指数与指数函数专题复习
高考数学——指数与指数函数考点复习
∴t≥1,
9
∴0<y≤( 1 )1, 2
故所求函数的值域为 (0, 1 ]. 2
6.若关于 x 的不等式 2x+1 − 2−x − a > 0 的解集包含区间 (0,1) ,则 a 的取值范围为
A.
−∞,
7 2
C.
−∞,
7 2
B. (−∞,1] D. (−∞,1)
考点冲关
−1
1.计算: 2x 3
【答案】C 【解析】当 x=1 时,y=a1-a=0,所以 y=ax-a 的图象必过定点(1,0),结合选项可知选 C.
2.函数
( 且 )与函数
A.
在同一个坐标系内的图象可能是 B.
6
C.
D.
考向三 指数函数单调性的应用
1.比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断; (2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断; (3)对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较.
4
(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. (5)有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算. (6)将根式化为指数运算较为方便,对于计算的结果,不强求统一用什么形式来表示.如果有特殊要求,
要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.
形如 y = a f (x) 的函数的定义域就是 f (x) 的定义域. 求形如 y = a f (x) 的函数的值域,应先求出 f (x) 的值域,再由单调性求出 y = a f (x) 的值域.若 a 的范
指数对数幂函数知识点汇总
指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。
高考数学复习考点知识与结论专题讲解10 指数运算及指数函数
高考数学复习考点知识与结论专题讲解高考数学复习考点知识与结论专题讲解第10讲、指数运算及指数函数指数运算及指数函数通关一通关一、、根式的概念和性质根式的概念和性质通关二通关二、、指数函数(xy a a =>0图像定义域 值域 奇偶性 对称性 过定点 单调性 在函数值的变化情况当0x <时,y 底数对图像的影响 指数函数在同一坐标系图所示,其中①在y 轴右侧,图像从②在y 轴左侧,图像从0,且1)a ≠的图像与性质的图像与性质0<a <1 a >R (0,+∞) 非奇非偶函数函数y =a -x 与y =a x的图像关于y 轴对称 过定点(0,1),即x =0时,y =1R 上是减函数在R 上是增1;>当0x >时,01y <<当0x >时,y >坐标系中的图像的相对位置与底数大小关系如01c d <<<a b <<.图像从上到下相应的底数由大变小; 图像从下到上相应的底数由大变小.>1上是增函数 1;当0x <时,0<y <1结论一结论一、、指数基本运算指数基本运算当0,0a b >>时,有:①(,)m n m na a a m n +⋅=∈R ;②(,)mm n n a a m n a −=∈R ;③()(,)n m mn a a m n =∈R ; ④()()m m m ab a b m =∈R ;⑤1()p p a p a−=∈Q;⑥)*,m n a m n =∈N . 【例1】化简并求值.(1)293425)−×11113342a b a b −【解析】(1)9222933431033422125)255252−−−− ×=××=×=;112232335433111271111233333342a b a b a b a ab b ab a b a b a b a b −−−⋅ ====⋅⋅. 【变式】化简并求值.(1)若2,4a b ==1a b ÷+−的值; (2)若11223x x−+=,求33222232x x x x −−+−+−的值;(3)设()11*201420142nna n −−=∈N,求)na 的值.1a b ÷−=−−==2,4a b====当时,原式12===.(2)先对所给条件等价变形:()21133111212222222327,13618x x x x x x x x x x−−−−−+=+−=−=+=++−=×=, ()2221227247x x x x−−+=+−=−=.故3322223183124723x xx x−−+−−==+−−.(3)因为11201420142n na−−=,所以21122014201412n na−++=a−= 1111112014201420142014220142014222n n n n nn−−−−+−×−==.所以)n a−=1120142014nn−=.结论二结论二、、指数比较大小指数比较大小1.对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;2.对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断;3.对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较.【例2】设232555322,,555a b c===,则,,a b c的大小关系是()A.a c b>> B.a b c>> C.c a b>> D.b c a>>【答案】A【解析】对于函数25xy=,在其定义域上是减函数.因为3255>,所以32552255 < ,即b c <.在同一平面直角坐标系中画出函数35x y = 和函数25xy=的图像,可知22553255 > ,即a c >.从而a c b >>.故选A. 【变式】若221m n >>,则(). A.11m n> B.1122log log m n >C.ln()0m n −>D.1m n π−>【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得m n >.因为,m n 的符号不确定,所以当0,0m n <<时,可排除A,B 选项;当3,12m n ==时,可排除C 选项;由指数函数的性质可判断1m n π−>正确.故选D.结论三结论三、、指数函数过定点指数函数过定点指数函数(01)x y a a a =>≠且的图像恒过点1(0,1),(1,),(1,a a−,且函数的图像经过第一、二象限.【例3】函数1()2(0,1)x f x a a a +=−>≠的图像必过定点__________. 【答案】(1,1)−−【解析】1()2(0,1)x f x a a a +=−>≠,令10x +=,则1x =−. 当1x =−时,(1)f −112121a −+=−=−=−,所以()f x 必过点(1,1)−−.【变式】已数函数24()1(0x f x a a −=−>且1)a ≠的图像恒过定点(,)P m n ,则m =__________.n =__________.