《二元一次方程与一次函数》第二课时参考教案

合集下载

二元一次方程与一次函数(二)教案

二元一次方程与一次函数(二)教案

第七章二元一次方程组6.二元一次方程与一次函数〔二〕一、教材分析二元一次方程与一次函数是义务教育课程标准北师大版实验教科书八年级〔上〕第七章二元一次方程组第六节,本节内容安排了2个学时完成,本节课为第2学时.主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然开展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而开展学生数形结合的意识。

二、学情分析学生已经熟练掌握了二元一次方程组的解法,同时在第六章也学习了确定一次函数的表达式的根本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图像法上停留,因为图像法很直观,容易接受,因此本节课对代数方法的渗透应有一个循序渐进的过程.教学目标知识与技能目标1.理解作函数图像的方法与代数方法各自的特点.过程与方法目标:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些根本方法和策略.3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.情感与态度目标:2.在合作与交流活动中开展学生的合作意识和团队精神,在探究活动中获得成功的体验. 教学重点利用二元一次方程组确定一次函数的表达式.教学难点建立数形结合的思想.四、教法学法1.教学方法启发引导与自主探究相结合.2.课前准备教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本,坐标纸.五、教学过程本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.第一环节复习引入(2) 二元一次方程组有哪些解法效果:回忆旧知,为本节课学习新的知识做铺垫.第二环节 设计实际问题情境,导入新课内容:教材议一议A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,那么他们各自到A 地的距离S 〔千米〕都是骑车时间t 〔时〕的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇效果:通过引例的分组探索,深刻理解图像方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.第三环节典型例题,探究一次函数解析式确实定内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量那么需购置行李票,且行李费y 〔元〕是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1) 写出y 与x 之间的函数表达式; (2) 旅客最多可免费携带多少千克的行李解:〔1〕设b kx y +=,根据题意,可得方程组解该方程组,得⎪⎩⎪⎨⎧-==.5,61b k所以.561-=x y 〔2〕当x =30时,y =0.所以旅客最多可免费携带30千克的行李.例2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费方法,假设某户居民应交水费y 〔元〕与用水量x 〔吨〕的函数关系如下列图. (1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;(2) 假设某用户十月份用水量为10吨,那么应交水费多少元假设该用户十一月份交了51元的水费,那么他该月用水多少吨解:〔1〕当0≤x ≤15时,设x k y 1=,根据题意得11527k =,解得591=kx 〔吨〕y 〔元〕15 2039 27O当x >15时,设b x k y +=2,根据题意,可得方程组解这个方程组,得⎪⎩⎪⎨⎧-==.9,5122b k所以当x >15时,9512-=x y . 〔2〕当x =10时,代入x y 59=中,得y =18.意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图像提供的信息,补充例2主要是承接第六章,一次函数图像的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.效果:通过两个例题的讲解,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的一般步骤与方法,使学生有知识迁移的根底.第四环节 练习与提高内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组的解 答案:⎩⎨⎧-=-=+.12,4y x y x2. 在弹性限度内,弹簧的长度y 〔厘米〕是所挂 物体质量x 〔千克〕的一次函数.当所挂物体的质量 为1千克时弹簧长15厘米;当所挂物体的质量为3系式,并求当所挂物体的质量为4千克时弹簧的长度.当x =4是,y =5.16我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶,如下列图,1l ,2l 分别表示两船相对于海岸的距离s 〔海里〕与追赶时间t 〔分〕之间的关系.当时间t 等于多少分钟时,我边防快艇B 能够追赶上A 。

八年级数学上册《二元一次方程与一次函数》教案、教学设计

八年级数学上册《二元一次方程与一次函数》教案、教学设计
2.学生在解决实际问题时,可能还未能充分意识到二元一次方程与一次函数之间的关系,需要通过教学引导和案例剖析来加强。
3.学生的逻辑思维能力逐渐增强,但部分学生的运算能力和建模能力仍有待提高。
4.学生在学习过程中,对合作交流、讨论分享的学习方式较为感兴趣,有利于培养他们的团队意识和沟通能力。
5.部分学生对数学学习仍存在恐惧心理,需要教师关注个体差异,给予鼓励和指导,提高他们的自信心。
3.教师针对学生的困惑进行解答,强调重点知识,总结解题方法。
4.教师布置课后作业,要求学生复习本节课的知识,并预习下一节课的内容。
五、作业布置
为了巩固学生对二元一次方程与一次函数的理解和应用,特布置以下作业:
1.请同学们完成课本第chapter页的习题,包括以下题型:
a.选择题:旨在检验学生对二元一次方程和一次函数基础知识的掌握;
(3)单元测试:在单元结束后,进行测试,全面评估学生的学习效果。
4.教学策略:
(1)注重分层教学,关注学生个体差异,提高学生的自信心;
(2)鼓励学生积极参与课堂讨论,培养学生的表达能力和思维能力;
(3)关注学生的情感需求,营造轻松、和谐的学习氛围,降低学生的学习压力。
5.教学拓展:
(1)引入实际案例,让学生了解二元一次方程和一次函数在实际生活中的应用;
c.应用题:已知某商品的价格为x元,购买数量为y个,总共花费为20元。请列出相应的二元一次方程并求解。
2.教师对学生的练习情况进行检查,及时解答学生的疑问。
(五)总结归纳,500字
1.教师带领学生回顾本节课的主要内容,包括二元一次方程的定义、解法以及与一次函数的关系。
2.学生分享他们在学习过程中的收获和困惑。
(二)过程与方法

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计一. 教材分析《二元一次方程与一次函数》是北师大版八年级数学上册的教学内容。

本节课的主要内容是让学生掌握二元一次方程的定义、解法,以及一次函数的图像和性质。

这部分内容是学生学习函数和方程的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了初一、初二数学的基础知识,包括一元一次方程、不等式等。

但是,对于二元一次方程和一次函数的关系,以及如何解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解和掌握二元一次方程和一次函数的基本概念和方法,提高他们解决实际问题的能力。

三. 教学目标1.理解二元一次方程的定义和解法;2.掌握一次函数的图像和性质;3.能够运用二元一次方程和一次函数解决实际问题。

四. 教学重难点1.重难点:二元一次方程的解法,一次函数的图像和性质。

2.难点:如何引导学生理解和掌握二元一次方程和一次函数的关系,以及如何解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,探索和解决问题;2.使用多媒体辅助教学,通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质;3.注重实践操作,让学生通过动手操作,加深对二元一次方程和一次函数的理解。

