高一数学上学期期中试卷及答案

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。

2024-2025学年喀什市高一数学第一学期期中质量监测试卷附答案解析

2024-2025学年喀什市高一数学第一学期期中质量监测试卷附答案解析

2024-2025学年喀什市高一数学第一学期期中质量监测试卷时间:120分钟满分:150分一、单选题(每小题5分,共40分)1.下列元素的全体不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10的三角形2.下列关系中正确的是()A.{0}=∅B.{(,)}{(,)}a b b a ⊆C.{0,1}{(0,1)}⊆ D.{0}∅⊆3.下列元素与集合的关系判断正确的是()A.0∈NB.π∈QC.∈QD.-1∉Z4.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = ()A.{0,2}B.{1,2}C.{0}D.{2,1,0,1,2}--5.满足“闭合开关1K ”是“灯泡R 亮”的充要条件的电路图是()A. B. C. D.6.已知a b >,c d >,且c ,d 均不为0,那么下列不等式一定成立的是()A.ad bc >B.ac bd >C .a cb d->- D.a c b d+>+7.若0x >,则40x x+>的最小值为()A.0B.1C.2D.48.一元二次不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为()A.30k -<<B.30k -≤<C.3k <- D.0k <二、多选题(每小题5分,共20题,全部选对得5分,选对但不全的得2分,有选错得得0分)9.已知集合A={2,3},B={x|mx-6=0},若B ⊆A ,则实数m 可以是()A.3或2B.1C.0D.-110.下列说法中正确的有()A.不等式a b +≥恒成立B.存在a ,使得不等式12a a+≤成立C.若0a >,0b >,则2b a a b+≥ D.若a ,b 为实数,则222a b ab+<11.如图,二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),下列说法正确的是()A.c <0B.b 2﹣4ac <0C.x =3时函数y =ax 2+bx +c 取最小值D.图像的对称轴是直线x =312.取整函数:[]x =不超过x 的最大整数,如[1.2]1=,[2]2=, 1.22[]-=-.取整函数在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照"取整函数"进行计费的.以下关于“取整函数”的性质是真命题的有()A.R x ∀∈,[2]2[]x x =B .R x ∃∈,[2]2[]x x =C.x ∀,R y ∈,[][]x y =,则1x y -<D.R x ∀∈,1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦三、填空题(每小题5分,共20题)13.集合{}04A x x =∈<<N 的子集个数__________.14.“实数的平方大于等于0”用符号表示为__________.15.不等式2101x x -<+的解集是_______.(结果用集合或区间表示)16.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.四、解答题(共70分)17.比较下列各题中两个代数式的大小:(1)226x x ++与(3)(1)x x +-;(2)222xy ++与2(22)x y +-.18.写出下列命题的否定,并判断它们的真假:(1)a ∀∈R ,一元二次方程210x ax --=有实根;(2)每个正方形都是平行四边形;(3)m N N ∃∈;(4)存在一个四边形ABCD ,其内角和不等于360 .19.求下列不等式的解集:(1)2144x x -;(2)214450x x -+≤;(3)26100x x ++>;(4)(2)(3)1x x x x +>-+.20.已知全集{}4,1,0,1,2,4U =--,{}|03M x x =∈≤<Z ,{}220N xx x =--=∣(1)求M N ⋂;(2)求()U M N ð:(3)求()()U UM N ⋃痧.21.已知0x >,0y >,且141x y+=,求x y +的最小值.22.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2,预计安装后该企业每年需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为()20(0)5C x x x =>+,将该企业的净水设备购置费与安装后4年需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最喀什市2024-2025学年第一学期期中质量监测试卷高一数学时间:120分钟满分:150分一、单选题(每小题5分,共40分)1.下列元素的全体不能组成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10的三角形【答案】B 【解析】【分析】根据集合中的元素的三要素即可判断各个选项的正误.【详解】中国古代四大发明可以构成一个集合,故A 正确;地球上的小河流不满足集合元素的确定性,即没有标准说多小的河流算小河流,故B 错误;方程210x -=的实数解是1x =±,可以构成一个集合,故C 正确;周长为10的所有三角形可以构成一个集合,故D 正确;故选:B.2.下列关系中正确的是()A.{0}=∅B.{(,)}{(,)}a b b a ⊆C.{0,1}{(0,1)}⊆D.{0}∅⊆【答案】D 【解析】【分析】由集合中元素的属性逐个判断即可.【详解】对于A ,{}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误;对于B ,(,),(,)a b b a 当a b ≠表示不同的点,故(){}(){},,,a b b a 在a b ≠时不相等,故错误;对于C ,{}0,1的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误;对于D ,空集为任何一个集合的子集,故{}0∅⊆正确;故选:D3.下列元素与集合的关系判断正确的是()A.0∈NB.π∈QC.∈QD.-1∉Z【答案】A 【解析】【分析】根据元素和集合的关系逐一判断即可.【详解】0是自然数,π是无理数,不是有理数,1-是整数,根据元素和集合的关系可知,只有A 正确;故选:A4.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B = ()A.{0,2}B.{1,2}C.{0}D.{2,1,0,1,2}--【答案】A 【解析】【分析】由交集定义计算.【详解】根据集合交集中元素的特征,可得{0,2}A B ⋂=,故选:A.【点睛】本题考查集合的交集运算,属于简单题.5.满足“闭合开关1K ”是“灯泡R 亮”的充要条件的电路图是()A. B. C. D.【答案】C 【解析】【分析】根据物理知识,结合充分条件、必要条件的概念分析可得答案.【详解】对于A ,“闭合开关1K ”是“灯泡R 亮”的充分不必要条件;对于B ,“闭合开关1K ”是“灯泡R 亮”的必要不充分条件;对于C ,“闭合开关1K ”是“灯泡R 亮”的充要条件;对于D ,“闭合开关1K ”是“灯泡R 亮”的既不充分也不必要条件.故选:C.【点睛】本题考查了充分条件和必要条件,属于基础题.6.已知a b >,c d >,且c ,d 均不为0,那么下列不等式一定成立的是()A.ad bc >B.ac bd >C.a c b d ->-D.a c b d+>+【答案】D 【解析】【分析】通过举出反例可以判断ABC 是错误的.【详解】解:当2,1,1,1a b c d ====-时,ad bc <,A 错误;当2,1,1,2a b c d ==-=-=-时,ac bd <,B 错误;当2,1,1,1a b c d ====-时,a c b d -<-,C 错误;根据不等式两边同时加上一个数,不等号的方向不发生改变,可得D 正确.故选:D.7.若0x >,则40x x+>的最小值为()A.0B.1C.2D.4【答案】D 【解析】【分析】由基本不等式求解.【详解】∵0x >,∴44x x +≥=,当且仅当4x x =,即2x =时等号成立,故选:D .8.一元二次不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为()A.30k -<<B.30k -≤<C.3k <-D.0k <【答案】A 【解析】【分析】根据一元二次不等式恒成立可得20k <且0∆<,列式运算求解即可.【详解】因为一元二次不等式23208kx kx +-<对一切实数x 都成立,则220Δ30k k k <⎧⎨=+<⎩,解得30k -<<,所以k 的取值范围为30k -<<.故选:A.二、多选题(每小题5分,共20题,全部选对得5分,选对但不全的得2分,有选错得得0分)9.已知集合A={2,3},B={x|mx-6=0},若B ⊆A ,则实数m 可以是()A.3或2B.1C.0D.-1【答案】AC 【解析】【分析】本题先根据题意判断B 是A 的子集,有3种可能性,再分情况讨论即可.【详解】当m=0时,方程mx-6=0无解,B=⌀,满足B ⊆A ;当m ≠0时,B=6m ,因为B ⊆A ,所以6m=2或6m=3,解得m=3或m=2.【点睛】本题考查集合的基本关系求参数,是基础题.10.下列说法中正确的有()A.不等式a b ab +≥恒成立B.存在a ,使得不等式12a a+≤成立C.若0a >,0b >,则2b aa b+≥ D.若a ,b 为实数,则222a b ab+<【答案】BC 【解析】【分析】根据基本不等式的知识对选项进行分析,从而确定正确答案.【详解】A 选项,对于不等式a b ab +≥,1a b ==-时,a b ab +<,所以A 选项错误.B 选项,当1a =-时,122a a+=-<,所以B 选项正确.C 选项,0a >,0b >,则2b a a b +≥=,当且仅当,b aa b a b==时等号成立,所以C 选项正确.D 选项,当1a b ==时,222a b ab +=,所以D 选项错误.故选:BC11.如图,二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),下列说法正确的是()A.c <0B.b 2﹣4ac <0C.x =3时函数y =ax 2+bx +c 取最小值D.图像的对称轴是直线x =3【答案】CD 【解析】【分析】由20ax bx c ++=的两根分别为1,5,结合韦达定理以及二次函数的性质判断即可.【详解】因为二次函数y =ax 2+bx +c 的图像经过点A (1,0),B (5,0),所以20ax bx c ++=的两根分别为1,5.由图可知,0a >,由韦达定理可知150ca=⨯>,即0c >,故A 错误;由图可知,该二次函数与x 轴有两个交点,即240b ac ∆=->,故B 错误;由韦达定理可知,6b a -=,即该二次函数的对称轴为32b x a=-=,即在x =3时函数y =ax 2+bx +c 取最小值,故CD 正确;故选:CD12.取整函数:[]x =不超过x 的最大整数,如[1.2]1=,[2]2=, 1.22[]-=-.取整函数在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照"取整函数"进行计费的.以下关于“取整函数”的性质是真命题的有()A.R x ∀∈,[2]2[]x x =B.R x ∃∈,[2]2[]x x =C.x ∀,R y ∈,[][]x y =,则1x y -<D.R x ∀∈,1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦【答案】BCD 【解析】【分析】判断特称命题正确,只要举出例子即可,判断全称命题错误,也只要举出例子即可.可以用特殊值法,举例判断.【详解】对于A ,根据新定义“取整函数”的意义知[2]2[]x x =不一定成立,如x 取1.5,[2]3x =,2[]2x =,故A 错误;对于B ,x 取1,[2]2x =,2[]2x =,B 正确;对于C ,设(,01)x n a n Z a =+∈≤<,(,01)y m b m Z b =+∈≤<,若[][]x y =,则n m =,因此1x y a b a -=-≤<,故C 正确;对于D ,设(,01)x n a n a =+∈≤<Z ,当00.5a ≤<时,[21]2x n x ⎡⎤++=⎢⎥⎣⎦,[2]2x n =,所以1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦,当0.51a ≤<时,1[]12x x n n ⎡⎤++=++⎢⎥⎣⎦,[2][22]21x n a n =+=+,所以1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦,即D 正确.故选:BCD.三、填空题(每小题5分,共20题)13.集合{}04A x x =∈<<N 的子集个数__________.【答案】8【解析】【分析】分析可知集合{}1,2,3A =,进而可求子集的个数.【详解】因为集合{}{} 041,2,3A x x =∈<<=N ,共3个元素,所以集合A 的子集个数为328=.故答案为:8.14.“实数的平方大于等于0”用符号表示为__________.【答案】2R,0x x ∀∈≥【解析】【分析】根据全称量词命题的知识确定正确答案.【详解】“实数的平方大于等于0”用符号表示为:2R,0x x ∀∈≥.故答案为:2R,0x x ∀∈≥.15.不等式2101x x -<+的解集是_______.(结果用集合或区间表示)【答案】1(1,)2-【解析】【分析】不等式2101x x -<+的解集,即为不等式()()2110x x -+<的解集,根据一元二次不等式的解法即可得解.【详解】解:不等式2101x x -<+的解集,即为不等式()()2110x x -+<的解集,解得112x -<<,所以不等式2101x x -<+的解集是1(1,)2-.故答案为:1(1,)2-.16.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.【答案】254【解析】【分析】设直角三角形的斜边为c ,直角边分别为a ,b ,根据勾股定理,以及基本不等式的性质进行求解即可.【详解】设直角三角形的斜边为c ,直角边分别为a ,b ,由题意知c 5=,则22a b 25+=,则三角形的面积1S ab 2=,2225a b 2ab =+≥,25ab 2∴≤,则三角形的面积112525S ab 2224=≤⨯=,当且仅当a=b=522取等即这个直角三角形面积的最大值等于254,故答案为254.【点睛】本题主要考查基本不等式的应用,考查三角形面积的计算,利用基本不等式的性质结合勾股定理,三角形的面积公式是解决本题的关键.四、解答题(共70分)17.比较下列各题中两个代数式的大小:(1)226x x ++与(3)(1)x x +-;(2)222x y ++与2(22)x y +-.【答案】(1)226(3)(1)x x x x ++>+-(2)()222222x y x y ++>+-【解析】【分析】利用作差法求解即可.【小问1详解】因为()22226(3)(1)262390x x x x x x x x ++-+-=++-+-=>,所以226(3)(1)x x x x ++>+-;【小问2详解】因为()()()222222221210x y x y x y ++-+-=-+-+>,所以()222222x y x y ++>+-.18.写出下列命题的否定,并判断它们的真假:(1)a ∀∈R ,一元二次方程210x ax --=有实根;(2)每个正方形都是平行四边形;(3)m N N ∃∈;(4)存在一个四边形ABCD ,其内角和不等于360 .【答案】(1)a R ∃∈,一元二次方程210x ax --=没有实根,假命题.(2)存在一个正方形不是平行四边形,假命题.(3)m N N ∀∈,假命题.(4)任意四边形ABCD ,其内角和等于360°,真命题.【解析】【分析】根据特称命题,全称命题的否定的书写规律来写,并逐一判断真假.【详解】(1)a R ∃∈,一元二次方程210x ax --=没有实根,假命题,因为240a ∆+>=,方程恒有根;(2)存在一个正方形不是平行四边形,假命题,因为任何正方形都是平行四边形;(3)m N N ∀∈,假命题,因为0m N =∈1N =∈;(4)任意四边形ABCD ,其内角和等于360 ,真命题.【点睛】本题考查特称命题,全称命题的否定,是基础题.19.求下列不等式的解集:(1)2144x x -;(2)214450x x -+≤;(3)26100x x ++>;(4)(2)(3)1x x x x +>-+.【答案】(1)7|24x x ⎧⎫-≤≤⎨⎩⎭(2){|59}x x ≤≤(3)R (4){|1x x >或12x <-}.【解析】【分析】(1)由题得24140x x +-≤,再写出不等式的解集;(2)先因式分解,再写出不等式的解集;(3)配方即得不等式的解集;(4)化简得2210x x -->,再写出不等式的解集.【详解】解:(1)由2144x x -得24140x x +-≤.方程24140x x +-=的根为1,21211157,,2884x x x -±-±====-.∴原不等式的解集为7|24x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)21445(5)(9)0x x x x -+=--,∴原不等式的解集为{|59}x x ≤≤;(3)22610(3)11x x x ++=++> ,∴原不等式的解集为R ;(4)将(2)(3)1x x x x +>-+化为2210x x -->,即(21)(1)0x x +->.∴原不等式的解集为{|1x x >或12x <-}.【点睛】本题主要考查不含参的一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平.20.已知全集{}4,1,0,1,2,4U =--,{}|03M x x =∈≤<Z ,{}220N x x x =--=∣(1)求M N ⋂;(2)求()U M N ð:(3)求()()U U M N ⋃痧.【答案】(1){}2(2){}4,4-(3){}4,1,0,1,4--【解析】【分析】先明确集合M ,N ,根据集合的运算法则求相关集合即可.【小问1详解】{}{}|030,1,2M x x =∈≤<=Z ,{}{}2201,2N xx x =--==-∣,所以{}2M N = .【小问2详解】因为{}1,0,1,2M N ⋃=-,所以(){}U 4,4M N ⋃=-ð.【小问3详解】因为{}U 4,1,4M =--ð,{}U 4,0,1,4N =-ð,所以()(){}U U 4,1,0,1,4M N =--⋃痧.21.已知0x >,0y >,且141x y+=,求x y +的最小值.【答案】9【解析】【分析】根据()14x y x y x y ⎛⎫+=++ ⎪⎝⎭结合基本不等式求解即可.【详解】()144559y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4y x x y=,即26y x ==时,取等号,所以x y +的最小值为9.22.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2,预计安装后该企业每年需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为()20(0)5C x x x =>+,将该企业的净水设备购置费与安装后4年需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最小?【答案】(1)[11,20](2)设备占地面积为215m 时,y 的值最小【解析】【分析】(1)由题意得800.2(0)5y x x x =+>+,解不等式7.2y ≤即可得解.(2)将800.2(0)5y x x x =+>+变形为580155x y x +=+-+,再利用基本不等式即可求解.【小问1详解】由题意得800.2(0)5y x x x =+>+,令7.2y ≤即800.27.25x x ++≤,整理得2312200x x -+≤即()()01120x x ≤--,所以解得1120x ≤≤,所以设备占地面积x 的取值范围为[]11,20.【小问2详解】805800.21117555x y x x x +=+=+--=-=++≥,当且仅当58055x x +=+即15x =时等号成立,所以设备占地面积为215m 时, y 的值最。

