高一数学必修一和必修四测试题
高一数学必修一试题含答案
高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
人教版高一数学必修1必修4期末测试卷附答案
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
2014-2015学年高一数学上学期必修一复习试题必修四综合试题一(含答案)
4.已知 a 2 , b 3 , a b 19 ,则 a b 等于( A. 13 5.已知 cos( B. 15 C. 17
D. 7 )
15.给出下列四个命题:
4
)
10 , (0, ) ,则 cos 2 等于( 10 2
①函数 f x tan x 有无数个零点;②把函数 f x 2sin 2 x 图像上每个点的横坐标伸长到原来的 4
, ,且满足 sin cos sin cos 1 ,则 2 2
)
2 ;③ a b 与 b 垂直;④ a // b ,其中真命题的序号是( 2
B.③ C.①④ D.②③
)
sin sin 的取值范围是(
A. 2, 2
B. 1, 2
意 x 都有 f x1 f x f x2 成立, 则 x1 x2 的最小值为 你认为正确的序号都填上)
1 3
1 2
D.
3 4
.其中正确命题的序号为 2
(把
)
三、解答题: 本大题共 6 个小题,共 75 分.解答时要求写出必要的文字说明、证明过程或推理步骤. 16.(本小题满分 12 分) 已知向量 a (1, 2) ,向量 b (3, 2) . (1)若向量 ka b 与向量 a 3b 垂直,求实数 k 的值; (2)当 k 为何值时,向量 ka b 与向量 a 3b 平行?并说明它们是同向还是反向.
sin(
3 ) 2 cos( ) 2 等于(
sin( ) sin( ) 2
A.
)
2 的扇形所对的弦长为 2 3 ,则扇形的面积为 3
高中北师大版数学必修1第1章至第四章学业质量标准检测
第一章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( A )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}[解析]A∩B={x|-2<x<1}∩{x|x<-1或x>3}={x|-2<x<-1},故选A.2.下列集合中表示同一集合的是( B )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}[解析]A选项中,元素为点,且不是同一点,C,D选项中的元素,一个为点,一个为数,都不可能为同一集合,故B正确.3.设集合A={a,b},B={x|x∈A},则( D )A.B∈A B.B AC.A∉B D.A=B[解析]由已知可得B={a,b},∴A=B4.设全集U=R,A={x|x>0},B={x|x>1},则A∩∁U B=( B )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[解析]易得∁U B={x|x≤1},故A∩∁U B={x|0<x≤1}.5.(2019·全国卷Ⅱ理,1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( A )A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)[解析]∵A={x|x2-5x+6>0}={x|(x-2)(x-3)>0}={x|x<2或x>3},B={x|x-1<0}={x|x<1}.∴A∩B={x|x<2或x>3}∩{x|x<1}={x|x<1},故选A.6.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的范围是( C )A.a≤-1 B.a≥1C.-1≤a≤1 D.a≥1或a≤-1[解析]∵P={x|-1≤x≤1},P∪M=P,∴a∈P.即-1≤a≤1.7.设集合A ={x|x≤13},a =11,那么( D ) A .a A B .a ∉A C .{a}∉AD .{a} A[解析] A 是集合,a 是元素,两者的关系应是属于与不属于的关系.{a}与A 是包含与否的关系,据此,A 、C 显然不对.而11<13,所以a 是A 的一个元素,{a}是A 的一个子集.故选D .8.设全集U ={x ∈N|x≥2},集合A ={x ∈N|x 2≥5},则∁U A =( B ) A .∅ B .{2} C .{5}D .{2,5}[解析] 本题考查集合的运算.A ={x ∈N|x 2≥5}={x ∈N|x≥5},故∁U A ={x ∈N|2≤x<5}={2}.选B .9.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于( D ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}[解析] 因为A∩B={3},所以集合A 中必有元素3.因为(∁U B)∩A={9},所以属于集合A 不属于集合B 的元素只有9.综上可得A ={3,9}.10.已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},且B≠∅,若A ∪B =A ,则m 的取值范围为( D )A .-3≤m≤4B .-2<m<4C .2<m<4D .2<m≤4[解析] 因为A ∪B =A ,所以B ⊆A . 又因为B≠∅,所以⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,所以2<m≤4.11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若(∁U A)∩B≠∅,则a 的取值范围为( A ) A .a>3 B .a≥3 C .a≥7D .a>7[解析] 因为A ={x|x<3或x≥7},所以∁U A ={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.12.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R|x 2-2x +1=0}有两个元素;④集合{x ∈Q|6x∈N}是有限集.其中正确命题的个数是( D )A .1B .2C .3D .0[解析] ①{0}是含有一个元素0的集合,不是空集, ∴①不正确.②当a =0时,0∈N ,∴②不正确. ③∵x 2-2x +1=0,x 1=x 2=1, ∴{x ∈R|x 2-2x +1=0}={1}, ∴③不正确.④当x 为正整数的倒数时6x ∈N ,∴{x ∈Q|6x ∈N}是无限集,∴④不正确.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.已知集合A ={x|x -2>0},若a ∈A ,则集合B ={x|x 2-ax +1=0}中元素的个数为2.[解析] ∵A ={x|x -2>0},a ∈A ,∴a -2>0,即a>2,∴a 2-4>0,则方程x 2-ax +1=0有两个不相等的实数根.故集合B 中元素的个数为2.14.设集合A ={x||x|<2},B ={x|x>a},全集U =R ,若A ⊆∁U B ,则a 的取值范围是a≥2. [解析] ∵|x|<2,∴-2<x<2,∴A ={x|-2<x<2}.而∁U B ={x|x≤a},故当A ⊆∁U B 时,a≥2. 15.设全集U =R ,A ={x ∈N|1≤x≤10},B ={x ∈R|x 2+x -6=0},则图中阴影表示的集合为{-3}.[解析] 如图阴影部分为(∁U A)∩B.∵A ={x ∈N|1≤x≤10}={1,2,3,4,…,9,10}, B ={x|x 2+x -6=0}={2,-3}, ∴(∁U A)∩B={-3}.16.集合M ={x|x =3k -2,k ∈Z},P ={y|y =3l +1,l ∈Z},S ={z|z =6m +1,m ∈Z}之间的关系是SP =M.[解析] M 、P 是被3除余1的数构成的集合,则P =M ,S 是被6除余1的数,则S P. 三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x ∈Z|-6≤x≤6},B ={1,2,3},C ={3,4,5,6}.求: (1)A ∪(B∩C); (2)A∩[∁A (B ∪C)].[解析] 由题意知A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (1)易知B∩C={3},故A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}, ∴A∩[∁A (B ∪C)]={-6,-5,-4,-3,-2,-1,0}.18.(本小题满分12分)已知M ={1,2,a 2-3a -1},N ={-1,a,3},M∩N={3},求实数a 的值. [解析] ∵M∩N={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.19.(本小题满分12分)已知A ={x|x 2-3x +2=0},B ={x|mx -2=0}且A ∪B =A ,求实数m 组成的集合C .[解析] 由A ∪B =A 得B ⊆A ,因此B 有可能等于空集. ①当B =∅时,此时方程mx -2=0无解, 即m =0符合题意.②当B≠∅时,即m≠0,此时A ={1,2},B ={2m },∵B ⊆A .∴2m =1或2m =2,∴m =2或m =1.因此,实数m 组成的集合C 为{0,1,2}.20.(本小题满分12分)集合A ={x|-2<x<4},集合B ={x|x -m<0}. (1)若m =3,求A∩B,A ∪B ;(2)若A∩B=∅,求实数m 的取值范围; (3)若A∩B=A ,求实数m 的取值范围. [解析] (1)当m =3时,B ={x|x<3}. 又A ={x|-2<x<4},∴A∩B={x|-2<x<4}∩{x|x<3}={x|-2<x<3}, A ∪B ={x|-2<x<4}∪{x|x<3}={x|x<4}. (2)∵A ={x|-2<x<4},B ={x|x<m},又A∩B=∅, ∴m≤-2,即m 的取值范围是{m|m≤-2}. (3)∵A∩B=A ,∴A ⊆B .又A ={x|-2<x<4},B ={x|x<m}, ∴m≥4,即m 的取值范围是{m|m≥4}.21.(本小题满分12分)已知M ={x|x 2-5x +6=0},N ={x|ax =12},若N ⊆M ,求实数a 所构成的集合A ,并写出A 的所有非空真子集.[解析]∵M={x|x2-5x+6=0},解x2-5x+6=0得x=2或x=3,∴M={2,3}.∵N⊆M,∴N为∅或{2}或{3}.当N=∅时,即ax=12无解,此时a=0;当N={2}时,则2a=12,a=6;当N={3}时,则3a=12,a=4.所以A={0,4,6},从而A的所有非空真子集为{0},{4},{6},{0,4},{0,6},{4,6}.22.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.