六. 教学准备1.多媒体教学设备;2.PPT课件;3.练习题和答案;4.教学用具(如黑板、粉笔等)。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引出二元一次方程和一次函数的概念。

2.呈现(15分钟)利用PPT课件,呈现二元一次方程和一次函数的定义、解法和图像。

通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质。

3.操练(15分钟)让学生动手操作,解决一些简单的二元一次方程和一次函数问题。

教师巡回指导,解答学生的疑问。

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

初中《二元一次方程与一次函数》教学设计

初中《二元一次方程与一次函数》教学设计

初中《二元一次方程与一次函数》教学设计一、前言二元一次方程和一次函数是初中数学中非常重要的一部分内容,其基础十分重要,对日后的高中数学和物理学习有着至关重要的作用。

然而,这个知识点难度较大,学生很容易陷入疑惑甚至放弃。

因此,本文档将设计一套初中《二元一次方程与一次函数》的教学方案,希望能够给初中学生带来更加有效的学习体验。

二、教学目标1.掌握二元一次方程和一次函数的基本概念和解题方法;2.能够通过实际问题应用二元一次方程和一次函数;3.培养学生的逻辑思维能力、分析问题的能力与解决问题的能力;4.引导学生对数学学科的理解与兴趣。

三、教学内容1. 二元一次方程1.二元一次方程组的概念;2.解二元一次方程组的方法;3.应用二元一次方程解决实际问题。

2. 一次函数1.一次函数的概念和特点;2.一次函数图像及其性质;3.拟合实际问题中的数据。

四、教学过程1. 二元一次方程1.1 二元一次方程组的概念通过教师示范、教材讲解的方式,让学生了解二元一次方程组的概念和含义。

1.2 解二元一次方程组的方法通过解方程组的实例演示、步骤分解的方式,让学生掌握解二元一次方程组的基本方法。

1.3 应用二元一次方程解决实际问题通过多元方程求解实际问题的实例演示、讲解的方式,让学生能够将所学内容应用到实际问题中。

2. 一次函数2.1 一次函数的概念和特点通过图像展示、实例分析的方式,让学生了解一次函数的概念和特点。

2.2 一次函数图像及其性质通过教材、图像展示的方式,让学生掌握一次函数图像及其性质。

2.3 拟合实际问题中的数据通过实例分析、典型习题解题的方式,让学生能够应用一次函数拟合实际问题中的数据。

五、教学评价1.日常考查:包括课堂小测试、课后作业等;2.综合成绩评定:以期末考试为主要评分依据,期中考试考查学生的知识掌握情况,平时表现加成。

六、总结二元一次方程和一次函数是初中数学中重要的内容,要求学生将数学知识与实际问题相结合,培养学生的逻辑思维能力、分析问题的能力与解决问题的能力。

《二元一次方程组与一次函数》教学设计

《二元一次方程组与一次函数》教学设计

《二元一次方程组与一次函数》教学设计一.教学目标(一)教学知识点1.二元一次方程和一次函数的关系.2.二元一次方程组的图象解法.(二)能力训练要求1.使学生初步理解二元一次方程与一次函数的关系.2.通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法.同时培养了学生初步的数形结合的意识和能力.(三)情感与价值观要求通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.二.教学重点1.二元一次方程和一次函数的关系.2.能根据一次函数的图象求二元一次方程组的近似解.三.教学难点方程和函数之间的对应关系即数形结合的意识和能力.四.教学方法学生操作——自主探索的方法学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”——二元一次方程组与“形”——函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力.五.教具准备投影片两张:第一张:问题串(记作§7.4 A);第二张:补充练习(记作§7.4 B).六.教学过程Ⅰ.回忆旧知识,引入新课[师]举例说明什么是二元一次方程?什么是二元一次方程的解?二元一次方程的解的个数如何?为什么?[生]例如x +y =8含有两个未知数x ,y 且未知数的项的次数是一次,所以x +y =8是二元一次方程.⎩⎨⎧==26y x 是适合方程x +y =8的一组未知数的值,所以⎩⎨⎧==26y x 是二元一次方程x +y =8的一个解.我们不难发现适合x +y =8的一组未知数的值不只⎩⎨⎧==26y x 再例如⎩⎨⎧==71y x ;⎩⎨⎧==62y x ;⎩⎨⎧==53y x ……都适合方程x +y =8,所以说它们都是x +y =8的解.x +y =8有无数多个解,只要给出一个x 的值,代入x +y =8中,就可得到一个y 的值.这样一组一组的未知数的值都是x +y =8的解.[师]如果将方程x +y =8利用等式的性质变形,就可得到y =8-x ,同学们能联想到什么?[生]y =8-x 是一个一次函数,x 、y 在一次函数中不是未知数,而是两个变量,x 是自变量,y 是因变量.[师]这位同学回答得很好,他能够把所学的知识联系起来,这正是我们学习数学最可贵的地方之一.我们说到函数,不得不想到函数的图象,因为函数的图象可直观地反映出y 随x 变化的情况.那么函数的图象如何画出来的呢?[生]我们知道在函数中,给出自变量x 的值,就对应着一个y 的值.我们把x 的值作为点的横坐标,对应的y 的值作为这个点的纵坐标.在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象.[师]下面就请同学们画出一次函数y =8-x 的图象.我们观察y =8-x 的图象可知:(1)满足关系式y =8-x 的x 、y 所对应的点(x ,y )都在一次函数y =8-x 的图象上.(2)一次函数y =8-x 的图象上的点(x ,y )都满足关系式y =8-x .(3)满足关系式y =8-x 的x 、y 的值恰好就是二元一次方程x +y =8的解因此我们猜想二元一次方程的解与相应的一次函数图象上的点有无对应关系呢这节课我们主要就来研究二元一次方程与一次函数的关系. Ⅱ.讲授讲课 (1)方程x +y =5的解有多少个?写出其中几个?(2)在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y =5-x 的图象上吗?(3)在一次函数y =5-x 的图象上任取一点,它的坐标适合方程x +y =5吗?(4)以方程x +y =5的解为坐标的所有点组成的图象与一次函数y =5-x 的图象相同吗?[师]对于以上几个问题分组讨论,并归纳出二元一次方程和一次函数的关系.[生](1)方程x +y =5的解有无数个.