高一上册数学期中试卷及答案

高一上册数学期中试卷及答案

高一上册数学期中试卷及答案答案一、选择题题号1 2 3 4 5 6 7 8 9 10答案C D C C A A B B D A二、填空题11.a, b不都等于1 12.1 13.2或3 14.[1,2] 15.9三、解答题16.解:若p真,则y=(2a-6)x在R上单调递减,∴0 2a-6 1, ∴3x2-3ax+2a2+1,则应满足,∴,故a ,又由题意应有p真q假或p假q真.i. 若p真q假,则,a无解.ii. 若p假q真,则,∴若a的取值范围的集合是{a|17.解:(1)∵U={1, 2},而∴CUA={1},∴A={2},即方程x2+px+q=0的两根均为2,由韦达定理知:,∴ .(2)∵y=-4x2+4x+15=-4(x- )2+16,而≤x≤2, ∴7≤y≤16,∴4(x- )2=16-y, ∴x- = , ∴x= +,故原函数的反函数是y= + (7≤x≤16).18.解;(1)由题设条件,得,化简得: .(2)由(1)知,当019.解:∵x2-8x-20 0, ∴(x-10)(x+2) 0,∴x 10或x -2,满足p的x构成的集合记为a,则a={x|x 10或x -2},又x2-2x+1-a2 0,∴[x-(1-a)][x-(1+a)] 0满足q的x记为集合B.i. 若1-a 1+a即a 0,则b={x|x 1-a或x 1+a},∵A B,则,∴a≥-3,故-3≤a 0.ii. 若1-a=1+a即a=0,则B={x|x∈R且x≠0},则此时A B,∴a=0.iii. 若1-a 1+a即a 0,则B={x|x 1+a或x 1-a},∴,∴a≤3,∴0故综上所述,a的取值范围是-3≤a≤3.法2.由题意,a20即x 10或x -2,即当x 10或x -2时,a2 (x-1)2恒成立,∴a2≤9,故-3≤a≤3.20.解:(1)∵f(1)=3, ∴a=1, ∴f(x)= ,设≤x1(2x1+ )=2(x2-x1)+ =(x2-x1)(2- ), ∵x2 x1≥, ∴x1x2≥x ≥, ∴0 2,∴2- 0又x2-x1 0,∴f(x2)-f(x1) 0, ∴f(x2) f(x1), ∴f(x)在, +∞)上单调递增.(2)∵f(x)=x+b, ∴x2-bx+1=0, ∴|x1-x2|= 又2≤b≤,∴0≤|x1-x2|≤3,故只须当t∈[-1,1],使m2+mt+1≥3恒成立,记g(t)=tm+m2-2,只须:,∴,∴,∴m≥2或m≤-2,故m的取值集合是{m|m≥2或m≤-2}.21.解:(1)∵y=x2, ∴y≥0又y=x2在[a, b]上的值域是[a, b],故[a, b] [0,+∞,∴a≥0,故y=x2在[a,b]上单调递增,故有,又a(2)若y=x2+m存在“保值”区间,则应有:i. 若aii. 若b a≥0,则有等价于方程x2-x=-m(x≥0)有两个不相等的根,∴-m=(x- )2- (x≥0),由图象知:--m≤0, ∴0≤m ,又∵m≠0,∴0综上所述,函数y=x2+m存在保值区间,此时m的取值范围是0本内容由栏目提供。

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。

第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)

考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。

高一数学第一学期期中试卷(有答案)

高一数学第一学期期中试卷(有答案)

高一数学第一学期期中试卷一、选择题(本大题共16小题,每小题3分,共48分): 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅ 2.指数式3x=2写成对数形式,正确的是(A) x = 2log 3 (B) x =3log 2 (C) 3 =2log x (D) 3 = x 2log3.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是4. 函数log (2)1a y x =++的图象过定点 A.(1,2) B.(2,1) C.(-2,1)D.(-1,1)5.若b a ==5log ,3log 22,则59log 2的值是:A .b a -2B .b a -2C .b a 2D .ba 26.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 7.下列四个函数中,图象关于y 轴对称的是(A) y = 2x (B) y = x 2(C) y = x (D) y =x 18.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+9. 某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离......,则较符合该学生走法的图是10.某研究小组在一项实验中获得一组数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y 与t 之间关系的是A. 2ty = B. 22y t =C. 3y t = D. 2log y t =11.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是A.91B.41 C. 4 D. 912.已知扇形的弧所对的圆心角为540,半径为20cm ,则扇形的周长为 A.π6cm B.60cm C. ()π640+ c m D. 1080cm 13. 三个数a=0.32 , b=log 20.3, C = 20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <c D .b <c <a14. 定义在R 上的奇函数)(x f ,当0<x 时,1()1f x x =+,则)21(f 等于 A.23 B. -23 C.2 D. -215.点P 从()1,0出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为.A 12⎛- ⎝⎭ .B 12⎛⎫- ⎪ ⎪⎝⎭ .C 1,2⎛- ⎝⎭ .D 12⎛⎫ ⎪ ⎪⎝⎭16. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是 A .)1()23()2(-<-<f f f B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)2()1()23(f f f <-<-二、填空题(本大题共7小题,每小题3分,共21分):17.计算390sin =18.函数),1(ln 22+∞==在与函数x y x y 上增长较快的一个函数是 。

北京市2024-2025学年高一上学期期中考试数学试题含解析

北京市2024-2025学年高一上学期期中考试数学试题含解析

2024-2025学年第一学期高一年级数学学科期中考试命题人:(答案在最后)考生须知1.本试卷分为试题、答题卡两部分.满分150分.考试时间120分钟.2.认真填写所在班级、姓名、学号.3.请用2B 铅笔填涂机读卡,用黑色签字笔在二卷上按要求作答.一、单选题(本大题共10小题,共40分)1.已知集合{1,0,1,2,3},{12}A B xx =-=-<≤∣,则A B = ()A.{1,0}-B.{1,0,1}-C.{0,1}D.{0,1,2}【答案】D 【解析】【分析】根据交集的定义即可求解.【详解】由于{1,0,1,2,3},{12}A B xx =-=-<≤∣,故A B = {0,1,2},故选:D2.已知a b >,则下列关系中正确的是()A.a c b c ->-B.ac bc> C.a b> D.22a b >【答案】A 【解析】【分析】由不等式的性质可判断A ,由特值法可判断BCD.【详解】由a b >,则a c b c ->-,A 正确;当0c =时,ac bc =,故B 错误;当3,7a b =-=-时,a b >,3,7a b ==,则a b <,故C 错误;229,49a b ==,则22a b <,故D 错误.故选:A.3.命题“R m ∀∈,都有2230m m -+>”的否定是()A.R m ∀∈,都有2230m m -+≤B.R m ∃∈,使得2230m m -+≤C.R m ∃∈,使得2230m m -+<D.R m ∃∈,使得2230m m -+>【答案】B 【解析】【分析】根据全称量词命题的否定为存在量词命题即得.【详解】因为全称量词命题的否定为存在量词命题,所以命题“R m ∀∈,都有2230m m -+>”的否定是“R m ∃∈,使得2230m m -+≤”.故选:B.4.已知函数2,()3,2x f x x x ⎧≥⎪=⎨-<⎪⎩,则((1))f f -等于()A.4B.2- C.D.2【答案】D 【解析】【分析】根据分段函数的定义域,先求得(1)f -,再求((1))f f -即可.【详解】因为函数2,()3,2x f x x x ⎧≥⎪=⎨-<⎪⎩,所以()(1)314f -=--=,所以()((1))42f f f -===,故选:D 5.不等式111x >-的解集为()A.()(),12,-∞+∞ B.(),2-∞ C.()1,2 D.()(),01,-∞⋃+∞【答案】C 【解析】【分析】根据根式不等式等价于()()120x x --<,即可求解.【详解】由111x >-可得1120011x x x x -+->⇒<--,故等价于()()120x x --<,解得12x <<,故选:C6.下列函数中,满足“对任意的1x ,()20,x ∈+∞使得()()12120f x f x x x -<-”成立的是().A.()221f x x x =--+ B.()1f x x x=-C.()1f x x =+ D.()2f x x=-【答案】A 【解析】【分析】根据单调性的定义知函数在在(0,)+∞上为减函数,然后逐项分析即可.【详解】根据题意,“对任意的12,(0,)x x ∈+∞,使得()()12120f x f x x x -<-”,则函数()f x 在(0,)+∞上为减函数.对于选项A ,2()21f x x x =--+为二次函数,其开口向下且对称轴为1x =-,所以()f x 在(0,)+∞上递减,符合题意;对于选项B ,1()f x x x=-,因为y x =在(0,)+∞上递增,1y x =-在(0,)+∞上递增,所以由单调性的性质知,()f x 在(0,)+∞上递增,不符合题意;对于选项C ,()1f x x =+为一次函数,所以()f x 在(0,)+∞上递增,不符合题意;对于选项D ,()2f x x=-在(0,)+∞上单调递增,不符合题意.故选:A.7.已知p :02x <<,那么p 的一个充分不必要条件是()A.13x <<B.11x -<< C.01x << D.03x <<【答案】C 【解析】【分析】判断出{}02x x <<的真子集,得到答案.【详解】因为{}01x x <<是{}02x x <<的真子集,故{}01x x <<是p 的一个充分不必要条件,C 正确;ABD 选项均不是{}02x x <<的真子集,均不合要求.故选:C8.函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论正确的是()A.()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B.()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C.75(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D.()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】【分析】由()y f x =在()0,2上是增函数,()2y f x =+为偶函数,可知()2y f x =+在()0,2上是减函数,进而可比较函数值的大小.【详解】∵()y f x =在()0,2上是增函数,∴()2y f x =+在()2,0-上是增函数,由函数()2y f x =+是偶函数,知:()2y f x =+在()0,2上是减函数,而()()()73512,2,121212222f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-=+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由1301222<<<<,∴()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭.故选:B9.已知()2411f x x +=-,则函数()f x 的解析式为()A.()22f x x x=- B.()()211f x x x =-≥C.()()2221f x x x x =-+≥ D.()()221f x x x x =-≥【答案】D 【解析】【分析】根据换元法,设211x t +=≥,得21x t =-,代入即可求解.【详解】设211x t +=≥,则21x t =-,所以()()22112f t t t t =--=-,所以()()221f x x x x =-≥,故选:D .10.已知()222,01,0x ax a x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()0f 是()f x 的最小值,则实数a 的取值范围为()A.[]2,0-B.[]0,1C.[] 2,1- D.[]1,2【答案】B 【解析】【分析】由(0)f 是函数()f x 的最小值,结合二次函数的性质知222()2()f x x ax a x a ==-+-在(-∞,0]上单调递减,从而可得0a ≥,再由分段函数的性质知(0)(1)f f ≤,从而求实数a 的取值范围.【详解】解:(0)f 是函数()f x 的最小值,2()()f x x a ∴=-在(-∞,0]上单调递减,0a ∴≥,当0x >时,1()2f x x a a x=+-≥-在1x =处有最小值,即min ()(1)2f x f a ==-,故(0)(1)f f ≤,即22a a ≤-,解得,21a -≤≤,综上所述,01a ≤≤,故实数a 的取值范围是[0,1],故选:B .二、填空题(本题共6小题,共30分)11.已知集合{}2|10,A x x x R =-=∈,用列举法表示A =_________.【答案】{}1,1-##{}1,1-【解析】【分析】先求解出方程的实数根,然后用列举法表示集合.【详解】解:解方程210x -=得1x =±,所以列举法表示集合为{}1,1A =-,故答案为:{}1,1-12.函数()11f x x =+-的定义域为______.【答案】[)()2,11,-⋃+∞【解析】【分析】由1020x x -≠⎧⎨+≥⎩即可求出.【详解】由1020x x -≠⎧⎨+≥⎩,解得2x ≥-且1x ≠,所以()f x 的定义域为[)()2,11,-⋃+∞.故答案为:[)()2,11,-⋃+∞.13.若函数2()(1)f x x a x a =+-+在区间[2,)+∞上是增函数,则a 的取值范围__________.【答案】[3,)-+∞【解析】【分析】利用二次函数单调性列出不等式,求解不等式即得.【详解】函数2()(1)f x x a x a =+-+图象开口向上,对称轴为12a x -=-,由函数()f x 在区间[2,)+∞上单调递增,得122a --≤,解得3a ≥-,所以a 的取值范围是[3,).-+∞故答案为:[3,)-+∞14.已知正数,x y 满足1x y +=,则14x y+的最小值为_____.【答案】9【解析】【分析】把要求的式子变形为()14414x yx y x y y x ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式即可得到14x y +的最小值.【详解】因为0,0,1x y x y >>+=,所以()1441459x yx y x y y x ⎛⎫++=+++≥+⎪⎝⎭,当且仅当4x y y x =即12,33x y ==时,取等号.故答案为:915.已知函数3()3(g x ax bx a =++,b 为常数),若(2)1g =,则(2)g -=__.【答案】5【解析】【分析】设3()()3f x g x ax bx =-=+,可得函数()f x 为奇函数,从而可得()()0f x f x +-=,即得()3()30g x g x -+--=,代入条件即可得解.【详解】根据题意,设3()()3f x g x ax bx =-=+,有33()()()()()f x a x b x ax bx f x -=-+-=-+=-,则函数()f x 为奇函数,则()()0f x f x +-=,即()3()30g x g x -+--=,变形可得()()6g x g x +-=,则有(2)(2)6g g +-=,(2)1g =,则(2)5g -=;故答案为:5.【点睛】本题主要考查了奇偶性的应用,解题的关键是设3()()3f x g x ax bx =-=+,从而与奇偶性建立联系进而得解,属于基础题.16.若关于x 的不等式2210x x m --+≤在区间[]0,3内有解,则实数m 的取值范围______.【答案】(],2-∞【解析】【分析】根据二次函数的性质,结合配方法进行求解即可.【详解】2221021x x m m x x --+≤⇒≤-++,设()[]()2210,3f x x x x =-++∈,()()222112f x x x x =-++=--+,该二次函数的对称轴为1x =,开口向下,当[]0,3x ∈时,()()max 12f x f ==,要想关于x 的不等式2210x x m --+≤在区间[]0,3内有解,只需()max 2m f x m ≤⇒≤,所以实数m 的取值范围为(],2-∞,故答案为:(],2-∞三、解答题;本题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.17.已知全集U =R ,集合{}23A x x =-<<,{}32B x x =-≤≤,(1)求A B ,A B ⋂;(2)求()U A B ð,()U A B ⋃ð.【答案】17.{}33A B x x =-≤< ,{}22A B x x ⋂=-<≤18.(){}23U A B x x ⋂=<<ð,(){2U A B x x ⋃=≤ð或}3x ≥.【解析】【分析】根据交集、并集、补集的定义一次计算即可.【小问1详解】利用数轴,分别表示出全集U 及集合A ,B ,如图.则{}33A B x x =-≤< ,{}22A B x x ⋂=-<≤.【小问2详解】依题意:{2U A x x =≤-ð或}3x ≥,{3U B x x =<-ð或}2x >,所以(){}23U A B x x =<< ð,(){2U A B x x =≤ ð或}3x ≥.18.已知函数()22f x x x =-.(1)写出()f x 的分段解析式;(2)画出函数()f x 的图象;(3)结合图象,写出函数()f x 的单调区间和值域.【答案】()1函数()f x 的分段解析式为()222020x xx f x x xx ⎧-≥=⎨+<⎩;()2见详解;()3函数()f x 的单调递增区间为[][)1,0,1,-+∞;单调递减区间为(][],1,0,1-∞-;函数()f x 的值域为[)1,-+∞.【解析】【分析】()1去绝对值得到分段函数()f x 的解析式;()2根据解析式,通过描点作图,画出函数()f x 图象;()3结合图象,通过观察,写出函数()f x 的单调区间和值域;【详解】()1由题意可得,当0x ≥时, ;当0x <时,()22f x x x =+;所以函数()f x 的分段解析式为()222020x xx f x x xx ⎧-≥=⎨+<⎩;()2根据()1中函数()f x 的解析式,通过描点作图,得到函数()f x 的图象如下:()3由函数图象可知,函数()f x 的单调递增区间为[][)1,0,1,-+∞;单调递减区间为(][],1,0,1-∞-;函数()f x 的值域为[)1,-+∞.【点睛】本题主要考查二次函数的图象及性质;函数图象的判定和作法,利用函数图象判断函数的性质;属于中档题,常考题型.19.已知关于x 的不等式()222R x x ax a a +>+∈.(1)若1a =,求不等式的解集;(2)解关于x 的不等式.【答案】(1)112x x x ⎧⎫><-⎨⎬⎩⎭或(2)答案见解析【解析】【分析】(1)将1a =代入解不等式即可;(2)因为对应方程的两个根为1,2a -,分12a =-、12a >-、12a <-三种情况解不等式即可.【小问1详解】由()()()()222,2121,210x x ax a x x a x x a x +>+∴+>+∴-+>,当1a =时,可得解集为112x x x ⎧⎫><-⎨⎬⎩⎭或.【小问2详解】对应方程的两个根为1,2a -,当12a =-时,原不等式的解集为12x x ⎧⎫≠-⎨⎬⎩⎭,当12a >-时,原不等式的解集为12x x ⎧<-⎨⎩或}x a >,当12a <-时,原不等式的解集为{x x a <或12x ⎫>-⎬⎭,20.定义在R 上的函数()f x 是奇函数,当0x >时,()41f x x x =+-.(1)利用函数单调性的定义,证明:()41f x x x=+-在[)2,+∞上是单调增函数(2)求函数()f x 的解析式.【答案】(1)证明见解析(2)()41,00,041,0x x x f x x x x x ⎧+->⎪⎪==⎨⎪⎪++<⎩【解析】【分析】(1)任取[)1212,2,,x x x x ∈+∞>,通过判断()()12f x f x -的符号来证明单调性即可;(2)利用()()f x f x =--可得函数解析式.【小问1详解】任取[)1212,2,,x x x x ∈+∞>,则()()()()12121212121244411x x x x f x f x x x x x x x --⎛⎫-=+--+-= ⎪⎝⎭,[)1212,2,,x x x x ∈+∞> ,12120,40x x x x ∴->->,()()120f x f x ∴->,即()()12f x f x >,∴()41f x x x=+-在[)2,+∞上是单调增函数;【小问2详解】当0x <时,由函数()f x 是奇函数得()()4411f x x x x x f x ⎛⎫-+--==++ ⎪⎝⎭-=--,,又()00f =,()41,00,041,0x x x f x x x x x ⎧+->⎪⎪∴==⎨⎪⎪++<⎩.21.某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为2900m 的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x (单位:m ),三块种植植物的矩形区域的总面积为S (单位:2m ).(1)求S 关于x 的函数关系式;(2)求S 的最大值,并求出此时x 的值.【答案】(1)72002916=--+S x x,()8,450x ∈(2)当矩形温室的室内长为60m 时,三块种植植物的矩形区域的总面积最大,最大为2676m .【解析】【分析】(1)三块种植植物的矩形区域的总面积可看做一个矩形面积:900(8)2S x x ⎛⎫=--⎪⎝⎭,根据边长为正得其定义域为(8,450);(2)利用基本不等式求最值即可.【小问1详解】由题设,得()9007200822916S x x x x ⎛⎫=--=--+⎪⎝⎭,()8,450x ∈.【小问2详解】因为8450x <<,所以72002240x x +≥=,当且仅当60x =时等号成立,从而676S ≤.故当矩形温室的室内长为60m 时,三块种植植物的矩形区域的总面积最大,最大为2676m .22.已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【答案】(1)()01f =,()10f -=;()f x 在R 上为增函数;(2)34a <.【解析】【分析】(1)利用赋值法求出()()0,1f f -的值,利用函数的单调性定义判断()f x 的单调性即可;(2)利用已知等式把不等式()()231f ax x f x -+<转化为()()221f ax x f -<-,利用函数的单调性,结合常变量分离法、配方法进行求解即可.【详解】(1)令0x y ==,得()()()00001f f f +=+-,得()01f =,令1,1x y =-=,得()()()0111f f f =-+-,得()10f -=;设12,x x 是任意两个不相等的实数,且12x x <,所以210x x ->,所以()()()()212111f x f x f x x x f x -=-+-()()()()21112111f x x f x f x f x x =-+--=--,因为210x x ->,所以()211f x x ->,所以()2110f x x -->,因此()()()()21210f x f x f x f x ->⇒>即()f x 在R 上为增函数;(2)因为()()231f ax x f x -+<,即()2211f ax x -+<,即()220f ax x -<,又()10f -=,所以()()221f ax x f -<-,又因为()f x 在R 上为增函数,所以221ax x -<-在[]1,2x ∈上恒成立;得2210ax x -+<在[]1,2x ∈上恒成立,即221a x x<-在[]1,2x ∈上恒成立,因为2221111x x x ⎛⎫-=--+ ⎪⎝⎭,当2x =时,221x x -取最小值34,所以34a <;即34a 时满足题意.。