【答案】2,0【解析】令240x −=,求得2,0x y ==,图像经过定点(2,0),即2,0m n ==.结论四结论四、、底数a 对指数函数图像的影响对指数函数图像的影响1.底数a 与1的大小关系决定了指数函数图像的“升降”:当1a >时,指数函数的图像“上升”;当01a <<时,指数函数的图像“下降”.2. 底数的大小决定了图像相对位置的高低:不论是1a >还是01a <<,在第一象限内,自上向下,图像对应的指数函数的底数逐渐变小.3. 作直线1x =所给指数函数图像相交,交点的纵坐标为该指数函数的底数, 由此可判断多个指数函数底数的大小关系.4. (01)x y a a a =>≠且在第一象限的图像, a 越大, 图像越靠近y 轴; a 越小, 图像越靠近x 轴.【例4】右图是指数函数(1) ,(2)x x y a y b ==, (3) x y c =, (4) x y d =的图像,则,,,a b c d 与1的大小关系为(). A.1a b c d <<<< B.1b a d c <<<<C.1a b c d <<<<D.1a b d c <<<<【答案】B.【解析】有图像可知③④的底数必大于1,①②的底数必小于1,过点(1,0)作直线1x =, 在第一象限内分别与各曲线相交, 由图像可知1,1d c b a <<<<, 从而可得,,,a b c d 与1的大小关系为1b a d c <<<<.【变式】已知函数11()2x f x b −=+的图像不经过第一象限,则实数b 的取值范围是().A.1b <−B.1b −…C.2b −…D.2b <− 【答案】C【解析】因为函数()f x 为减函数, 所以若函数11()2x f x b −=+的图像不经过第一象限,则满足(0)20f b =+…, 即2b −….故选C .结论五结论五、、指数数数单调指数数数单调若1,x a y a >=在R 上是增函数;若01,x a y a <<=在R 上是増函数.要点诠释:指数增减要看清,抓着底数不放松,反正底数大于零,不等于1已表明. 底数若是大于1 , 图像从下向上增;底数0 到1之间,图像从上往下减. 无论函数增和减,图像都过(0,1)点. 【例5】函数(0x y a a =>且1)a ≠在[1,2]上的最大值比最小值大2a,则a 的值是__________. 【答案】12或32【解析】当01a <<时,函数x y a =在[1,2]上单调递减,故在[1,2]上的最大值为a ,最小值为2a , 则22a a a −=, 得22a a =.又01a <<,所以12a =.当1a >时,函数x y a =在[1,2]上单调递增,故在[1,2]上的最大值为2a , 最小值为a , 那么22a a a −=, 得232a a =.又1a >, 所以32a =.综上,a 的值是12或32.【变式】函数x y a =在[0,1]上的最大值与最小值的和为 3 , 则a 等于().A.12B. 2C. 4D.14【答案】B【解析】解法一:当1a >时, x y a =为单调递增函数, 在[0,1]上的最值分别为maxy min (1),(0)1f a y f ====, 所以13a +=, 解得21a =>.当01a <<时, x y a =为单调递减函数,在[0,1]上的最值分别为max min (0)1,y f y ===(1)f a =, 所以13a +=, 解得21a =>, 这与01a <<矛盾. 综上, 2a =. 故选B .解法二:因为x y a =是单调函数, 所以x y a =必在区间[0,1]的端点处取得最大值和最小值,因此13a +=, 从而2a =. 故选B .。
人教高中数学必修二B版《指数与指数函数》指数函数、对数函数与幂函数说课复习(指数函数的性质与图像)
5 -3
8
与 1;
.
分析:若两个数是同底指数幂,则直接利用指数函数的单调性比
较大小;若不同底,一般用中间值法.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
3
4
解:(1)∵0< <1,
3
∴y= 4 在定义域 R 内是减函数.
3 -1.8
3 -2.6
又∵-1.8>-2.6,∴
<
.
4
4
5
(2)∵0< <1,
1
(a>0,且
a≠1)的图像关于 y 轴对
称,分析指数函数 y=ax(a>0,且 a≠1)的图像时,需找三个关键
点:(1,a),(0,1),
1
-1,
.
③指数函数的图像永远在 x 轴的上方.当 a>1 时,图像越接近于
y 轴,底数 a 越大;当 0<a<1 时,图像越接近于 y 轴,底数 a 越小.
解:因为y=(a2-3a+3)ax是指数函数,
所以
2 -3 + 3 = 1,
> 0,且 ≠ 1,
所以 a=2.
解得
= 1 或 = 2,
> 0,且 ≠ 1,
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
当堂检测
反思感悟1.判断一个函数是指数函数的方法:
(1)看形式:即看是否符合y=ax(a>0,a≠1,x∈R)这一结构形式.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
指数与指数函数考点总结课件)-2025年高考数学一轮复习
a>0时,t为
任意实数
时,at都是一个确定的实数.因此,当
时,可以认为实数指数幂at都有意义.
3.指数函数的图像和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图像
图像
在x轴 上方
,过定点
(0,1)
特征 当x逐渐增大时,图像 逐渐下降
当x逐渐增大时,图
像
逐渐上升
函
数
y=ax(a>0,且a≠1)
∈A.
(1)求集合 A;
(2)求函数 f(x)的值域.
解
(1)由题意知 9x-4·3x+3≤0,则(3x)2-4·3x+3≤0,
即(3x-1)·(3x-3)≤0,
即 1≤3x≤3,解得 0≤x≤1,
故集合 A={x|0≤x≤1}.
3
3
(2)f(x)=4-x-3·2-x-1+1=(2-x)2- ·2-x+1,令 t=2-x,则 f(x)可化为 g(t)=t2- t+1.
1
由题可知 g(t)>0 在 t>0 时恒成立,即 t +(k+1)t+1>0 对 t>0 恒成立,即 k>-(t+ )-1 对 t>0 恒成立,
t
2
1
∵t+ ≥2
t
1
1
t· =2,当且仅当 t= ,即 t=1 时,等号成立,
t
t
1
∴-(t+ )-1≤-3,
t
∴k>-3.
7.[山西临汾一中 2021 高一期中]已知不等式 9x-4·3 x+3≤0 的解集为 A,函数 f(x)=4-x-3·2-x-1+1,x
2
2
1
高中数学总复习 指数运算与指数函数
1 3
15
a6b6
211
9a 3 2 6
115
b2 3 6
=-9a(a>0,b>
0),所以B正确;
1 11
对于 C, 3 9= 93 =96 =33=3 3,所以 C 正确;
对于D,因为(x+x-1)2=x2+2+x-2=4,所以x+x-1=±2,所以D错
误.