例如⎩⎨⎧=-=⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==61;5,0;23;3,2;4,1y x y x y x y x y x …… (2)我们不妨先画出y =5-x 的图象.在上面直角坐标系中描出以x +y =5的解为坐标的点,我们很容易发现这些点都在一次函数y =5-x 的图象上.(3)在函数y =5-x 的图象上任取一点,它的坐标一定适合方程x +y =5.(4)由(2)、(3)可知以x +y =5的解为坐标的所有点组成的图象与一次函数y =5-x 的图象是相同的.综上所述,二元一次方程和一次函数的图象有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图象上. (2)反过来,一次函数图象上的点的坐标都适合相应的二元一次方程.[做一做]在同一坐标系内分别画出一次函数y =5-x 和y =2x -1的图象,这两个图象有交点吗?交点的坐标与方程组⎩⎨⎧=-=+125y x y x 的解有何关系?[师]同学们以同桌为单位,一个同学在同一坐标系中画出一次函数y =5-x 和y =2x -1的图象,并观察得出两个函数图象交点的坐标.另一位同学解方程组⎩⎨⎧=-=+125y x y x ,并比较你们的结果. [生]一次函数y =5-x 和y =2x -1的图象如图所示:所以一次函数y =5-x 与y =2x -1的图象的交点是P (2,3). [生]根据二元一次方程和一次函数图象的关系可知:P (2,3)在一次函数y =5-x 的图象上,所以⎩⎨⎧==32y x 是二元一次方程x +y =5的一个解;同时P (2,3)也是一次函数y =2x -1的图象上的点,所以⎩⎨⎧==32y x 也是二元一次方程2x -y =1的一个解.根据二元一次方程组的解的定义可知⎩⎨⎧==32y x 是⎩⎨⎧=-=+125y x y x 的解 [生]老师,用消元法解二元一次方程组⎩⎨⎧=-=+125y x y x 得到的解也是⎩⎨⎧==32y x . [师]因此,我们又有了解二元一次方程组的新的方法——图象法.下面我们来看一个例题. [例1]用作图象的方法解方程得⎩⎨⎧=--=-.22,22y x y x 分析:在同一坐标中作出相应的两个一次函数的图象.观察图象的交点便可得出方程的解.解:由x -2y =-2可得y =21x +1,同理,由2x -y =2可得y =2x -2,在同一坐标系内作出一次函数y =21x +1的图象l 1和y =2x -2的图象l 2.如下图.观察图象,得l 1,l 2的交点为P (2,2).所以方程组⎩⎨⎧=--=-2222y x y x 的解是⎩⎨⎧==22y x Ⅲ.随堂练习1.课本P 136(1)用作图解的方法解方程组⎩⎨⎧=-=+123242y x y x . 解:由2x +y =4得y =4-2x同理,由2x -3y =12得y =32x -4,在同一坐标系中作函数y =4-2x 的图象l 1和函数y =32x -4的图象l 2,如下图所示:观察图象,得l 1,l 2的交点P (3,-2)所以方程组⎩⎨⎧=-=+1232,42y x y x 的解为⎩⎨⎧-==.2,3y x (2)下图中的两直线l 1,l 2的交点坐标可以看作方程组_________的解.解:由图象可知l 1过点(1,3)、(0,1).设l 1是函数y =k 1x +b 1的图象,根据题意,得⎩⎨⎧==+13111b b k 解得k 1=2,b 1=1.所以l 1是函数y =2x +1的图象.l 1同理可得l 2是函数y =4-x 的图象.所以l 1、l 2交点的坐标可看做二元一次方程组⎩⎨⎧-=-=+124y x y x 的解. 2.补充练习(出示投影片§7.4 B)如图,l 甲,l 乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s 与时间t 的关系观察图象并回答下列问题:(1)乙出发时,与甲相距_________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修理,修车的时间为[CD #2]时;(3)乙从出发起,经过_________时与甲相遇;(4)甲行走的路程s (千米)与时间t (时)之间的函数关系式是_________.(5)如果乙的自行车不出现故障,那么乙出发后经过_________时与甲相遇,相遇处离乙的出发点_________千米,并在图中标出其相遇点.解:由图示得:(1)10千米 (2)1小时 (3)3小时(4)设甲行走的路程s 与时间t 之间的函数关系为S =kt +b (t ≥0).由于此函数的图象过(0,10)和(3,22.5),根据题意可得b =10,k =625.所以甲行走的路程s 与时间t 之间的函数关系为s =625t +10(t ≥0) (5)如果乙不出现故障,乙行走的路程s 与t 之间的函数关系式为s =15t (t ≥0).在同一坐标系中画出甲走路和乙骑自行车行走的路程s 与时间t 的关系,如下图:由图可知乙出发后经过1312小时与甲相遇,相遇时离乙的出发点为22)13180()1312( ≈13.9千米.相遇点为图中P (1312,13180)点. Ⅳ.课时小结本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引出了二元一次方程组的图象解法,同时也建立了“数”——二元一次方程组与“形”——函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力.其实,在我们平时解二元一次方程组时,大多还用的消元法.但对于我们将来要学习的高次方程、无理方程等的求解,画图象的方法更具一般性.无疑这节的学习为我们的后继学习打下了基础.因此这节课用图象法求二元一次方程组的解必须理解和掌握.Ⅴ.课后作业1.课本P 136、习题7.42.收集有关科学家和方程的故事.Ⅵ.活动与挖究有一组数同时适合方程x +y =2和x +y =5吗?一次函数y =2-x ,y =5-x 的图象之间有何关系?你能从中“悟”出些什么?过程:学生经过尝试是很容易发现x +y =2和x +y =5时没有一组数同时适合这两个二元一次方程的.即⎩⎨⎧=+=+52y x y x 这个二元一次方程组无解. 对于一次函数y =2-x ,y =5-x 的图象可以让学生作出它们的图象(下图)观察可以发现它们的图象(直线)是互相平行的,即它们无公共点.结果:我们从中可以“悟”出:方程组的解与函数图象交点之间的关系:当函数的图象有交点时,说明相应的二元一次方程组有解;当函数的图象(直线)平行即无交点时,说明相应的二元一次方程组无解.反之也成立.七.板书设计。

《二元一次方程与一次函数》教学设计【优秀4篇】

《二元一次方程与一次函数》教学设计【优秀4篇】

《二元一次方程与一次函数》教学设计【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《二元一次方程与一次函数》教学设计【优秀4篇】教学建议下面是本店铺精心为大家整理的4篇《《二元一次方程与一次函数》教学设计》,可以帮助到您,就是本店铺最大的乐趣哦。