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷

高一(上学期)期中考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知集合{,}A x y =,集合{}22,2B x x =,且A B =,则x =_______ 2.已知函数1()4x f x a -=+的图象恒过定点P ,则点P 坐标是___________3.定义在R 上的奇函数()y f x =满足(1)(0)f f π+=,则(1)f -=___________.4.方程42log 13x +=的解x =___________.5.若关于x 的方程53=+x a 有负实根,则实数a 的取值范围是___________6.若函数2245y x x =-+的图象按向量a 平移后得到函数22y x =的图象,则向量a 的坐标为________. 7.在如今这个5G 时代,6G 研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G 速率有望达到1Tbps ,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G 数据传输速率有望比5G 快100倍,时延达到亚毫秒级水平.香农公式2log 1S C W N ⎛⎫=+ ⎪⎝⎭是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率C 取决于信道宽带W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.若不改变宽带W ,而将信噪比S N从11提升至499,则最大信息传递率C 会提升到原来的_________倍.(结果保留一位小数)8.设a 是实数,若1x =是x a >的一个充分条件,则a 的取值范围是__________.9.设无穷等比数列{}n a 的公比为q ,且211a q =+,则该数列的各项和的最小值为__________. 10.已知0,0a b >>,且12223a b +=+,则2a b +的最小值为___________. 11.已知a 为奇数且0a >,则关于x 的不等式21a x x x ≤-的解集为___________. 12.设,x y ∈R ,若|||4||||1|5x x y y +-++-≤,则23x y xy -+的取值范围为___________.二、单选题13.设a 、b 、c 表示三条互不重合的直线,α、β表示两个不重合的平面,则使得“//a b ”成立的一个充分条件为( )A .a c ⊥,b c ⊥B .//a α,//b αC .//a α,b αβ=,a β⊂D .b α⊥,//c α,a c ⊥ 14.设集合{}02M x x =≤≤,{}02N y y =≤≤,那么下列四个图形中,能表示集合M 到集合N 的函数关系的有( )A .①①①①B .①①①C .①①D .①15.设20202021202120222121,2121a b ++==++,则下列说法中正确的是( ) A .a b > B .11a b > C .222a b +≥ D .2b a a b+= 16.设C ={复数},R ={实数},M ={纯虚数},全集U C =,则下列结论中正确的是( )A .⋃=R M CB .⋂=∅C R M C .C C R M ⋂=D .⋃=C C M R C三、解答题17.设全集为R ,已知301x A x x -⎧⎫=>⎨⎬+⎩⎭,{}223B x a x a =-<<+. (1)若1a =,求A B ⋂;(2)若A B ⋃=R ,求实数a 的取值范围.18.若不等式210mx mx +-<对x ∈R 恒成立,求m 的取值范围.19.研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x ,使得00(1)()(1)f x f x f +=+成立. (1)函数1()f x x=是否属于集合M ?说明理由; (2)设函数2()lg ,1a f x M x =∈+求a 的取值范围; (3)设函数2x y =图像与函数y x =-的图像有交点且横坐标为a ,证明:函数2()2x f x x M =+∈,并求出对应的0x (结果用a 表示出来).21.设非空集合{}2|(2)10,A x x b x b b R =++++=∈,求集合A 中所有元素的和.参考答案:1.12【分析】根据A =B ,得到两个集合的元素相同,然后根据集合元素的特点建立方程即可.【详解】解:因为集合A :{x ,y },B :{2x ,2x 2},且A =B ,当x =2x 时,x =0,此时A ={0,0},B ={0,0},不成立,舍去.所以x =2x 2,y =2x 解得x 12=或x =0(舍). 当x 12=时,A ={12,1},B ={1,12}满足条件. 所以A ={12,1}. 故答案为:12【点睛】本题主要考查集合相等的应用,集合相等,对应元素完全相同.注意进行检验.2.()1,5【分析】根据指数函数的指数为0,求出函数过定点坐标;【详解】解:因为1()4x f x a -=+,令10x -=,即1x =,所以11(1)45f a -=+=,即函数恒过点()1,5P ; 故答案为:()1,53.π-【分析】利用奇函数的性质有(1)(0)(1)0f f f +=--+,结合已知即可求值.【详解】由题意(0)0f =且()()f x f x -=-,则(1)(0)(1)0f f f π+=--+=,则(1)f π-=-.故答案为:π-.4.4【分析】根据对数的定义可得.【详解】由42log 13x +=得4log 1x =,所以4x =.故答案为:4.5.()3,2--【分析】设方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,得到0051x <<,进而得到031a <+<,即可求解.【详解】设关于x 的方程53=+x a 有负实根为00(0)x x <,根据指数函数的性质,可得0051x <<,所以031a <+<,可得32a -<<,即实数a 的取值范围是()3,2--.故答案为:()3,2--.6.(1,3)--【分析】把函数式2245y x x =-+配方后,根据图象变换知可得.【详解】2245y x x =-+22(1)3x =-+,因此把它向左平移1个单位,再下平移3个单位可得22y x =的图象.①(1,3)a =--.故答案为:(1,3)--.【点睛】本题考查函数图象平移,考查向量的概念.属于基础题.7.2.5##52【分析】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C , 再根据题意求21CC ,利用指数、对数的运算性质化简即可求解.【详解】设提升前最大信息传递率为1C ,提升后最大信息传递率为2C ,则由题意可知,122log (111)log 12C W W =+=,222log (1499)log 500C W W =+=, 所以()()()()log log log log lo log g C W C W ⨯⨯===⨯⨯223222222122210525500232123 log log log ...log log log ..+++⨯====≈+++23222232222523523232896252232158358倍. 所以最大信息传递率C 会提升到原来的2.5倍.故答案为:2.58.(),1-∞【分析】利用充分条件的定义,将问题转化为{}{}1|x x a ⊆>,由子集的定义求解即可.【详解】解:因为1x =是x a >的一个充分条件,则{}{}1|x x a ⊆>,所以1a <,则a 的取值范围是(),1-∞.故答案为:(),1-∞.9.)21 【分析】先写出无穷等比数列各项和的表达式,然后利用基本不等式求解即可.【详解】{}n a 是公比为q 的无穷等比数列,∴{}n a 数列的各项和为()()22111lim lim =11n n n n q q q S q q →+∞→+∞+-+=--,其中()()1,00,1q ∈-, 又11q -<<且0q ≠,012q ∴<-<且10q -≠,()())2211112122=21111q q q q q q ⎡⎤--++⎣⎦∴==-+-≥---,当且仅当211q q-=-,即1q =∴数列{}n a 的各项和的最小值为)21.故答案为:)21 10.8 【分析】根据0,0a b >>,且12223a b +=+,将2a b +转化为()2224a b a b +=++-()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣,利用基本不等式求解. 【详解】因为0,0a b >>,且12223a b +=+, 所以()2224a b a b +=++-,()13222422a a b b =+⎛⎫+- ⎪+⎝⎤⎦⎭+⎡⎣, ()2324244a b a b +⎛⎫=++- ⎪+⎝⎭,24834⎛ ≥+-= ⎝, 当且仅当()422a b a b+=+,即1,6a b ==时,等号成立, 所以2a b +的最小值为8,故答案为:811.{|1x x ≥或10}2x ≤< 【分析】讨论0x <、102x ≤<、12x >分别求对应解集,最后取并即得结果. 【详解】由题设1(21)02121a a a x x x x x x x ----=≥--,又a 为奇数且0a >,则12,N a k k -=∈, 当0x <时,1210a a x x ---<,210x -<,则021a x x x -<-不满足题设; 当102x ≤<时,021a x x x ≤≤-成立; 当12x >时,不等式等价于1(21)1a x x --≥, 若112x <<时,10,211a x x -<-< ,即1(21)1a x x --<与题设矛盾;若1≥x 时,1,211a x x --≥,满足1(21)1a x x --≥;综上,不等式解集为{|1x x ≥或10}2x ≤<. 故答案为:{|1x x ≥或10}2x ≤< 12.[3,9]-【分析】利用绝对值三角不等式可得|||4||||1|5x x y y +-++-=,即04x ≤≤,01y ≤≤,利用23m x y xy=-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点,讨论3x =或2y =-、3x ≠研究m 的范围即可.【详解】|||4||||4||4|4x x x x x x +-=+-≥+-=,当04x ≤≤时等号成立,|||1||||1||1|1y y y y y y +-=+-≥+-=,当01y ≤≤时等号成立,所以|||4||||1|5x x y y +-++-≥,而|||4||||1|5x x y y +-++-≤,故|||4||||1|5x x y y +-++-=,此时04x ≤≤,01y ≤≤,令23m x y xy =-+中(,)x y ,与{(,)|04,01}x y x y ≤≤≤≤所表示的区域有公共点,当3x =或2y =-时6m =,而3[0,4]x =∈,故6m =满足;当3x ≠时,由62[0,1]3m y x -=-∈-得:6233m x -≤≤-,而04x ≤≤, 若34x <≤时60m ->,此时23(1)x m x ≤≤-,故69<≤m ;若03x ≤<时60m ->,此时233x m x ≥≥-,故36m -≤<;综上,3m -≤≤9.故答案为:[3,9]-【点睛】关键点点睛:利用绝对值三角不等式得|||4||||1|5x x y y +-++-=确定x 、y 的范围,再将问题转化为23m x y xy =-+中(,)x y 与{(,)|04,01}x y x y ≤≤≤≤有公共点求m 的范围即可.13.C【分析】由线线垂直的性质可判断A ,由线面平行的性质可判断B ,由线面平行的性质可判断C ,由线面平行垂直的性质可判断D .【详解】选项A :当a c ⊥,b c ⊥时,则//a b 或a 与b 相交或异面,①A 错误,选项B :当//a α,//b α时,则//a b 或a 与b 相交或异面,①B 错误,选项C :由线面平行的性质定理,当//a α,a β⊂,b αβ=时,则//a b ,①C 正确,选项D :当b α⊥,//c α时,①b c ⊥,①a c ⊥,则//a b 或a 与b 相交或异面,①D 错误故选:C14.C【分析】根据函数的定义,逐项判定,即可求解. 【详解】由题意,函数的定义域为{}02M x x =≤≤,对于①中,函数的定义域不是集合M ,所以不能构成集合M 到集合N 的函数关系;对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系; 对于①中,函数的定义域为集合M ,值域为集合N ,所以可以构成集合M 到集合N 的函数关系;对于①中,根据函数的定义,集合M 中的元素在集合N 中对应两个函数值,不符合函数的定义,所以不正确.故选:C15.A【分析】令()()1111111212112222121212x x x x x f x +++++++===++++,判断函数的单调性,即可判断A ,再根据不等式的性质即可判断BC ,再利用基本不等式即可判断D.【详解】解:令()()1111111212112222121212x x x x x f x +++++++===++++, 因为121x y +=+在R 上递增,且1210x ++>,所以函数()f x 在在R 上递减,所以()()202020210f f >>,即0a b >>,所以11a b<, 故A 正确,B 错误; 因为2020202120212022212101,012121a b ++<=<<=<++, 所以222a b +<,故C 错误;因为2b a a b +≥, 当且仅当b a a b=,即a b =时,取等号,又a b >, 所以2b a a b +>,故D 错误. 故选:A.16.D【分析】注意复数域的构成,对选项逐一分析,可得结果.【详解】因为对于任意复数(,)z a bi a R b R =+∈∈,当0b =时z 为实数,当0b ≠时z 为虚数,当0,0a b =≠时z 为纯虚数,所以复数包括实数和虚数,纯虚数是特殊的虚数,所以对于A 项,并集中还少不是纯虚数的虚数,对于B 项,交集应该为R ,对于C 项,结果应该为虚数集,只有D 项是满足条件的,故选:D.【点睛】该题考查的是有关复数域的问题,涉及到的知识点有复数的分类,集合的运算,数域简单题目. 17.(1){|13}x x <≤;(2)3a >.【分析】(1)解分式不等式可得集合A ,并求出A ,由1a =得集合B ,再利用交集的定义直接计算作答.(2)由A B =R 可得A B ⊆,再借助集合的包含关系列式计算作答.(1) 解不等式:301x x ->+,即(3)(1)0x x -+>,解得:1x <-或3x >,则{|1A x x =<-或3}x >, 因全集为R ,于是得{|13}A x x =-≤≤,当1a =时,{|15}B x x =<<, 所以{|13}A B x x ⋂=<≤.(2)由(1)知,{|13}A x x =-≤≤,因A B =R ,因此有:A B ⊆,于是得21233a a -<-⎧⎨+>⎩,解得3a >, 所以实数a 的取值范围是:3a >.18.(]4,0-【分析】本题需要对0m =和0m ≠两种情况分别讨论. 当0m =时结论恒成立; 当0m ≠时,使用二次函数的性质分析求解; 最后综合两种情况的结论即可.【详解】由已知可得,当0m =时,10-<成立;当0m ≠时,要使不等式210mx mx +-<对x ∈R 恒成立,则二次函数开口向下, 即0m <,且最大值要小于0, 即和x 轴没有交点, 所以240m m ∆=+<, 解得40m -<<; 综上, m 的取值范围为(]4,0m ∈-.19.(1)20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【解析】(1)根据题意,分别求得(0,16]x ∈和(16,40]x ∈上的解析式,即可求解; (2)当(0,16]x ∈和(16,40]x ∈时,令()68f x <,求得不等式的解集,即可求解.【详解】(1)当(0,16]x ∈时,设函数2()(12)84(0)f x b x b =-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++,由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<, 即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟. 20.(1)1()f x M x=∉,答案见解析;(2)3a ⎡∈⎣;(3)证明见解析;01x a =+. 【分析】(1)集合M 中元素的性质,即有()()()0011f x f x f +=+成立,代入函数解析式列出方程,进行求解即可;(2)根据()()()0011f x f x f +=+和对数的运算,求出关于a 的方程,再根据方程有解的条件求出a 的取值范围,当二次项的系数含有参数时,考虑是否为零的情况;(3)利用()()()0011f x f x f +=+和()22x f x x M =+∈,整理出关于0x 的式子,利用2x y =图象与函数y x=-的图象有交点,即对应方程有根,与求出的式子进行比较和证明.【详解】(1)若1(),f x M x=∈在定义域内存在0x , 则20000111101x x x x =+⇒++=+方程无解,所以1(),f x M x=∉第 11 页 共 11 页 (2)由题意得2()lg 1a f x M x =∈+ 222lg lg +lg (2)22(1)0(+1)112a a a a x ax a x x ∴=⇒-++-=++ 当2a =时,12x =; 当2a ≠时,由0∆≥,得2640a a -+≤,解的)(32,35a ⎡∈+⎣综上,3a ⎡∈⎣; (3)函数2()2,x f x x M =+∈001220000(1)()(1)2(1)23x x f x f x f x x +∴+--=++---00100=22(1)22(1),x x x x -⎡⎤+-=+-⎣⎦又函数2x y =图像与函数y x =-的图像有交点且横坐标为a则010202(1)0x a a x -+=⇒+-=,其中01x a =+00(1)()(1),f x f x f ∴+=+即2()2x f x x M =+∈.【点睛】此题的集合中的元素是集合,主要利用了元素满足的恒等式进行求解,根据对数和指数的元素性质进行化简,考查了逻辑思维能力和分析、解决问题的能力.21.答案见解析【分析】分一元二次方程有相等实根与两个不相等实根讨论,当有相等实根时,直接求解,当有不相等实根时由根与系数关系求解.【详解】当0b =时,解得121x x ==-,{1}A =-,所以A 中所有元素之和为1-,当0b ≠时,22(2)4(1)0b b b ∆=+-+=>,方程2(2)10x b x b ++++=有两个不等的实根,由根与系数的关系知12(2)x x b +=-+,即A 中所有元素之和为2b --,【点睛】本题主要考查了一元二次方程的根,分类讨论的思想,集合的描述法,属于中档题.。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析