题型二 指数函数的图象及应用
例2 (1)(多选)已知实数a,b满足等式3a=6b,则下列可能成立的关系式为
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1) 4 -44=-4.( × ) (2)2a·2b=2ab.( × ) (3)指数函数y=ax与y=a-x(a>0,且a≠1)的图象关于y轴对称.( √ ) (4)若am<an(a>0,且a≠1),则m<n.( × )
自主诊断
2.已知函数y=a·2x和y=2x+b都是指数函数,则a+b等于
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
原式=
81 16
1
2-2×
64 27
2 3
-2+342
1
2
=
3 2
4
2
-2×
3 4
3
3-2+196
=94-2×196-2+196=94-98-2+196=-156.
(2)2 3×33 1.5×6 12.
1
原式=2
1
32
3
3 2
3
(22
3)
1 6
11
1 11
6 2 3 3 32 3 6
43
a3 4
25
第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练
第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。
高考数学一轮复习课件25指数与指数函数
-20-
考点1
考点2
考点3
C
解析:因为y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.
又c=1.50.6>1,所以b<a<c.
-21-
考点1
考点2
考点3
考向2 解简单的指数方程或指数不等式
例 4(2019 上海青浦区高三一模)不等式2
为 (-2,3)
.
2 -4-3
3
D,x =
1
1
3
=
1
3
x
-4
=
3
4
=
4
y 3
x
,故 C 正确;对于
,故 D 错误.故选 ABD.
-14-
考点1
考点2
考点3
指数函数的图象及其应用
D
D
[-1,1]
-15-
考点1
考点2
考点3
1
1
解析:(3)[-1,1] (1)函数 y=ax- 是由函数 y=ax 的图象向下平移 个单
值域不可能为R),故a的值为0.
-24-
考点1
考点2
考点3
解题心得1.比较两个指数幂的大小时,尽量化为同底或同指.当底
数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,
底ห้องสมุดไป่ตู้不同时,构造同一幂函数,然后比较大小;当底数、指数均不同
时,可以利用中间值比较.
2.解决简单的指数方程或不等式的问题主要利用指数函数的单
1
A.0<a<
2
<a<1
<a<3
高中数学总复习:指数与指数函数
目录
高中总复习·数学(提升版)
解题技法
指数方程或不等式的解法
(1)解指数方程或不等式的依据:① af ( x )= ag ( x )⇔ f ( x )= g
( x );② af ( x )> ag ( x ),当 a >1时,等价于 f ( x )> g
( x );当0< a <1时,等价于 f ( x )< g ( x );
目录
高中总复习·数学(提升版)
2. (多选)已知实数 a , b 满足等式2 a =3 b ,下列关系式中可能成立
的是(
)
A. 0< b < a
B. a < b <0
C. b < a <0
D. a = b
目录
高中总复习·数学(提升版)
解析:
作出函数 y =2 x 与函数 y =3 x 的图象(如图),当
第五节 指数与指数函数
1. 通过对有理数指数幂 ( a >0,且 a ≠1; m , n 为整数,且 n >
0)、实数指数幂 ax ( a >0,且 a ≠1; x ∈R)含义的认识,了解
指数幂的拓展过程,掌握指数幂的运算性质.
2. 通过具体实例,了解指数函数的实际意义,理解指数函数的概念.
2
2
2
A. b > c > a
B. b > a > c
C. c > b > a
D. c > a > b
−(−1)2
,记 a = f
)
目录
高中总复习·数学(提升版)
解析:函数 f ( x )=
−(−1)2
是由函数 y =e u 和 u =-( x -1)2
复合而成的复合函数, y =e u 为R上的增函数, u =-( x -1)2在
高考复习课件:指数与指数函数
3 2
3 2 1 2
.
【解析】≧ m 2 m 2 4, m m1 2 16, ≨m+m-1=14,
m m
1 2 3 2 3 2
1
1
m m m m m m 1 1 14 1 15.
1 2
(m m ) m m 1 1
判断下面结论是否正确(请在括号中打“√”或“×”).
(1) 1 4 1 2 1. (
2 1
)
(2)函数y=a-x是R上的增函数.(
)
)
1 (3)函数 y a x 2 (a>1)的值域是(0,+∞).(
(4)函数y=2x-1是指数函数.(
)
【解析】(1)错误.底数为负数时,指数不能约分. (2)错误.当a>1时函数是R上的减函数,当0<a<1时函数是 R上的增函数. (3)错误.因为x2+1≥1,所以y≥a,即值域为[a,+≦). (4)错误.y 2 x 1 1 2x , 不符合指数函数的定义.
amn ②(am)n=___; a mb m ③(ab)m=____. 2.指数函数的概念 y=ax(a>0,a≠1) (1)解析式:_______________. x (2)自变量:__.
R (3)定义域:__.
3.指数函数的图像与性质 a>1 0<a<1
图像
a>1 R (1)定义域:__
0<a<1
运用指数幂的运算性质来解答.
【提醒】运算结果不能同时含有根号和分数指数,也不能既有
分母又含有负指数.
【变式训练】(1)计算下列各题:
① a
3 9 2
第3章+第5讲+指数与指数函数2024高考数学一轮复习+PPT(新教材)
5.函数y=ax-a-1(a>0,且a≠)的图象可能是( )
解析 函数 y=ax-1a是由函数 y=ax 的图象向下平移1a个单位长度得到 的,A 显然错误;当 a>1 时,0<1a<1,平移距离小于 1,所以 B 错误;当 0<a<1 时,1a>1,平移距离大于 1,所以 C 错误.故选 D.
1. 3
6
4 6 a9
3 a94=________.
答案 a4
解析 原式=[(a96)13]4[(a93)16]4=a2·a2=a4.
解析 答案
2.已知 3a+2b=1,则9a·33ab=________.
答案 3
解析
因为
3a
+
2b
=
1
,
所
以
3 2
a
+
b
=
1 2
,
所
以
原
式
=
= 3.
解析 答案
3.化简: 解
解析 答案
6 . 若 曲 线 |y| = 2x + 1 与 直 线 y = b 没 有 公 共 点 , 则 b 的 取 值 范 围 是 ________.
