用氯气和水代替次氯酸
Cl2 + H2O HOCl + HCl
H2C CH2 + Cl2 + H2O
CH2 CH2 OH Cl
(2) 臭氧化反应
O
CH3CH CH2 O3 CH3HC O
第六讲 第三章 不饱和烃:烯烃和炔烃(2)
C C
+
H-X
-X -
C=C H
+
+X快
C=C X H
乙烯基碳正离子
由于卤素的吸电子作用, 阶段。 几 1 由于卤素的吸电子作用,反应能控制在加一分子 HX 阶段。 加成, 加成 常用汞盐和铜盐做催化剂。 点 2 与HCl加成,常用汞盐和铜盐做催化剂。 讨 3 与卤化氢的加成,在相应卤离子(如:(CH3 )4N+Cl-)存在下, 与卤化氢的加成,在相应卤离子( 存在下, 论 通常进行反式加成。例如: 通常进行反式加成。例如:
*1. Markovnikov规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 氢原子总是加到含氢较多的双键碳原子上, 氢原子总是加到含氢较多的双键碳原子上,氯原子或其它原子或基团则加 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 例如
CH3CH2CH=CH2 + HBr HAc 80% (CH3)2C=CH2 + HCl CH3CH2CH2CH2Br
~100%
(CH3)2C CH3 Cl
第 六 讲 (6)
*2. 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 Br 例如 (CH3)2CHC CH HBr (CH3)2CHC=CH2 HBr (CH3)2CH C CH3
NaCl CH2=CH2 + Br2 水溶液
Br H2C CH2 Br 1,2-二溴乙烷 二溴乙烷
Cl H2C CH2 Br 1-氯-2-溴乙烷 氯 溴乙烷
有机化学第三章不饱和烃烯烃和炔烃
碳碳双键不能绕键轴自由旋转。因此,当两个双键碳 原子各连有两个不同的原子或基团时,可能产生两种不同 的空间排列方式。
一些烯烃的物理性质
构型:(I)和(Ⅱ)的分子式相同,构造亦相同,但分子中的原子在空间 排列不同。分子中原子在空间的排列形式称为构型。 构型异构体:(I)和(Ⅱ)是由于构型不同而产生的异构体,称为构型异 构体(configurational isomers)。构型异构体具有不同的物理性质。
这对是于由碳于原顺子式数异相构同体的具烯有烃弱顺极反性异,构分体子,间由偶于极顺—式偶异极构相体互 作是用非力对增称加分,子故,沸偶点极略矩高不。等反于式零异,构而体反因式分异子构的体对是称对性称好, 它分在子晶,格偶中极的矩排等列于比零顺。式例异如构:体较紧密,故熔点较高。
对于碳原子数相同的烯烃顺反异构体,顺式异构 体的沸点比反式异构体略高,而熔点则是反式异构体 比顺式异构体略高。
因此,α-吡啶基既不按
也不按
计算原
子序数,而是人为规定:两者除各按一个C和N计算原 子序数外,另一个原子既不按C也不按N计算原子序数, 而是按(Zc+ZN)/2=(6+7)/2=6.5计算原子序数。
由此可以推得上述几个基团的优先次序应为:
Z,E-命名法
a.采用Z,E-命名法时,根据次序规则比较出两个双键
π键的形成,若根据分子轨道理论的近似处理也一样, 两个碳原子的p轨道通过原子轨道的线性组合而形成两个分 子轨道,一个是比原来原子轨道能量低的成键轨道π,一个 是比原来原子轨道能量还要高的反键轨道π*。
3.1.3 π键的特性
1. π键是由两个p轨道从侧面平行交盖而成的,轨道交盖程度一般比σ
有机化学 第三章讲解
CH 2 =CH 2
+ HO Cl
Cl-CH 2 -CH 2 -OH