(1)请你写出符合条件,且分别含有1个、2个、3个元素的集合S各一个.(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由.(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?[解析](1)由题意可知,若集合S中含有一个元素,则应满足10-x=x,即x=5,故S={5}.若集合S中含有两个元素,设S={a,b},则a,b∈N+,且a+b=10,故S可以是下列集合中的一个:{1,9},{2,8},{3,7},{4,6},若集合S中含有3个元素,由集合S满足的性质可知5∈S,故S是{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}中的一个.(2)存在含有6个元素的非空集合S如下所示:S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}共4个.(3)答案不唯一,如:①S⊆{1,2,3,4,5,6,7,8,9};②若5∈S,则S中元素个数为奇数个,若5∉S,则S中元素个数为偶数个.第二章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)[解析] 要使x +1有意义,须满足x +1≥0,即x≥-1;要使12-x 有意义,须满足2-x≠0,即x≠2,所以函数f(x)的定义域为{x|x≥-1,且x≠2},用区间可表示为[-1,2)∪(2,+∞).2.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( D )A .2B .1C .0D .-2[解析] ∵f(x)为奇函数, ∴f(-1)=-f(1)=-(1+11)=-2.3.下列四个图像中,表示的不是函数图像的是( B )[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.4.二次函数y =-2(x +1)2+8的最值情况是( C ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值.5.已知集合A 和集合B 的元素都属于N ,映射f :A→B,若把集合A 中的元素n 映射到集合B 中为元素n 2+n ,则在映射f 下,像20的原像是( A )A .4B .5C.4或-5 D.-4或5[解析]由题意,得n2+n=20,∴n2+n-20=0,∴(n+5)(n-4)=0,∴n=-5或n=4.∵n∈N,∴n=4,故选A.6.(2019·山东烟台高一期中测试)已知函数y=f(x)的部分x与y的对应关系如下表:则f[f(4)]=(A.-1 B.-2C.-3 D.3[解析]由图表可知,f(4)=-3,∴f[f(4)]=f(-3)=3.7.函数f(x)在(-∞,+∞)上单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( D )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析]∵f(x)为R上的奇函数,f(1)=-1,∴f(-1)=-f(1)=1,由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1),又∵f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3,故选D.8.若奇函数f(x)在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上是( B )A.增函数且最小值是-1 B.增函数且最大值是-1C.减函数且最大值是-1 D.减函数且最小值是-1[解析]∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y=f(x)在[-7,-3]上有最大值-1且为增函数.9.定义在[1+a,2]上的偶函数f(x)=ax2+bx-2在区间[1,2]上是( B )A.增函数B.减函数C.先增后减函数D.先减后增函数[解析]∵函数f(x)是偶函数,∴b=0.定义域为[1+a,2],则1+a=-2,∴a=-3.又二次函数f(x)=-3x2-2的图像开口向下,对称轴为y轴,则在区间[1,2]上是减函数.10.若函数y=kx+5kx2+4kx+3的定义域为R,则实数k的取值范围为( D )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[解析] ∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立; k≠0时,Δ<0,也成立.∴0≤k<34.11.函数y =ax 2-bx +c(a≠0)的图像过点(-1,0),则a b +c +b a +c -c a +b的值是( A ) A .-1 B .1 C .12D .-12[解析] ∵函数y =ax 2-bx +c(a≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b. ∴a b +c +b a +c -c a +b=-1. 12.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( B )A .0B .mC .2mD .4m[解析] 因为y =f(x),y =|x 2-2x -3|都关于x =1对称,所以它们交点也关于x =1对称,当m 为偶数时,其和为2×m 2=m ,当m 为奇数时,其和为2×m -12+1=m ,因此选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y =x 2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是y =x 2+4x +2.[解析] y =(x +2)2+1-3=(x +2)2-2 =x 2+4x +2.14.(2019·陕西黄陵中学高一期末测试)函数f(x)=4-2x +1x +1的定义域是{x|x≤2且x≠-1}. [解析] 由题意得⎩⎪⎨⎪⎧4-2x≥0x +1≠0,解得x≤2且x≠-1,∴函数f(x)的定义域为{x|x≤2且x≠-1}.15.已知函数f(x)=x 2-|x|,若f(-m 2-1)<f(2),则实数m 的取值范围是(-1,1).[解析] 因为f(x)=x 2-|x|=|x|2-|x|=(|x|-12)2-14,所以f(x)为偶函数,且在区间(12,+∞)上为增函数.又f(-m 2-1)=f(m 2+1)<f(2), 所以m 2+1<2.所以m 2<1,即-1<m<1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y =2x 2+1,值域为{9}的“孪生函数”有三个:①y =2x 2+1,x ∈{-2};②y =2x 2+1,x ∈{2};③y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有3个.[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f(x)=⎩⎪⎨⎪⎧x +2(x≤-1)x 2(-1<x<2)2x (x≥2).(1)求f{f[f(3)]}的值; (2)求f(a)=3,求a 的值; (3)画出函数的图像.[解析] (1)∵-1<3<2,∴f(3)=(3)2=3. 又 3≥2,∴f[f(3)]=f(3)=2×3=6. 又6≥2,∴f{f[f(3)]}=f(6)=2×6=12.(2)当a≤-1时,f(a)=a +2.若f(a)=3,则a +2=3, ∴a =1(舍去).当-1<a<2时,f(a)=a 2.若f(a)=3,则a 2=3, ∴a =3,或a =-3(舍去).当a≥2时,f(a)=2a.若f(a)=3,则2a =3, ∴a =32(舍去).综上可知,a = 3.(3)函数f(x)的图像如图所示,18.(本小题满分12分)已知函数f(x)=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f(x)=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5,所以当x =-3时,f(x)min =-19,当x =3时,f(x)max =41.(2)函数f(x)=(x -a)2+2-a 2的图像的对称轴为x =a ,因为f(x)在[-3,3]上是单调函数, 所以a≤-3或a≥3.19.(本小题满分12分)已知函数f(x)=1a -1x (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增加的;(2)若f(x)在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2. 则f(x 1)-f(x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f(x 1)<f(x 2). ∴函数f(x)在(0,+∞)上是增加的. (2)∵f(x)在[12,2]上的值域是[12,2],又∵f(x)在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f (12)=12f (2)=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f(x)=x -2m2-m +3,其中m ∈{x|-2<x<2,x ∈Z},满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f(-x)+f(x)=0.求同时满足(1),(2)的幂函数f(x)的解析式,并求x ∈[0,3]时f(x)的值域. [解析] 由{x|-2<x<2,x ∈Z}={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m<1,∴m =-1或0.由(2)知f(x)是奇函数.当m =-1时,f(x)=x 2为偶函数,舍去. 当m =0时,f(x)=x 3为奇函数. ∴f(x)=x 3.当x ∈[0,3]时,f(x)在[0,3]上为增函数, ∴f(x)的值域为[0,27].21.(本小题满分12分)设函数f(x)=x 2-2|x|-1(-3≤x≤3). (1)证明:f(x)是偶函数;(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称, f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数.(2)当x≥0时,f(x)=x 2-2x -1=(x -1)2-2, 当x<0时,f(x)=x 2+2x -1=(x +1)2-2,即f(x)=⎩⎪⎨⎪⎧(x -1)2-2,x≥0(x +1)2-2,x<0.