答案 [-1,1] 解析 曲线|y|=2x+1与直线y=b如图所示,由图象可得,如果曲线|y| =2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].
解析 答案
8.若0<a<b<1,x=ab,y=ba,z=bb,则x,y,z的大小关系为( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x
解析 因为0<a<b<1,所以f(x)=bx单调递减,故y=ba>z=bb;又幂函 数g(x)=xb单调递增,故x=ab<z=bb,则x,y,z的大小关系为x<z<y.
3.4指数与指数函数课件高三数学一轮复习
考点三指数函数的性质的应用 考情提示 指数函数的性质及应用是高考的命题热点,多以选择题或填空题的形式呈现,重 点考查比较大小、解方程或不等式、求值域等问题,难度中档或以下.
解题技法
第三章 函数及其应用
第四节 指数与指数函数
必备知识·逐点夯实 核心考点·分类突破
【课标解读】 【课程标准】 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数的实际意义,理解指数函数的概念. 3.会画出具体指数函数的图象,理解指数函数的单调性与特殊点. 【核心素养】 数学抽象、逻辑推理、数学运算.
(0,1)∪(1,+∞)
核心考点·分类突破
1
-10y
47
解题技法 指数幂的运算
(1)运算顺序:有括号先算括号内的,无括号先进行指数的乘方、开方,再乘除后加 减,底数是负数的先确定符号. (2)运算基本原则:①化负指数为正指数;②化根式为分数指数幂;③化小数为分数, 化带分数为假分数.
由图象知,其在(-∞,0]上单调递减,所以实数k的取值范围为(-∞,0].
解题技法 有关指数函数图象问题的解题思路
(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若 不满足则排除; (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、 伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论; (3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求 解; (4)根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.
指数与指数函数高考复习试题与答案详细解析
指数及指数函数高考复习题1若点(a,9)在函数y =3x的图象上,则tana π6的值为( )A .0 B.33C .1 D. 3 2函数164x y =-的值域是 ( )(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4)3设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是( )(A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a4下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是 ( )(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数5.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a6已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )A.124 B.112 C.18 D.387. 不等式4x -3·2x +2<0的解集是( )A .{x |x <0}B .{x |0<x <1}C .{x |1<x <9}D .{x |x >9}8.若关于x 的方程|a x-1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围是( )A .(0,1)∪(1,+∞) B.(0,1) C .(1,+∞) D.(0,12)9(理)函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A .(-1,+∞)B .(-∞,1)C .(-1,1)D .(0,2)10(理)若函数y =2|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是( )A .m ≤-1B .-1≤m <0C .m ≥1D .0<m ≤111.函数f (x )=x 12 -(12)x的零点个数为( )A .0B .1C .2D .312(理)已知函数⎩⎨⎧>≤--=-7,7,3)3()()6(x ax x a x f x 若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .[94,3)B .(94,3) C .(2,3) D .(1,3)13.设函数f (x )=|2x-1|的定义域和值域都是[a ,b ](b >a ),则a +b 等于( )A .1B .2C .3D .414.已知函数⎪⎩⎪⎨⎧>-≤=1),1(log 1,)21()(2x x x x f x,则f (x )≤12的解集为________.15.若函数⎪⎪⎩⎪⎪⎨⎧>≤=0,10,)31()(x xx x f x则不等式|f (x )|≥13的解集为________. 16.函数y =a x +2012+2011(a >0且a ≠1)的图象恒过定点________.17.设f (x )是定义在实数集R 上的函数,满足条件y =f (x +1)是偶函数,且当x ≥1时,f (x )=2x-1,则f (23)、f (32)、f (13)的大小关系是________.18.若定义运算a *b =⎩⎪⎨⎪⎧aa <b ,b a ≥b ,则函数f (x )=3x *3-x的值域是________.19.定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]的长度的最大值为______,最小值为______.20.设函数f(x)=,求使f(x)≥2 的x 的取值范围.21.(文)(2011·上海吴淞中学月考)已知函数f (x )=a ·2x +a -22x+1是奇函数.(1)求a 的值;(2)判断函数f (x )的单调性,并用定义证明;(3)求函数的值域.22.(文)已知f (x )是定义在R 上的奇函数,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,1)上的解析式; (2)证明:f (x )在(0,1)上是减函数.[]的值,求实数上的最大值是在函数且设a a a y a a x x 141,1-12,10.232-+=≠24.已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性; (3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.指数及指数函数高考复习题答案1[答案] D[解析] 由点(a,9)在函数y =3x图象上知3a=9,即a =2,所以tan a π6=tan π3= 3. 2解析:[)40,0164161640,4x x x >∴≤-<∴-∈3.A 【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
高三数学一轮复习知识点讲解3-5指数与指数函数
高三数学一轮复习知识点讲解专题3.5 指数与指数函数【考纲解读与核心素养】1.了解指数幂的含义,掌握有理指数幂的运算。