-氯乙醇
实际操作时,常用氯和水直接反应。例:
Cl CH 2 =CH 2
Cl 2 -Cl
-
CH 2 Cl
+
CH 2
H 2O -H
+
CH 2
CH 2 (主) OH
Cl -
Cl CH 2
-氯乙醇
CH 2 (副) Cl
33
b a CH 3 -CH=CH
CH 3 CH 3 -C CH-CH 3
30
3 碳正离子
。
H
Cl H
重 排 产 物 (主 )
(d) 过氧化物效应
但有过氧化物存在时:
CH 3 -CH=CH
2
+ HBr
hor
过氧化物
CH 3 CH 2 CH 2 Br (反马)
只能是HBr (HCl、HI都不反马)
31
(丙) 与硫酸加成
烯烃与H2SO4的加成反应也是亲电加成反应,加成方向 遵循马氏规则。例:
2
+ HCl
CH 3 -CH-CH Cl
2-氯丙烷 主要产物
乙酸 80%
3
+ CH 3 CH 2 CH 2 Cl
1-氯丙烷 次要产物
CH 3 CH 2 CH=CH
2
+ HBr
CH 3 CH 2 CH CH Br
HBr
2
H
2-溴丁烷
Br
CH 3 CH 2 CH 2 C CH
HBr
CH 3 CH 2 CH 2 C=CH 2 Br
2
(一) 烯烃和炔烃的结构
第三章烯烃和炔烃
(2)编号:从最靠近双键的一端开始,将主链 碳原子依次编号 (使双键具有最低位次,使取 代基具有较低位次)。
1 23 4 5 6
H CH3 C CH CH2 C
CH3
CH3
2,5-二甲基-2-己烯
CH3
2,5-dimethyl-2-hexene
(3)命名:将双键的位次标明在烯烃名称的前
面(只写出双键碳原子中位次较小的一个),
棕色褪去。
Br
作为烯烃的鉴别
CCl4 0℃
CHCH3
Br
加成活性:氟﹥氯﹥溴﹥碘
立体选择性:主要得到反式加成产物
2.加氢卤酸
C C + HX
(1)对称烯烃的亲电加成反应
CC HX
CH3CH2 C
H
CH2CH3 C
H
+ HBr
CH3Cl -30℃
CH3CH2CH2CHCH2CH3
Br
(2)不对称烯烃的亲电加成
R CH CH2 + HBr
R CHCH3
Br 主要产物
RCH2CH2Br
马氏规则(Markovnikov)
马氏规则(Markovnikov)
当不对称烯烃与不对称试剂(卤化氢等) 加成时,不对称试剂中带正电荷的部分总是加 到碳碳双键中含氢较多的碳原子上,带负电荷 的部分则是加到碳碳双键中含氢较少的碳原子 上,这一规则称为马氏规则。
低”。 若分子中同时含有双键和三键,应从最先 遇到双键和三键的一端开始;若在主链两 端等距离处遇到双键和三键,应从最靠近 双键的一端开始。
3.命名: 标出三键位次(含有双键时,应标出
双键位次;命名时写成 “ 几烯几炔”)。 取代基的位次及排列顺序同烷烃命名法。
大学有机化学第三章 烯烃和炔烃
CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质
第3章 烯烃 炔烃 二烯烃
pm 109 H 134 pm C C H 121°
H 117. 5° H
2. 炔烃的结构
炔烃分子中C≡C叁键碳原子是 sp杂化。 sp 杂化轨道中 s 成分比 sp2 杂化和 sp3 杂 化的高,键长 C=C(134pm)比 C—C (154pm)短。以乙炔为例:
H
C
120 pm
108 pm C H
H3C H
C=C
CH2CH3 CH3
顺 -3-甲 基 -2-戊 烯
反 -3-甲 基 -2-戊 烯
CH3 C=C CH3CH2
CH3 CH(CH3)2
CH2Cl C=C CH3
CH3 CH2CH3
顺 -2,3,4-三甲基 -3-己烯