2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析

上海市华东师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷1. 用Î或Ï填空:0______f .【答案】Ï【解析】【分析】空集中没有任何元素.【详解】由于空集不含任何元素,∴0ÏÆ.故答案为Ï.【点睛】本题考查元素与集合的关系,关键是掌握空集的概念.2. 实数a ,b 满足31a -££,13b -££,则3a b -的取值范围是________.【答案】[]12,4-【解析】【分析】根据题意利用不等式的性质运算求解.【详解】因为31a -££,13b -££,则933a -££,31b -£-£,可得1234a b -£-£,所以3a b -的取值范围是[]12,4-.故答案为:[]12,4-.3. 若全集{}2,3,5U =,{}2,5A a =-,{}5A =,则a 的值是______.【答案】2或8【解析】【分析】由53a -=即可求解.【详解】因为{}2,3,5U =,{}2,5A a =-,且{}5A =,所以53a -=,解得2a =或8a =.故答案为:2或8.4. 命题“1x >”是命题“11x<”的______条件.【答案】充分不必要【解析】【分析】解出不等式11x<,根据真子集关系即可【详解】11x <,即10x x -<,即()10x x -<,即()10x x -<,解得1x >或0x <,则“1x >”能推出“1x >或0x <”,而“1x >或0x <”不能推出 “1x >”,故命题“1x >”是命题“11x<”的充分不必要条件.故答案为:充分不必要.5. 已知0x >,则812x x --的最大值为_____________.【答案】7-【解析】【分析】利用基本不等式求解即可.【详解】因为0x >,所以828x x +³=,当82x x=,即2x =时等号成立,所以881212187x x x x æö--=-+£-=-ç÷èø,即812x x--的最大值为7-,故答案为:7-.6. 已知(21)y f x =+定义域为(1,3],则(1)y f x =+的定义域为__________.【答案】(2,6]【解析】【分析】根据3217x <+£可得317x <+£,即可求解.【详解】由于(21)y f x =+定义域为(1,3],故3217x <+£,因此(1)y f x =+的定义域需满足317x <+£,解得26x <£,故(1)y f x =+的定义域为(2,6],故答案为:(2,6]7. 已知关于x 的不等式210ax bx ++<的解集为11,43æöç÷èø,则a b +=______.【答案】5【解析】【分析】由题意得11,43是方程210ax bx ++=的两个根,由根与系数的关系求出,a b 即可.【详解】由题意可知,11,43是方程210ax bx ++=的两个根,且0a >,由根与系数的关系得1134b a +=-且11134a´=,解得12,7a b ==-,则5a b +=.故答案为:58. 设1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,则2212x x +的最小值为______.【答案】89【解析】【分析】根据1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,由Δ≥0,解得 23m £,然后由()2212121222x x x x x x ++×=- ,将韦达定理代入,利用二次函数的性质就.【详解】因为1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,所以()()22482320m m m D =-+-³,解得 23m £,所以112222322,2x x x x m m m +=×-=+,则 ()2212121222x x x x x x ++×=- ,()22232222m m m +-=-´, 2232m m =-+, 237248m æö=-+ç÷èø,所以2212x x +的最小值为2237823489æö-+=ç÷èø,故答案为:899. 若函数()f x 满足R x "Î,()()11f x f x +=-,且1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,若()()1f m f >-,则m 的取值范围是______.【答案】()(),13,-¥-È+¥【解析】【分析】由题意,()f x 在[)1,+¥上单调递增,函数图像关于1x =对称,利用单调性和对称性解不等式.【详解】因为1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,所以()f x 在[)1,+¥上单调递增,R x "Î,()()11f x f x +=-,则函数图像关于1x =对称,若()()1f m f >-,则111m ->--,解得3m >或1m <-.所以m 的取值范围是()(),13,-¥-È+¥.故答案为:()(),13,-¥-È+¥.10. 已知{}{}22230,210,0A x x x B x x ax a =+->=--£>,若A B Ç中恰含有一个整数,则实数a 的取值范围是______.【答案】【解析】【详解】试题分析:由题意,得{}{}223013A x x x x x x =+-=<-或,{}{2210,0=|B x x ax a x a x a =--£££+;因为,所以若A B Ç中恰含有一个整数,则{}2A B Ç=,则,即,两边平方,得,解得,即实数的取值范围为;故填.考点:1.集合的运算;2.一元二次不等式的解法.11. 已知函数()3(1)1f x x =-+,且()()22(1,0)f a f b a b +=>->,则121a b ++的最小值是________.【答案】2【解析】【分析】利用()3(1)1f x x =-+,单调性与对称性,可知,若有()()2f m f n +=,则必有2m n +=成立.再利用基本不等式求121a b ++的最小值即可.【详解】∵3y x =在R 为单调递增奇函数,∴3y x =有且仅有一个对称中心()0,0,∴()3(1)1f x x =-+单调递增,有且仅有一个对称中心()1,1,又∵()()22(1,0)f a f b a b +=>->,∴22a b +=,则()214a b ++=,∴()1211221141a b a b a b æö+=+++éùç÷ëû++èø()411441a b a b +éù=++êú+ë1424é³+=êêë,当且仅当()411a b a b+=+即0,2a b ==时,等号成立,∴121a b++的最小值是2.故答案为:2.12. 如图,线段,AD BC 相交于O ,且,,,AB AD BC CD 长度构成集合{}1,5,9,x,90ABO DCO Ð=Ð=°,则x 的取值个数为________.【答案】6【解析】【分析】画出等效图形,分9AD =和x 两种情况由勾股定理求出对应x 值即可;的【详解】如图,因为90ABO DCO Ð=Ð=°,且,,,AB AD BC CD 长度构成集合{}1,5,9,x ,因为直角三角形ADE 中,斜边AD 一定大于直角边AE 和DE ,所以9AD =或x ,当9AD =时,可分为AE x =,此时由勾股定理可得()222159x ++=,解得x =CE x =,此时由勾股定理可得()222159x ++=,解得5x =;CD x =,此时由勾股定理可得()222519x ++=,解得1x =;当AD x =,可分为()222915x ++=,解得x =()222195x ++=,解得x =;()222519x ++=,解得x =所以x 的取值个数为6,故答案为:6.【点睛】关键点点睛:本题的关键是能够画出等效图形再结合勾股定理解答.13. 下列各组函数中,表示同一个函数的是( )A. 2(),()x f x x g x x== B. ()(),()()f x x x R g x x x Z =Î=ÎC. ,0(),(),0x x f x x g x x x ³ì==í-<î D. 2(),()f x x g x ==【答案】C【解析】【分析】分别求得函数的定义域和对应法则,结合同一函数的判定方法,逐项判定,即可求解.【详解】对于A 中,函数()f x x =的定义域为R ,函数2()x g x x=的定义域为(,0)(0,)-¥+¥U ,两函数的定义域不同,不是同一函数;对于B 中,函数()()f x x x R =Î和()()g x x x Z =Î的定义域不同,不是同一函数;对于C 中,函数,0(),0x x f x x x x ³ì==í-<î与,0(),0x x g x x x ³ì=í-<î定义域相同,对应法则也相同,所以是同一函数;对于D 中,函数()f x x =定义域为R,2()g x =的定义域为[0,)+¥,两函数的定义域不同,不是同一函数.故选:C.【点睛】本题主要考查了同一函数的判定,其中解答中熟记两函数是同一函数的判定方法是解答的关键,着重考查推理与运算能力,属于基础题.14. 设集合A ={x |x =12m ,m ∈N *},若x 1∈A ,x 2∈A ,则( )A. (x 1+x 2)∈AB. (x 1﹣x 2)∈AC. (x 1x 2)∈AD. 12x x ∈A 【答案】C【解析】【分析】利用元素与集合的关系的进行判定.【详解】设112p x =,212q x =, 则12111222p q p qx x +=×=,因为p 、*N q Î,所以*N p q +Î,则x 1x 2∈A ,故选:C .15. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚在这个过程中,小球的运动速度v (m /s )与运动时间t (s )的函数图象如图②,则该小球的运动路程y (m )与运动时间t (s )之间的函数图象大致是( )的的A. B.C. D.【答案】C【解析】【分析】根据题意结合图象分析即可.【详解】由题意,小球是匀变速运动,所以图象是先缓后陡,在右侧上升时,先陡后缓.故选:C.16. 设集合A 是集合*N 的子集,对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ÎN 都满足()0i A B j =I 且()1i A B j =U ;②任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =I ()i A j g ()i B j ;③任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =U ()+i A j ()i B j ;其中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】A【解析】【分析】根据题目中给的新定义,对于*,0i i N A j Î=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【详解】∵对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N \=Æ=I U ,()()01i i A B A B j j \==I U ;,故①正确;对于②,若()0i A B j =I ,则()i A B ÏI ,则i A Î且i B Ï,或i B Î且i A Ï,或i A Ï且i B Ï;()()0i i A B j j \×=;若()1i A B j =I ,则()i A B ÎI ,则i A Î且i B Î; ()()1i i A B j j \×=;∴任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i i A B A i B j j j =×I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B j =U ();()()1,1i i A B j j ==;()()()i i i A B A B j j j \¹+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A .【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.17. 已知关于x 的不等式122x a -£的解集为集合A ,40x B x x ìü-=£íýîþ.(1)若x A Î是x B Î的必要不充分条件,求a 的取值范围.(2)若A B =ÆI ,求a 的取值范围.【答案】(1)[]0,2(2)(](),24,-¥-+¥U 【解析】分析】(1)首先解不等式求出集合A 、B ,依题意B 真包含于A ,即可得到不等式组,解得即可;(2)首先判断A ¹Æ,即可得到240a +£或244a ->,解得即可.【小问1详解】由122x a -£,即1222x a -£-£,解得2424a x a -££+,所以{}2424|A x x a a -=££+,由40x x -£,等价于()400x x x ì-£í¹î,解得04x <£,所以{}40|04x B x x x x ìü-=£=<£íýîþ,【因为x A Î是x B Î的必要不充分条件,所以B 真包含于A ,所以244240a a +³ìí-£î,解得02a ££,即a 的取值范围为[]0,2;【小问2详解】因为A B =ÆI ,显然A ¹Æ,所以240a +£或244a ->,解得2a £-或4a >,即a 的取值范围为(](),24,-¥-+¥U .18. 已知函数()211y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.【答案】(1){13x x <或x >(2)(22-+【解析】【分析】(1)根据题意易得26510x x -+>,因式分解后利用口诀“大于取两边,小于取中间”即可得解;(2)由题意易得()2110m x mx +-+>的解集为R ,分类讨论1m =-与1m ¹-两种情况,结合二次函数的图像性质即可得解.【小问1详解】根据题意,得2651y x x =-+,由0y >得26510x x -+>,即()()31210x x -->,解得:13x <或12x >,故不等式0y >的解集为{13x x <或x >【小问2详解】由题意得,()2110m x mx +-+>的解集为R ,当1m =-时,不等式可化为10x +>,解得1x >-,即()2110m x mx +-+>的解集为()1,-+¥,不符合题意,舍去;当1m ¹-时,在()211y m x mx =+-+开口向上,且与x 轴没有交点时,()2110m x mx +-+>的解集为R ,所以()210Δ410m m m +>ìí=-+<î,解得22m m >ìïí-<<+ïî22m -<<+,综上:22m -<<+,故实数m的取值范围为(22-+.19. 某化工企业生产过程中不慎污水泄漏,污染了附近水源,政府责成环保部门迅速开展治污行动,根据有关部门试验分析,建议向水源投放治污试剂,已知每投放a 个单位(04a <£且R a Î)的治污试剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y af x =,其中()[](]1,0,5711,5,112xx xf x x x +ìÎïï-=í-ïÎïî,若多次投放,则某一时刻水中的治污试剂浓度为每次投放的治污试剂在相应时刻所释放的浓度之和,根据试验,当水中治污试剂的浓度不低于4(克/升)时,它才能治污有效.(1)若只投放一次4个单位的治污试剂,则有效时间最多可能持续几天?(2)若先投放2个单位的治污试剂,6天后再投放m 个单位的治污试剂,要使接下来的5天中,治污试剂能够持续有效,试求m 的最小值.【答案】(1)7天; (2)min 2m =.【解析】【分析】(1)根据给定的函数模型求投放一次4个单位的治污试剂的有效时间即可;(2)由题设()5=11413x g x x m x --+׳-,将问题化为()()1375x x m x --³-在[6,11]x Î上恒成立,利用基本不等式求右侧最大值,即可得求参数最小值.【小问1详解】因为一次投放4个单位的治污试剂,所以水中释放的治污试剂浓度为()44,0547222,511xx y f x x x x +죣ï==-íï-<£î,当05x ££时,()4147x x+³-,解得35x ££;当511x ££时,2224x -³,解得59x ££;综上,39x ££,故一次投放4个单位的治污试剂,则有效时间可持续7天.【小问2详解】设从第一次投放起,经过()611x x ££天后浓度为()()()16511[]117613x x g x x m x m x x+--=-+=-+×---.因为611x ££,则130x ->,50x ->,所以511413x x m x --+׳-,即()()1375x x m x --³-,令5x t -=,[]1,6t Î,所以()()281610t t m t tt --æö³-=-+ç÷èø,因为168t t+³=,所以2m ≥,当且仅当16t t =,4t =即9x =时等号成立,故为使接下来的5天中能够持续有效m 的最小值为2.20. 对于函数()f x ,若存在0R x Î,使()00f x x =成立,则称0x 为()f x 的不动点.(1)求函数23y x x =--不动点;(2)若函数()221y x a x =-++有两个不相等的不动点1x 、2x ,求1221x x x x +的取值范围;(3)若函数()()211g x mx m x m =-+++在区间(0,2)上有唯一的不动点,求实数m 的取值范围.【答案】(1)1-和3. (2)()2,+¥(3)(]1,1-U .【解析】【分析】(1)解方程23x x x --=,即可求出不动点;(2)由题意,方程()2310x a x -++=有两个不相等的实数根1x 、2x ,由0D >即可求出a 的范围,结合韦达定理和二次函数图象性质即可求出1221x x x x +的范围;的(3)由题意,()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,分()()020h h ×<,()00h =,()20h =和0D =四种情况进行讨论即可.【小问1详解】由题意知23x x x --=,即2230x x --=,则()()310x x -+=,解得11x =-,23x =,所以不动点为1-和3.【小问2详解】依题意,()221x a x x -++=有两个不相等的实1x 数根1x 、2x ,即方程()2310x a x -++=有两个不相等的实数根1x 、2x ,所以()22Δ34650a a a =+-=++>,解得5a <-,或1>-a ,且123x x a +=+,121x x =,所以()()2222121212122112232x x x x x x x x a x x x x ++==+-=+-,因为函数()232y x =+-对称轴为3x =-当3x <-时,y 随x 的增大而减小,若5x <-,则2y >;当3x >-时,y 随x 的增大而增大,若1x >-,则2y >;故()()2322,a ¥+-Î+,所以1221x x x x +的取值范围为()2,¥+.【小问3详解】由()()211g x mx m x m x =-+++=,得()2210mx m x m -+++=,由于函数()g x 在(0,2)上有且只有一个不动点,即()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,①()()020h h ×<,则()()110m m +-<,解得11m -<<;②()00h =,即1m =-时,方程可化为20x x --=,另一个根为1-,不符合题意,舍去;③()20h =,即1m =时,方程可化为2320x x -+=,另一个根为1,满足;④0D =,即()()22410m m m +-+=,解得m =(ⅰ)当m =时,方程的根为()2222m m x m m -++=-==(ⅱ)当m =()2222m m x m m -++=-==,不符合题意,舍去;综上,m 的取值范围是(]1,1-È.21. 对任意正整数n ,记集合(){1212,,,,,,n nnA a a a a a a=××××××均为非负整数,且}12n a a a n ++×××+=,集合(){1212,,,,,,n nnB b b b b b b =××××××均为非负整数,且}122n b b b n ++×××+=.设()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,若对任意{}1,2,,i n Î×××都有i i a b £,则记a b p .(1)写出集合2A 和2B ;(2)证明:对任意n A a Î,存在n B b Î,使得a b p ;(3)设集合(){},,,n nnS A B a b a b a b =ÎÎp 求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =(2)证明见解析 (3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的公式,写出集合和即可;(2)任取()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,令()12,,,n b b b b =×××,只需证明n B b Î,即可证明结论成立;(3)任取()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,可证明n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p ,再设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××,设集合(){},1,2,,,1,2,,n i i j T i t j t a a a =+=×××=×××,通过证明n n T S Í,n n S T Í,推出n n S T =,即可完成证明.【小问1详解】()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =.【小问2详解】对任意()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,则12,,,n b b b ×××均为非负整数,且()1,2,3,,i i a b i n £=×××.令()12,,,n b b b b =×××,则12n b b b ++×××+()()()12111n a a a =++++×××++()12n a a a n=++×××++2n =,所以n B b Î,且a b p .【小问3详解】对任意()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,记()1122,,,n n a a a a a a a a +=++×××¢+¢¢¢,则11a a ¢+,22a a ¢+,…,n n a a ¢+均为非负整数,且()()()1122n n a a a a a a ++++×××++¢¢¢()()1212n n a a a a a a ¢=++×××++++××+¢×¢n n =+2n =,所以n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p .设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××.设集合(){},1,2,,,1,2,,n iijT i t j t a a a =+=×××=×××.对任意i n A a Î(1,2,,)i t =×××,都有1i a a +,2i a a +,…,i t n B a a +Î,且i i j a a a +p ,1,2,,j t =×××.所以n n T S Í.若(),n S a b Î,其中()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,设i i i c b a =-()1,2,,i n =×××,因为i i a b £,所以0i i i c b a =-³,记()12,,,n c c c a =×××¢,则12n c c c +++L ()()()1122n n b a b a b a =-+-+-L ()()1212n n b b b a a a =++×××+-++×××+2n n n =-=,所以n A a ¢Î,并且有b a a =+¢,所以(),n T a b Î,所以n n S T Í.所以n n S T =.因为集合n T 中的元素个数为2t ,所以n S 中的元素个数为2t ,是完全平方数.【点睛】关键点点睛:集合元素的个数转换为证明两个集合相等.。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