根据二次函数的作图方法,可得函数图像,如图函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1),[0,1]上为减函数, 在[-1,0),[1,3]上为增函数.(3)当x≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2. 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2. 故函数f(x)的值域为[-2,2].22.(本小题满分12分)已知函数f(x)=x +x 3,x ∈R. (1)判断函数f(x)的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b>0,试比较f(a)+f(b)与0的大小. [解析] (1)函数f(x)=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)=x +x 3,x ∈R 是增函数. (2)由a +b>0,得a>-b ,由(1)知f(a)>f(-b), 因为f(x)的定义域为R ,定义域关于坐标原点对称, 又f(-x)=(-x)+(-x)3=-x -x 3=-(x +x 3)=-f(x), 所以函数f(x)为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·山东潍坊高一期末测试)函数f(x)=ln (x +1)x -2的定义域是( B )A .(-1,+∞)B .(-1,2)∪(2,+∞)C .(-1,2)D .[-1,2)∪(2,+∞)[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧x +1>0x -2≠0,∴x>-1且x≠2,故函数f(x)的定义域为(-1,2)∪(2,+∞). 2.下列计算正确的是( B ) A .log 26-log 23=log 23 B .log 26-log 23=1 C .log 39=3D .log 3(-4)2=2log 3(-4)[解析] 在B 选项中,log 26-log 23=log 263=log 22=1,故该选项正确.3.(2019·安徽合肥众兴中学高一期末测试)已知函数f(x)=⎩⎪⎨⎪⎧log 2x (x>0)3x(x≤0),则f[f(14)]的值是( B )A .9B .19 C .-19D .-9[解析] ∵x>0时,f(x)=log 2x , ∴f(14)=log 214=log 22-2=-2,又∵x<0时,f(x)=3x ,∴f(-2)=3-2=19.∴f[f(14)]=f(-2)=19.4.(2019·山东潍坊高一期末测试)已知x =log 512,y =(12)0.1,z =213 ,则( A )A .x<y<zB .x<z<yC .y<x<zD .z<x<y[解析] log 512<log 51=0,∴x<0;(12)0.1<(12)0=1,∴0<y<1;213 >20=1,∴z>1,∴x<y<z.5.函数y =a x与y =-log a x(a>0,且a≠1)在同一坐标系中的图像形状只能是( A )[解析] 排除法:∵函数y =-log a x 中x>0,故排除B ;当a>1时,函数y =a x为增函数,函数y =-log a x 为减函数,故排除C ;当0<a<1时,函数y =a x 为减函数,函数y =-log a x 为增函数,故排除D ,所以选A . 6.(2019·北京文,3)下列函数中,在区间(0,+∞)上单调递增的是( A ) A .y =x 12 B .2-xC .y =log 12xD .y =1x[解析] 函数y =x 12=x ,在(0,+∞)上单调递增,函数y =2-x=(12)x ,y =log 12x ,y =1x 在(0,+∞)上都是单调递减的,故选A .7.已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R).若f[g(1)]=1,则a =( A ) A .1 B .2 C .3D .-1[解析] 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A .8.给出f(x)=⎩⎪⎨⎪⎧12x (x≥4)f (x +1)(x<4),则f(log 23)的值等于( D )A .-238B .111C .119D .124[解析] 因为log 23∈(1,2), 所以f(log 23)=f(log 23+1)=f(log 26)=f(log 26+1) =f(log 212)=f(log 212+1) =f(log 224)=12log 224=124.9.若a>b>0,0<c<1,则( B ) A .log a c<log b c B .log c a<log c b C .a c<b cD .c a>c b[解析] 对于选项A :log a c =lgc lga ,log b c =lgclgb,∵0<c<1,∴lgc<0,而a>b>0,所以lga>lgb ,但不能确定lga 、lgb 的正负,所以它们的大小不能确定; 对于选项B :log c a =lga lgc ,log c b =lgb lgc ,而lga>lgb ,两边同乘以一个负数1lgc 改变不等号方向所以选项B 正确;对于选项C :利用y =x c在第一象限内是增函数即可得到a c>b c,所以C 错误;对于选项D :利用y =c x在R 上为减函数易得为错误.所以本题选B .10.设函数f(x)=x 2-4x +3,g(x)=3x-2,集合M ={x ∈R|f[g(x)]>0},N ={x ∈R|g(x)<2},则M∩N =( D )A .(1,+∞)B .(0,1)C .(-1,1)D .(-∞,1)[解析] ∵f[g(x)]>0,∴g 2(x)-4g(x)+3>0. ∴g(x)>3或g(x)<1, ∴M∩N={x|g(x)<1}.∴3x-2<1,3x<3,∴x<1.故选D .11.已知函数f(x)=⎩⎪⎨⎪⎧ 2x -1-2,-log 2(x +1),x≤1,x>1,且f(a)=-3,则f(6-a)=( A )A .-74B .-54C .-34D .-14[解析] 由已知条件可得函数图像:故f(a)=-3=-log 2(a +1),可得a =7; f(6-a)=f(-1)=2-1-1-2=-74.故本题正确答案为A .12.已知f(x)=log 12(x 2-ax +3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是( C )A .(-4,4)B .[-4,4)C .(-4,4]D .[-4,4][解析] 要使f(x)在[2,+∞)上是减函数,则需g(x)=x 2-ax +3a 在[2,+∞)上递增且恒大于零. ∴⎩⎪⎨⎪⎧a 2≤2g (2)=22-2a +3a>0,解得-4<a≤4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·大连市高一期末测试)已知16a=4,lg x =a ,则x =10. [解析] ∵16a=4,∴a =12,∴lg x =12,∴x =1012=10,∴x =10.14.(2019·安徽安庆二中高一期中测试)计算:(49)12 +(12)log23+lne =2.[解析] 原式=23+12log 23+1=23+13+1=2. 15.(2019·全国卷Ⅱ理,14)已知f(x)是奇函数,且当x<0时,f(x)=-e ax,若f(ln2)=8,则a -3.[解析] 解法一:设x>0,则-x<0, ∴f(-x)=-e-ax,∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=-e -ax,∴f(x)=e-ax=1eax =1(e x )a , ∵ln2>0,∴f(ln2)=1(e ln2)a =12a =8,∴2a=18=2-3,∴a =-3.解法二:∵ln2>0,∴-ln2<0, 又∵当x<0时,f(x)=-e ax, ∴f(-ln2)=-e -aln2=-1e aln2=-1(e ln2)a=-12a ,又∵f(x)为奇函数,∴f(-ln2)=-f(ln2) =-8, ∴-12a =-8,∴2a=18=2-3,∴a =-3.16.关于函数y =2x2-2x -3有以下4个结论:①定义域为(-∞,-1)∪(3,+∞); ②递增区间为[1,+∞); ③是非奇非偶函数; ④值域是(116,+∞).则正确的结论是②③.(填序号即可)[解析] ①不正确,因为y =2x 2-2x -3的定义域为R ; ④不正确,因为x 2-2x -3=(x -1)2-4≥-4, ∴2x2-2x -3≥2-4=116,即值域为[116,+∞);②正确,因为y =2u为增函数,u =x 2-2x -3在(-∞,1]上为减函数,在[1,+∞)上为增函数,所以y =2x2-2x -3的递增区间为[1,+∞);③正确,因为f(-x)≠f(x)且f(-x)≠-f(x).三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2019·安徽太和中学高一期中测试)计算下列各式的值: (1)(12)-2+(12)0-2713 +38;(2)log 327-log 33+lg25+2lg2+lne 2. [解析] (1)原式=22+1-(33) 13 +323=4+1-3+2=4.(2)原式=log 3332 -log 3312 +lg25+lg4+2=32-12+lg100+2 =32-12+2+2=5. 18.(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x +2). (1)求g(x)的解析式及定义域; (2)求函数g(x)的最大值和最小值. [解析] (1)∵f(x)=2x, ∴g(x)=f(2x)-f(x +2)=22x-2x +2.∵f(x)的定义域是[0,3],∴⎩⎪⎨⎪⎧0≤2x≤30≤x+2≤3,解得0≤x≤1.∴g(x)的定义域是[0,1]. (2)g(x)=(2x )2-4×2x=(2x-2)2-4. ∵x ∈[0,1], ∴2x ∈[1,2].∴当2x =1,即x =0时,g(x)取得最大值-3; 当2x=2,即x =1时,g(x)取得最小值-4.19.(本小题满分12分)已知定义域为R 的偶函数f(x)在[0,+∞)上是增函数,且f(12)=0,求不等式f(log 4x)>0的解集.[解析] 因为f(x)是偶函数, 所以f(-12)=f(12)=0,又f(x)在[0,+∞)上是增函数, 所以f(x)在(-∞,0)上是减函数. 所以f(log 4x)>0⇒log 4x>12或log 4x<-12,解得:x>2或0<x<12,则不等式f(log 4x)>0的解集是 {x|x>2,或0<x<12}.20.(本小题满分12分)已知a>0且a≠1,函数f(x)=log a x ,x ∈[2,4]的值域为[m ,m +1],求a 的值.[解析] 当a>1时,f(x)=log a x ,在[2,4]上是增加的,∴x =2时,f(x)取最小值;x =4时,f(x)取最大值,即⎩⎪⎨⎪⎧log a 2=m log a 4=m +1,∴2log a 2=log a 2+1.