反 -2,3-二甲基 -1-氯 -2-戊烯
CH3 C=C CH3CH2 Br
CH3
a≠b 且 c≠d
2、顺/反(cis/trans)命名法:
(1) a=c或b=d时的顺/反异构标记 相同的原子或原子团在双键的同侧为顺 式,异侧为反式。
a b C C
c d
a=c或b=c 或 a=d或
CH3 H C C
H CH3
H CH3 C C
H CH3
H3C H
C=C
CH3 CH2CH3
180°
C=C(134pm),C—C(154pm)
比较σ键和π键的异同点:
σ键的特点 (1)形成: (3)重叠程度: 键能: 沿键轴 大 大 轴对称 (5)旋转性: (6)存在形式: 可以独立 (2)重叠方式: “头碰头” π键的特点 垂直于键轴 “肩并肩” 小 小 呈块柱状 平面对称小 不能 不能
(二)诱导效应(inductive effect)
第三章 不饱和烃:烯烃和炔烃(7学时)
CH3CH CH C CH
CH C CH2CH CH2
3 –戊烯–1–炔
1–戊烯–4–炔
CH3C C CH CH2CH CH2 CH2CH3
4 –乙基–1–庚烯–5–炔
CH C CH CH2 1–丁烯–3–炔
CH3C C CH CH2CH CHCH3 CH CH2
5 –乙烯基–2–辛烯–6–炔
37
3.5 烯烃和炔烃的化学性质
44
nickel borides
②. P-2(硼化镍)催化剂
CH3CH2C
P2
CCH2CH3 H2
CH3CH2
CH2CH3
CC
H
H
98%
cis-addition
特点:使反应停留在烯烃阶段,得顺式加成产物。
45
炔烃的化学还原
chemical reduction
①. 在液氨中用碱金属(Li、Na、K)还原生成反式烯烃
-杂化-
sp 杂化轨道形成过程示意图
13
14
15
π bond
3.1.3 π 键特性
1)π 键是较弱的共价键,键能比σ键低,易断裂;
2)不能自由旋转。 3)π键的极化度大,具有较大的流动性及反应活性。
一个 sp3 杂化轨道 ¼ s 轨道 ¾ p 轨道
16
3.2 烯烃和炔烃的同分异构
isomerism
不饱和度 ∆
number of double bonds ring numbers
number of triple bond
∆=双键数+环数+2×三键数
∆=C+1-H/2-X/2+N/2
双键数+环数+2×三键数=C+1-H/2-X/2+N/2
有机化学 第三章 烯烃和炔烃
炔烃的加氢:
炔烃的催化加氢反应是逐步实现的。
R C C R' + H2
pd
R H
C C
R' H 2 H pd
RCH2CH2R'
选择适当的催化剂可是产物停留在烯烃阶段: 使用Lindlar催化剂、Pd/C、硼化镍(P-2)催化剂可得顺 式烯烃;在液氨中用Na、Li还原炔烃主要得到反式产物。
RC CR' + H2
H2C 乙烯 HC 乙炔
2013年8月2日7时17分
CH2
H2C
H C 丙烯
CH3
C11H22 十一(碳)烯
CH
HC
C 丙炔
CH3
C15H28 十五(碳)炔
22
2)从靠近重键端开始编号,并以构成重键的 两个碳原子中号数小的一个表示重键的位置, 将重键位号写在母体名称之前:
H2 C
H3C
C H C
H C H2 C
2013年8月2日7时17分
10
碳碳双键(C≡ C)中C的杂化轨道:
C C
C
sp 杂化
杂化 2s2
2013年8月2日7时17分
2p2
sp 杂化
2p
11
C C
2013年8月2日7时17分 12
C2H2(乙炔)分子:
H
2013年8月2日7时17分
C C
H 线型分子
13
2013年8月2日7时17分
Lindlar Cat.