2024-2025学年银川一中高一数学上学期期中考试卷附答案解析

2024-2025学年银川一中高一数学上学期期中考试卷附答案解析

银川一中2024/2025学年度(上)高一期中考试数 学 试 卷命题教师:朱建锋一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知集合{}{}2(,)21,(,)23,A x y y x x B x y y x C A B ==-+==-=⋂∣∣,则C 的真子集的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩得2440x x -+=有一解,即C 有一个元素,即可求解.【详解】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩,整理得2440x x -+=,解得2x =,则{(2,1)}C =,故C 的真子集的个数为1.故选:B.2. 已知点(),27a 在幂函数()()()2,m f x a x a m =-∈R 的图象上,则a m +=( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】直接由幂函数的定义列方程组即可求解.【详解】由题意2136273m a a a m a m -==⎧⎧⇒⇒+=⎨⎨==⎩⎩.故选:C.3. 函数||x y x x=+的图象是( ).A. B. C. D.【答案】C【解析】【分析】将函数表达式化简成分段函数形式即可判断.【详解】1,01,0x x xy x x x x +>⎧=+=⎨-<⎩,对比选项可知,只有C 符合题意.故选:C.4. 函数()f x =的单调递减区间是( )A. []1,0- B. []0,1 C. [)2+∞, D. (]2-∞,【答案】A【解析】【分析】求得()f x 的定义域,利用复合函数的单调性,结合二次函数单调性可得答案.【详解】函数()f x =中,220x x --≥,解得20x -≤≤,又22y x x =--的开口向下,对称轴方程为1x =-,函数22yx x =--在[1,0]-上单调递减,在[2,1]--上单调递增,又y =在[0,1]上单调递增,因此函数()f x =在[1,0]-上单调递减,在[2,1]--上单调递增,所以函数()f x =的单调递减区间是[1,0]-.故选:A5. 已知a ,b ,c ,d 均为实数,则下列命题正确的是( )A. 若a b >,c d >,则a b c d+>+ B. 若22a b >,则a b -<-C. 若0c a b >>>,则a b c a c b >-- D. 若0a b >>且0m >,则a m a b m b+>+【答案】C【解析】【分析】由不等式的性质及特例逐项判断即可.【详解】选项A ,取1a =,0b =,2c =,1d =,则a b c d +<+,A 错误;选项B ,当1a =-,0b =时,22a b >,但a b ->-,不成立,B 错误;选项C ,当0c a b >>>时,()()a b a c b b c a ac bc a b c a c b >⇔->-⇔>⇔>--,C 正确;选项D ,根据糖水不等式可知0b m b a m a +>>+,再根据倒数不等式可得a m a b m b +<+,D 错误.故选:C .6. 函数()y f x =为定义在R 上的减函数,若0a ≠,则( )A. ()()2f a f a > B. ()()2f a f a >C. ()()2f a a f a +< D. ()()21f a a f a +>+【答案】C【解析】【分析】根据()f x 是定义域R 上的减函数,且0a ≠,然后比较a 与2a 的大小关系,从而得出选项A 错误;比较2a 与a 的大小即可得出选项B 错误;可得出2a a a +>,从而得出选项C 正确;比较2,1a a a ++大小即可判断D.【详解】()y f x = 是定义在R 上的减函数,0a ≠,a 与2a 的大小关系不能确定,从而()(),2f a f a 关系不确定,故A 错误;2(1)-=-a a a a ,1a >时,2a a >;01a <<时,2a a <,故()()2,f a f a 的关系不确定,故B 错误;220a a a a -=+>,2a a a ∴+>,()2()f a a f a ∴+<,故C 正确.()()221111a a a a a a +--=-=+-,1a >时,21a a a +>+;01a <<时,21a a a +<+,故()()2,1f a a f a ++关系不确定,D 错误,故选:C .7. 已知函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩在(),1m m +上单调递增,则实数m 的取值范围为( )A. (][),21,-∞-+∞ B. []2,1-C. (][),12,-∞-⋃+∞ D. []1,2-【答案】A【解析】【分析】作出分段函数的函数图象,由图象得到单调区间,建立不等式,得出m 取值范围.【详解】画出分段函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩的图象,如图所示,所以要使函数()f x 在(),1m m +上单调递增,则1m ≥或11m +≤-,解得1m ≥或2m ≤-,所以实数m 的取值范围为(][),21,-∞-+∞ .故选:A8. 定义{}max ,,a b c 为,,a b c 中的最大值,设()28max ,,63h x x x x ⎧⎫=-⎨⎬⎩⎭,则()h x 的最小值为().A. 649 B. 4 C. 0 D. 4811【答案】D【解析】【分析】分别画出28,,63y x y x y x ===-的图象,即可得函数ℎ(x )的图象,根据图象分析最值.【详解】分别画出28,,63y x y x y x ===-的图象,则函数ℎ(x )的图象为图中实线部分.由图知:函数ℎ(x )的最低点为A ,由836y x y x ⎧=⎪⎨⎪=-⎩ ,解得18114811x y ⎧=⎪⎪⎨⎪=⎪⎩,即1848,1111A ⎛⎫ ⎪⎝⎭.所以ℎ(x )的最小值为4811.故选:D.二、多选题:本题共4小题,共20分.在每小题给出的选项中,有多项符合题目要求.9. 下列说法中正确的有()A. 命题0:p x ∃∈R ,200220x x ++<”则命题p 的否定是2,220∀∈++≥R x x x B. “11x y>”是“x y <”的必要不充分条件C. 命题“2,0x x ∀∈>Z ”是真命题D. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件【答案】AD【解析】【分析】利用特称量词命题否定求解选项A ;利用不等式的性质确定选项B ;利用全称量词命题的真假判断选项C;利用一元二次方程根与系数的关系确定选项D.【详解】对于A ,命题p 的否定是2220x x x ∀∈++≥R ,,故A 正确;对于B ,由11x y>可知由两种情况,①0xy >且y x >;②0y x <<,故11x y >不能推出x y <,由x y <也不能推出11x y>,所以11x y>是x y <的既不充分也不必要条件,故B 错误;对于C ,当x =0时,20x =,故C 错误;对于D ,关于x 的方程220x x m -+=有一正一负根,则4400m m ->⎧⎨<⎩,解得0m <.所以"0m <"是"关于x 的方程220x x m -+=有一正一负根"的充要条件,故D 正确.故选:AD.的10.已知函数)1fx +=+,则( )A. ()()21f x x x =-∈R B. ()f x 的最小值为0C. ()23f x -定义域为[)2,+∞D. 1f x ⎛⎫ ⎪⎝⎭的值域为()1,-+∞【答案】BC【解析】【分析】根据给定条件,利用配凑法求出函数()f x 的解析式,再逐项判断即得答案.详解】由)211)1f x +=+=+-11+≥,所以()()211f x x x =-≥,故A 错误;当1x ≥时,()210f x x =-≥,因此()f x 的最小值为0,故B 正确;在函数()23f x -中,231x -≥,即2x ≥,所以函数()23f x -的定义域为[)2,+∞,故C 正确;2111f x x⎛⎫=- ⎪⎝⎭,由11x ≥,即01x <≤,所以[)211,x ∞∈+,所以1f x ⎛⎫ ⎪⎝⎭值域为[)0,∞+,故D 错误.故选:BC.11. 已知函数()328x f x x -=-,则( )A. ()f x 的定义域为()(),44,-∞⋃+∞ B. ()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C. ()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称D. 若()f x 在(),1a a +上单调递减,则4a ≥【答案】ABC【解析】【分析】求出函数的定义域和值域可判断A 、B ;根据图象的平移法可判断C ;根据函数的单调性解不等式的【的可判断D【详解】由280x -≠得4x ≠,所以()f x 的定义域为()(),44,-∞⋃+∞,A 正确;由()341112828228x x f x x x x --+===+---及1028x ≠-,可得()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,B 正确;()11228f x x =+-的图象可由奇函数12y x=的图象向右平移4个单位,再向上平移12个单位得到,所以()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称,C 正确;()f x 在(),1a a +上单调递减,则4a ≥或14a +≤,即4a ≥或3a ≤ ,D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数()f x 为R 上的偶函数,当0x >时,2()23f x x x =+-,则0x <时,()f x =____________.【答案】223x x --【解析】【分析】根据题意,当0x <时,0x ->,由函数的解析式求出()f x -的表达式,结合奇偶性分析可得答案.详解】解:根据题意,当0x <时,0x ->,则22()()2()323f x x x x x -=-+--=--,又由函数()f x 为R 上的偶函数,则2()()23f x f x x x =-=--.则0x <时,2()23f x x x =--.故答案为:223x x --.13. 已知函数1,0()(1)(2),0x x f x f x f x x +≤⎧=⎨--->⎩,则(3)f 的值等于________【答案】1-【解析】【分析】根据分段函数的表达式直接代入即可.【【详解】由分段函数可知,(2)(3(1))f f f =-,而(1)(2(0))f f f =-,∴(3)(2)(1)(1)(0)(1)(0)1f f f f f f f =-=--=-=-.故答案为:1-.【点睛】本题考查分段函数求值的问题,属于基础题.14. 若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是____________(用区间表示)【答案】[]10,14【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故答案为:[]10,14四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. (1)求函数()()52(1)1x x y x x ++=>-+的最小值;(2)已知0x >,0y >且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围.【答案】(1)9;(2)16m ≤【解析】【分析】(1)对函数解析式变形,利用基本不等式求解最值;(2)先常数代换变形,再利用基本不等式求解最值;【详解】(1)由1x >-,得10x +>,因此1(5)(2[()4][(1))11]1x x x y x x x +++++=+=++2(1)5(1)44155911x x x x x ++++==+++≥+=++,当且仅当411x x +=+,即1x =时取等号,所以原函数的最小值为9.(2)由191x y+=,则()199101016x y x y x y x y y x ⎛⎫+=++=++≥+=⎪⎝⎭.当且仅当169x y x y y x +=⎧⎪⎨=⎪⎩,即412x y =⎧⎨=⎩时取到最小值16.若x y m +≥恒成立,则16m ≤.16. 已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)画出这个函数的图象,并解不等式()2f x <;(2)若直线y k =(k 为常数)与函数()f x 的图象有两个公共点,直接写出k的范围.【答案】(1)图象见解析,{|x x <4}x >(2)0k <或14k <<【解析】【分析】(1)根据解析式画出图像,结合图像即可求解不等式;(2)由图像即可求解.【小问1详解】根据分段函数的解析式,画出函数的图象,当1x ≤-时,11x +≤,所以()2f x <恒成立,当12x -<≤时,22x x <⇔<<,所以1x -<<当2x >时,624x x -+<⇒>,所以4x >,综上可知,x <或4x >,所以不等式的解集为{x x <或4}x >;【小问2详解】如图,y k =与()y f x =有2个交点,则0k <或14k <<.17. 已知函数()f x ax b =+是R 上的奇函数,且(1)2f =.(1)若函数2()()h x x m f x =+⋅在区间[2,)+∞递增,求实数m 的取值范围;(2)设2()21(0)g x kx kx k =++≠,若对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,求实数k 的取值范围.【答案】(1)[)2,-+∞;(2)(][),13,-∞-+∞ .【解析】【分析】(1)利用奇函数求出()f x ,再利用二次函数单调性求出m 的范围.(2)分别求出函数()f x 在[1,1]-上的值域、函数()g x 在区间[1,2]-上值域,利用集合的包含关系列式求解即得.【小问1详解】由函数()f x ax b =+是R 上的奇函数,且(1)2f =,得(0)0(1)2f b f a b ==⎧⎨=+=⎩,解得20a b =⎧⎨=⎩,由函数2()2h x x mx =+在区间[2,)+∞上单调递增,得2m -≤,解得2m ≥-,所以实数m 的取值范围是[)2,-+∞.【小问2详解】对于()2f x x =,当[1,1]x ∈-,()f x 的值域为[]22-,,由对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,得函数()f x 在区间[1,1]-的值域为()g x 在区间[1,2]-上值域的子集,2()21(0)g x kx kx k =++≠的对称轴为1x =-,当0k >时,函数()g x 在区间[1,2]-上单调递增,()g x 的值域为[]1,18k k -+,由[][]2,21,18k k -⊆-+,得21218k k -≥-⎧⎨≤+⎩,解得3k ≥;当0k <时,函数()g x 在区间[1,2]-上单调递减,()g x 的值域为[]18,1k k +-,由[][]2,218,1k k -⊆+-,得21821k k -≥+⎧⎨≤-⎩,解得1k ≤-,所以实数k 的取值范围(][),13,∞∞--⋃+.18. 已知函数()31x f x x x =++.(1)证明:函数()f x 是奇函数;(2)用定义证明:函数()f x 在()0,∞+上是增函数;(3)若关于x 的不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,求实数a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)[]0,1【解析】【分析】(1)根据函数奇偶性的定义和判定方法,即可可证;(2)根据函数单调性的定义和判定方法,即可得证;(3)根据题意,得到函数()f x 为定义域R 上的奇函数,且为单调递增函数,不等式转化为231ax ax ax +≥-对于任意实数x 恒成立,分0a =和0a ≠,结合二次函数的性质,列出不等式组,即可求解.【小问1详解】证明:由函数()31x f x x x =++,可得其定义域为R ,关于原点对称,又由()()3(3)11x x f x x x f x x x -=--=-+=--++,所以函数()f x 为定义域R 上的奇函数.【小问2详解】证明:当(0,)x ∈+∞时,()133111x f x x x x x =+=+-++,任取12,(0,)x x ∈+∞,且12x x <,可得()()1212121221111131(31)3()(1111f x f x x x x x x x x x -=+--+-=-+-++++()()()()121212212113()()[3]1111x x x x x x x x x x -=-+=-⋅+++++因为12,(0,)x x ∈+∞,且12x x <,可得120x x -<,()()21110x x ++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上是增函数.【小问3详解】因为函数()f x 为定义域R 上的奇函数,且在(0,+∞)上是增函数,所以函数()f x 在(),0∞-上也是增函数,又因为()00f =,所以函数()f x 在R 上是增函数,又由()()2310f ax ax f ax ++-≥,可得()()231(1)f ax x f ax f ax α+≥--=-,因为不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,即不等式()23(1)f ax ax f ax +≥-对于任意实数x 恒成立,可得不等式231ax ax ax +≥-对于任意实数x 恒成立,即不等式2210ax ax ++≥对于任意实数x 恒成立,当0a =时,不等式即为10≥恒成立,符合题意;当0a ≠时,则满足()20Δ240a a a >⎧⎪⎨=-≤⎪⎩,解得01a <≤,综上可得,01a ≤≤,即实数a 的取值范围[0,1].19. 设函数()y f x =的定义域为M ,且区间I M ⊆.若函数()y f x x =+在区间I 上单调递增,则称函数()f x 在区间I 上具有性质A ;若函数()y f x x =-在区间I 上单调递增,则称函数()f x 在区间I 上具有性质B .(1)试证明:“函数()f x 在区间I 上具有性质B ”是“函数()f x 位区间I 上单调递增”的充分不必要条件;(2)若函数()k f x x=在区间[)2,+∞上具有性质A ,求实数k 的取值范围;(3)若函数()32f x x x =+在区间[],1a a +上同时具有性质A 和性质B ,求实数a 的取值范围.【答案】(1)证明见解析(2){}4k k ≤(3){1a a ≤-∣或a ≥【解析】【分析】(1)根据题意结合单调性的定义以及充分、必要条件分析判断;(2)分析可知()()k g x f x x x x =+=+在区间[)2,+∞上单调递增,结合单调性的定义分析求解;(3)分析可知13y x x ⎛⎫=+⎪⎝⎭在区间[],1+a a 上单调递增,3y x x =+在区间[],1+a a 上单调递增,结合对勾函数单调性分析求解.【小问1详解】若函数()f x 在区间I 上具有性质B ,对任意12,x x I ∈且12x x <,由条件可知()()2211f x x f x x ->-变形可得()()21210f x f x x x ->->,即()()210f x f x ->,所以()f x 在区间I 上单调递增,即充分性成立;若函数()f x 位区间I 上单调递增,如()f x x =在任意区间I 上单调递增,但()0f x x -=,故不符合性质B ,即必要性不成立;所以“()f x 在区间I 上具有性质B ”是“()f x 在区间I 上单调递增”的充分不必要条件.【小问2详解】若具有性质A ,即可知()()k g x f x x x x=+=+在区间[)2,+∞上单调递增.对任意[)12,2,x x ∈+∞,且12x x <,则()()()()1212212121120x x k x x k k g x g x x x x x x x --⎛⎫-=+-+=> ⎪⎝⎭,因为122x x ≤<,则12120,40x x x x ->,可得12k x x <恒成立,则4k ≤,所以实数k 的取值范围是{}4k k ≤.【小问3详解】由条件可知,()f x 具有性质A ,即()13y f x x x x ⎛⎫=+=+ ⎪⎝⎭在区间[],1+a a 上单调递增;由条件可知,()f x 具有性质B ,即()3y f x x x x =-=+在区间[],1+a a 上单调递增;由对勾函数可知:13y x x ⎛⎫=+ ⎪⎝⎭的增区间为(][),1,1,∞∞--+,3y x x =+的增区间为(),,∞∞-+,要使得条件成立,需要1a +≤或a ≥所以实数a 的取值范围是{1a a ≤-∣或a ≥.。