∴log a 2=1,得a =2 当0<a<1时,f(x)=log a x 在[2,4]上是减少的,∴当x =2时,f(x)取最大值;x =4时,f(x)取最小值,即⎩⎪⎨⎪⎧log a 2=m +1log a 4=m ,∴log a 2=2log a 2+1,∴log a 2=-1.∴a =12.综上所述,a =2或a =12.21.(本小题满分12分)已知函数f(x)=(12x -1+12)·x 3.(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明:f(x)>0.[解析] (1)因为要使题中函数有意义,需2x-1≠0,即x≠0, 所以所求定义域为(-∞,0)∪(0,+∞). (2)因为f(x)=2+(2x-1)2(2x-1)·x 3=2x+12(2x -1)·x 3, 又f(-x)=2-x+12(2-x -1)·(-x)3=1+2x2(1-2x )·(-x 3)=2x+12(2x-1)·x 3, 所以f(-x)=f(x),即f(x)是偶函数. (3)证明:因为x>0时,2x>1,所以2x-1>0. 又因为x 3>0,所以f(x)>0;因为x<0时,0<2x<1,所以-1<2x-1<0. 又因为x 3<0,所以f(x)>0.所以当x ∈(-∞,0)∪(0,+∞)时,f(x)>0.22.(本小题满分12分)某商品的市场日需求量Q 1和日产量Q 2均为价格P 的函数,且Q 1=144·(12)P +12,Q 2=6×2P ,日总成本C 关于日产量Q 2的关系式为:C =10+13Q 2.(1)Q 1=Q 2时的价格为均衡价格,求此均衡价格P 0;(2)当P =P 0时,求日利润L 的大小.[解析] 均衡价格即供需相等时所对应的价格,利润=收益-成本,列出方程即可求解. (1)根据题意有Q 1=Q 2, 144·(12)P +12=6×2P,即(2P )2-2·2P-24=0. 解得2P=6,2P=-4(舍去). ∴P =log 26,故P 0=P =log 26. 即均衡价格为log 26元. (2)由于利润=收益-成本,故L =Q 1P -C =36log 26-(10+13×36)=36log 26-22,故P =P 0时,利润为(36log 26-22)元.第四章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)的图像与x轴有3个交点,则方程f(x)=0的实数解的个数是( D )A.0 B.1C.2 D.3[解析]因为函数f(x)的图像与x轴有3个交点,所以函数f(x)有3个零点,即方程f(x)=0有3个实数解.2.函数y=x的零点是( A )A.0 B.(0,0)C.(1,0) D.1[解析]函数y=x的零点是其图像与横轴交点的横坐标0,它是一个实数,而不是点,故选A.3.方程lgx+x=0的根所在区间是( B )A.(-∞,0) B.(0,1)C.(1,2) D.(2,4)[解析]若lgx有意义,∴x>0,故A不正确,又当x>1时,lgx>0,lgx+x>0,C、D不正确,故选B.4.函数f(x)的图像如图所示,则函数f(x)的零点个数为( D )A.1 B.2C.3 D.4[解析]因为f(x)与x轴有4个交点,所以共有4个零点.5.若f(x)是一个二次函数,且满足f(2+x)=f(2-x),该函数有两个零点x1,x2,则x1+x2=( C ) A.0 B.2C.4 D.无法判断[解析]由f(2+x)=f(2-x)知f(x)的图像关于x=2对称.∴x1+x2=4.6.下图是函数f(x)的图像,它与x轴有4个不同的公共点.在下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( B )A .[-2,-1]B .[1,2]C .[4,5]D .[5,6][解析] 在区间[1,2]上的零点为不变号零点,故不能用二分法求.7.夏季高山温度从山脚起每升高100m ,降低0.7摄氏度,已知山顶的温度是14.1摄氏度,山脚的温度是26摄氏度,则山的相对高度为( C )A .1 750mB .1 730mC .1 700mD .1 680m[解析] 设从山脚起每升高x 百米时,温度为y 摄氏度,根据题意得y =26-0.7x ,山顶温度是14.1摄氏度,代入得14.1=26-0.7x.∴x =17(百米),∴山的相对高度是1 700m.8.函数f(x)=2x+3x 的零点所在的一个区间是( B ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)[解析] ∵f(x)=2x+3x ,∴f(-1)=-52<0,f(0)=1>0,故选B .9.若方程lnx +x -4=0在区间(a ,b)(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为( B ) A .1 B .2 C .3D .4[解析] 设f(x)=lnx +x -4,f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0, ∴根在区间(2,3)内,∴a =2.故选B .10.若方程x 2+(m -2)x +(5-m)=0的两根都大于2,则m 的取值范围是( A ) A .(-5,-4] B .(-∞,-4]C .(-∞,-2)D .(-∞,-5)∪(-5,-4][解析] 考查函数f(x)=x 2+(m -2)x +(5-m),由条件知它的两个零点都大于2,其图像如图所示.由图可知,⎩⎪⎨⎪⎧-m -22>2f 2=m +5>0m -22-45-m≥0,即⎩⎪⎨⎪⎧m<-2m>-5m≥4或m≤-4,∴-5<m≤-4.故选A .11.已知函数f(x)在区间[0,a]中有唯一的变号零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为[0,a 2],[0,a 4],[0,a8],则下列说法正确的是( D )A .函数f(x)在区间[0,a16]中有零点B .函数f(x)在区间[0,a 16]或[a 16,a8]中有零点C .函数f(x)在区间[a16,a]中无零点D .函数f(x)在区间[0,a 16]或[a 16,a 8]中有零点,或零点是a16[解析] 由二分法的定义可知,只有D 正确.12.已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x 2-3x.则函数g(x)=f(x)-x +3的零点的集合为( D )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析] 令x<0,则-x>0,∴f(-x)=(-x)2-3(-x)=x 2+3x , 又∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+3x , ∴f(x)=-x 2-3x(x<0),∴f(x)=⎩⎪⎨⎪⎧x 2-3x x≥0-x 2-3x x<0.∴g(x)=⎩⎪⎨⎪⎧x 2-4x +3x≥0-x 2-4x +3x<0.当x≥0时,由x 2-4x +3=0,得x =1或x =3. 当x<0时,由-x 2-4x +3=0,得x =-2-7, ∴函数g(x)的零点的集合为{-2-7,1,3}.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.函数f(x)=(x 2-3)(x 2-2x -3)的零点为±3,3,-1 . [解析] 令f(x)=0,得x =±3,或x =3,或x =-1.14.用一根长为12m 的细铁丝弯折成一个矩形的铁框架,则能弯成的框架的最大面积是9m 2. [解析] 设框架的一边长为xm ,则另一边长为(6-x)m.设框架面积为ym 2,则y =x(6-x)=-x 2+6x =-(x -3)2+9(0<x<6),y max =9(m 2).15.已知f(x)是定义域为R 的奇函数,且在(-∞,0)内的零点有2012个,则f(x)的零点的个数为4_025.[解析] 因为f(x)为奇函数,且在(-∞,0)内有2 012个零点,由奇函数的对称性知,在(0,+∞)内也有2 012个零点,又x ∈R ,所以f(0)=0,因此共4 025个零点.16.函数f(x)=⎩⎪⎨⎪⎧x 2-2x≤02x -6+lnx x>0的零点个数是2.[解析] 当x≤2,令x 2-2=0,得x =-2; 当x>0时,令2x -6+lnx =0, 即lnx =6-2x ,在同一坐标系中,画出函数y =6-2x 与y =lnx 的图像如图所示.由图像可知,当x>0时,函数y =6-2x 与y =lnx 的图像只有一个交点,即函数f(x)有一个零点. 综上可知,函数f(x)有2个零点.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数y =x 3-7x +6的零点. [解析] ∵x 3-7x +6=(x 3-x)-(6x -6) =x(x 2-1)-6(x -1) =x(x +1)(x -1)-6(x -1) =(x -1)(x 2+x -6) =(x -1)(x -2)(x +3),∴由x 3-7x +6=0即(x -1)(x -2)(x +3)=0得x 1=-3,x 2=1,x 3=2. ∴函数y =x 3-7x +6的零点为-3,1,2.18.(本小题满分12分)已知函数f(x)=x 2-x +m 的零点都在区间(0,2)内,求实数m 的范围.[解析] 由题意可得⎩⎪⎨⎪⎧Δ≥0f 0>0f 2>0,即⎩⎪⎨⎪⎧1-4m≥0m>04-2+m>0,解得0<m≤14.所以实数m 的取值范围是(0,14].19.(本小题满分12分)(济南一中月考,有改动)判断方程x 3-4x -2=0在区间[-2,0]内实数根的个数.[解析] 设f(x)=x 3-4x -2,则f(x)的图像是连续曲线,而f(-2)=-2<0,f(0)=-2<0,若取区间[-2,0]内一点-1,得f(-1)=1>0,取x =3,得f(3)=13>0,因此函数f(x)满足f(-2)·f(-1)<0,f(-1)·f(0)<0,f(0)·f(3)<0,∴f(x)分别在[-2,-1),(-1,0),(0,3)内至少存在一个零点, 又∵x 3-4x -2=0最多有3个根,∴方程x 3-4x -2=0在区间[-2,0]内有2个实数根.20.(本小题满分12分)某公司从2009年的年产值100万元,增加到10年后2019年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)[解析] 设每年年增长率为x , 则100(1+x)10=500,即(1+x)10=5, 两边取常用对数,得 10·lg(1+x)=lg5,∴lg(1+x)=lg510=110(lg10-lg2)=0.710.又∵lg(1+x)=ln1+xln10,∴ln(1+x)=lg(1+x)·ln10.∴ln(1+x)=0.710×ln10=0.710×2.30=0.161=16.1%.又由已知条件ln(1+x)≈x 得x≈16.1%. 故每年的平均增长率约为16.1%.21.(本小题满分12分)是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.