R H
R' C C H
C2H5 C C H H
38
(顺式烯烃); H2
2013年8月2日7时17分
Pd/CaCO3 喹啉
第3章烯烃和炔烃
5 4 321
C H 3 C H 2 C HC HC H 3
2-戊烯
3.3.2 烯烃和炔烃的命名
4
3
21
例: CH3 CH2 C CH2
CH3
2-甲基-1-丁烯
3-甲基-1-丁烯
1
23
4
CH3 C CH CH3
CH3
2-甲基-2-丁: 与烯烃相似, 将烯换成炔
① 质子溶剂(含质子给予体基团) ② 非质子溶剂(不含质子给予体基团) 习惯上把两种方法综合起来,对溶剂分类。
按介电常数 的大小
极 性 质子性 H2O HCOOH ROH
ε >15 非质子性 CH3COCH 3 DMSO DMF
质子性 CH3COOH 非极性
非质子性 ROR 苯 氯仿
一些常用溶剂的介电常数(1)
C H 3 C H 2 CC H
1-丁炔
C H 3 CCC H 3
2-丁炔
CH3CH2CH C C CH3
CH3
4-甲基-2-己炔
3.3.2 烯烃和炔烃的命名 环烯烃和环炔烃 命名时以环为母体,编号时把1,2 位次留给不饱和键
3.3.2 烯烃和炔烃的命名
若分子中同时含有双键和叁键,可用“-烯-炔”作词尾 。
2) 链端烯、炔的沸点和其它异构体相比要低; 3) 直链烯、炔的沸点要高于带支链的异构体,但差别不大; 4) 烯、炔的相对密度都小于1;>同碳数烷烃 5) 烯、炔几乎不溶于水,但可溶于非极性溶剂(戊烷、四氯化碳、
乙醚等)。
6)熔点:
3.4 烯烃和炔烃的物理性质
分子的对称性↑,烯、炔的熔点↑。
例如:内烯、炔的熔点>末端烯烃、内炔; 反式烯烃的熔点>顺式烯烃。
烯烃和炔烃分子从形式上去掉一个氢原子后剩下的基团,分别称为 烯基和炔基。命名时,有时要定位,定位时碳原子的的编号以连接基的 碳原子编号为1。
chapt 3烯烃 炔烃和二烯烃
CH3
CH
CH2
+
Cl2
500。 C
α
CH2 Cl
CH
CH2
(四) 聚合反应
nCH2=CH2 高 温 高 压
CH2-CH2 n
(五) 金属炔化物的生成
HC CH + 2AgNO3 + 2NH3.H2O
AgC
HC
CAg
+ 2NH4NO3 + 2H2O
乙炔银(白色)
CH + Cu2Cl2 + 2NH3.H2O CuC CCu + 2NH4Cl + 2H2O
HBr
有过氧化物
C H3C H2C H C H2 H Br
反―马氏规则‖
注意:氯化氢、碘化氢无过氧化物效应
该反应不使用HX的水溶液,以避免烯烃与水加成。
HX对烯烃加成的相对活性:
HI HBr HCl HF
因为:在HF中,F的原子半径小,但电负性大, 故对H原子的束缚力较大,不易离解出H+和F-。 3.加 H2SO4
CH 2=CH
CH 3CH=CH
CH 2=CHCH 2
乙 基 烯
丙烯基
烯 基 丙
三 烯烃和炔烃的物理性质
与烷烃的不同之处:
不同碳原子的电负性: 三键碳原子>双键碳原子>饱和碳原子。 偶极矩:端炔>端烯(但极性较弱)。如: CH3CH2C≡CH
μ 2.67×10-30 C· m
CH3CH2CH=CH2
C C2H5
P-2 催化剂
C2H5 C H C
C2H5 H
采用Na(或Li)/液NH3还原炔烃将得到反式烯烃。
Na , 液 NH3 。 - 78 C C2H5 C H C (CH )3CH3 2 H
有机化学 第三章 烯烃、炔烃和二烯烃
第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。
炔烃是含有(triple bond) 的不饱和开链烃。
炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。
一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。
(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。
现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。
乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。
每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。
其它烯烃的双键也都是由一个σ键和一个π键组成的。
双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。
π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。
(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。
两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。
在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。
此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。
有机化学第三章烯烃和炔烃
125.9
126.8 125.9 126.8 126.8 119.7 115.5
顺-CH3CH2CH=CHCH3
反-CH3CH2CH=CHCH3 CH3CH2C(CH3)=CH2 (CH3)2CHC(CH3)=CH2 (CH3)2C=CHCH3 (CH3)2C=C(CH3)2
119.7
115.5 119.2 117.2 112.5 111.3
( Ni(Al) + NaOH
Ni + 骨架镍 NaAlO2 + H2
H2 压力: Pt, Pd :常压及低压 Raney Ni :中压(4~5MPa) 温度:
)
常温(<100°C)
(1) 催化氢化及机理
乙烯催化氢化反应机理的示意图
氢化过程中的能量变化
无催化剂 有催化剂 (可能多步骤)
E2
能量
E1
催化氢化时炔烃与烯烃活性的比较
炔烃比烯烃容易进行催化加氢,当分子中同时存在双键和叁
键时,催化氢化首先发生在叁键上。
CH3 HC C C CH CH2CH2 OH + H2
Pd, CaCO3 喹啉, 80%
CH3 H2C CH C CH CH2CH2 OH
加氢成烯烃
保持不变
N
喹啉
催化加氢反应时立体选择性
不饱和烃
不饱和烃: 含有碳碳重键的化合物。 烯烃(alkenes)
H H C C H H
H C C H
炔烃(alkynes)
例子 通式 官能团
CnH2n
CnH2n-2
C C
C C
3.1 烯烃和炔烃的结构
3.1.1 碳碳双键的组成
碳原子的sp2杂化过程示意图
3第三章 烯烃与炔烃
以乙烯分子为例
三个sp2杂化轨道同一平面上彼此成120º角,还剩下一个2p轨道垂 直于sp2轨道所在的平面上。
sp2杂化轨道
2p轨道
120º
在乙烯分子中,所有的原子都在同一平面上。两个p轨道侧面重叠形成的 键叫π键,其电子云分布在分子平面的上下两侧,通常说π键是垂直于由 σ键所形成的平面。
(CH3)2C=CH2 + H + O H (CH3)3C+ + O H (H3C)3 C + O H H + O H H 快 H 快 (H3C)3 C + O H (CH3)3COH + H3O+ H H 慢 + (CH3)2CCH3 + O H H
异丁烯接受质子转变成叔丁基正离子,后者与水结合生成烊盐,烊盐 脱去质子后变成叔丁醇。
117°
H
121.7°
H C H
C
0.108nm
H
0.134nm
C=C 键能:610.9 kJ/mol
三、π键的特性 由于π键是由两个平行的p轨道侧面重叠形成的,重叠 程度较小,因此容易断裂。 π键电子云对称分布于σ键所在平面的上下,不是轴对 称的,所以成键原子不能围绕键轴自由旋转,否则π键断裂 。正因为如此,烯烃存在着顺反异构现象。
2
顺反异构
由于双键两侧的基团在空间的位置不同而引起的异构叫做顺反异构。 顺式:两个相同的基团处于双键同侧。反式:两个相同的基团处于双 键反侧(异侧)。
例如,2-丁烯存在两个顺反异构体
CH3 C H C
CH3 H
CH3 H
H C C CH3
顺-2- 丁烯
反-2-丁烯