初中数学 二元一次方程与一次函数 教案

初中数学 二元一次方程与一次函数  教案

1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

3、通过和一元一次方程的比较,加强学生的类比的思想方法。

通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。

教学分析重点:(1)使学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。

(2)掌握检验一对数是否是某个二元一次方程的解的书写格式。

难点:理解二元一次方程组的解的含义。

突破:启发学生理解概念。

教学过程一、复习1、是什么方程?是什么一元一次方程?一元一次方程的标准形式是什么?它的解如何表达?如何检验x=3是不是方程5x+3(9-x)=33的解?2、列方程解应用题:香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。

香蕉和苹果各买了多少千克?(先要求学生按以前的常规方法解,即设一个未知数,表示出另一个未知数,再列出方程。

)既然求两种水果各买多少?那么能不能设两个未知数呢?学生尝试设两个未知数,设买香蕉x千克,买苹果y千克,列出下列两个方程:x+y=95x+3y=33这里x与y必须满足这两个方程,那么又该如何表达呢?数学里大括号表示“不仅……而且……”,因此用大括号把两个方程联立起来:这又成了什么呢?里面的是不是一元一次方程呢?这就是我们今天要学习的内容。

板书课题。

1、有关概念(1)给出二元一次方程的概念观察上面两个方程的特点,未知数的个数是多少,含未知数项的次数是多少?你能根据一元一次方程的定义给出新方程的定义吗?教师给出定义(见P5)。

结合定义对“元”与“次”作进一步的解释:“元”与“未知数”相通,几个元就是指几个未知数,“次”指未知数的最高次数。

二元一次方程和一元一次方程都是整式方程,只有整式方程才能说几元几次方程。

(2)给出二元一次方程组的定义。

沪科版八年级上册数学12.3 一次函数与二元一次方程2教案

沪科版八年级上册数学12.3 一次函数与二元一次方程2教案

12.3一次函数与二元一次方程教学目标【知识与技能】1.学会用函数图象来解二元一次方程组.2.通过学习,了解方程组的解在坐标平面内的意义.【过程与方法】1.经历探索、思考等教学活动和思维过程,发展学生的合情推理能力,能有条理地、清晰地阐述观点.2.让学生体验数形结合的思想和解决问题的方法,提高解决问题的能力.3.体会解决问题的多种途径,发散学生的思维,发展学生的创新能力和实践能力.【情感、态度与价值观】在探究过程中发展学生的合作交流意识和独立思考精神,增强学生对数学思维、数学方法的好奇心和兴趣.重点难点【重点】用图象法解二元一次方程组.【难点】归纳用图象法解二元一次方程组的具体步骤.教学过程一、创设情境,导入新知教师多媒体出示:方程3x+2y=6的解有多少个?你能画出以这个方程的解为坐标的所有点组成的图形吗?师:你能将方程3x+2y=6化成一次函数的形式吗?生:能.教师找一名学生板演,其余同学在下面做,最后订正得到方程3x+2y=6的一次函数形式是y=-x+3.师:对于这个函数,前面我们讲过它的图象的画法,在画它的图象时,我们取两个满足这个关系式的点,但是不是上面的其余的点的坐标代入这个方程也是成立的呢?学生思考.学生填表.师:对于表中每一对x、y的值代入方程3x+2y=6都成立,所以每组有序数对都是方程3x+2y=6的解.可见,二元一次方程3x+2y=6有无数多组解,以这些有序数对为坐标,请同学们在坐标平面内描点作图,就能得到二元一次方程3x+2y=6对应的函数图象.学生描点作图,教师指导. 教师多媒体出示:学生纠正.师:由上可知,二元一次方程3x+2y=6的图象就是一次函数y=-x+3的图象,它是一条直线. 二、共同探究,获取新知 教师多媒体出示:1.在平面直角坐标系内画出下列二元一次方程对应的图象:(1)x+y=0;(2)3x+y=6;(3)4x-5y+10=0.师:我们平时画的是形如y=kx+b 的一次函数的图象,对于上面这三种形式的图象应怎样画呢?生:把它变成y=kx+b 的形式,然后根据一次函数图象的画法来画. 师:很好!有没有其他方法来作出这些二元一次方程的图象呢? 生:不用变形,直接找出这条直线上两点的坐标. 师:你怎样找出这条直线上的两点呢?生:对x 取两个不同的值x 1、x 2分别代入等式,求出相应的两个y 1、y 2的值,这样得到的(x 1,y 1)(x 2,y 2)就是直线上不同的两点.师:很好,现在请同学们从以上我们讨论得到的两种方法中选择一种作图. 学生作图,教师巡视指导,最后集体订正得到: (1)x+y=0对应的函数图象为:(2)3x+y=6对应的函数图象为:(3)4x-5y+10=0对应的函数图象为:2.下列有序数对,哪些是二元一次方程3x+y=6的解?A(3,-3),B(6,-10),C(-3,15).师:请大家判断一下.生:A、C是,B不是.师:对,你是怎样判断的呢?生:把(3,-3)代入方程左边得3×3+(-3)=6,右边=6,左边=右边,所以A点的坐标是方程3x+y=6的解.把(6,-10)代入方程左边得3×6+(-10)=8,与方程右边不等,所以B点的坐标不是此方程的解.把(-3,15)代入方程左边,得3×(-3)+15=6,与方程右边相等,所以C点的坐标是此方程的解.三、层层推进,深入探究师:一般地,任何一个二元一次方程都可转化为一次函数的形式,所以每个二元一次方程的图象都是一条直线,这样,解二元一次方程组就转化为在平面直角坐标系里研究两条直线的交点问题了.现在请大家建立一个直角坐标系,并在这个坐标系中画出方程x+2y=2的图象l1与方程2x-y=-6的图象l2.学生作图,教师巡视指导,要求作图要精确,因为图象的精确性直接影响结果.师:它们是否交于一点?生:是.师:这个交点的坐标是多少?生:(-2,2).师:请大家检验一下它是否是方程组的解.学生检验后回答:是.师:为什么呢?生:直线l1是方程x+2y=2的图象,因此,直线l1上任意一点的坐标都是方程x+2y=2的解;同理,直线l2上任意一点的坐标都是方程2x-y=-6的解.所以直线l1与l2的交点P的坐标是方程x+2y=2与2x-y=-6的公共解,也就是说,这个交点的坐标是二元一次方程组的解.师:请同学们利用图象法解方程组学生作图求解后回答,教师订正.师:由上面的过程我们能总结出用图象法解二元一次方程组是这样一个过程:先在同一平面直角坐标系内画出每一个二元一次方程对应的直线,这两条直线若相交,其交点的坐标就是方程组的解.但是,二元一次方程组确定的两条直线是否必定会相交于一点呢?我们看看下面这个例子.四、深入探究,强化理解师:请同学们用图象法解方程组学生作图.师:你们作出的两个方程图象有什么关系?生:两条直线互相重合.师:这意味着什么呢?学生小组讨论.生:说明直线上每一个点的坐标都是原方程组的解,所以原方程组有无穷多组解.师:对.大家再用图象法解这个方程组你们又有什么发现?学生作图.生:两条直线平行,它们没有交点.师:这代表什么呢?学生小组讨论.生:这个方程组无解.师:很好!通过上面几个例子和练习,我们可以得到二元一次方程组的解有三种情况.我们把方程组化成标准形式后,你比较一下两个方程中x的系数、y的系数与常数项的比,看它们的比值之间的关系对图象、方程组的解有什么影响?学生讨论,教师参与.生甲:如果x的系数之比与y的系数之比不相等,则两直线有一个交点,方程组有一组解.生乙:如果x的系数之比与y的系数之比相等,但与常数项的比不等时,两直线没有交点,方程组无解.生丙:如果x的系数之比、y的系数之比、常数项之比三者都相等,则两直线重合,方程组有无穷多组解.师:同学们总结得很好.教师板书得到的结论.五、迁移巩固师:请同学们把第53页练习做一下.学生做题,然后集体订正.(1)≠,所以方程组有一组解;(2)原方程组可变形为==,所以方程组有无数多组解;(3)=≠,所以方程组无解:(4)第二个方程可变形为:x-y=0.≠,所以原方程组有一组解.六、课堂小结师:今天我们学习了什么内容?生甲:学习了用图象法解二元一次方程组.生乙:还学习了怎样根据二元一次方程组中的两个方程的系数关系判断方程组解的个数.师:同学位回答得很好!你能说说怎样根据两个方程系数的关系来判断方程组解的个数吗?学生回答,教师补充完善.教学反思通过本节课的学习,学生掌握了用图象法求解二元一次方程组的方法,这是用图象法解方程、不等式的延伸.学生通过观察、总结,自己得到怎样由x的系数之比、y的系数之比、常数项之比三者之间的关系与方程组的解的数量之间的联系,总结出规律,让他们享受探索求真的乐趣,培养发现问题、解决问题的能力.能力的培养,特别是创新能力的培养是新课程关注的焦点,能力培养是以自主探究为平台.“自主”不是一盘散沙,“探究”不是漫无边际,要提高探究的质量,必须在教师的引导下进行.。