2.理解指数函数的概念,掌握指数函数的图象、性质及应用.3.了解指数函数的变化特征.4.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等.5. 高考预测:(1)指数幂的运算;(2)指数函数的图象和性质的应用;(3)与指数函数相关,考查视图用图能力、数形结合思想的应用、函数单调性的应用、运算能力等6.备考重点:(1)有理指数幂的运算;(2)指数函数单调性的应用,如比较函数值的大小;(3)图象过定点;(4)底数分类讨论问题.【知识清单】1.根式和分数指数幂1.n次方根2.根式(1)概念:式子na叫做根式,其中n叫做根指数,a叫做被开方数.(2)性质:①(na)n=a.②na n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数.3.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s=a r +s;(a r )s =a rs ;(ab )r =a r b r,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象和性质(1)概念:函数y =a x(a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1当x <0时,y >1; 当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数【典例剖析】高频考点一 根式、指数幂的化简与求值 【典例1】化简3234[(5)]-的结果为( )A .5B .C .﹣D .﹣5【答案】B【解析】3234[(5)]-===,故选B【典例2】计算:.【答案】12.【解析】分析:直接利用指数幂的运算法则求解即可,求解过程注意避免计算错误.详解:.【规律方法】化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.【变式探究】1.计算:1.5-13×76⎛⎫-⎪⎝⎭0+80.25×42+(32×3)6-2323⎛⎫⎪⎝⎭【答案】110【解析】原式=11313323442222232108110 33⎛⎫⎛⎫⨯⨯=+=⎪ ⎪⎝⎭⎝⎭++-.2.计算:1332-⎛⎫⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148×42-2323⎛⎫-⎪⎝⎭=________.【答案】2【解析】原式=1323⎛⎫⎪⎝⎭×1+342×142-13223⎛⎫=⎪⎝⎭.【易错提醒】1.根式:(1)任何实数均有奇次方根,仅有非负数才有偶次方根,负数没有偶次方根.(2)n0=0(n>1,且n∈N*).(3)有限制条件的根式化简的步骤2.有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.3.把根式na m 化成分数指数幂的形式时,不要轻易对m n进行约分,否则,有时会改变a 的取值范围而导致出错,如8a 2,a ∈R ,化成分数指数幂应为a 28 ,a ∈R ,而a 14 =4a ,则有a ≥0,所以化简时,必须先确定a的取值范围.4.结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂. 高频考点二:根式、指数幂的条件求值【典例3】已知则的值为__________.【答案】【解析】题意,∴,∴,故答案为.【典例4】设11223x x -+=,求1x x -+ 的值.【答案】7 【解析】11223x x-+=,21112222327x x x x --⎛⎫∴+=+-=-= ⎪⎝⎭.【总结提升】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是: (1)审题:从整体上把握已知条件和所求代数式的形式和特点; (2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如,,,解题时要善于应用公式变形.【变式探究】 已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++ 【答案】(1)7;(2)47;(3)6. 【解析】(1)将11223a a-+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=.(3)由(1)(2)可得22114716.171a a a a --+++==+++ 高频考点三:指数函数的概念【典例5】若y =(a 2-3a +3)a x 是指数函数,则有 ( ) A .a =1或2 B .a =1 C .a =2 D .a >0且a ≠1【答案】C【解析】由题意,得⎩⎪⎨⎪⎧a 2-3a +3=1a >0a ≠1,解得a =2,故选C. 【规律方法】判断一个函数是否是指数函数,关键是看解析式是否符合y =a x (a >0,a ≠1)这一结构形式. 【变式探究】若函数y =(m -2)a x +3-2n (a >0,且a ≠1)是指数函数,则k = ,b = . 【答案】3,32.【解析】由题意,得⎩⎪⎨⎪⎧m -2=13-2n =0,∴⎩⎪⎨⎪⎧m =3n =32.高频考点四:指数函数的图象【典例6】(2019·贵州省织金县第二中学高一期中)函数21()x f x a -=(0a >且1)a ≠过定点( )A .(1,1)B .1(,0)2C .(1,0)D .1(,1)2【答案】D 【解析】令12102x x -=⇒=,所以函数21()x f x a-=(0a >且1)a ≠过定点1(,1)2. 【典例7】(2019·华东师大二附中前滩学校高三月考)函数1(0,1)xy a a a a=->≠的图象可能是( ).A .B .C .D .【答案】D 【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A ,当1a >时,∴101a <<,所以排除B ,当01a <<时,∴11a>,所以排除C ,故选D.【总结提升】1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.识图的三种常用方法(1)抓住函数的性质,定性分析:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; ②从函数的单调性,判断图象的变化趋势; ③从周期性,判断图象的循环往复; ④从函数的奇偶性,判断图象的对称性. ⑤从函数的特征点,排除不合要求的图象. (2)抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3)根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析). 4.过定点的图象(1)画指数函数y =ax(a >0,a ≠1)的图象,应抓住三个关键点(0,1),(1,a), .特别注意,指数函数的图象过定点(0,1); (2) xy a =与xy a-=的图象关于y 轴对称;(3)当a >1时,指数函数的图象呈上升趋势,当0<a <1时,指数函数的图象呈下降趋势;简记:撇增捺减. 【变式探究】1.(2020·上海高一课时练习)函数x y a =和(1)y a x =+(其中0a >且1a ≠)的大致图象只可能是( )A .B .C .D .【答案】C 【解析】由于(1)y a x =+过点()1,0-,故D 选项错误.当1a >时,xy a =过()0,1且单调递增;(1)y a x =+过点()1,0-且单调递增,过()0,a 且1a >.所以A 选项错误.当01a <<时,xy a =过()0,1且单调递减,(1)y a x =+过点()1,0-且单调递增,过()0,a 且01a <<.所以B 选项错误.综上所述,正确的选项为C. 故选:C2.如图所示是下列指数函数的图象: (1)y =a x ;(2)y =b x ;(3)y =c x ;(4)y =d x . 则a ,b ,c ,d 与1的大小关系是 ( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c【答案】B 【解析】可先分为两类,(3)(4)的底数一定大于1,(1)(2)的底数一定小于1,然后再由(3)(4)比较,c ,d 的大小,由(1)(2)比较a ,b 的大小.当指数函数的底数大于1时,图象上升,且当底数越大,图象向上越靠近y 轴;当底数大于0小于1时,图象下降,且当底数越小,图象向下越靠近x 轴,故选B. 【特别提醒】指数函数的图象随底数变化的规律可归纳为:在第一象限内,图象自下而上对应的底数依次增大. 高频考点五:指数函数的性质及其应用【典例8】【2016新课标全国III 】已知,,,则( )A. B. C. D.【答案】A【解析】因为,,所以,故选A .【典例9】(2020·上海高三专题练习)函数22811(31)3x x y x --+⎛⎫=-≤≤ ⎪⎝⎭的值域是_________.【答案】991,33⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】设22281229t x x x =--+=-++(),31x -≤≤,∴ 当2x =- 时,t 有最大值是9;当1x = 时,t 有最小值是-9,99t ∴-≤≤ ,由函数1()3x y = 在定义域上是减函数,∴原函数的值域是99[33]-,. 故答案为99[33]-,.【典例10】(2020·上海高一课时练习)已知函数(0,1)xy a a a =>≠在区间[1,2]上的最大值比最小值大3a,求实数a 的值.【答案】43a =或23【解析】1a >时,x y a =是增函数,则23aa a -=,解得43a =(0a =舍去); 01a <<时,x y a =是减函数,则23aa a -=,解得23a =(0a =舍去).综上,43a =或23. 【典例11】(2019·黑龙江省大庆四中高一月考(文))已知函数2()(0,1,0)x f x a a a x -=>≠≥且的图像经过点(3,0.5), (1)求a 值; (2)求函数2()(0)x f x a x -=≥的值域;【答案】(1)12a =(2)0,4]( 【解析】 (1)函数()2x f x a-=的图像经过点()3,0.5320.5a -∴=12a ∴=(2)由(1)可知()()2102x f x x -⎛⎫=≥ ⎪⎝⎭1012<< ()f x ∴在[0,+∞)上单调递减,则()f x 在0x =时有最大值 ()()21042maxf x f f -⎛⎫∴=== ⎪⎝⎭又()0f x >∴函数()f x 的值域为0,4](【规律方法】1.