有顺反异构体的烯烃必须是每个双键碳原子上都连有不同的原子或原 子团 。
第三章不饱和烃烯烃和炔烃
同理,B 氧化后生成丙酮和 CO2, (CH3)2C 和 CH2 ,把二者连接起来,即得到 B 的构
造异构式为 (CH3)2C=CH2 。C 氧化后仅生成乙酸,说明它未氧化前具有 CH3CH ,而它和
化合物 A、B 为同分异构体,都是含四个碳原子的烯烃说明它具有对称结构,把两个
CH3CH 连接起来,即得到 C 的构造式CH3CH=CHCH3 。
CH3
CH CH3
H3C CH C CH CH3
4,4-二甲基-2-戊烯
3-甲基-1-丁炔
通常将碳碳双键处于端位的烯烃,统称α-烯烃。碳碳三键处于端位的炔烃,一般称为端
位炔烃。
2、烯烃顺反异构体的命名
顺反命名法:
两个相同原子或基团处于双键碳原子同一侧的称为顺式,反之称为反式。但当两个双键
碳原子所连接的四个原子或基团都不相同时,则难用顺反命名法命名。
2)在满足最低系列原则下,优先考虑双键,使其具有较小编号;
3)书写:称某碳“烯”某“炔”;
4)若双键和三键处于相同的位次供选择时,优先给双键较低编号。
HC C CH2 CH2 CH CH2
1-己烯-5-炔
二、结构与性质
1、结构: 烯烃为 sp2 杂化,余下一个未参与杂化的 p 轨道,垂直与三个杂化轨道对称轴所在的平
臭氧化: 生成醛和/或酮。根据生成醛和酮的结构,就可推断烯烃的结构。炔烃与臭氧反应生成羧 酸。 臭氧除和碳碳三键以及双键外,其他官能团很少反应,分子的碳架也很少发生重排,故 此反应可根据产物的结构测定重键的位置和原化合物的结构。 环氧化反应: 烯烃与过氧酸(简称过酸)反应生成 1,2-环氧化物,常用的过氧酸有过氧甲酸、过氧 乙酸、过氧苯甲酸、过氧间氯苯甲酸、过氧三氟乙酸等。 3)α-氢原子的反应
第三章 烯烃和炔烃 亲电加成反应
炔烃是含有 –C C-叁键的不饱和脂肪烃, 二烯烃是含有两个C=C双键的不饱烃与炔烃互 为同分异构体,两的者通式为CnH2n-2
§3-1 烯烃和炔烃的分子结构
第三章 烯烃和炔烃 亲电加成反应
【教学要求】 ❖ ①熟悉烯烃、炔烃和二烯烃的结构 ❖ ②掌握烯烃、炔烃和二烯烃的命名 ❖ ③了解炔烃的物理性质 ❖ ④熟练掌握烯烃、炔烃的化学性质 ❖ ⑤理解亲电加成、自由基加成反应历程 ❖ ⑥理解共轭体系及共轭效应 ❖ ⑦了解重要烯烃的用途和石油化工
第三章 烯烃和炔烃 亲电加成反应
CH3CH=CH2
Br 2
棕红色
卤素的反应活性次序:
CH3CHCH2 无色 Br Br
F2 > Cl2 > Br2 > I2
氟反应太剧烈碘不反应,但ICl、BrCl可反应
炔烃与卤素的加成与烯相似
溴水与乙炔的加成生成二溴乙烯
CH CH + Br2
(红棕色)
CH = CH Br Br (无色)
乙炔与液溴反应则得无色四溴乙烷 Br Br
5-甲基-1,3,6-庚三烯
5.同时含有叁键和双键的化合物称为烯炔。其命名 选取含双键和叁键最长的碳链作为主链。位次的 编号通常使不饱和键位次最小.
5
4
3
CH3CH =CH
2
C
=C1 H
3 _ 戊烯 _ 1 _ 炔
CH3
= = 7
6 54
3
2
1
CH3C CCH CH2CH CH2
4 _ 甲基 _ 1 _ 庚烯 _ 5 _ 炔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(CH3)3C->CH3CH2CH(CH3)-> (CH3)2CHCH2- > CH3CH2CH2CH2叔丁基 仲丁基 异丁基 正丁基
含有双键和三键的基团,可以认为连有两个或三个相同的原子。
C O C O O
命名:构型确定以后,后面的仍按系统命名法。
第三章
烯烃 与炔烃
第三章 烯烃和炔烃 教学目的:
1.了解烯烃和炔烃的来源和制法。
2. 掌握烯烃和炔烃的结构及分类。 3. 掌握烯烃和炔烃的物理性质和化学性质。 4. 熟悉烯烃和炔烃的命名法。
教学重点:
烯烃和炔烃的命名、性质、结构。
教学难点:
烯烃和炔烃命名方法和化学性质。
第三章 烯烃与炔烃
烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物。 单链烯烃分子通式为CnH2n,双键是烯烃分子中的官能团。