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计一、学情分析:学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.二、学习目标:本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:1.初步理解二元一次方程和一次函数两种数学模型之间的关系;2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;教学重点二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;教学难点通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系1. 水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.(1)请找出自变量和因变量(2)你能列出X,Y的关系式吗?(3) X,Y的取值范围是什么?(4)在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围). 2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?x+y=5与 y=?x?5表示的关系相同一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组与一次函数两种数学模型之间的关系探究方程与函数的相互转化1.两个一次函数图象的交点坐标是相应的二元一次方程组的解(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?(2)两个函数的交点坐标适合哪个方程?xy5(3).解方程组?验证一下你的发现。

二元一次方程与一次函数教案

二元一次方程与一次函数教案

二元一次方程与一次函数教案
一. 教学知识点
1. 二元一次方程的解法:
(1) 把二元一次方程化为一元一次方程,然后求解;
(2) 把二元一次方程改写为标准型,用分类讨论法求解;
(3) 把二元一次方程改写为完全平方型,然后分解式子求解;
(4) 对称性原理求解。

2. 一次函数的概念:函数y=f(x)是一次函数,若其没有指数、幂甚或根式,而仅含有x一次幂和它的常数项,其中常数项可以省略,则称之为一次函数。

二. 教具准备
1. 理论教具有黑板和白板笔,投影仪等;
2. 实际教学用的有讲义、函数图案完全平方型函数图案等。

三. 教学步骤
1. 导入:老师要让学生认识到二元一次方程其实就是一条直线,并且能够提出一些归纳出直线的具体特点,如斜率为某一值时,学生有助于他们后面求解。

2. 说明:指出学生应该把解决二元一次方程的方法分为四个步骤:把二元一次方程化为一元一次数,然后求解;把二元一次方程改写为标准型、完全平方型,使用分类讨论法和分解式子的方法求解;使用对称性原理求解。

3. 练习:根据教学内容,通过练习类题目,让学生巩固所学知识。

4. 精炼:强调寻找一次函数,其实在讲解二元一次方程的时候,有求出一次函数的技巧,要让学生认识到。

5. 小结:用实际例题使学生了解解法 performance。

6. 检验:根据教学内容给学生一些二元一次方程,要求学生考虑各种解法,并正确求解。

八年级数学上册 7.6 二元一次方程与一次函数(第2课时)教案 北师大版

八年级数学上册 7.6 二元一次方程与一次函数(第2课时)教案 北师大版

二元一次方程与一次函数【知识目标】1、使学生初步理解二元一次方程与一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解.3、能利用二元一次方程组确定一次函数的表达式【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.【教学重点】1、二元一次方程和一次函数的关系2、能根据一次函数的图象求二元一次方程组的近似解【教学难点】方程和函数之间的对应关系即数形结合的意识和能力【教学过程】一、忆一忆1、同学们:什么叫二元一次方程的解?2、一次函数的图像是什么?3、如图,求一次函数的图像的解析式二、试一试1、问题:方程x+y=5的解有多少个?写出其中的几个解来[方程x+y=5的解有无数多个,如:x=-1 x=0 x=1 x=2 x=3y=6 y=5 y=4 y= 3 y=2 等2、在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x的图像上吗?3、在一次函数y=5-x的图像上任取一点,它的坐标适合方程x+y=5吗?4、以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图像相同吗?三、做一做在同一直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?交点的坐标与方程组 x+y=52x- y=1 的解有什么关系?你能说明理由吗?[一次函数y=5-x和y=2x-1的图像的交点为(2,3),因此, x=2 就是方程组y=3x+y=52x - y=1的解。