高一上学期期中考试数学试题(解析版)

高一上学期期中考试数学试题(解析版)
可得 在 上单调递增排除选项C
故选:D.
7.荀子曰:“故不积跬步无以至千里;不积小流无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】利用命题间的关系及命题的充分必要性直接判断.
【小问1详解】
解:设 的长为 米( )
是矩形
由 得
解得 或
即 的取值范围为
【小问2详解】
令 ( )则
当且仅当 即 时等号成立此时 最小面积为48平方米
22.已知函数 为偶函数.
(1)求实数a的值;
(2)判断 的单调性并用定义法证明你的判断:
(3)设 若对任意的 总存在 使得 成立求实数k的取值范围.
则 即 解得:
所以实数 的取值范围 .
【点睛】易错点睛:本题考查利用集合子集关系确定参数问题易错点是要注意: 是任何集合的子集所以要分集合 和集合 两种情况讨论考查学生的逻辑推理能力属于中档题.
18.已知关于x的不等式 .
(1)若不等式的解集是 求 的值;
(2)若 求此不等式的解集.
【答案】(1) ;(2)分类讨论答案见解析.
【详解】由已知设“积跬步”为命题 “至千里”为命题
“故不积跬步无以至千里”即“若 则 ”
其逆否命题为“若 则 ”反之不成立
所以命题 是命题 的必要不充分条件
故选:B.
8.中国宋代的数学家秦九韶曾提出“三斜求积术”即假设在平面内有一个三角形边长分别为abc三角形的面积 可由公式 求得其中 为三角形周长的一半这个公式也被称为海伦——秦九韶公式现有一个三角形的边长满足 则此三角形面积的最大值为()

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

宁波2024年度第一学期期中高一数学试卷(答案在最后)(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,4,7M =,{}4,6,7N =,则M N = ()A.{}1,2,4,6,7B.{}1,2,6C.{}4,7 D.{}2,4【答案】C 【解析】【分析】利用集合的交集运算即可得解.【详解】因为{}1,2,4,7M =,{}4,6,7N =,所以M N = {}4,7.故选:C.2.命题“N n ∀∈,22Z n n ++∈”的否定为()A.N n ∀∈,22Z n n ++∉B.N n ∀∉,22Z n n ++∉C.N n ∃∈,22Z n n ++∈D.N n ∃∈,22Zn n ++∉【答案】D 【解析】【分析】利用量词命题的否定方法即可得解.【详解】因为量词命题的否定方法为:改量词,否结论,所以命题“N n ∀∈,22Z n n ++∈”的否定为N n ∃∈,22Z n n ++∉.故选:D.3.已知0.23a =,0.33b =,0.22c =,则()A.b a c >>B.a b c >>C.b c a >>D.a c b >>【答案】A 【解析】【分析】利用指数函数的单调性与幂函数的单调性即可判断得解.【详解】因为3x y =为单调递增函数,所以0.30.233>,则b a >,因为0.2y x =为增函数,所以0.20.232>,则a c >,综上,b a c >>.故选:A.4.已知正实数a ,b 满足2a b +=,则312a b+的最小值为()A.272B.14C.15D.27【答案】A 【解析】【分析】利用基本不等式“1”的妙用即可得解.【详解】因正实数a ,b 满足2a b +=,所以31213121312127()15152222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当312b a a b=,即24,33a b ==时取等号,所以312a b+的最小值为272.故选:A 5.函数3(e)x f xx =的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用奇偶函数的定义判断得()f x 的奇偶性排除AB ,再利用指数函数的性质分析得()f x 的正负情况,从而排除C ,由此得解.【详解】对于3()ex xf x =,其定义域为R ,又33()()e ex xx xf x f x ---==-=-,则()f x 是奇函数,排除AB ,当0x >时,30x >,e e 0x x =>,所以()0f x >,排除C ,又选项D 的图象满足上述性质,故D 正确.故选:D.6.设m ∈R ,“12m <-”是“方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要【答案】C 【解析】【分析】举反例说明充分性,利用二次方程根的分布说明必要性,从而得解.【详解】当12m <-时,取3m =-,则方程22(3)40m x m x -++=为2940x +=,显然无解,即充分性不成立;当方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根时,则()22222Δ344032242(3)40m m m m x m m m ⎧>⎪=+-⨯>⎪⎪⎨+=>⎪⎪⎪-++>⎩,即0315********m m m m m m ≠⎧⎪⎪-<<⎪⎪⎨-<<<<⎪⎪⎪-⎪⎩或或,则3152m -<<-,此时12m <-成立,即必要性成立;所以前者是后者的必要不充分,故C 正确.故选:C.7.中国5G 技术领先世界,其数学原理之一便是香农公式:2log 1S C W N⎛⎫=+⎪⎝⎭,它表示:在受噪音干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫信噪比.按照香农公式,若不改变带宽W ,将信噪比SN从2000提升至10000,则C 大约增加了(lg 20.3010)≈()A .18%B.21% C.23% D.25%【答案】B 【解析】【分析】由已知公式,将信噪比SN看作整体,分别取2000,10000求出相应的C 值,再利用对数运算性质与换底公式变形即可得解.【详解】由题意,将信噪比SN从2000提升至10000,则最大信息传递速率C 从()12log 12000C W =+增加至()22log 110000C W =+,所以2212212210001log log 10001log 20012001log 2001log 2001C C W W C W --==3100011000010lglg lg10.3012001200020.2121%lg 2001lg 2000lg 2lg100.3013-=≈==≈=++.故选:B.8.已知函数()f x 为R 上的奇函数,当0x ≥时,2()2f x x x =-,若函数()g x 满足(),0()(),0f x x g x f x x ≥⎧=⎨-<⎩,且(())0g f x a -=有8个不同的解,则实数a 的取值范围为()A.1a <-B.10a -<<C.01a <<D.1a >【答案】B 【解析】【分析】先利用函数的奇偶性与题设条件得到()f x 与()g x 的解析式,设()t f x =,作出函数()g t 的图象,数形结合,分类讨论函数1a <-、10a -<<与0a >三种情况,得到对应情况下(())0g f x a -=的解的个数,从而得解.【详解】因为函数()f x 为R 上的奇函数,当0x ≥时 ,令0x <,则0x ->,则()22f x x x -=+,又()()22f x f x x x=--=--所以()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩,则()222,02,0x x x g x x x x ⎧-≥=⎨+<⎩,设()t f x =,作出函数()g t 的图象,对于A ,当1a <-时,函数()g t a =没有实数根,不满足题意;对于B ,当10a -<<时,函数()g t a =有四个根1234,,,t t t t ,其中1(2,1)t ∈--,2(1,0)t ∈-,3(0,1)t ∈,4(1,2)t ∈;作出()f x 与1y t =、2y t =、3y t =与4=y t 的图象,如图,显然几个函数恰有8个交点,则(())0g f x a -=有8个不同的解,故B 正确;对于CD ,当0a >时,函数()g t a =有两个根12,t t ,其中1(,2)t ∈-∞-,2(2,)t ∈+∞,与选项B 同理可知()f x 与1y t =、2y t =各有一个交点,则(())0g f x a -=只有2个不同的解,不满足题意,故CD 错误.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是()A.11a b< B.11a cb c<--C.ac bc > D.22a b c c >【答案】AD 【解析】【分析】根据不等式的性质,作差逐一判断即可.【详解】因为0a b >>,选项A :110b aa b ab --=<,所以11a b<,故A 说法正确;选项B :()()11b aa cbc a c b c --=----,当a b c >>或c a b >>时,()()0b aa cbc -<--,即11a c b c<--;当a c b >>时,()()0b a a c b c ->--,即11a c b c>--,故B 说法错误;选项C :当0c =时,ac bc =,故C 说法错误;选项D :因为210c >,所以22a b c c >,故D 说法正确;故选:AD10.已知函数)()lg 1f x x =-+,则下列说法正确的是()A.()f x 的值域为RB.(1)f x +关于原点对称C.()f x 在(1,)+∞上单调递增D.()f x 在[1,1]x m m ∈-+上的最大值、最小值分别为M 、N ,则0M N +=【答案】ABD 【解析】【分析】利用作差法,结合对数函数的性质判断A ,构造函数())lg k x x =,研究()k x 的性质判断B ,利用()k x 的单调性与奇偶性判断CD ,从而得解.【详解】对于A ,()2222110x x x -+--=>,所以()222210x x x -+>-≥1x >-,10x -+>恒成立,所以()f x 的定义域为R ,且当x 趋于无穷大时,1y x =+接近于0,当x 趋于无穷小时,1y x =+=趋于无穷大,所以()f x 的值域为R ,故A 正确;对于B ,因为))(1)lg (1)1lgf x x x +=-++=,令())lgk x x =,则()(1)f x k x +=,易知()k x 的定义域为R ,又()()))lglglg10k x k x x x -+=+==,所以()k x 为奇函数,关于原点对称,即(1)f x +关于原点对称,故B 正确;对于C ,因为())1gk x x =-=在()0,∞+上递减,而将()k x 的图象向右平移一个单位可得()f x 的图象,所以()f x 在(1,)+∞上单调递减,故C 错误;对于D ,因为()k x 在()0,∞+上递减,且())1gk x x =为奇函数,则()00k =,())k x x =-∴在(),-∞+∞上为减函数,而将()k x 的图象向右平移一个单位可得()f x 的图象,()f x ∴在(),-∞+∞上为减函数,即()f x 在[1,1]m m -+上单调递减,则()()()()110M N f m f m k m k m +=-++=-+=,故D 正确.故选:ABD.11.已知函数()f x 满足:对于,x y ∈R ,都有()()()(1)(1)f x y f x f y f x f y -=+++,且(0)(2)f f ¹,则以下选项正确的是()A.(0)0f = B.(1)0f =C.(1)(1)0f x f x ++-= D.(4)()f x f x +=【答案】BCD 【解析】【分析】利用赋值法,结合条件分析得()()1,0f f 的值,从而判断AB ,利用赋值法,结合AB 中的结论、抽象函数的奇偶性和周期性的判定方法判断CD ,从而得解.【详解】对于B :令0x y ==,则()()()22001,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦令1x y ==,则()()()22012,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦所以()()2202,f f ⎡⎤⎡⎤=⎣⎦⎣⎦因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,则()()()()()110210f f f f f =+=,故B 正确;对于A :由选项B 可得()()200f f ⎡⎤=⎣⎦,所以()00f =或()01f =,若()00f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,所以()20f =,这与()()02f f ≠矛盾,舍去;若()01f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,解得()21f =±,因为()()02f f ≠,所以()21f =-,()01f =,故A 错误;对于C :令0x =,则()()()()()011f y f f y f f y -=++,因为 ,()01f =,所以()()f y f y -=,所以()f x 为偶函数,令1x =,则()()()()()()11211f y f f y f f y f y -=++=-+,即()()11f x f x -=-+,所以(1)(1)0f x f x ++-=,故C 正确;对于D :由选项C 知()()11f x f x -=-+,所以()()2f x f x -=-+,又()f x 为偶函数,所以()()()2f x f x f x =-=-+,即 t ,所以 t 䁝 t ,故D 正确.故选:BCD.【点睛】方法点睛:抽象函数求值问题,一般是通过赋值法,即在已知等式中让自变量取特殊值求得一些特殊的函数值,解题时注意所要求函数值的变量值与已知的量之间的关系,通过赋值还可能得出函数的奇偶性、周期性,这样对规律性求值起到决定性的作用.三、填空题:本题共3小题,每小题5分,共15分.12.函数3()log (31)f x x =+的定义域为______.【答案】13x x ⎧⎫-⎨⎬⎩⎭【解析】【分析】根据对数式的意义即可求解.【详解】要使函数有意义,则13103x x +>⇒>-,所以函数的定义域为13x x ⎧⎫-⎨⎬⎩⎭.故答案为:13x x ⎧⎫-⎨⎬⎩⎭.13.定义()f x x =⎡⎤⎢⎥(其中⎡⎤⎢⎥x 表示不小于x 的最小整数)为“向上取整函数”.例如 1.11-=-⎡⎤⎢⎥,2.13=⎡⎤⎢⎥,44=⎡⎤⎢⎥.以下描述正确的是______.(请填写序号)①若()2024f x =,则(2023,2024]x ∈,②若27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥,则(2,4]x ∈,③()f x x =⎡⎤⎢⎥是R 上的奇函数,④()f x 在R 上单调递增.【答案】①②【解析】【分析】利用对“向上取整函数”定义的理解,结合定义域与二次不等式的求解可判断①②,举反例,结合函数奇偶性与单调性的定义可判断③④,从而得解.【详解】因为⎡⎤⎢⎥x 表示不小于x 的最小整数,则有x x ≥⎡⎤⎢⎥且1x x -<⎡⎤⎢⎥,即1x x x -<⎡⎤⎡⎤⎢⎥⎢≤⎥,对于①,()2024f x x ==⎡⎤⎢⎥,则20232024x <≤,即(2023,2024]x ∈,故①正确;对于②,令t x =⎡⎤⎢⎥,则不等式可化为27120t t -+≤,解得34t ≤≤,又t x =⎡⎤⎢⎥为整数,则3t =或4t =,当3t =时,即3x =⎡⎤⎢⎥,则23x <≤;当4t =时,即4x =⎡⎤⎢⎥,则34x <≤,所以24x <≤,则(2,4]x ∈,故②正确;对于③,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.5)0(0.5)f f -=≠-,则()f x x =⎡⎤⎢⎥不是R 上的奇函数,故③错误;对于④,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.6)1f =,即(0.5)(0.6)f f =,所以()f x 在R 上不单调递增,故④错误.故答案为:①②.14.已知a ,b 满足2221a ab b +-=,则232a ab -的最小值为______【答案】2【解析】【分析】变形给定等式,换元2a b m +=,用m 表示,a b ,再代入,利用基本不等式求出最小值.【详解】由2221a ab b +-=,得(2)()1a b a b +-=,令2a b m +=,则1a b m-=,解得233m a m =+,8322()33m a b a a b m-=+-=+,因此22228116132(32)()()(10)(1022333399m m a ab a a b m m m m -=-=++=++≥+=,当且仅当2216m m=,即24m =时取等号,所以232a ab -的最小值为2.故答案为:2【点睛】关键点点睛:将2221a ab b +-=变形为(2)()1a b a b +-=,令2a b m +=,再表示出,a b 是求出最小值的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(110232ln 2024+-(2)()()24525log 5log 0.2log 2log 0.5++【答案】(1)152(2)14【解析】【分析】(1)根据根式与指数式的互化将根式化为同底的指数式,再结合对数运算性质和指数幂性质即可计算得解.(2)根据对数性质、运算法则和换底公式即可计算求解.【小问1详解】原式()()111125253424211115221222222⨯+⨯=⨯+-=-=-=.【小问2详解】原式225511log 5log 0.2log 2log 0.522⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭225525log 5log log 2log log log ⎛=++= ⎝11lg5lg 2122lg 2lg5lg 2lg54=⨯=⨯=.16.已知集合{}121A x m x m =+≤≤-,11|288x B x -⎧⎫⎨⎬⎩⎭=≤≤.(1)求B ;(2)若A B ⊆,求实数m 的取值范围.【答案】(1){}|24B x x =-≤≤(2)5,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用指数函数的单调性解不等式,从而化简集合B ;(2)利用集合间的包含关系,分类讨论A =∅与A ≠∅两种情况,得到关于m 的不等式(组),解之即可得解.【小问1详解】由11288x -≤≤,得313222x --≤≤,所以313x -≤-≤,解得24x -≤≤,所以{}|24B x x =-≤≤.【小问2详解】因为A B ⊆,{}121A x m x m =+≤≤-,当A =∅时,121m m +>-,得2m <,满足条件;当A ≠∅时,2m ≥且21214m m -≤+⎧⎨-≤⎩,解得522m ≤≤;综上所述,m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与使用肥料x (单位:千克)满足如下关系:210(3),02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,肥料成本投入为11x 元,其他成本投入(如培育管理、施肥等人工费)25x 元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?【答案】(1)220036600,02()2000200036,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.【解析】【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案.(2)结合二次函数的最值以及对勾函数求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【小问1详解】依题意,2200(3)36,02()20()251120()3610020(10036,251x x x f x W x x x W x x x x x ⎧+-≤≤⎪=--=-=⎨--<≤⎪+⎩220036600,022*********,251x x x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()20036600f x x x =-+,则当2x =时,()f x 取得最大值(2)1328f =;当25x <≤时,500()203636(1)20364[9(1)]112000f x x x x x =--+=-++++令1(3,6]x t +=∈,5005009(1)91x t x t ++=++,函数5009t t y +=在(3,6]上单调递减,当6t =时,min 4123y =,此时5x =,()f x 取得最大值4460(5)3f =,而446013283<,因此当5x =时,max 4460()3f x =,所以当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.18.已知函数()42x xa f x -=为奇函数,(1)求a 的值;(2)判断()f x 的单调性,并用单调性定义加以证明;(3)求关于x 的不等式()22(4)0f x x f x ++-<的解集.【答案】(1)1a =(2)()f x 在R 上单调递增,证明见解析(3){}41x x -<<【解析】【分析】(1)利用奇函数的性质()00f =求得a ,再进行检验即可得解;(2)利用函数单调性的定义,结合作差法与指数函数的性质即可得解;(3)利用()f x 的奇偶性与单调性,将问题转化为224x x x +<-,从而得解.【小问1详解】因为()42x x a f x -=为奇函数,且定义域为R ,所以()00f =,则00402a -=,解得1a =,此时()411222x x x x f x -==-,则()()112222x x x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭,即()f x 为奇函数,所以1a =.【小问2详解】()f x 在R 上单调递增,证明如下:任取12,R x x ∈,且12x x <,则12220x x -<,12220x x ⋅>则()()1222211112111122222222x x x x x x x x f x f x ⎛⎫-=---=-+- ⎪⎝⎭()12121212122212222102222x x x x x x x x x x -⎛⎫=-+=-+< ⎪⋅⋅⎝⎭,所以()()12f x f x <,故()f x 在R 上单调递增.【小问3详解】因为()22(4)0f x x f x ++-<,所以()()22(4)4f x x f x f x +<--=-,则224x x x +<-,即2340x x +-<,解得41x -<<,所以()22(4)0f x x f x ++-<的解集为{}41x x -<<.19.已知函数3()f x x a a x=--+,(R)a ∈,(1)若1a =,求关于x 的方程()1f x =的解;(2)若关于x 的方程2()f x a =有三个不同的正实数根1x ,2x ,3x 且123x x x <<,(i )求a 的取值范围;(ii )证明:1333x x x >.【答案】(1)11322x =+(2)(i)732⎛ ⎝;(ii )证明见解析【解析】【分析】(1)根据题意得由31x x-=,分类讨论1x ≥与1x <两种情况去掉绝对值即可得解;(2)(i )分段讨论()f x 的解析式,结合对勾函数的性质分析得()f x 的单调性,进而得到关于a 的不等式,解之即可得解;(ii )利用(i )中结论,分析得123x x =与3x 关于a 的表达式,进而得解.【小问1详解】当1a =时,3()11f x x x =--+,则由()1f x =,得31x x -=,当1x ≥时,则31x x -=,即230x x --=,解得11322x =+或11322x =-(舍去);当1x <时,则31x x -=,即230x x -+=,无实数解,综上,11322x =+.【小问2详解】(i )因为3()f x x a a x=--+,当x a ≤时,33()2f x x a a a x x x ⎛⎫=-+-+=-+ ⎪⎝⎭,当x a >时,33()f x x a a x x x=--+=-,由对勾函数的性质可知,32y a x x ⎛⎫=-+⎪⎝⎭在(上单调递增,在)+∞上单调递减,易知3y x x =-在()0,∞+上单调递增,当)0a a ≤≠时,则32y a x x ⎛⎫=-+ ⎪⎝⎭在()0,a 上单调递增,3y x x =-在(),a +∞上单调递增,又当x a =时,332a x x x x ⎛⎫-+=- ⎪⎝⎭,所以()f x 在()0,∞+上单调递增,故方程2()f x a =不可能存在3个不同正实根,所以a ≥32y a x x ⎛⎫=-+ ⎪⎝⎭在(上单调递增,在)a 上单调递减,3y x x=-在(),a +∞上单调递增,故2322a a a a a <<-⎛⎫-+ ⎪⎝⎭,解得732a <<即a 的取值范围为2⎛ ⎝;(ii )12x x 、是方程322a x x a ⎛⎫-+= ⎪⎝⎭,即22230x a x a ⎛⎫--+= ⎪⎝⎭的两个根,故123x x =,3x 是方程32x x a -=的较大根,即2230x x a--=的较大根,则31x a =+且在区间732⎛+ ⎝上单调递减,所以1233333x x x x ⎛=>=.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京市2024-2025学年高一上学期期中考试数学试题含答案

