[历年真题]2014年湖南省高考数学试卷(文科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年湖南省高考数学试卷(文科)

一、选择题(共10小题,每小题5分,共50分)

1.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()

A.∃x0∈R,x02+1>0 B.∃x0∈R,x02+1≤0

C.∃x0∈R,x02+1<0 D.∀x0∈R,x02+1≤0

2.(5分)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()

A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}

3.(5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()

A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P3

4.(5分)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()A.f(x)=B.f(x)=x2+1 C.f(x)=x3D.f(x)=2﹣x

5.(5分)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A.B.C.D.

6.(5分)若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21 B.19 C.9 D.﹣11

7.(5分)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()

A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6]

8.(5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()

A.1 B.2 C.3 D.4

9.(5分)若0<x1<x2<1,则()

A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1

C.x2>x1D.x2<x1

10.(5分)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()

A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]

二、填空题(共5小题,每小题5分,共25分)

11.(5分)复数(i为虚数单位)的实部等于.

12.(5分)在平面直角坐标系中,曲线C:(t为参数)的普通方程为.13.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为.

14.(5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是.

15.(5分)若f(x)=ln(e3x+1)+ax是偶函数,则a=.

三、解答题(共6小题,75分)

16.(12分)已知数列{a n}的前n项和S n=,n∈N*.

(Ⅰ)求数列{a n}的通项公式;

(Ⅱ)设b n=+(﹣1)n a n,求数列{b n}的前2n项和.

17.(12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:

(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),

(,b),(a,),(,),(a,b),(a,),(,b)(a,b)

其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;

(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.

18.(12分)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.

(Ⅰ)证明:AB⊥平面ODE;

(Ⅱ)求异面直线BC与OD所成角的余弦值.

19.(13分)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.

(Ⅰ)求sin∠CED的值;

(Ⅱ)求BE的长.

20.(13分)如图,O为坐标原点,双曲线C1:﹣=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P(,1),且以C1的两个顶点和C2的两个焦

点为顶点的四边形是面积为2的正方形.

(Ⅰ)求C1、C2的方程;

(Ⅱ)是否存在直线l,使得l与C1交于A、B两点,与C2只有一个公共点,且|+|=||?证明你的结论.

21.(13分)已知函数f(x)=xcosx﹣sinx+1(x>0).

(Ⅰ)求f(x)的单调区间;

(Ⅱ)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.

2014年湖南省高考数学试卷(文科)

参考答案与试题解析

一、选择题(共10小题,每小题5分,共50分)

1.(5分)(2014•湖南)设命题p:∀x∈R,x2+1>0,则¬p为()

A.∃x0∈R,x02+1>0 B.∃x0∈R,x02+1≤0

C.∃x0∈R,x02+1<0 D.∀x0∈R,x02+1≤0

【分析】题设中的命题是一个特称命题,按命题否定的规则写出其否定即可找出正确选项

【解答】解∵命题p:∀x∈R,x2+1>0,是一个特称命题.

∴¬p:∃x0∈R,x02+1≤0.

故选B.

【点评】本题考查特称命题的否定,掌握其中的规律是正确作答的关键.

2.(5分)(2014•湖南)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}

【分析】直接利用交集运算求得答案.

【解答】解:∵A={x|x>2},B={x|1<x<3},

∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.

故选:C.

【点评】本题考查交集及其运算,是基础的计算题.

3.(5分)(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()

A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P3

【分析】根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论.

相关文档
最新文档