CH2CH 3 (CH3) 3CCH=CCH 2CH 3 2, 2- 二甲基 -4-乙基-3-己烯 CH2CH 2CH3 (CH3) 2CHCH2C=CH2 4-甲基-2- 丙基-1- 戊烯
烯烃顺反异构体的系统命名法是用字母Z(德文Zusammen,意为
一起)和E(德文Entgegen,意为相反)表示顺反异构体的构型。 命名时先将每个双键碳原子上的取代基按次序规则排列优先次序,若两 个碳上的优先基团在双键同侧,称Z型,在异侧为E型。 定Z、E的构型
马氏规则 凡是不对称烯烃和HX加成时,酸中的氢原子(带正电性部分的基 团)主要加到含氢原子较多的双键碳原子上,这称为马尔科夫尼科夫 (Markovnikov)规则,简称马氏规则。
CH3CH2CHCH3 Br (CH3)2C-CH3 Cl
例如:
CH3CH2CH=CH2 + HBr
(80%)
(CH3)2C=CH2 + HCl
如下图所示:
a b
C
C
c d
a≠b c≠d
第二节 烯烃的命名
一、烯基的命名
烯烃分子中去掉一个氢原子的基团称烯基。 常见的烯基如下: CH2=CH-(乙烯基) CH3CH=CH-(丙烯基) CH2=CHCH2-(烯丙基)
二、烯烃的命名
选择主链:选择含双键的最长碳链作为主链(母体烯烃),依主链碳 原子的数目命名为“某烯”。 给主链碳原子编号:尽可能以较小的编号给双键,即从最靠近双键的 一端起,把主链碳原子依次编号。 标明双键位次:将双键两个碳原子中位次较小的一个编号,放在烯烃 名称的前面。1-烯烃中的“1”常常省略,所以单烯烃的名称前面没有数 字者即为“1-烯烃”。 其他同烷烃的命名原则。例如:
CH2=CH2 + H2
Ni
CH3CH3
催化剂的作用是将烯烃和氢吸附在金属表面,使π键和H-H键松弛,降 低反应所需的活化能。
下图为催化过程的示意图
H H >C=C< H C C H C C H H
解吸
上述催化剂均不溶于有机溶剂,称为异相催化氢化(或非均相催化氢化)。 催化剂的选择 用Pt或Pd催化时,常温即可加氢; 工业用Ni,要在200~300℃温度下进行加氢; Raney镍催化剂,一种异相催化剂被广泛用于有机合成和工业生产的 氢化反应中。
(100%)
3
烯烃和硫酸的加成
烯烃能与浓硫酸反应,质子和硫酸氢根分别加到双键两个碳原子上形成 硫酸氢酯。 硫酸氢酯可被水解生成醇,工业上用这种方法合成醇,称为烯烃间接水合 法。
不对称烯烃与硫酸加成的取向也符合马氏规则。
4
烯烃和水的加成(水合)
在中等浓度的强酸(H2SO4、H3PO4、HNO3)中烯烃加水生成醇,这种 反应称为水合(hydration)。 例如:异丁烯用65%的硫酸吸收,产物为叔丁醇。反应机理如下所示:
烯烃的化学性质与烷烃不同,它很活泼,可以发生很多反应。 主要原因是它有双键,其中π键的稳定性比σ键差,易发生加
成、氧化、聚合等反应。
一、烯烃的催化氢化反应
1
异相催化氢化
烯烃在催化剂存在下与氢加成生成饱和烃,称为催化加氢或催化氢化, 常用的催化剂为分散程度很高的铂(Pt)、钯(Pd)和镍(Ni)等金属细 粉。
二、烯烃的亲电加成
1
烯烃和卤素的加成
烯烃能与卤素起加成反应,生成相邻两个碳原子上各带一个卤原子的邻 二卤化物。
C C
+ X2
C X
C X
卤素的活性次序为F2>Cl2>Br2>I2。 氟与烯烃的反应十分剧烈,同时伴随其他副反应。碘与烯烃一般不反应 ,所以常用氯和溴与烯烃反应,以制得邻二溴和二氯化合物。 将烯烃加入溴的四氯化碳溶液,溴的红棕色很快褪去,可作为C=C双键 的鉴别方法。
117°
H
121.7°
H C H
C
0.108nm
H
0.134nm
C=C 键能:610.9 kJ/mol
三、π键的特性 由于π键是由两个平行的p轨道侧面重叠形成的,重叠 程度较小,因此容易断裂。 π键电子云对称分布于σ键所在平面的上下,不是轴对 称的,所以成键原子不能围绕键轴自由旋转,否则π键断裂 。正因为如此,烯烃存在着顺反异构现象。
以乙烯分子为例
三个sp2杂化轨道同一平面上彼此成120º角,还剩下一个2p轨道垂 直于sp2轨道所在的平面上。
sp2杂化轨道