比较幂值大小时,要注意区分底数相同还是指数相同.是用指数函数的单调性,还是用幂函数的单调性或指数函数的图象解决.要注意图象的应用,还应注意中间量0、1等的运用.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b. 规律:在y 轴右(左)侧图象越高(低),其底数越大.4.简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.5.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断.6.有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象和性质,数形结合求解.【变式探究】1.(2018年新课标I卷文)设函数,则满足的x的取值范围是()A. B. C. D.【答案】D【解析】将函数的图象画出来,观察图象可知会有,解得,所以满足的x的取值范围是,故选D.2.(2019·天津高三高考模拟)若,则函数的值域是A. B. C. D.【答案】B【解析】将化为,即,解得,所以,所以函数的值域是.故选C.3.(2019年高考北京理)设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立,则10a +=,得1a =-. 若函数()e e xx f x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立, 即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.4.(2015·山东省高考真题(理))已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 【答案】32-【解析】 若1a >,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+=,此方程组无解; 若01a <<,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=-,解得1{22a b ==-,所以32a b +=-.。
高三一轮复习 指数与指数函数 (1)
第八课时 指数与指数函数考纲要求:1.指数(B) 2.指数函数的图象与性质(B)知识梳理:1.根式(1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子 na 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的表示x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3R 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)n a n 与(na )n 都等于a (n ∈N *).( ) (2)当n ∈N *时,(n-3)n 都有意义.( )(3)分数指数幂a m n 可以理解为mn个a 相乘.( )(4)函数y =3·2x 与y =2x +1都不是指数函数.( ) (5)若a m <a n (a >0且a ≠1),则m <n .( ) 答案:(1)× (2)× (3)× (4)√ (5)×2.化简a 3b 23ab 2(a 14b 12)4a -13b 13(a >0,b >0)的结果为________.答案:ab -13.(1)23×31.5×612=________.(2)(2a 23b 12)(-6a 12b 13)÷(-3a 16b 56)=________.答案:(1)6 (2)4a4.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是________. 答案:(1,5)5.若指数函数f (x )=(a -2)x 为减函数,则实数a 的取值范围为________. 答案:(2,3)[典题1] 化简: (1)(2)解析:=49+105-105-20+1=-1679.=a ÷a =1. 注意:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.[典题2](1)函数y =a x -1a(a >0,a ≠1)的图象可能是________.(填序号)(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 解析:(1)当a >1时函数单调递增,且函数图象过点⎝⎛⎭⎫0,1-1a ,因为0<1-1a<1,故①,②均不正确;当0<a <1时,函数单调递减,且函数恒过点⎝⎛⎭⎫0,1-1a ,因为1-1a<0,所以图象可能是④.(2)曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:(1)④ (2)[-1,1][探究1] 若将本例(2)中“|y |=2x +1”改为“y =|2x -1|”,且与直线y =b 有两个公共点,求b 的取值范围.解:曲线y =|2x-1|与直线y =b 的图象如图所示,由图象可得,如果曲线y =|2x -1|与直线y =b 有两个公共点,则b 的取值范围是(0,1).[探究2] 若将本例(2)改为:函数y =|2x -1|在(-∞,k ]上单调递减,则k 的取值范围是什么?解:因为函数y =|2x -1|的单调递减区间为(-∞,0],所以k ≤0,即k 的取值范围为 (-∞,0].小结:(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.练习:1.函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是________.(填序号) ①a >1,b <0;②a >1,b >0;③0<a <1,b >0;④0<a <1,b <0.解析:由函数f (x )的图象特征知,0<a <1,又f (0)=a -b <1=a 0,所以-b >0,即b <0.答案:④2.已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有________.(填序号)解析:函数y 1=⎝⎛⎭⎫12x与y 2=⎝⎛⎭⎫13x 的图象如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b 得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 答案:③④高考常以填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:比较指数式的大小 [典题3](1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________.(2)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. 解析:(1)由f (x )=2|x -m |-1是偶函数可知m =0,所以f (x )=2|x |-1. 所以a =f (log 0.53)=2|log 0.53|-1=2log 23-1=2, b =f (log 25)=2|log 25|-1=2log 25-1=4, c =f (0)=2|0|-1=0,所以c <a <b .(2)∵y =x 25(x >0)为增函数,∴a >c .∵y =⎝⎛⎭⎫25x(x ∈R )为减函数,∴c >b ,∴a >c >b . 答案:(1)c <a <b (2)a >c >b 小结:比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.角度二:解简单的指数方程或不等式 [典题4](1)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(2)若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________. 解析:(1)当a <1时,41-a =21,∴a =12;当a >1时,代入不成立.(2)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x -4.∴f (x )=⎩⎪⎨⎪⎧2x -4, x ≥0,2-x -4,x <0,当f (x -2)>0时, 有⎩⎪⎨⎪⎧ x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.∴不等式的解集为{x |x >4或x <0}.