]例1、用作图象的方法解方程组 x-2y= - 22x – y=2解:由x-2y= - 2可得y=,同理,由2x– y=2可得y=2x – 2,在同坐标系中作出一次函数y=的图像和y=2x – 2的图像,观察图像,得两直线交于点(2,2),所以方程组 x-2y= - 22x – y=2的解是 x = 2y= 3同学们你从本题中感悟到什么?原来我们解二元一次方程组除了代入法和加减法外还可以用图像法,那么用作图法来解方程组的步骤如下:1、把二元一次方程化成一次函数的形式2、在直角坐标系中画出两个一次函数的图像,并标出交点。

《二元一次方程与一次函数》示范课教学设计【数学八年级上册北师大】

《二元一次方程与一次函数》示范课教学设计【数学八年级上册北师大】

第五章二元一次方程组6 二元一次方程与一次函数一、教学目标1.初步理解二元一次方程与一次函数的关系,能根据一次函数的图象求二元一次方程组的解.2.能从“形”的角度理解二元一次方程和二元一次方程组,发展几何直观.3.通过思考和操作,建立“数”与“形”之间的对应,培养学生初步的数形结合的意识和能力.4.通过自主探索,揭示方程和图象之间的对应关系,培养学生严谨的科学态度和勇于探索的科学精神,进一步激发学生学习数学的兴趣.二、教学重难点重点:探索一次函数与二元一次方程的关系.难点:建立数形结合意识.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计问题1:一元一次方程x +2=0的解为 . 预设答案:x = –2问题2:一次函数y =x +2图象与x 轴的交点坐标为 .预设答案:(–2,0)教师活动:一次函数y=kx+b 的图象与x 轴交点的横坐标就是一元一次方程kx+b =0的解.二元一次方程kx+y=b 与一次函数y=–kx+b 有什么联系呢?【探究】教师活动:x +y =5是什么?预设答案:二元一次方程;一次函数.教师活动:这是怎么回事?为什么有两种回答呢?问题1:方程x +y =5的解有多少个?写出其中的几个.预设答案:无数个.例如: 05x y =⎧⎨=⎩, 50x y =⎧⎨=⎩, 23x y =⎧⎨=⎩,…… 问题2:等式x +y =5还可以看成是一个一次函数,把它变成y =kx +b 的形式是_____________.预设答案:y =-x +5. 问题3. 画出y =-x +5的图象. 预设答案:追问①:以方程x+y=5的解为坐标的点都在一次函数y=-x+5的图象上吗?预设答案:都在.追问②:在一次函数y=-x+5的图象上任取一点,点的坐标适合方程x+y=5吗?预设答案:都适合.追问③:以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=-x+5的图象相同吗?方程x+y=5的解有无数个.以方程x+y=5的解为坐标的点组成的图象与一次函数y=5-x的图象相同,是同一条直线.教师活动:x+y=5与y=5-x表示的关系相同.教师活动:根据以上问题思考方程与一次函数的关系.一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.教师活动:任意一个二元一次方程都可以转化为y=kx+b的形式.【做一做】在同一直角坐标系内分别画出一次函数y = 5-x 和y =2x -1的图象(如图),这两个图象有交点吗?交点的坐标与方程组521x y x y +=⎧⎨-=⎩,的解有什么关系?一次函数y = 5-x 与y =2x -1图象的交点为A (2,3),而就是方程组 的解.一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解; 解一个二元一次方程组相当于确定相应两条直线交点的坐标.教师活动:用图象法解二元一次方程组的步骤是什么?(1)将方程组中每个方程分别转化成一次函数表达式;(2)在同一坐标系中分别画出转化后的两个一次函数的图象;(3)根据两个函数图象的交点坐标写出方程组的解.2,3x y =⎧⎨=⎩5,21x y x y +=⎧⎨-=⎩【想一想】在同一直角坐标系内,一次函数y=x+1 和y=x-2 的图象有怎样的位置关系?预设答案:两直线平行.方程组12x yx y-=-⎧⎨-=⎩,解的情况如何?预设答案:此方程组无解教师活动:你发现了什么?k1≠k2k1=k2总结:有解,有交点;无解,无交点.思维导图的形式呈现本节课的主要内容:。

数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)

数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。

2.由上题可知一元二次方程的系数与根有着密切的关系。

其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。

)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。

二元一次方程与一次函数(二)教学设计

二元一次方程与一次函数(二)教学设计
用作图象的方法可以直观地获得问题的结果,但有时却难以准确,为了获得准确的结果,我们一般用代数方法。




蹲组领导签字:——————
你是怎样做的?与同伴交流。
小明:可以分别作出两人s与t之间的图象找出交点的横坐标就行了!
小颖:对于乙,s是t的一次函数,可设s=kt+b,当t=0时,s=100; t=1时,s=80;将它们分别代入s=kt+b中,可求出k、b的值,也即可求出乙s与t之间的函数表达式。同样可以求出甲s与t的函数表达式,再联立这两个表达式,求解方程组就行了。
(1)写出y与x之间的函数表达式
(2)旅客最多可免费携带多少千克的行李?
自学
课本
内容
回答
相关
问题
议课
补充
内容
三、




1、课本P208随堂练习1
2、A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午从A地出发驶往B地,图7-8-3中,折线PQR和线段MN分别表示甲和乙,所行的里程S与该日下午时间t之间的关系。
教学重点
1.二元一次方程和一次函数的关系.
2.从图象等信息确定一次函数表达式的方法
教学难点
方程和函数之间的对应关系即数形结合的意识和能力
教学准备
教师准备
多媒体课件
学生准备
教学过程
教师活动
学生活动
一、出示
学习目标
二元一次方程和一次函数的关系
明确学
习目标
二、






1、议一议:
A、B两地相距100千米,甲、乙两人骑车同时从A、B两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离s(千米)都是骑车时间t(时)的一次函数。1时后乙距离A地80千米;2时后甲距A地30千米。问经过多长时间两人将相遇?