2p轨道
120º
在乙烯分子中,所有的原子都在同一平面上。两个p轨道侧面重叠形成的 键叫π键,其电子云分布在分子平面的上下两侧,通常说π键是垂直于由 σ键所形成的平面。
(CH3)2C=CH2 + H + O H (CH3)3C+ + O H (H3C)3 C + O H H + O H H 快 H 快 (H3C)3 C + O H (CH3)3COH + H3O+ H H 慢 + (CH3)2CCH3 + O H H
异丁烯接受质子转变成叔丁基正离子,后者与水结合生成烊盐,烊盐 脱去质子后变成叔丁醇。
5
烯烃和次卤酸的加成
烯烃与氯或溴在水溶液中反应,主要产物为β-卤代醇,相当于在双 键上加了一分子次卤酸。
例如:
C
C
+ Cl2
H2O
C
C
+ HCl
OH Cl
对于结构不对称的烯烃,也符合马氏规则,即羟基加在含氢最少 的双键碳原子上。
反应机理如下:第一步生成卤鎓离子中间体;第二步水分子从三元环 的背面进攻,最后得到反式加成的产物。
Cl C CH3 CH2 C
CH3 H
Cl C CH3CH2 C
H CH3
Z-3-氯-2-戊烯
E-3-氯-2-戊烯
CH3 C H C
顺 -2-丁烯
CH3 H
CH3 C H C
反-2-丁烯
H CH3
Z-2-丁烯
E-2-丁烯
第三节 烯烃的物理性质
烯烃的物理性质与烷烃相似,也是随着碳原子数的增加而递变。
0.6042 0.6213
异丁烯 1-戊烯 反-2-戊烯 顺-2-戊烯 2-甲基-1-丁烯 3-甲基-1-丁烯 2-甲基-2-丁烯 1-己烯
2,3-二甲基-2-丁烯
1-庚烯 1-辛烯 1-壬烯 1-癸烯
-140 -138 -136 -151 -138 -168.5 -134 -140 -74.3 -119 -102 -66
-6.9 30 36.4 37 31 20.7 38.5 63 73 94 121 146 170.5
0.5942 0.6405 0.6482 0.6556 0.6504 0.6272 0.6623 0.6731 0.7080 0.6970 0.7149 0.7300 0.7408
第四节 烯烃的化学性质
2
顺反异构
由于双键两侧的基团在空间的位置不同而引起的异构叫做顺反异构。 顺式:两个相同的基团处于双键同侧。反式:两个相同的基团处于双 键反侧(异侧)。
例如,2-丁烯存在两个顺反异构体
CH3 C H C
CH3 H
CH3 H
H C C CH3
顺-2- 丁烯
反-2-丁烯
有顺反异构体的烯烃必须是每个双键碳原子上都连有不同的原子或原 子团 。
溴鎓离子中间体 Br C C Cl C H 2O -H+ Br C C OH
Cl Br C
2
烯烃和卤化氢的加成
烯烃与卤化氢气体或发烟氢卤酸溶液加成时,可得一卤代烷。
CH2=CH2 + HX
CH3CH2X
卤化氢活泼性的次序为:HI>HBr>HCl。 烯烃与卤化氢的加成也是亲电加成。 H+首先加到碳碳双键中的一个碳原子上,从而使碳碳双键中的另一 个碳原子带有正电荷,形成碳正离子,然后碳正离子再与X- 结合形成卤 代烷。
2
氢化热和烯烃的稳定性
氢化反应是放热反应,1mol不饱和化合物氢化时放出的热量称为氢化热。 从氢化热的大小可以得知烯烃的相对稳定性:放出的氢化热越少,内能 越低,分子越稳定。 反式烯烃比顺式烯烃稳定:因为在顺式异构体中,两个大基团靠的近, 具有较大的范德华斥力,使分子不稳定。 连接在双键碳原子上的烷基数目越多的烯烃更为稳定。 一般烯烃的稳定性顺序如下: R2C=CR2> R2C=CHR> R2C=CH2~RCH=CHR> RCH=CH2> CH2=CH2
四、烯烃的分类
1. 按碳碳双键的数目可分为单烯烃(分子中有一个双 键)、二烯烃(分子中有两个双键)和多烯烃(分 子中有三个或三个以上的双键)。 2. 按分子骨架分类,烯烃可分为链烯烃和环烯烃。链 烯烃和环烯烃又有单烯烃、二烯烃、多烯烃之分。
五、烯烃的异构现象
由于烯烃含有双键,使烯烃的同分异构现象比烷烃复杂的多 。 除了有碳干异构外,还有由于双键位置不同引起的位置异构,以及由 于双键两侧的基团在空间中的位置不同引起的顺反异构,所以烯烃异构 体的数目比起相应的烷烃就要多。