[解析] 若实数a 满足条件,则只需f(-1)f(3)≤0即可.f(-1)f(3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a)(5a +1)≤0,所以a≤-15或a≥1.检验:(1)当f(-1)=0时a =1,所以f(x)=x 2+x. 令f(x)=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a≠1. (2)当f(3)=0时a =-15,此时f(x)=x 2-135x -65.令f(x)=0,即x 2-135x -65=0.解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).22.(本小题满分12分)某房地产公司要在荒地ABCDE(如图所示)上划出一块长方形地面建造一幢公寓,问:如何设计才能使公寓占地面积最大?求出最大面积(尺寸单位:m).[解析] 如图所示,设计长方形公寓分三种情况:(1)当一顶点在BC 上时,只有在B 点时长方形BCDB 1面积最大, ∴S 1=SBCDB 1=5 600m 2.(2)当一顶点在EA 边上时,只有在A 点时长方形AA 1DE 的面积最大, ∴S 2=SAA 1DE =6 000m 2.(3)当一顶点在AB 边上时,设该点为M ,则可构造长方形MNDP ,并补出长方形OCDE. 设MQ =x(0≤x≤20),∴MP =PQ -MQ =80-x. 又OA =20,OB =30,则OA OB =MQ QB ,∴23=x QB ,∴QB =32x ,∴MN =QC =QB +BC =32x +70,∴S 3=S MNDP =MN·MP=(70+32x)·(80-x)=-32(x -503)2+18 0503,当x =503时,S 3=18 0503.比较S 1,S 2,S 3,得S 3最大,此时MQ =503m ,BM =25 133m ,故当长方形一顶点落在AB 边上离B 点25133m 处时公寓占地面积最大,最大面积为18 0503m 2.。
高一数学必修一和四期末测试模拟题
高一数学必修一和必修四期末测试模拟题(满分150分,时间120分钟)班级______________姓名______________得分_______________一、选择题(共12小题,每题只有一个正确结果,每题5分,满分60分)1、已知全集为实数R ,M={x|x+3>0},则M C R 为( ) A. {x|x>-3} B. {x|x≥-3} C. {x|x<-3} D. {x|x ≤-3}2、a (a>0)可以化简为( )(A )23a (B )81a (C )43a (D )83a3、若点P 在32π的终边上,且OP=2,则点P 的坐标( )A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(-4、已知点A (2,m )、B (m+1,3),若向量OA// OB 则实数m 的值为( )A.2B.-3C.2或-3D.52-5、已知sin α>sin β,那么下列命题成立的是( )A 若α、β是第一象限角,则cos α>cos βB 若α、β是第二象限角,则tan α>tan βC 若α、β是第三象限角,则cos α>cos βD 若α、β是第四象限角,则tan α>tan β6、若α、β为锐角,且满足54cos =α,53)cos(=+βα,则βsin 的值是( )A .2517B .53C .257D .517、若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ8、已知)0,3(=a ,)5,5(-=b ,则a 与b的夹角为( )A.4π B. 43π C. 3πD. 32π9、在平行四边形ABCD 中,若AB AD AB AD +=-,则必有()A .0AD =B .0AB =或0AD =C .ABCD 是矩形 D .ABCD 是正方形10、若10<<<<a y x ,则有( )A .0)(log <xy a B.1)(log 0<<xy a C.2)(log 1<<xy a D.2)(log >xy a11、已知奇函数)(x f 当0>x 时x x f ln )(=,则函数x x f y sin )(-=的零点个数为( )。
高一数学必修1第四章测试题及答案
必修1第四章石油中学 席静一、选择题1 已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( )A 函数)(x f 在(1,2)或[)2,3内有零点B 函数)(x f 在(3,5)内无零点C 函数)(x f 在(2,5)内有零点D 函数)(x f 在(2,4)内不一定有零点2 求函数132)(3+-=x x x f 零点的个数为 ( )A 1B 2C 3D 43 已知函数)(x f y =有反函数,则方程0)(=x f ( )A 有且仅有一个根B 至多有一个根C 至少有一个根D 以上结论都不对4 如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( )A ()6,2-B []6,2-C {}6,2-D ()(),26,-∞-+∞5若函数)(x f y =在区间[],a b 上的图象为连续不断的一条曲线,则下列说法正确的是( )A 若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;B 若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c f ;C 若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;D 若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f ;6 方程0lg =-x x 根的个数为( )A 无穷多B 3C 1D 07若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( )A23 B 32 C 3 D 31 8 设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( ) A (1,1.25) B (1.25,1.5)C (1.5,2)D 不能确定9下列函数均有零点,其中不能用二分法求近似解的是( ).10函数2-=x y 在区间]2,21[上的最大值是( )A 41B 1-C 4D 4-11 直线3y =与函数26y x x =-的图象的交点个数为( )A 4个B 3个C 2个D 1个12 若方程0x a x a --=有两个实数解,则a 的取值范围是( )A (1,)+∞B (0,1)C (0,2)D (0,)+∞二、填空题:13 用“二分法”求方程0523=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的区间是14 设函数)(x f y =的图象在[],a b 上连续,若满足 ,方程0)(=x f在[],a b 上有实根 .15 已知函数2()1f x x =-,则函数(1)f x -的零点是__________16 函数()f x 对一切实数x 都满足11()()22f x f x +=-,并且方程()0f x =有三个实根,则这三个实根的和为17已知函数()f x 的图象是连续不断的,有如下,()x f x 对应值表:则函数()f x 在区间 有零点。
高一数学必修一,必修四练习题
高一数学(必修一,必修四)期末练习题一.A 卷1.0390sin 的值为( ) A.23 B.23- C.21- D.21 2.若sin 0α<,tan 0α>,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数x x x f cos sin 2)(=是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数D .最小正周期为π的偶函数4.设M 和m 分别是函数1)62cos(31--=πx y 的最大值和最小值,则M+m 等于( )A.32B.32-C. 34- D.2-5.已知角α的终边经过点)3,1(P ,则α2cos 的值为 ( ) A. 21-B. 23-C . 21 D. 236. tan(40)-,tan38,tan56的大小关系是( )A .tan(40)tan 38tan 56->>B .tan 56tan 38tan(40)>>-C .tan 38tan(40)tan 56>->D .tan 56tan(40)tan 38>->7.将函数sin 2y x =的图象向左平移6π个单位,所得图象的函数解析式为( ) A .sin 26y x π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭B .sin 23y x π⎛⎫=+⎪⎝⎭D .sin 23y x π⎛⎫=-⎪⎝⎭8.在ABC ∆中,若135cos ,53cos ==B A ,则C sin 的值为( )A. 6556-B. 6556C. 6563D.6516-9.为了得到函数)32sin(π-=x y 的图象,只需把函数x y 2sin =的图象 ( )A. 向左平移3π个长度单位 B. 向右平移3π个长度单位C. 向左平移6π个长度单位 D. 向右平移6π个长度单位 10.对于函数)62sin(2π+=x y ,则下列结论正确的是 ( )A .)(x f 的图象关于点)0,3(π对称 B.)(x f 在区间]6,3[ππ-递增C .)(x f 的图象关于直线12π-=x 对称 D. 最小正周期是2π11.105sin 15cos 75cos 15sin +=12. 已知扇形的半径为2,圆心角是3π弧度,则该扇形的面积是 . 13. 函数x x y 2cos 2sin =的最小正周期是 ,最大值是 。
高一数学必修1第四章测试题及答案
A B C D
5 若函数 在区间 上的图象为连续不断的一条曲线:则下列说法正确的是()
A 若 :不存在实数 使得 :
B 若 :存在且只存在一个实数 使得 :
C 若 :有可能存在实数 使得 :
D 若 :有可能不存在实数 使得 :
6 方程 根的个数为()
。。。。7分
<1:β>2.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14分
300 (0x1000)
21.(1) y =
0.04x+260 (x>1000)。。。。。。。。。。。10分
(2) 1660元。。。。。。。。。。。。。。。。。。。。。。。。。。。16分
1000元以下(包括1000元)部分征收300元:
超过部分的税率为4%
(1)写出每月征收的税金y(元)与营业额x(元)之间的函数关系式:
(2)某饭店5月份的营业额是35000元:这个月该饭店应缴纳税金多少?
22.某商品进货单价为 元:若销售价为 元:可卖出 个:如果销售单价每涨 元:
销售量就减少 个:为了获得最大利润:则此商品的最佳售价应为多少?
