多模光纤和单模光纤对比分析

合集下载

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

光纤是新一代的传输介质。

因为光纤不会向外界辐射电子信号,所以使用
光纤介质的网络无论是在安全性、可靠性还是在传输速率等网络性能方面都有了很大的提高。

光纤由单根玻璃光纤、紧靠纤心的包层以及塑料保护涂层组成。

为使用光纤传输信号,光纤两端必须配有光发射机和接收机,光发射机和接收机是实现光信号和电信号的转换。

实现电光转换的通常是发光二极管(LED)或激光二极管(LD);实现光电转换的是光电二极管或光电三极管。

光纤分单模光纤和多模光纤:单模光纤是沿直线传播,多模光纤是沿折线传播。

在光纤通信理论中,光纤有单模、多模之分,区别在于:
1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相对困难
2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容易
一般有以下区别:
1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好,使用多模光纤传输时能传输较短距离。

单模光纤与多模光纤的比较分析

单模光纤与多模光纤的比较分析

单模光纤与多模光纤的比较分析光纤通信是一种以光信号传输信息的高速通信技术,而光纤则是其中最为关键的组成部分。

根据光在光纤中传播的方式不同,可以将光纤分为单模光纤和多模光纤。

本文将对单模光纤和多模光纤进行比较分析,从而更好地理解它们的特点和适用场景。

1. 光纤结构单模光纤和多模光纤在结构上存在一些差异。

单模光纤的纤芯(核心部分)较细,通常为9/125μm(直径/折射率),而多模光纤的纤芯较粗,通常为50/125μm或62.5/125μm。

另外,单模光纤的覆层(纤芯外的绝缘层)也较细,而多模光纤的覆层较厚。

2. 传输模式单模光纤和多模光纤在信号传输时采用的光模式不同。

单模光纤只传输一条光线,光信号沿直线传播,因此可以实现更远距离的传输,信号衰减较小。

而多模光纤则传输多条光线,光信号呈现多个模式,容易受到色散和衰减的影响,因此传输距离较短。

3. 传输速度由于传输模式的差异,单模光纤和多模光纤在传输速度上也存在一定的差异。

单模光纤的传输速度较高,可以达到几个Tbps(每秒百万兆位)级别,适用于高速通信和长距离传输。

而多模光纤的传输速度较低,一般在几个Gbps(每秒十亿位)级别,适用于短距离和低速通信。

4. 插入损耗插入损耗是指信号在光纤传输过程中发生的损耗,是评估光纤质量的重要指标。

单模光纤的插入损耗较低,一般在0.2dB/km以下,而多模光纤的插入损耗较高,一般在3dB/km左右。

因此,在长距离传输和高要求的应用中,单模光纤更能保证信号质量。

5. 适用场景基于以上的特点比较,单模光纤和多模光纤适用于不同的场景。

单模光纤适用于需要高速、长距离传输的应用,如国际通信、长距离电话线路和光纤到户等。

多模光纤适用于短距离和低速通信,如局域网、智能家居和电视信号传输等。

6. 总结综上所述,单模光纤和多模光纤在结构、传输模式、传输速度、插入损耗和适用场景等方面存在差异。

单模光纤适合用于高速、长距离传输,具有较低的插入损耗和较高的传输速度;而多模光纤适用于短距离和低速通信,适合一些家庭和办公场所的应用。

单模和多模光纤区别

单模和多模光纤区别

单模和多模光纤区别在光纤通信理论中,光纤有单模、多模之分,区别在于:光纤是新一代的传输介质,与铜质介质相比,光纤具有一些明显的优势。

因为光纤不会向外界辐射电子信号,所以使用光纤介质的网络无论是在安全性,可靠性还是网络性能方面都有了很大的提高。

光纤传输的带宽大大超出铜质线缆,而且光纤支持的最大连接距离达两公里以上。

是组建较大规模网络的必然选择。

现在有两种不同类型的光纤,分别是单模光纤和多模光纤。

(所谓“模”就是指以一定的角度进入光纤的一束光线)。

多模光纤使用发光二极管(LED)作为发光设备,而单模光纤使用的则是激光二极管(LD)。

多模光纤允许多束光线穿过光纤。

因为不同光线进入光纤的角度不同,所以到达光纤末端的时间也不同。

这就是我们通常所说的模色散。

色散从一定程度上限制了多模光纤所能实现的带宽和传输距离。

正是基于这种原因,多模光纤一般被用于同一办公楼或距离相对较近的区域内的网络连接。

单模光纤只允许一束光线穿过光纤。

因为只有一种模态,所以不会发生色散。

使用单模光纤传递数据的质量更高,传输距离更长。

单模光纤通常被用来连接办公楼之间或地理分散更广的网络。

总结:1、单模传输距离远2、单模传输带宽大3、单模不会发生色散,质量可靠4、单模通常使用激光作为光源,贵,而多模通常用便宜的LED5、单模价格比较高6、多模价格便宜,近距离传输可以相关光纤问题:1、光纤法兰盘是不是就是光纤的接头?2、单模光纤和多模光纤最长传输距离能达到多少?3、尾纤是不是就是光纤连接器?4、尾纤是不是也多模和单模之分?5、光缆终端盒是什么?有什么作用?6、尾纤和光缆如何连接?是不是只有尾纤才可以上odf?7、光收发器和光缆终端盒是不是同样的东西?答复:1 法兰盘是一种光纤耦合方法,是一种活接头,前提是要有尾纤。