二元一次方程与一次函数教学教案

二元一次方程与一次函数教学教案

二元一次方程与一次函数教学教案《二元一次方程与一次函数教学教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容和内容解析本节选自北师大版八年级上第五章第六节,在这之前,学生已经掌握了解二元一次方程组和画一次函数图象的方法,但是对于它们之间的直接联系,我们还未接触,因此本节课,要带领学生去探究怎样去找它们的联系。

让学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

二、目标和目标解析通过自主学习初步了解二元一次方程与一次函数的关系→培养学生动手画图能力和观察数与形的能力。

在小组合作探索过程中理解二元一次方程组与一次函数关系,并掌握用图象法解二元一次方程组→培养学生学会与人合作,与人交流,学会倾听。

在学以致用学习环节中学会运用函数观点再次认识二元一次方程(组)的解的问题,建立模型→培养学生的数形结合思想。

三、教学问题诊断分析根据已往教学经验,初二的学生对函数的理解以及应用不是很熟练的,而对数形结合这一数学思想也是陌生的,因此在教与学的过程中,我们可能会遇到这样的问题:在教的方面,根据学生的反应能力,教师可能会出现讲得太多,使课堂变成以教师为主体的教学。

在学的方面,由于学生已经很熟练的解二元一次方程组了,所以在遇到求方程组的解的时候可能会直接用前面所学的消元法而不会直接选择用一次函数图象交点来解决问题,不会用数形结合思想,达不到教师设定的教学目标。

四、教学支持条件分析为了有效的实现教学目标,本节课将要使用多媒体教学,PPT课件展示教师准备的教学任务,以帮助学生学会发现问题、提出问题、解决问题的数学能力;电子展台展示学生合作探索的内容,以帮助学生学会展示自我,学会在探索过程中如何与人沟通,如何归纳总结,如何表达自己。

另外,为了使PPT课件看起来更加自然,在一些方程(组)和函数表达式的书写上,教师会先用公式编辑器编排好;同样在学生拓展延伸部分如果遇到了讨论遗漏的情况,教师将用几何画板展示图象,从而加深学生对数形结合的认识。

数学教案-二元一次方程与一次函数

数学教案-二元一次方程与一次函数

数学教案-二元一次方程与一次函数北师大版八年级上第七章二元一次方程组第六节202页----204页《二元一次方程与一次函数》教学设计鹿泉市上庄镇中学张亚茹教学目标1.知识与能力目标(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。

同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标教材分析教学重点1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点方程和函数之间的对应关系即数形结合的意识和能力。

教学方法学生操作------自主探索的方法一.故事引入迪卡儿的故事------蜘蛛给予的启示十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。

迪卡儿看到蜘蛛的“表演”猛的机灵一动。

他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二.尝试探疑1、Y=某+1你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?2、函数y=某+1上的任意一点的坐标是否满足方程某-y=-1?以方程某-y=-1的解为坐标的点在不在函数y=某+1 的图象上?方程某-y=-1与函数y=某+1有何关系?学生会迫不及待地拿起笔来计算。

从函数y=某+1图象上找几个点看它们的坐标是否满足方程某-y=-1。

结果都满足。

然后学生就会自主和同伴交流,问一问同伴函数y=某+1图象上的点满足不满足方程某-y=-1。

结果也都满足。

这样他们就会搭成共识:函数y=某+1上的任意一点的坐标都满足方程某-y=-1。

然后学生会用同样的方法得出另一个结论:以方程某-y=-1的解为坐标的点一定在函数y=某+1的图象上。

然后开始思索函数y=某+1和方程某-y=-1到底有何关系呢?通过交流自动得出结论:以方程某-y=-1的解为坐标的点组成的图象与一次函数y=某+1的图象相同。

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计

《二元一次方程与一次函数》教学设计第一篇:《二元一次方程与一次函数》教学设计《二元一次方程与一次函数》教学设计教学目标知识要求:初步理解二元一次方程与一次函数的关系,能根据一次函数的图象求二元一次方程组的近似解。

能力要求:通过学生的自主探索的实际操作,加强新旧知识间的联系,培养学生初步的数形结合的意识和能力。

情感与价值观要求:通过学生合作交流,培养学生的合作精神;通过Z+Z智能软件的应用,使学生更积极的参加教学活动,激发学生学习数学的兴趣。

教学重点:1.二元一次方程和一次函数的关系。

2.能根据一次函数的图象求二元一次方程组的近似解。

教学难点:方程和函数之间的对应关系即数形结合的意识和能力。

教材分析:旧教材中,二元一次方程(组)和一次函数是独立的两部分,为了加强知识间的联系,新教材加入了本节内容,研究方程和函数的关系,培养学生数形结合的意识和能力。

学生分析:学生已经掌握二元一次方程(组)和一次函数的基础知识,在作一次函数图象时,学生已建立初步的数(代数表达式)形(图象)结合的意识,在此认知基础上,教师可在知识关节点上为学生创设合理的问题情境以调动学生的内驱力。

教学方法:学生自主操作——合作探究的方法。

教学过程:一、引入举例说明什么是二元一次方程?它的解个数如何?举出几组。

(学生给出一个方程,如x+y=5,且任意给出几组解)看到x+y=5这个方程,同学们能联想到以前学过的哪些知识? 设计说明:教师不直接将其转化成一次函数表达式,而是让学生大胆去联想,留给学生较为广阔的思维空间。

学生独立思考,合作交流,能联系到一次函数y=5-x,认识到二元一次方程和一次函数有一定关系。

(有困难时,教师适当提示)这节课我们就一起来讨论他们之间的关系。

二、讲授新课表示函数的方法还有哪些?学生回忆表示函数的三种表达方式。

下面请同学们画出一次函数的图象。

学生动手操作师给出问题:(1)以二元一次方程的解为坐标的点在一次函数图象上吗?(2)一次函数图象上的点的坐标都适合方程吗?(3)以方程的解为坐标的所有点组成的图象与一次函数的图象相同吗?学生分组讨论以上几个问题(师巡回指导,听取学生不同结论,并适当提示)设计说明:让学生充分思考、实际操作、讨论,自主得到结论,切实感受一元二次方程和一次函数之间的关系。

二元一次方程与一次函数的教案

二元一次方程与一次函数的教案

集体备课表格教案
(二)(三)

五作业布置
教学反思学生活动时间
教 学 活 动
本节课内容比较难,学生在理解上遇到困难,特别是二元一次方程的解是一次函数的横坐标和纵坐标,好多学生难以理解,学生在两个一次函数的交点与方程组的
解会出现错误,不能顺利求出答案,之后还要多加练习。