命题意图
本试卷意在考察学生对如下要求的掌握程度:
1、正确认识函数与方程之间的关系:求 的实数解就是求函数的零点。体会函数的核心作用。
2、能够利用函数的性质判断解的存在性。
3、能够利用二分法求方程的近似解:认识求方程近似解方法的意义。
4、尝试用函数刻画实际问题。通过研究函数的性质解决实际问题。通过体验数学建模的数学基本思想:能初步运用函数的思想和方法去理解和处理其他学科与现实生活中的简单问题。
人教版高一数学必修四测试题(含详细答案)
人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。
B.B∪C=C。
C.AC。
D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。
$\frac{\sqrt{3}}{2}$。
B。
$-\frac{\sqrt{3}}{2}$。
C。
$\frac{1}{2}$。
D。
$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。
$-\frac{1}{\sqrt{5}}$。
B。
$\frac{1}{\sqrt{5}}$。
C。
$-\frac{2}{\sqrt{5}}$。
D。
$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。
$y=\sin2x$。
B。
$y=\cos x$。
C。
$y=\sin2x+\cos2x$。
D。
$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。
$\frac{OP}{1}$。
B。
$\frac{1}{OP}$。
C。
$\frac{OA}{1}$。
D。
$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。
向左平移$\frac{\pi}{2}$个单位。
B。
向右平移$\frac{\pi}{2}$个单位C。
向左平移$\pi$个单位。
D。
向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
高一数学必修1、4基础题及答案
必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学习题必修4及答案
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
2023-2024学年高一上数学必修一第4章综合测试卷(附答案解析)
,则 f(f(log32))的值为( A )
A. 3 B.- 3 C.-1 D.-2
3
3
2
1 解析:∵f(log32)=- 3
log32
=-12,∴f(f(log32))=f
-1 2
-1
=3 2
=
3. 3
1 4.方程 2 x-x-2=0 的根所在的区间为( A )
第 1 页 共 16 页
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点
C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点
第 5 页 共 16 页
D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 解析:由题知 f(0)·f(1)<0,所以根据函数零点存在定理可得 f(x) 在区间(0,1)上一定有零点,又 f(1)·f(2)>0,因此无法判断 f(x)在区间(1,2) 上是否有零点. 12.函数 f(x)=2x-2-x( AD ) A.是奇函数 B.在区间(0,+∞)上单调递减 C.是偶函数 D.在区间(0,+∞)上单调递增 解析:∵f(-x)=2-x-2x=-(2x-2-x)=-f(x),∴f(x)为奇函数. 又∵y=2x 在(0,+∞)上单调递增,y=2-x 在(0,+∞)上单调递 减,∴由单调性的性质可知,f(x)=2x-2-x 在(0,+∞)上单调递增. 三、填空题(本题共 4 小题,每小题 5 分,共 20 分) 13.化简 log2.56.25+lg0.001+2ln e-2log43=- 3. 解析:原式=2-3+1- 3=- 3. 14.用二分法求方程 lnx=1在[1,2]上的近似解,取中点 x=1.5,
高一数学必修1,2,3,4,5试题及答案
高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。
17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。
21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。
高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版
高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为( ) A .0或12-B .0C .12-D .0或122.设()f x 在区间[],a b 上是连续变化的单调函数,且()()0f a f b ⋅<,则方程()0f x =在[],a b 内( ) A .至少有一实根 B .至多有一实根 C .没有实根D .必有唯一实根3.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.54.设函数()26x f x e x =+-, 在用二分法求方程()0f x =在()12x ∈,内的近似解过程中得(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,,,则方程的解所在的区间是( )A .()01,B .()11.25,C .()1.251.5,D .()1.52,5.函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.若23691log 3log log 62m ⨯⨯=,则实数m 的值为( ) A .4B .6C .9D .127.若函数f (x )唯一零点同时在(0,4),(0,2),(1,2),3(1,)2内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f 3()28.通过下列函数的图象,判断能用“二分法”求其零点的是( )A .B .C. D .二、多选题9.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:则方程ln 260x x +-=的近似解(精确度0.1)可取为A .2.52B .2.56C .2.66D .2.75三、填空题10.若函数()0y kx b k =+≠有一个零点是2,则函数2y bx kx =+的零点是______.11.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()2e 1xg x =+,()ln h x x =和()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为_______.12.已知函数()226xf x x =+-的零点为0x ,不等式04x x ->的最小整数解为k ,则k =______.13.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时()4f x x =,则方程1()=01f x x +-在[]2,4-上的所有根之和为____.四、解答题14.已知A 地到B 地的电话线路发生故障(假设线路只有一处发生故障),这是一条10km 长的线路,每隔50m 有一根电线杆,如何迅速查出故障所在(精确到50m )?15.已知函数()2283f x x x m =-++为R 上的连续函数.(1)若函数()f x 在区间[]1,1-上存在零点,求实数m 的取值范围.(2)若4m =-,判断()f x 在()1,1-上是否存在零点?若存在,请在误差不超过0.1的条件下,用二分法求出这个零点所在的区间;若不存在,请说明理由. 16.设函数32()613123g x x x x =----.(1)证明:()g x 在区间(-1,0)内有一个零点;(2)借助计算器,求出()g x 在区间(-1,0)内零点的近似解.(精确到0.1) 17.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.参考答案与解析1.A【分析】根据函数f (x )=ax +b 有一个零点是2,得到b =-2a ,再令g (x )=0求解. 【详解】因为函数f (x )=ax +b 有一个零点是2 所以b =-2a所以g (x )=-2ax 2-ax =-a (2x 2+x ). 令g (x )=0,得x 1=0,x 2=-12. 故选:A 2.D【分析】根据零点存在性定理及函数的单调性判断即可.【详解】解:因为()f x 在区间[],a b 上连续的单调函数,且()()0f a f b ⋅<所以函数()f x 的图象在[],a b 内与x 轴只有一个交点,即方程()0f x =在[],a b 内只有一个实根. 故选:D 3.C【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果.【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数2yx 和2log 6y x =+在()0,∞+上都是增函数当()1,2x ∈时,则2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,则22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,则222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立又22(2.5) 2.5log 2.560f =--< 2(3)9log 360f =-->根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C.【点睛】方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 4.C【分析】先判断函数()f x 的单调性,再根据已知条件确定方程的解所在的区间即可. 【详解】函数()26x f x e x =+-在R 上为增函数又(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,, 则方程的解所在的区间为()1.251.5,. 故选:C.【点睛】本题主要考查了利用二分法求方程的解所在的区间问题.属于较易题. 5.B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<- ()23ln 3ln 31031f =-=->- 所以()()230f f <所以函数的零点所在的区间是()2,3. 故选:B 6.A【分析】由换底公式对原式变型即可求解.【详解】∵2369lg3lg lg 6log 3log log 6lg 2lg36lg9m m ⨯⨯=⨯⨯ 2lg3lg lg 6lg 11log lg 22lg 62lg34lg 242m m m =⨯⨯=== ∴2log 2m =,∴4m =. 故选:A . 7.C【分析】根据零点存在定理判断,注意零点的唯一性.【详解】由题意()f x 的唯一零点在3(1,)2上,因此(1)f 与(0)f 符号相同,3()2f ,(2)f 和(4)f 符号相同且与(0)f 符号相反故选:C . 8.C【解析】利用二分法的定义依次判断选项即可得到答案. 【详解】在A 中,函数无零点,故排除A在B 和D 中,函数有零点,但它们在零点左右的函数值符号相同 因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点. 故选:C【点睛】本题主要考查二分法的定义,同时考查学生分析问题的能力,属于简单题. 9.AB【分析】根据表格中函数值在0的左右两侧,最接近的值,即()2.50.084f ≈-,()2.56250.066f ≈可知近似根在()2.5,2.5625之内,再在四个选项中进行选择,得到答案.【详解】由表格函数值在0的左右两侧,最接近的值,即()2.50.084f ≈- ()2.56250.066f ≈ 可知方程ln 260x x +-=的近似根在()2.5,2.5625内 因此选项A 中2.52符合,选项B 中2.56也符合 故选AB .【点睛】本题考查利用二分法求函数零点所在的区间,求函数零点的近似解,属于简单题.10.0或12【分析】先求得,k b 的关系式,然后求得函数2y bx kx =+的零点. 【详解】由于函数()0y kx b k =+≠有一个零点是2 所以20k b += 2b k =-所以()22221y bx kx kx kx kx x =+=-+=--由于0k ≠,所以()2100kx x x --=⇒=或12x =. 