北京市2024~2025学年第一学期期中考试高一学科:数学(答案在最后)2024年10月(考试时间120分钟满分150分)提示:试卷答案请一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色签字笔作答.一、选择题(本大题共12小题,每小题3分,共36分)1.已知集合{}1,0,1,2,3U =-,{}13,N A x x x =-<<∈,则U A =ð()A.{}1,3-B.{}1,2C.{}1,0,3- D.{}0,1,2【答案】A 【解析】【分析】首先求解集合A ,再根据补集的定义即可得出答案.【详解】因为{}{}13,N 0,1,2A x x x =-<<∈=,{}1,0,1,2,3U =-,所以{}1,3U A =-ð.故选:A.2.下列函数中是偶函数的是()A.4(0)y x x =<B.221y x =+C.31y x =- D.1y x =+【答案】B 【解析】【分析】根据奇偶性的定义对各个选项逐一判断即可得出答案.【详解】解:对于A ,因为函数4(0)y x x =<的定义域不关于原点对称,所函数不具有奇偶性,故A 不符题意;对于B ,函数()221y f x x ==+的定义域为R ,()()221f x f x x -==+,所以函数为偶函数,故B 符合题意;对于C ,函数()31y f x x ==-的定义域为R ,()()31f x x f x -=--≠,所以函数不是偶函数,故C 不符题意;对于D ,函数()1y f x x ==+的定义域为R ,因为()()1012f f -=≠=,所以函数不是偶函数,故D 不符题意.故选:B.3.已知,,a b c ∈R ,且a b >,则下列不等式正确的是()A.ac bc >B.22a b >C.33a b > D.11a b<【答案】C 【解析】【分析】根据特值法可排除A ,B ,D ,根据3y x =在R 上单调递增,可判断C 项.【详解】当0c =时,ac bc =,故A 错误;当1a =-,2b =-时,22a b <,故B 错误;因为3y x =在R 上单调递增,且a b >,所以33a b >,故C 正确;当1a =,1b =-时,11a b>,故D 错误.综上,正确的为C .故选:C .4.函数3xy =的大致图象是()A. B.C. D.【答案】B 【解析】【分析】根据函数的值域,以及指数函数的图象特征,即可判断选项.【详解】0x ≥,所以31x≥,排除AC ,且3,033,0x xx x x -⎧≥=⎨<⎩,排除D.故选:B5.若奇函数()f x 在区间[]3,7上是增函数,且最小值为5,则它在区间[]7,3--上是()A.增函数且有最大值5-B.增函数且有最小值5-C.减函数且有最大值5-D.减函数且有最小值5-【答案】A 【解析】【分析】根据奇偶函数的性质直接得出结果.【详解】因为函数()f x 在区间[3,7]上是增函数,且有最小值5,所以(3)5f =,又()f x 为奇函数,所以函数()f x 在区间[7,3]--上是增函数,且有最大值(3)(3)5f f -=-=-.故选:A6.随着我国经济的不断发展,2023年年底某地区农民人均年收入为7000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2030年年底该地区的农民人均年收入为()A.70001.067⨯⨯元B.770001.06⨯元C.70001.068⨯⨯元D.870001.06⨯元【答案】B 【解析】【分析】根据指数增长模型计算即可.【详解】设经过x 年,该地区的农民人均年收入为y 元,根据题意可得7000 1.06x y =⨯,从2023年年底到2030年年底共经过了7年,所以2030年年底该地区的农民人均年收入为770001.06⨯元.故选:B.7.已知0a >,则41a a++的最小值为()A.1-B.3C.4D.5【答案】D【解析】【分析】根据基本不等式求解即可.【详解】因为0a >,根据基本不等式可得441115a a a a ++=++≥+=,当且仅当4a a=,即2a =时,等号成立;所以41a a++的最小值为5,故选:D.8.如图,已知全集U =R ,集合{}2340A x x x =-->,{}0B x x =>,则图中阴影部分表示的集合为()A.{}0x x ≤ B.{}1x x ≥- C.{}10x x -≤≤ D.{}04x x x 或【答案】C 【解析】【分析】解不等式化简集合A ,再结合韦恩图求出阴影部分表示的集合.【详解】依题意,集合{|1A x x =<-或}4x >,而{}0B x x =>,则|1{A B x x =<- 或}0x >,由韦恩图知,图中阴影部分表示的集合为(){|10}U A B x x =-≤≤ ð.故选:C.9.“01a <≤”是“关于x 的不等式2210ax ax -+≥对R x ∀∈恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先求不等式恒成立时a 的取值范围,再根据集合的关系,即可判断.【详解】不等式2210ax ax -+≥对R x ∀∈恒成立,当0a =时,10≥恒成立,当0a ≠时,2Δ440a a a >⎧⎨=-≤⎩,得01a <≤,所以01a ≤≤,所以“01a <≤”是“关于x 的不等式2210ax ax -+≥对R x ∀∈恒成立”的充分不必要条件.故选:A10.已知函数()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩满足对任意实数12x x ≠,都有()()21210f x f x x x -<-成立,则a 的取值范围是()A.(]0,3 B.[)2,+∞ C.()0,∞+ D.[]2,3【答案】D 【解析】【分析】由题意可知函数()f x 在R 上递减,结合分段函数单调性列式求解即可.【详解】因为函数()f x 满足对任意实数12x x ≠,都有2121()()0f x f x x x -<-成立,不妨假设12x x <,则210x x ->,可得()()210f x f x -<,即()()12f x f x >,可知函数()f x 在R 上递减,则1206a a a a ⎧≥⎪⎪>⎨⎪-+≥⎪⎩,解得:23a ≤≤,所以a 的取值范围是[]2,3.故选:D.11.函数()221,21,2x x f x x x ⎧-<-=⎨-≥-⎩的值域为()A.31,4⎛⎫--⎪⎝⎭B.[)1,-+∞C.(),-∞+∞ D.31,4⎡⎫--⎪⎢⎣⎭【答案】C 【解析】【分析】由指数函数与二次函数的图象与性质即可得到函数的值域【详解】当2x -<时,()21xf x =-因为函数2x y =在(),2-∞-上单调递增,所以函数21x y =+在(),2-∞-上单调递增,又20x >所以()31,4f x ⎛⎫∈--⎪⎝⎭;当2x ≥-时,()()[]21,1,f x x f x =-∈-+∞,所以,()f x 的值域为[)1,-+∞.故选:B.12.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M N ⋃=Q ,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴德金分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是()A .M 没有最大元素,N 有一个最小元素B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】本题目考察对新概念的理解,举具体的实例证明成立即可,A,B,D 都能举出特定的例子,排除法则说明C 选项错误【详解】若{},0M x Q x =∈<,{},0N x Q x =∈≥;则M 没有最大元素,N 有一个最小元素0;故A 正确;若{,M x Q x =∈<,{,N x Q x =∈≥;则M 没有最大元素,N 也没有最小元素;故B 正确;若{},0M x Q x =∈≤,{},0N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;M 有一个最大元素,N 有一个最小元素不可能,故C 不正确.故选:C二、填空题(本大题共10个小题,每小题4分,共40分)13.函数()0f x -=的定义域为______.【答案】11,,222⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】根据函数的形式,列不等式,即可求解.【详解】函数的定义域需满足 ㌴㌴ ,得2x <且12x ≠,所以函数的定义域为11,,222∞⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:11,,222∞⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭14.关于a 的不等式的220a -<解集是______.【答案】{a a <<【解析】【分析】因式分解后,即可求解不等式.【详解】(2200a a a -<⇔+-<,得a <<,所以不等式的解集为{a a <<.故答案为:{a a <<15.计算:()33log 927+-=______.【答案】19681-【解析】【分析】根据对数公式和指数运算公式,即可求解.【详解】()33log 92721968319681+-=-=-.故答案为:19681-16.命题“∀x >0,x 2+2x -3>0”的否定是______.【答案】∃x 0>0,x 02+2x 0-3≤0【解析】【分析】根据含有量词的命题的否定即可得到结论.【详解】命题为全称命题,则命题“∀x >0,x 2+2x -3>0”的否定是为∃x 0>0,x 02+2x 0-3≤0,故答案为∃x 0>0,x 02+2x 0-3≤0.【点睛】本题主要考查含有量词的命题的否定,比较基础.17.已知()21g x x =-,当[]2,6x ∈时,函数()g x 的最小值是______,最大值是______.【答案】①.25##0.4②.2【解析】【分析】先判断函数单调性,再根据单调性求最值.【详解】[]12,2,6x x ∀∈,且12x x <,()()()()()211212122221111x x g x g x x x x x --=-=----,因为[]2,6x ∈,12x x <,所以21120,10,10x x x x ->->->,所以()()120g x g x ->,即()()12g x g x >,所以()g x 在[]2,6上为减函数,则()()()()min max 26,225g x g g x g ====,故答案为:25,2.18.如图是一份纸制作的矩形的宣传单,其排版面积(矩形ABCD )为P ,两边都留有宽为a 的空白,顶部和底部都留有宽为2a 的空白.若2cm a =,2800cm P =,则当AB =______时,才能使纸的用量最少,最少的纸的用量是______.【答案】①.20cm②.21152cm 【解析】【分析】首先设cm AB x =,再根据条件,用x 表示用纸的用量,列式后再用基本不等式,即可求解.【详解】设cm AB x =,纸的用量为S ,则800cm AD x=,所以()()8008002448S x a a x x x ⎛⎫⎛⎫=++=++⎪ ⎪⎝⎭⎝⎭,232003200832883281152cm x x x x=++≥+⋅,当32008x x=时,即20cm x =,所以当20cm AB =时,最少的纸的用量为21152cm .故答案为:20cm ;21152cm 19.函数()2f x x x =-+的单调递增区间是______.【答案】1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦【解析】【分析】首先去绝对值,将函数写成分段函数的形式,再结合二次函数的单调性,即可求解.【详解】()22,0,0x x x f x x x x ⎧-+≥=⎨--<⎩,当0x ≥时,221124y x x x ⎛⎫=-+=--+ ⎪⎝⎭,10,2⎡⎤⎢⎥⎣⎦是函数的单调递增区间,当0x <时,221124y x x x ⎛⎫=--=-++ ⎪⎝⎭,1,2⎛⎤-∞- ⎥⎝⎦是函数的单调递增区间,所以函数的单调递增区间是1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦.故答案为:1,2⎛⎤-∞- ⎥⎝⎦和10,2⎡⎤⎢⎥⎣⎦20.函数10.52x y =+的值域是______.【答案】10,2⎛⎫⎪⎝⎭【解析】【分析】利用指数函数的值域可得0.522x +>,再利用不等式的性质即可求解.【详解】因为函数10.52xy =+定义域为R ,又0.50x >,所以0.522x +>,所以1100.522x <<+,即10,2y ⎛⎫∈ ⎪⎝⎭,故答案为:10,2⎛⎫⎪⎝⎭.21.已知函数()243f x x x =-+,()32g x mx m =+-,若对任意[]10,4x ∈,总存在[]20,4x ∈,使()()11220f x x g x +-=成立,则实数m 的取值范围为______.【答案】(][),44,-∞-⋃+∞【解析】【分析】由题意可得两个函数的值域的包含关系,进而可列关于m 的不等式,求解即可.【详解】因为对任意[]10,4x ∈,总存在[]20,4x ∈,使()()11220f x x g x +-=成立,即()()2112g x f x x =+成立,设()()()2222312h x f x x x x x -+=-+=+=,因为[]0,4x ∈,所以()[]2,11h x ∈,当0m =时,()3g x =,不符合题意;当0m >时,可得()[]32,23g x m m ∈-+,则3222311m m -≤⎧⎨+≥⎩,解得4≥m ;当0m <时,可得()[]23,32g x m m ∈+-,则2323211m m +≤⎧⎨-≥⎩,解得4m ≤-;综上所述,实数m 的取值范围为(][),44,-∞-⋃+∞.故答案为:(][),44,-∞-⋃+∞.22.已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图象的m 个交点为()()()1122,,,,,,m m x y x y x y ⋅⋅⋅,则()()()1122m m x y x y x y ++++⋅⋅⋅++的值是______.【答案】m【解析】【分析】首先判断两个函数的对称性,再根据对称性,确定交点的对称性,即可求解.【详解】由条件()()2f x f x -=-得,()()2f x f x -+=,所以()y f x =关于点()0,1对称,111x y x x +==+关于点()0,1对称,所以函数1x y x+=与()y f x =图象的m 个交点有2m 对关于点()0,1对称,所以123...0m x x x x ++++=,12...22m m y y y m +++=⨯=,所以()()()1122m m x y x y x y m ++++⋅⋅⋅++=.故答案为:m三、解答题:本大题有5小题,共74分.解答应写出文字说明,证明过程或演算步骤.23.记全集U =R ,集合{}221,A x a x a a =-≤≤+∈R ,{}37B x x x =≤≥或.(1)若2a =,求A B ⋂,U B ð;(2)若A B ⋃=R ,求a 的取值范围;(3)若A B A = ,求a 的取值范围.【答案】(1){}|03A B x x ⋂=≤≤,{}|37U B x x =<<ð(2){}|35a a ≤≤(3){|1a a ≤或}9a ≥【解析】【分析】(1)根据交集和补集的运算即可求解;(2)根据题意可得到有关a 的一个方程组,求解即可;(3)分A =∅和A ≠∅两种情况求解即可.【小问1详解】若2a =,则{}05A x x =≤≤,又{3B x x =≤或7}x ≥,则{}|03A B x x ⋂=≤≤,{}|37U B x x =<<ð;【小问2详解】集合{}221,A x a x a a =-≤≤+∈R ,{3B x x =≤或7}x ≥,A B ⋃=R ,所以23217a a -≤⎧⎨+≥⎩,解得35a ≤≤,所以a 的取值范围为{}|35a a ≤≤;【小问3详解】因为A B A = ,则A B ⊆,{}221,A x a x a a =-≤≤+∈R ,{3B x x =≤或7}x ≥,当A =∅时,221a a ->+,解得3a <-;当A ≠∅时,221213a a a -≤+⎧⎨+≤⎩或22127a a a -≤+⎧⎨-≥⎩,解得31a -≤≤或9a ≥,综上,若A B A = ,求a 的取值范围为{|1a a ≤或}9a ≥.24.已知函数()22f x x mx =-(1)当[]0,1x ∈,()f x 的最大值为3,求实数m 的值.(2)当11t -≤≤时,若不等式()22f t t >-恒成立,求实数m 的取值范围.【答案】(1)1m =-(2)51|22m m ⎧⎫-<<⎨⎬⎩⎭【解析】【分析】(1)根据二次函数的性质,分情况讨论即可;(2)先根据不等式得到()22220t m t -++>在[]1,1t ∈-上恒成立,令()()2222h t t m t =-++,分析该函数对称轴与区间的关系,只需让区间上最小值大于零即可.【小问1详解】已知()()2222f x x mx x m m =-=--,当0m ≤时,函数()f x 在[]0,1x ∈上递增,所以()()max 1123f x f m ==-=,解得1m =-;当1m ≥时,函数()f x 在[]0,1x ∈上递减,所以()()max 003f x f ==≠,矛盾;当01m <<时,函数()f x 在[)0,x m ∈上递减,在[],1m 上递增,所以()()max 003f x f ==≠或()()max 1123f x f m ==-=,解得1m =-,均不符合题意;综上1m =-;【小问2详解】当11t -≤≤时,若不等式()22f t t >-恒成立,即2222t mt t ->-在[]1,1t ∈-上恒成立,即()22220t m t -++>在[]1,1t ∈-上恒成立,令()()2222h t t m t =-++,该函数对称轴为1t m =+,①当11m +≥,即0m ≥时,函数()h t 在[]1,1t ∈-上递减,只需让()()min 10h t h =>即可,则()()112220h m =-++>,解得12m <,即102m ≤<;②当111m -<+<,即20m -<<时,此时()()()()()2min 1122120h t h m m m m =+=+-+++>,解得11m -<<-,即20m -<<;③当11m +≤-,即2m ≤-时,函数()h t 在[]1,1t ∈-上递增,此时()()112220h m -=+++>,解得52m >-,即522m -<≤-;综上m 的取值范围为51|22m m ⎧⎫-<<⎨⎬⎩⎭.25.为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过123m 的部分3元/3m 超过123m 但不超过183m 的部分6元/3m 超过183m 的部分9元/3m (1)求出每月用水量和水费之间的函数关系;(2)若某户居民某月交纳的水费为54元,则此月此户居民的用水量为多少?【答案】(1)3,012636,1218990,18x x y x x x x ⎧⎪=-<⎨⎪->⎩(2)153m 【解析】【分析】(1)先分别求出每一段的函数解析式,再写成分段函数的形式即可;(2)由(1)分012x ,1218x <,18x >三种情况讨论即可的解.【小问1详解】解:当012x 时,3y x =,当1218x <时,3126(12)636y x x =⨯+⨯-=-,当18x >时,312669(18)990y x x =⨯+⨯+⨯-=-,y ∴关于x 的函数解析式为:3,012636,1218990,18x x y x x x x ⎧⎪=-<⎨⎪->⎩;【小问2详解】解:当012x 时,354y x ==,解得18x =舍去,当1218x <时,63654y x =-=,解得15x =,当18x >时,99054y x =-=,解得16x =舍去,综上所述,若某户居民某月交纳的水费为54元,则此月此户居民的用水量为153m .26.已知函数()21ax b f x x +=+是定义在 上的奇函数,且1225f ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的解析式以及零点.(2)判断并用函数单调性的定义证明()f x 在 t 的单调性.(3)根据前面所得的结论在所给出的平面直角坐标系上,作出()f x 在定义域 上的准确示意图.【答案】(1)()21x f x x =-+,零点为0(2)函数()21x f x x =-+在[]1,0x ∈-上单调递减,证明见详解;(3)图象见详解.【解析】【分析】(1)根据奇函数的性质和1225f ⎛⎫=-⎪⎝⎭可解得a ,b 的值,即可得函数的解析式;令()0f x =可解得函数的零点;(2)利用函数单调性的定义证明即可;(3)根据函数的性质画出函数的图象即可.【小问1详解】因为函数()21ax b f x x +=+是定义在 上的奇函数,所以()00f =,解得0b =,又1225f ⎛⎫=- ⎪⎝⎭,即21225112a =-⎛⎫+ ⎪⎝⎭,解得1a =-,所以()21x f x x =-+,令()0f x =得201x x -=+,解得0x =,即函数的零点为0;【小问2详解】函数()21x f x x =-+在[]1,0x ∈-上单调递减;证明:设1210x x -≤<≤,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-+=++++,因为1210x x -≤<≤,所以120x x -<,1210x x -<,㌴㌴ ,所以 ㌴ ㌴,即()()12f x f x >,所以函数()21x f x x =-+在[]1,0x ∈-上单调递减;【小问3详解】函数()f x 的图像如下:27.设集合A 为非空数集,定义{}|,,A x x a b a b A +==+∈,{}|,,A x x a b a b A -==-∈.(1)若{}1,1A =-,写出集合A +、A -;(2)若{}1234,,,A x x x x =,1234x x x x <<<,且A A -=,求证:1423x x x x +=+;(3)若{}|02021,N A x x x ⊆≤≤∈,且AA +-=∅ ,求集合A 元素个数的最大值.【答案】(1){}2,0,2A +=-,{}0,2A =(2)证明见解析(3)1348【解析】【分析】(1)根据定义{}|,,A x x a b a b A +==+∈,{}|,,A x x a b a b A -==-∈,直接求解即可,(2)由题意利用集合A 中的元素间的关系及可证明,(3)由题意建立集合间的关系,并列出不等式求k 的范围,即可求出最大值.【小问1详解】由题意,得{}2,0,2A +=-,{}0,2A =,【小问2详解】证明:因为{}1234,,,A x x x x =,1234x x x x <<<,且A A -=,所以集合A -也有四个元素,且都为非负数,因为12||0x x A --=∈,又因为A A -=,所以0A ∈且10x =,所以集合A -中其他元素为220x x -=,330x x -=,440x x -=,即{}2131410,,,}A x x x x x x -=---,剩下的324321x x x x x x -=-=-,因为1324240x x x x x x =<-<-<,所以322x x x -=,423x x x -=即4231x x x x -=-,即1423x x x x +=+,所以1423x x x x +=+【小问3详解】设{}123,,,,k A a a a a = ,满足题意,其中123k a a a a <<<< ,因为11213123122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+< ,所以21A k +≥-,因为1121311k a a a a a a a a -<-<-<<- ,所以||A k -≥,因为A A +-=∅ ,所以31A A A A k +-+-⋃=+≥-,A A +- 中最小的元素为0,最大的元素为2k a ,所以*21,31214043(N ),1348k k A A a k a k k +-⋃≤+-≤+≤∈≤,实际当{}674,675,676,,2020A = ,时满足题意,证明如下:设{},1,2,2021A m m m =++ ,N m ∈,则{}2,21,22,4040A m m m +=++ ,{}0,1,2,2020A m -=- ,由题意得20202m m -<,即16733m >,故m 的最小值为674.即{}674,675,676,,2021A = 时,满足题意,综上所述,集合A 中元素的个数为202167411348-+=(个).【点睛】关键点点睛:本题第三问的关键是能够结合题意得到*21,31214043(N ),1348k k A A a k a k k +-⋃≤+-≤+≤∈≤,进而证明{}674,675,676,,2021A = 符合题意.。