答案:(1)12(2){x |x >4或x <0}注意:解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.角度三:指数函数性质的综合问题[典题5] 已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值. 解析:(1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ), 由于f (x )有最大值3, 所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =⎝⎛⎭⎫13g (x )的值域为(0,+∞). 应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ). 故a 的值为0. 小结:与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.练习:设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则a 的值为________.解析:令t =a x(a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a , 此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. 所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,即a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a , 此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14, 所以(a +1)2=16, 即a =-5或a =3, 又因为a >0,所以a =3.综上得a =13或a =3.答案:13或3总结: 1.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较. 2.指数函数y =a x (a >0,a ≠1)的单调性和底数a 有关,当底数a 与1的大小关系不确定时应注意分类讨论.3.底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.4.底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越高.5.与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成;而与其有关的最值问题,往往转化为二次函数的最值问题.注意:形如a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(≤0)形式,常借助换元法转化为二次方程或不等式求解,但应注意换元后“新元”的范围.课后作业:1.求值:=________.解析:原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.答案:143802.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m ,2),则m +n =________. 解析:当2x -4=0,即x =2时,y =1+n ,即函数图象恒过点(2,1+n ),又函数图象恒过定点P (m,2),所以m =2,1+n =2,即m =2,n =1,所以m +n =3.答案:33. 已知a =21.2,b =⎝⎛⎭⎫12-0.2,c =2log 52,则a ,b ,c 的大小关系为________.解析:a =21.2>21=2,b =⎝⎛⎭⎫12-0.2=215<21=2,215>20=1,故1<b <2,c =log 45<log 55=1.故c <b <a .答案:c <b <a4.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ∈[0,1],92-32x ,x ∈(1,3],当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t 的取值范围是________.解析:由题意可得,当t ∈[0,1]时,f (t )=3t ∈[30,31]=[1,3],则f (f (t ))=f (3t )=92-32×3t ,故92-32×3t ∈[0,1],解得t ∈⎣⎡⎦⎤log 373,1.答案:⎣⎡⎦⎤log 373,1 5.若存在负实数使得方程2x -a =1x -1成立,则实数a 的取值范围是________.解析:在同一坐标系内分别作出函数y =1x -1和y =2x -a 的图象,则由图知,当a ∈(0,2)时符合要求.答案:(0,2)6.已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0x 12,x >0在区间[-1,m ]上的最大值是1,则m 的取值范围是________.解析:作出函数f (x )的图象,可知当-1<m ≤1时,f (x )在[-1,m ]上的最大值是1.答案:(-1,1]7.已知x ,y ∈R ,且2x +3y >2-y +3-x ,则下列各式中正确的是________.(填序号) ①x -y >0;②x +y <0;③x -y <0;④x +y >0.解析:因为2x +3y >2-y +3-x ,所以2x -3-x >2-y -3y .f (x )=2x -3-x =2x -13x 为单调递增函数,f (x )>f (-y ),所以x >-y ,即x +y >0.答案:④8.已知函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:∵|x +1|≥0,函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),∴a >1.由于函数f (x )=a |x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).答案:f (-4)>f (1)9.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析:不等式2x (x -a )<1可变形为x -a <⎝⎛⎭⎫12x.在同一平面直角坐标系内作出直线y =x-a 与y =⎝⎛⎭⎫12x的图象.由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1.答案:(-1,+∞)10.关于x 的方程⎝⎛⎭⎫32x =2+3a5-a 有负数根,则实数a 的取值范围为________.解析:由题意,得x <0,所以0<⎝⎛⎭⎫32x<1,从而0<2+3a 5-a<1,解得-23<a <34.答案:⎝⎛⎭⎫-23,34 11.已知函数f (x )=⎩⎪⎨⎪⎧x +2,0≤x <1,2x +12,x ≥1,若a >b ≥0,且f (a )=f (b ),则bf (a )的取值范围是________.解析:作出f (x )=⎩⎪⎨⎪⎧x +2,0≤x <1,2x +12,x ≥1,的图象,如图所示.由图象知,要使f (a )=f (b )(a >b ≥0),需有12≤b <1,52≤f (a )<3.∴54≤bf (a )<3. 所以bf (a )的取值范围是⎣⎡⎭⎫54,3.答案:⎣⎡⎭⎫54,312.定义域为R 的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2)时,f (x )=⎩⎪⎨⎪⎧x 2-x ,x ∈[0,1),-⎝⎛⎭⎫12|x -32|,x ∈[1,2),若x ∈[-4,-2)时,f (x )≥t 4-12t 恒成立,则实数t 的取值范围是________.解析:当-4≤x <-3时,0≤x +4<1,故f (x )=12f (x +2)=14f (x +4)=14[(x +4)2-(x +4)],即f (x )=14(x +4)(x +3),此时-116≤f (x )≤0.当-3≤x <-2时,1≤x +4<2,故f (x )=12f (x +2)=14f (x +4)==,此时-14≤f (x )≤-28.所以f (x )在[-4,-2)上的最小值为-14.因为f (x )≥t 4-12t 恒成立,所以t 4-12t ≤-14,即t 2+t -2t ≤0,(t +2)(t -1)t≤0,解得t ≤-2或0<t ≤1.答案:(-∞,-2]∪(0,1]13.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝⎛⎭⎫1a x +⎝⎛⎭⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3,结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x .