故答案为:0或12 11.c b a >>【分析】先根据函数的新定义分别求出a ,b ,c ,然后再比较大小【详解】由()2e 1x g x =+,得()22e xg x '=所以由题意得22e 12e a a +=,解得0a = 由()ln h x x =,得()1h x x'= 所以由题意得1ln b b=令1()ln t x x x=-,(0x >),则211()0t x x x '=+>所以()t x 在(0,)+∞上递增因为(1)10t =-< ()1212ln 2ln 202t lne =-=->所以存在0(1,2)x ∈,使0()0t x =,所以(1,2)b ∈由()31x x ϕ=-,得()23x x ϕ'=所以由题意得3213c c -=令32()31m x x x =--,则2()36m x x x '=- 令()0m x '=,则0x =或2x =当0x <或2x >时()0m x '>,当02x << ()0m x '< 所以()m x 在(,0)-∞和()2,+∞上递增,在()0,2上递减所以()m x 的极大值为(0)1m =-,极小值为()283415m =-⨯-=-因为(3)2727110m =--=-< (4)64121510m =--=> 所以()m x 存在唯一零点0(3,4)x ∈,所以(3,4)c ∈ 所以c b a >> 故答案为:c b a >> 12.6【分析】利用()f x 单调性和零点存在定理可知012x <<,由此确定04x +的范围,进而得到k .【详解】函数()226xf x x =+-为R 上的增函数,()120f =-< ()220f =>∴函数()226x f x x =+-的零点0x 满足012x << 0546x ∴<+<04x x ∴->的最小整数解6k =. 故答案为:6. 13.6【分析】由奇函数()f x 满足(1)()f x f x +=-,可知函数的周期性与对称性,作出函数图象,判断函数()f x 与函数11y x =--的交点情况. 【详解】因为函数()f x 满足(1)()f x f x +=-,所以函数()f x 的对称轴为直线12x = 又因为函数()f x 为奇函数,所以()()f x f x =--又(1)()f x f x +=-,所以(1)()f x f x +=-,所以函数()f x 的周期为2又因为当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,作出函数()f x 和()11y g x x ==--的简图如图所示由411y x y x =⎧⎪⎨=-⎪-⎩可得122x y ⎧=⎪⎨⎪=⎩故当102x ≤≤时,线段4y x =与曲线11y x =--仅有一个交点 故由图可知,有6个交点,这6个交点是关于点()1,0对称的,且关于点()1,0对称的两个点的横坐标之和为2则所有根之和为326⨯=. 故答案为:6. 14.见解析【解析】利用二分法取线段的中点即可迅速查出故障所在. 【详解】如图:可首先从中点C 开始检查,若AC 段正常,则故障在BC 段; 再到BC 段中点D 检查,若CD 段正常,则故障在BD 段;再到BD 段中点E 检查……每检查一次就可以将待查的线路长度缩短一半 经过8次查找,可将故障范围缩小到50m 之内,即可迅速找到故障所在. 【点睛】本题考查了二分法在生活中的应用,理解二分法的定义,属于基础题. 15.(1)[]13,3-; (2)存在,区间为1,08⎛⎫- ⎪⎝⎭.【分析】(1)根据()2283f x x x m =-++,结合二次函数的图象与性质,可知()f x 在区间[]1,1-上单调递减,结合条件()f x 在区间[]1,1-上存在零点,则有()()1010f f ⎧-≥⎪⎨≤⎪⎩,解不等式组即可求出实数m 的取值范围;(2)当4m =-时,得()2281f x x x =--,可知()f x 在区间()1,1-上单调递减,并求得()()110f f -⋅<,根据零点存在性定理可知()f x 在()1,1-上存在唯一零点0x ,最后利用二分法和零点存在性定理,求出在误差不超过0.1的条件下的零点所在的区间. (1) 解:()2283f x x x m =-++为二次函数,开口向上,对称轴为2x =可知函数()f x 在区间[]1,1-上单调递减∵()f x 在区间[]1,1-上存在零点,∴()()1010f f ⎧-≥⎪⎨≤⎪⎩即28302830m m +++≥⎧⎨-++≤⎩,解得:133m -≤≤∴实数m 的取值范围是[]13,3-. (2)解:当4m =-时,()2281f x x x =--为二次函数,开口向上,对称轴为2x =所以()f x 在区间()1,1-上单调递减()19f ∴-=,()17f =-则()()110f f -⋅<∴函数()f x 在()1,1-上存在唯一零点0x 又()f x 为R 上的连续函数∵()010f =-<,∴()()100f f -⋅<,∴()01,0x ∈- ∵17022f ⎛⎫-=> ⎪⎝⎭,∴()1002f f ⎛⎫-⋅< ⎪⎝⎭,∴01,02x ⎛⎫∈- ⎪⎝⎭ ∵19048f ⎛⎫-=> ⎪⎝⎭,∴()1004f f ⎛⎫-⋅< ⎪⎝⎭,∴01,04x ⎛⎫∈- ⎪⎝⎭∵110832f ⎛⎫-=> ⎪⎝⎭,∴()1008f f ⎛⎫-⋅< ⎪⎝⎭,∴01,08x ⎛⎫∈- ⎪⎝⎭此时误差为10.1610218-=<-,即满足误差不超过0.1 ∴零点所在的区间为1,08⎛⎫- ⎪⎝⎭.16.(1)证明见解析;(2)0.4-.【分析】(1)令32()6131230g x x x x =----=,转化为函数()()326,13123h x x r x x x =-=++的交点问题,利用数形结合法证明;(2)利用函数零点存在定理,根据(1)的建立求解. 【详解】(1)令32()6131230g x x x x =----= 则32613123x x x -=++令()()326,13123h x x r x x x =-=++在同一坐标系中作出函数()(),h x r x 的图象,如图所示:因为()()()()11,00h r h r ><,即(1)0,(0)0g g ->< 所以()g x 在区间(-1,0)内有零点再由图象知()g x 在区间(-1,0)内有一个零点.(2)由()0(0.5)00.5,0(0)30g x g ->⎧⇒∈-⎨=-<⎩; 由()0(0.25)00.5,0.25(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.375)00.5,0.375(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.4375)00.4375,0.375(0.375)0g x g ->⎧⇒∈--⎨-<⎩ 所以00.4x ≈-. 17.3,2⎛⎫+∞ ⎪⎝⎭【分析】求出导函数()e 2xf x m '=-,由题意,原问题等价于2e 3x m =+有解,从而即可求解.【详解】解:函数()f x 的导数()e 2xf x m '=-由题意,若曲线C 存在与直线13y x =垂直的切线,则()1e 213x m -=-,即2e 3x m =+有解第 11 页 共 11 页 又因为e 33x +>,所以23m >,即32m >所以实数m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.。
高一上期数学(必修1+必修4)期末复习培优专题卷附详解
高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。
A。
(-∞,1)∪(1,+∞) B。
(-∞,+∞)C。
(1,+∞) D。
(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。
A。
[-3,3] B。
[-2,3] C。
[-2,2] D。
[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。
A。
(-∞,-1/2) B。
(-∞,0)C。
(-1,+∞) D。
(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。
A。
[-2,0] B。
[-2,2] C。
[0,2] D。
[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。
A。
(-∞,-1) B。
(-1,+∞)C。
(-∞,1) D。
(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。
A。
[2,3] B。
[1,3] C。
[1,4] D。
[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。
高一数学课本必修一试题及答案
高一数学课本必修一试题及答案
一、课本必修一测试题
一、选择题
1. 下列四个运算中,不能使两个数的乘积增大的是( )
A. 交换运算
B. 加减运算
C. 利用积律减少步骤
D. 乘法运算
2. 下列不同类运算形式,利用乘积律最简换算的是( )
A. 3 ÷ 2
B. (3×2-2)÷2
C. (3+2)×2
D. (3-2)×2
3. 已知有以下等式成立:2m - 6 = 3(2n+2),则 m= ( )
A. 2n+6
B. 8-2n
C. 5+2n
D. 4n+3
二、填空题
1. 若两个正数的乘积为60,则其中一个数为_____________。
2. 三个数的乘积为24,已知其中一个数为4,则其余两个数的和为_____________。
3. 乘法运算的记号是_____________。
三、判断题
1. 在加减运算中,两个数的和和每个数的大小无关。
( )
2. 按积律,(3a)×2 = 3(a+a)。
( )
3. 乘积中,若两个数符号不同,则乘积一定是负数。
( )
四、解答题
1. 计算 (7×4-3)×5
解:先用括号内乘积律求出(7×4-3)=29,再用乘法运算得:
29×5=145
2. 若 a×b=25,求出 a+b 的可能值
解:假定a=x,则根据乘法公式:b=25/x,则代入 a+b=x+25/x,可得 x 的可能值为±5,
所以 a+b 可能的答案为:-2 和 10。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学必修一+必修四长假作业题及复习题(期末考试题)
昆明市第三十四中学元旦假期作业(2)一.选择题。
1. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 82、设集合2{650}M xx x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}3、函数122x )x (f x -+=的定义域是( )A. {x 0}x ≠B. {x >-2}xC. {x >0}xD. [-2,0)(0,+)∞4.下面两个函数相等的是( )A. y =和y =B. log a xy a =和y x =C. y =x =D. 2log a y x =和2log a y x =5.cos300°=( )A. -2-B. 12 C. 12- D. 26.函数y =tan (4π-x )的定义域是( )A .{x |x ≠4π,x ∈R } B .{x |x ≠-4π,x ∈R }C .{x |x ≠k π+4π,k ∈Z ,x ∈R } D .{x |x ≠k π+4π3,k ∈Z ,x ∈R }7. 函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图象如图所示,则函数表达() A .)48sin(4π+π-=x y B .)48sin(4π-π=x yC .)48sin(4π-π-=x y D .)48sin(4π+π=x y8.关于幂函数4y x -=,下列说法正确的是( )。
A.是奇函数B.在(0,+∞)是增函数C.值域是(0,+∞)D.定义域是R9.对于函数2()24f x x mx =-+,若m>1,则函数一定在下面哪个区间单调递减() A.(-∞,2) B.(-∞,1) C.(2,+∞) D.(4,+∞)10. 14.已知函数(1),(3)()2,(3)x f x x f x x --≥⎧=⎨<⎩则((3))f f =( ).A.4B. 14C. 18D. 18-11. 为得到函数y =cos(x-3π)的图象,可以将函数y =sinx 的图象( )A.向左平移3π个单位B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位12. 设0.3222,0.3,log 0.3a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二.填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一期末测试模拟题 (数学必修一和必修四)
(满分 150 分,时间 120 分钟) 姓名 _________________ 得分 ________________
选择题(共12小题,每题只有一个正确结果,每题 5分,满分60分)
1、已知全集为实数 R ,M={x|x+3>0},则C R M 为( )
A. {x|x>-3}
B. {x|x -3}
C. {x|x<-3}
D. {x|x < -3}
2、八.'a (a>0)可以化简为(
)
3
1
3 3
(A ) a 2
(B ) a 8
(C ) a 4
(D ) a 8
3、若点
2 P 在
的终边
上,
且 OP=2, 则点P 的坐标( )
3
A . (1, .3)
B . (3, 1)
C . ( 1, .、3)
D . ( 1,、3)
4、已知点A (2,m 、B (m+1, 3),若向量~OA//OB 则实数m 的值为(
5、已知sin >sin B ,那么下列命题成立的是()
A 若 、
B 是第一象限则 cos >cos B B 若 、B 是第二象限角, 则 tan >ta n B
C 若 、B
是第三象限角, 则 cos >cos B D 若 、B
是第四象限角, 则 tan >ta n B
6、若 、 为锐角,且满足cos
4 ■ cos( 3 )-,则sin 的值是
5
5 17 3
7 1
A .