高一(上)期中数学试卷(含答案)

高一(上)期中数学试卷(含答案)

一、单选题。

(本大题共8小题,共40高一(上)期中数学试卷分。

在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嘉兴市第一中学第一学期期中考试高一数学试题卷满分[ 100]分,时间[120]分钟 2013年11月一.选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象能构成集合的是(▲).A.参加2013年嘉兴一中校运会的优秀运动员B.参加2013年嘉兴一中校运会的美女运动员C.参加2013年嘉兴一中校运会的出色运动员D.参加2013年嘉兴一中校运会的所有运动员2.已知全集,集合,则为(▲).A. B. C. D.3.如图,U是全集,M、P、S是U的三个子集,则阴影部分所表示的集合是(▲).A.(MB.(MC.(M P)(C U S)D.(M P)(C U S)4.下列四组函数中表示相等函数的是(▲).A. B.C. D.5.下列四个图像中,是函数图像的是(▲).A、(3)、(4)B、(1)C、(1)、(2)、(3)D、(1)、(3)、(4)6.下列函数中,不满足的是(▲).A. B. C. D.7.若方程x2-2mx+4=0的两根满足一根大于1,一根小于1,则m的取值范围是(▲).A.⎝⎛⎭⎪⎫-∞,-52B.⎝⎛⎭⎪⎫52,+∞{}0,1,2,3,4U={}{}1,2,3,2,4A B==BACU)({}1,2,4{}2,3,4{}0,2,4{}0,2,3,4SP)SP)2()()f x xg x x==与2()11()1f x x xg x x=+⋅-=-与2()ln()2lnf x xg x x==与33()log(0,1)()xaf x a a ag x x=>≠=与(2)2()f x f x=()f x x=-()f x x=()f x x x=-()1f x x=-C .(-∞,-2)∪(2,+∞)D .⎝ ⎛⎭⎪⎫-52,+∞ 8.已知则有( ▲ ).A .B .C .D .9.设,且,则( ▲ ). A .. 10 C . 20 D . 100 10.已知,则的取值范围是( ▲ ). A 、 B 、 C 、 D 、 11.下列命题中,正确的有( ▲ )个.①符合的集合P 有3个;②对应既是映射,也是函数;对任意实数都成立;④.(A ) 0 (B ) 1 (C ) 2 (D ) 3 12.已知实数a<b<c,设方程的两个实根分别为,则下列关系中恒成立的是( ▲ ).A .B .C .D . 二.填空题:本大题共6小题,每小题3分,共18分. 13.化简 ▲ .14.已知,则 ▲ .0.91.71.7,0.9,1,a b c ===a b c <<a c b <<b a c <<b c a <<25a bm ==112a b+=m =2log 13a<a ()20,1,3⎛⎫+∞ ⎪⎝⎭2,3⎛⎫+∞⎪⎝⎭2,13⎛⎫ ⎪⎝⎭220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭{}{},,a P a b c ≠⊂⊆1,,:1A RB R f x y x ==→=+(),nm n N +=∈a log log log a a a M MN N=0111=-+-+-cx b x a x )(,2121x x x x <c x b x a <<<<21c x b a x <<<<21c b x x a <<<<2121x c b x a <<<<31log 63-=()224(1)1(1)1x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15.已知,求▲ .16.已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2n -1,x ,n ∈Z ,则∁U A = ▲ .17.下列说法正确的是 ▲ .(只填正确说法的序号) ①若集合,,则;②函数的单调增区间是;③若函数在,都是单调增函数,则在上也是增函数;④函数是偶函数.18.给定整数,记为集合的满足如下两个条件的子集A 的元素个数的最小值:(a ) ;(b ) A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和.则= ▲ .三、解答题:本大题共6个小题,共46分.解答应写出文字说明,证明过程或演算步骤. 19.已知函数的定义域为集合,. (1)求集合;(2)若,求的范围.20.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图.21.求值:(1); 321+=x =-+---+-xx x x x x x 22212112{}1A y y x ==-{}21B y y x ==-{(0,1),(1,0)}A B =-()122log 23y x x =--(),1-∞()f x (),0-∞[0,)+∞()f x (),-∞+∞2112x y x x -=++-(3)n ≥()f n {}1,2,,21n -1,21nA A ∈-∈(3)f 213)(++-=x x x f A }|{a x x B <=A B A ⊆a 321lg5(lg8lg1000)(lg 2)lglg 0.066++++(2).22.设函数, (1)求证:不论为何实数总为增函数;(2)确定的值,使为奇函数及此时的值域.23.设函数在上是奇函数,且对任意,都有,当时,.(1)求的值;(2)若函数,求不等式的解集.24.设,其中且. (1)已知,求的值得;(2)若在区间上恒成立,求的取值范围.()()1223021329.63 1.548--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---+2()21x f x a =-+a ()f x a ()f x ()f x ()f x (3,3)-,x y ()()()f x f y f x y -=-0x <()0,(1)2f x f >=-(2)f ()(1)(32)g x f x f x =-+-()0g x ≤)3(log )2(log )(a x a x x f a a -+-=0>a 1≠a (4)1f a =a ]4,3[++a a 1)(≤x f a嘉兴市第一中学2013学年第一学期期中考试高一数学 参考答案及评分标准一、选择题(共12题,每题3分,共36分)1.D2.C3.C4.D5.D6.D7.B8.D9.A 10.A 11.B 12.A 二、填空题(共6题,每题3分,共18分) 13.14. 15.3 16.{0} 17.③④ 18.5 解 (1)设集合,且A 满足(a ),(b ).则.由于不满足(b ),故.又 都不满足 (b ),故. 而集合满足(a ),(b ),所以. 三、解答题(共6题,共46分)19. 解:(1)由题意得,,即A=(-2,3];(2).20. 解:(1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,则y =-2(x -3)2+4,当x <-2时,即-x >2,又f (x )为偶函数,f (x )=f (-x )=-2×(-x -3)2+4,即f (x )=-2×(x +3)2+4.所以函数f (x )在(-∞,-2)上的解析式为f (x )=-2×(x +3)2+4.21101{}31,2,,21A ⊆-1,7A A ∈∈{}()1,,72,3,,6m m =3A >{}{}{}{}{}{}{}1,2,3,7,1,2,4,7,1,2,5,7,1,2,6,7,1,3,4,7,1,3,5,7,1,3,6,7,{}{}{}1,4,5,7,1,4,6,7,1,5,6,74A >{}1,2,4,6,7(3)5f =⎩⎨⎧>+≥-0203x x 32≤<-∴x 3,>∴⊆a B A(2)函数f (x )的图象如图,21.(1)1;(2). 22. (1),,. .(2)假设存在实数函数是奇函数,因为的定义域为,所以,所以. 此时,则,所以为奇函数. 即存在实数使函数为奇函数..23.(1)在中,令,代入得:,所以;(2)在上是单调递减,证明如下:设,则,所以即. 所以在上是单调递减;21)12)(12()22(2122122)()(2121122121++-=+-+=-<x x x x x x x f x f x x ,则任取0120120222221212121>+>+<-<∴<x x x x x x x x ,,又,即, )()(0)()(2121x f x f x f x f <<-∴,即总为增函数为何值,不论)(x f a ∴a ()221x f x a =-+()f x R ()010f a =-=1a =()22112121x x x f x -=-=++()()21122112x xx xf x f x -----===-++()f x 1a =()f x ,0212212110,121021221)(<+-<-<+<∴>+>+-=xx xx x x f ,,, )1,1()(-∈∴x f ()()()f x f y f x y -=-2,1x y ==(2)(1)(1)f f -=(2)2(1)4f f ==-()f x ()3,3-1233x x -<<<120x x -<1212()()()0f x f x f x x -=->12()()f x f x >()f x ()3,3-24. (1). (2) . 由得,由题意知,故,从而,故函数在区间上单调递增.①若,则在区间上单调递减,所以在区间上的最大值为.在区间上不等式恒成立,等价于不等式成立,从而,解得或.结合得. ②若,则在区间上单调递增,所以在区间上的最大值为.在区间上不等式恒成立,等价于不等式成立,从而,即,解得.211202log 1log 2log )4(===∴=+=a a a a a a f a a a ,,即, 22225()log (56)log [()]24a a a a f x x ax a x =-+=--⎩⎨⎧>->-,03,02a x a x a x 3>a a 33>+23<a 53(3)(2)022a a a +-=->225()()24a a g x x =--]4,3[++a a 10<<a )(x f ]4,3[++a a )(x f ]4,3[++a a )992(log )3(2+-=+a a a f a ]4,3[++a a 1)(≤x f 1)992(log 2≤+-a a a a a a ≥+-9922275+≥a 275-≤a 10<<a 10<<a 231<<a )(x f ]4,3[++a a )(x f ]4,3[++a a )16122(log )4(2+-=+a a a f a ]4,3[++a a 1)(≤x f 1)16122(log 2≤+-a a a a a a ≤+-1612220161322≤+-a a 4411344113+≤≤-a易知,所以不符合. 综上可知:的取值范围为.2344113>-a (0,1)。

相关文档
最新文档