要使⎝⎛⎭⎫12x +⎝⎛⎭⎫13x≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上的最小值不小于m 即可. 因为函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上为减函数,所以当x =1时,y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎤-∞,56. 14.已知函数f (x )=12x -1+a 是奇函数.(1)求a 的值和函数f (x )的定义域;(2)解不等式f (-m 2+2m -1)+f (m 2+3)<0.解:(1)因为函数f (x )=12x -1+a 是奇函数,所以f (-x )=-f (x ),即12-x -1+a =11-2x-a ,即(1-a )2x +a 1-2x =a ·2x +1-a 1-2x ,从而有1-a =a ,解得a =12.又2x -1≠0,所以x ≠0,故函数f (x )的定义域为(-∞,0)∪(0,+∞).(2)由f (-m 2+2m -1)+f (m 2+3)<0得,f (-m 2+2m -1)<-f (m 2+3),因为函数f (x )为奇函数,所以f (-m 2+2m -1)<f (-m 2-3).由(1)可知函数f (x )在(0,+∞)上是减函数,从而在 (-∞,0)上是减函数,又-m 2+2m -1<0,-m 2-3<0,所以-m 2+2m -1>-m 2-3,解得m >-1,所以不等式的解集为(-1,+∞).15.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. 解:(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈⎣⎡⎦⎤18,1.故y =2t 2-t -1=2⎝⎛⎭⎫t -142-98,t ∈⎣⎡⎦⎤18,1,故值域为⎣⎡⎦⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,所以,a >0.综上所述,a 的取值范围是(0,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数及指数函数
(一)指数与指数幂的运算
1.根式的概念
结论:当n 是奇数时,a a n n =,当n 是偶数时,⎩
⎨⎧<≥-==)0()
0(||a a a a a a n n
2.分数指数幂
)1,,,0(*
>∈>=n N n m a a a n m n
m
)1,,,0(1
1*>∈>=
=
-
n N n m a a a
a
n
m
n
m n
m
0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r
a ·s r s
a a
+=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;
(3)()r
r
s
ab a a =),0,0(Q r b a ∈>>. (二)指数函数的概念
一般地,函数)1a ,0a (a y x
≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . (三)指数函数的图象和性质
注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
一、指数
1、化简[32
)5(-]4
3的结果为 ( ) A .5 B .5 C .-5
D .-5
2、化简1111132168421212121212-----⎛⎫⎛
⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )
A 、1
1
321122--⎛
⎫- ⎪
⎝⎭
B 、1
13212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1
321122-⎛⎫- ⎪⎝⎭
3、211
5
113
3
66
2
2
1()(3)()=3
a b a b a b -÷__________.
二、指数函数
3、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )
A 、(1%)na b -
B 、(1%)a nb -
C 、[1(%)]n
a b - D 、(1%)n
a b - 4、若21
(5
)2x f x -=-,则(125)f = .
5、若21025x
=,则10x -等于( )
A 、
15 B 、15- C 、150
D 、1625 6、已知指数函数图像经过点)3,1(-p ,则=)3(f
三、指数函数的图像问题
7、若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( )
A .01>>b a 且
B .010<<<b a 且
C .010><<b a 且
D .11>>b a 且
8、函数(
)
2
()1x
f x a =-在R 上是减函数,则a 的取值范围是( )
A 、1>a
B 、2<a
C 、a <
、1a <<9、当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ( )
四、定义域与值域问题
10、求下列函数的定义域和值域 (1)121x
y =
- (2)222)31(-=x y (3)x
y 121⎪⎭
⎫
⎝⎛= (4)2
221++-⎪
⎭⎫
⎝⎛=x x y (5)1
121+-⎪
⎭
⎫
⎝⎛=x x y (6)x
x
y 212+=
11、下列函数中,值域为()+∞,0的函数是( )
x
y A 23.= 12.-=x y B 12.+=x y C x
y D -⎪
⎭
⎫
⎝⎛=221.
12、设集合2
{|3,},{|1,}x
S y y x R T y y x x R ==∈==-∈,则S T 是 ( )
A 、∅
B 、T
C 、S
D 、有限集 13、(2007重庆)若函数()1222
-=
--a
ax x
x f 的定义域为R ,则实数a 的取值范围 .
14、若函数0322
≤--x x ,求函数x x y 4222
⋅-=+的最大值和最小值.
15、如果函数)10(122≠>-+=a a a a
y x x
且在[]1,1-上的最大值为14,求实数a 的值.
16、若函数3234+⋅-=x x y 的值域为[]1,7,试确定x 的取值范围.
五、比较大小问题
17、设.)3
2(,)32(2
.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )
A. 1<<a b
B. 1<<b a
C. a b <<1
D. b a <<1
18、设,10<<<b a 则下列不等式正确的是( )
b a b a A <. b a b b B <. a a b a C <. a b a b D <.
六、定点问题
19、函数)10(33≠>+=-a a a y x 且的图象恒过定点___________.
七、单调性问题
20、函数x
x y 2221-⎪
⎭
⎫ ⎝⎛=的单调增区间为_____________
21、函数)10()(≠>=a a a x f x 且在区间]2,1[上的最大值比最小值大2
a
,则=a ________ 22、函数1
)1(22
2)(+--=x a x
x f 在区间),5[+∞上是增函数,则实数a 的取值范围是 ( )
A. [6,+)∞
B. ),6(+∞
C. ]6,(-∞
D. )6,(-∞
23、函数),0,0()(1
1b a b a b
a b a x f x
x x x ≠>>++=++的单调性为( )
A .增函数
B .减函数
C .常数函数
D .与a, b 取值有关
24、设01a <<,解关于x 的不等式22
232
223
x x x
x a a -++->.
25、 已知函数()f x x
x
-+=2
2.
(Ⅰ) 用函数单调性定义及指数函数性质证明: ()f x 是区间 ),0(+∞上的增函数; (Ⅱ) 若325)(+⋅=-x x f ,求x 的值.
26、已知函数225
13x x y ++⎛⎫= ⎪
⎝⎭
,求其单调区间及值域.
八、函数的奇偶性问题
27、如果函数)(x f 在区间[]
a
a 24,2--上是偶函数,则a =_________
28、函数21
21
x x y -=+是( )
A 、奇函数
B 、偶函数
C 、既奇又偶函数
D 、非奇非偶函数
29、若函数1
41
)(++=x a x f 是奇函数,则=a _________ 30、2()1()(0)21x
F x f x x ⎛⎫
=+
⋅≠ ⎪-⎝⎭
是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数
31、已知函数1
()(1)1
x x
a f x a a -=>+, (1)判断函数的奇偶性; (2)求该函数的值域; (3)证明()f x 是R 上的增函数.。