教学
环节 1、两直线的位置关系有:相交,平行。

2、二元一次方程组无解时,两直线平行,两一次函数图像无交
点。

小组交流,解决困惑归纳小结
习题5.7 第3和第4题
y=2x-1 1题,2、4、6组做2题)
3、观察:两个一次函数的图像的交点坐标与二元一次方程组的解有
什么关系?
总结:二元一次方程组的解为其对应的两个一次函数图像交点的横

标、纵坐标。

课本:做一做元一次方程的解有什么关系?
4、课本123页引例的问题。

(学生自己讨论,再提问学生)
总结:以二元一次方程的解为坐标的点组成的图像,与其转化成的

次函数的图像相同,是一条直线。

1、画出一次函数y=5-x与y=2x-1的图像。

2、解方程组 y=5-x 。

(1,2小题分小组进行,1、3、5组

2、一次函数的图像是什么?
3、如图,求一次函数的图像对应的函
数表达式。

思考:一次函数表达式可以转化为二元
一次方程吗?一次函数图像上的点与二。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.6 二元一次方程与一次函数(二)一、教材分析《二元一次方程与一次函数》是义务教育课程标准北师大版实验教科书八年级(上)第七章《二元一次方程组》第六节,本节内容安排了2个学时完成,本节课为第2学时.主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。

二、学情分析学生已经熟练掌握了二元一次方程组的解法,同时在第六章也学习了确定一次函数的表达式的基本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图像法上停留,因为图像法很直观,容易接受,因此本节课对代数方法的渗透应有一个循序渐进的过程.三、目标分析教学目标知识与技能目标1.理解作函数图像的方法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系.过程与方法目标:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略.2.在对作图像解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化.3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.情感与态度目标:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验.教学重点利用二元一次方程组确定一次函数的表达式.教学难点建立数形结合的思想.四、教法学法1.教学方法启发引导与自主探究相结合.2.课前准备教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本,坐标纸.五、教学过程本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.第一环节复习引入内容:(1)二元一次方程组与一次函数有何联系?(2) 二元一次方程组有哪些解法?意图:通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图像的交点坐标;反之,两个一次函数图像的交点也是它们所对应的二元一次方程组的解;所以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方法的多样性和知识之间是互相联系的,为后面利用作图像方法和代数方法解决议一议的问题作铺垫.效果:回忆旧知,为本节课学习新的知识做铺垫.第二环节设计实际问题情境,导入新课内容:教材议一议A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.1小时后乙距离A 地80千米;2小时后甲距离A 地30千米.问经过多长时间两人将相遇?意图:通过实际问题情景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图像方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系. 通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。

效果:通过引例的分组探索,深刻理解图像方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.第三环节 典型例题,探究一次函数解析式的确定内容:例1 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1) 写出y 与x 之间的函数表达式;(2) 旅客最多可免费携带多少千克的行李?解:(1)设b kx y +=,根据题意,可得方程组⎩⎨⎧+=+=.9010,605b k b k 解该方程组,得⎪⎩⎪⎨⎧-==.5,61b k 所以.561-=x y(2)当x =30时,y =0.所以旅客最多可免费携带30千克的行李.例 2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1) 分别写出当0≤x ≤15和x >15时,y 与x 的函数关系式;(2) 若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?解:(1)当0≤x ≤15时,设x k y 1=,根据题意得11527k =,解得591=k所以当0≤x ≤15时,x y 59=;当x >15时,设b x k y +=2,根据题意,可得方程组⎩⎨⎧+=+=.2039,152722b k b k 解这个方程组,得⎪⎩⎪⎨⎧-==.9,5122b k所以当x >15时,9512-=x y . (2)当x =10时,代入x y 59=中,得y =18. 当y =51时,代入9512-=x y 中,得x =25.意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图像提供的信息,补充例2主要是承接第六章,一次函数图像的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.效果:通过两个例题的讲解,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的一般步骤与方法,使学生有知识迁移的基础.第四环节 练习与提高内容:1. 图中的两条直线1l ,2l 的交点坐标可以看做方程组 的解答案:⎩⎨⎧-=-=+.12,4y x y x 2. 在弹性限度内,弹簧的长度y (厘米)是所挂 物体质量x (千克)的一次函数.当所挂物体的质量 为1千克时弹簧长15厘米;当所挂物体的质量为3 千克时,弹簧长16厘米.写出y 与x 之间的函数关 系式,并求当所挂物体的质量为4千克时弹簧的长度.答案:5.145.0+=x y当x =4是,y =5.163. 教材例2的再探索: 我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶,如图所示,1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.当时间t 等于多少分钟时,我边防快艇B 能够追赶上A 。

答案:直线1l 的解析式:x y 531=,直线2l 的解析式:6512+=x y15分钟意图:通过练习1,强化函数与方程的关系,同时也是利用二元一次方程组确定一次函数解析式这一方法的训练;练习2是配合例1出的一个练习,目的是强化本节知识的重点“利用二元一次方程组确定一次函数解析式”;练习3是第六章“一次函数图像的应用”一节中的例2,目的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的.1l2l效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.第五环节课堂小结内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:b≠k;=()0y+kx2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.意图和效果:让学生对本节课的内容作概括的归纳与整理.第六环节布置作业习题7·8六、课后反思(1)设计理念事物之间是存在普遍联系的,研究二元一次方程组与一次函数之间的关系应证了辨证唯物主义的这一观点.同时利用二元一次方程组解决一次函数问题也是初中阶段数学学习的一个重要内容.教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.通过一个具体的例子,让学生掌握用二元一次方程组解决一次函数问题的一般步骤与方法.(2)突出重点、突破难点的策略本节课是二元一次方程组和一次函数关系的第二节课,主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题,关于这方面的练习,以老师的讲解为主,在此基础上,还要让学生动手、动脑去解决问题,在技能上作出强化.作为第二节课,在内容上要让学生进一步理解它们之间的联系的同时,要让学生理解为什么要用二元一次方程组去求解一次函数的解析式的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解图像方法和代数方法解决问题的优点和缺点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,让学生理解解决问题方法的多样性的,结合函数的图像,进一步理解数形结合的思想在数学学习中的重要性.(3)评价方式根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对问题的理解水平和解决过程中的表述水平,关注的是学生对基本知识技能的掌握情况和应用二元一次方程组解决一次函数的解析式的相关问题的提高.教学中可通过学生对“做一做”的探究情况和学生对反馈练习的完成情况分析学生的认识状况和解决问题的意识和能力水平.对于学生的回答教师应给予恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能.附:板书设计。

相关文档
最新文档