B .
C .
D .-
25
5
25
5
7、若 sin
cos
tan (0
-),则
( )
2
A
- (0,6) B - (6,4) C- " D -(齐)
8已知a (3,0),b ( 5,5),则a 与b 的夹角为(
、
10、若 0 X y a 1,则有(
、
A .
log a (xy) 0 B.0 log a (xy) 1 C.1
log a (xy)
2 D . log a (xy) 2
11
、
已知奇函数 f (x)当 x 0 时 f (x) ln x ,则函数y
f (x ) sinx 的零点个数为
A.2
个 B.4 个 C.6 个 D. 无数个
1 x 0
12、 疋义符号函数sgnx 0 x 0, 则不等式:x 2 (2x 3)sgnx 的解集是(
1 x 0
2
—
D.
3
3
uuu uur
uuu uuur AB AD
AB AD
C. 则必有(
A. —
B.—
4 4
9、在平行四边形ABCD 中,若 A.2 B.-3 C.2 或-3 D.
uur r uuu r uur
A . AD 0
B . AB 0 或 AD 0
C . ABC
D 是矩形
D . ABCD 是正方形
A. ,5
B. (2,0) 5,
C. 2,5
D.
2,0 0,5
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
二、 填空题(共6小题,每题5分,满分30分)
13、 ______________________________________________________ 已知等边三角形 ABC 的边长为1,则AB- BC ___________________________________________ 14、 ________________________________________________________________________ 设两个非零向量a,b 不共线,且ka b 与a kb 共线,则k 的值为 ________________________________ 15、在R 上定义运算 :x y x(1 y).若不等式(x a) (x a) 1对任意实数x 成立,则实数
a 的取值范围是
为
18某地野生微甘菊的面积与时间的函数关系的图象,如右图所示
并给出下列说法
① 此指数函数的底数为2;
② 在第5个月时,野生微甘菊的面积就会超过 30吊; ③ 设野生微甘菊蔓延到2m 2,3m 2, 6m 2所需的时间分别 为 t 1, t 2, t 3,则有 t 1 + t 2 = t 3;
④ 野生微甘菊在第1到第3个月之间蔓延的平均速度 等于在第2到第4个月之间蔓延的平均速度
其中正确的说法有 (请把正确说法的序号都填在横线上)
三、 解答题(共5小题,每题12分,满分60分)
19、已知向量 a 与 b 的夹角为 60°, |a| = 3,|b| =2,c = 3a + 5b ,d = ma — b , c ±d ,求m 的值。
20、已知函数f(x) =sin2x — 2coSx + 3,求:①函数的最大值及取得最大值时 x 值得集合;②函
数的单调递增区间;③满足f(x)〉3的x 的集合
16、已知函数 f(X )= lOg a (X 2
17、已知函数y Asi n( 示,如果A
0,
0,|
x |
2
假设其关系为指数函数,
21、已知tan , tan 是关于x 的一元二次方程mx2 2m 3 x m 2 0 的两个实根。
①求m 的取值范围;
②求tan 的取值范围。
22、A、B两站相距10千米,有两列火车匀速由A站开往B站.一辆慢车,从A站到B站需24分钟;另一列快车比慢车迟开 6 分钟,却早 6 分钟到达.
①试分别写出两车在此时间内离开A地的路程y (千米)关于慢车行驶时间x (分钟)的函数关系式;②在同一坐标系中画出两函数的图象;③求出两车在何时、离始发站多远相遇?
23、已知f(x)是定义在R 上的函数,对任意x R 均有f(x 1) f(x) , f (1 x) f (1 x),且 当 x 0,2 时,f (x) 2x
x 2。
①求证:f (x)为周期函数;②求证:f (x)为偶函数;③试写出f (x)的解析式。
(不必写推导过 程)
模拟题 答 案:
、选择题(共12小题,每题只有一个正确结果,每题 5分,满分60分)
题号
1 2 3 4 5 6 7 8 9 10 11 12 答案
D B
D
C
D
C
C
B
C
D B C
二 _
填空题 (共 6小题, 每题 5分, 满分30分)
1
1 3 1 13、 — 141 15、( ,) 16、 17、y
2
2 2
2
三、 解答题 (共 5小题, 每题 12 分, 满分60分)
19、 (略解) m=
29 42
2Sin(2x
6) 2
20、解: f (x) sin 2x cos2x 2 ■- 2 sin(2x —) 2
f(X )max
2 2
② 函数的单调增区间为 k -,k — (k Z)
8 8
(开闭无关) ③ f (x)
3
解③:令—x 5x 5
12 6 解得x 12
两车在出发 12 分钟时相遇,此时离始发站 5 公里。
23、①:证明:f(x 2) f (x 1)
1 f(x
1)
f(x)
即.2 sin(2x —) 2
T
即sin(2x -)
原不等式的解集为 xk
4 x k 2,k Z
21解①:
m 0
(2m 3)2 4m(m 2)
解得: m 9 且 m 0
4
tan tan 1 tan tan
3
m - 2 3 3
tan( ) 且 ta n( )
4 2
即tan( )的取值范围是(,|) ( I ,-3)
5
22、解①:慢车:y x,x 0,24
12
0,x 0,6 5
快车:y x 5,x 6,18
6 24, x 18,24
解②:
解②:tan(
所以函数f(x) 是周期为2的函数。
②:证明:f(x) fl (x 1) f 1 (x 1) f(x 2) f (x)
所以函数f(x) 是偶函数。
③:f(x) (x 2k 1)21,(x 2k,2k 2 ,k Z)
## 本套模拟题命题简要说明:##
1) 遵照命题要求,尽量符合“关于期末全市质量测试命题的初步设想”。
2) 必修一总分:64。
其中选25 分;填15分;解24 分。
必修四总分:86。
其中三角49分;向量37 分。
3) 容易题约45 分;中等题约75分;较难题约30 分。
4) 强调基本技能、基本方法的考查,尤其对“数形结合”考查较多。
但考虑到高一学生能力尚
弱,以上考查不做过高要求。
同时对计算量也有一定控制。
5) 强调重视课本,对课本中的典型方法重点考查,对可由课本内容直接发展得到的问题作为较高
要求进行考查。
6) 在实际应用方面做较低要求。
7) 预计普通校达到平均80 分有一定困难。
3
①当x xx k §,k Z时,。