2 单模的距离比多模的长;单模光纤比多模光纤价格便宜,但终端设备相对多模贵;反之,多模光纤比单模光纤价格贵点,但终端设备相对比单模便宜一些。

多模光纤和单模光纤区别

多模光纤和单模光纤区别

多模光纤和单模光纤区别1、多模光纤是光纤通信最原始的技术,这一技术是人类首次实现通过光纤来进行通信的一项革命性的突破。

2、随着光纤通信技术的发展,特别是激光器技术的发展以及人们对长距离、大信息量通信的迫切需求,人们又寻找到了更好的光纤通信技术----单模光纤通信。

3、光纤通信技术发展到今天,多模光纤通信固有的很多局限性愈发显得突出:①、多模发光器件为发光二极管(LED),光频谱宽、光波不纯净、光传输色散大、传输距离小。

1000M bit/s带宽传输,可靠距离为255米(m)。

100M bit/s带宽传输,可靠距离为2公里(km)。

②、因多模发光器件固有的局限性和多模光纤已有的光学特性限制,多模光纤通信的带宽最大为1000M bit/s。

4、单模光纤通信突破了多模光纤通信的局限:①、单模光纤通信的带宽大,通常可传100G bit/s以上。

实际使用一般分为155M bit/s、1.25G bit/s、2.5G bit/s、10G bit/s。

②、单模发光器件为激光器,光频谱窄、光波纯净、光传输色散小,传输距离远。

单模激光器又分为FP、DFB、CWDM三种。

FP激光器通常可传输60公里(km),DFB和CWDM 激光器通常可传输100公里(km)。

5、数字式光端机采用视频无压缩传输技术,以保证高质量的视频信号实时无延迟传输并确保图像的高清晰度及色彩纯正。

这种传输方式信息数据量很大,4路以上视频的光端机均采用1.25G bit/s以上的数据流传输。

8路视频的数据流高达1.5G bit/s。

因多模光纤最大带宽仅为1G bit/s,如果采用多模光纤传输,势必造成信息丢失、视频图像出现大量雪花甚至白斑、数据控制失常。

另一个致命的因素就是传输距离的限制,多模光纤1G bit/s带宽的传输距离理论上是255米(m),如果考虑到光链路损耗,实际距离还要小几十米。

6、从单模光纤通信技术诞生之日起,就意味着多模光纤通信方式的淘汰。

光纤单模与多模的区别

光纤单模与多模的区别

单模光纤只有单一的传播路径,一般用于长距离传输,多模光纤有多种传播路径,多模光纤的带宽为50MHz~500MHz/Km,单多模光纤多用于传输速率相对较低,传输距离相对较短的网络中,如局域网等,这类网络中通常具有节点多,接头多,弯路单模传输与多模传输在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容而对于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合纤的带宽为50MHz~500MHz/Km,单模光纤的带宽为2000MHz/Km,光纤波长有850nm,1310nm和1550nm等。

850nm波长区为多模光纤络中通常具有节点多,接头多,弯路多,而且连接器、耦合器的用量大,单位光纤长度使用光源个数多等特点,使用多模光纤可以有效的降nm和1550nm),与光器件的耦合相对困难。

或1310nm。

与光器件的耦合相对容易端模块采用的光器件与何种光纤配合能获得最佳传输特性。

50nm等。

850nm波长区为多模光纤通信方式;1550nm波长区为单模光纤通信方式;1310nm波长区有多模和单模两种;850nm的衰减较大等特点,使用多模光纤可以有效的降低网络成本。

单模光纤多用于传输距离长,传输速率相对较高的线路中,如长途干线传输,城域网建设多模和单模两种;850nm的衰减较大,但对于2~3MILE(1MILE=1604m)的通信较经济。

光纤尺寸按纤维直径划分有50μm缓变型多模光纤路中,如长途干线传输,城域网建设等。

纤维直径划分有50μm缓变型多模光纤、62.5μm缓变增强型多模光纤和8.3μm突变型单模光纤,光纤的包层直径均为125μm,故有62.5/125包层直径均为125μm,故有62.5/125μm、50/125μm、9/125μm等不同种类。

多模光纤和单模光纤的区别

多模光纤和单模光纤的区别

多模光纤和单模光纤的区别光纤的类型1.单模光纤单模光纤中,模内色散是比特率的主要制约因素。

由于其比较稳定,如果需要的话,可以通过增加一段一定长度的“色散补偿单模光纤”来补偿色散。

零色散补偿光纤就是使用一段有很大负色散系数的光纤,来补偿在1550nm处具有较高色散的光纤。

使得光纤在1550nm 附近的色散很小或为零,从而可以实现光纤在1550nm处具有更高的传输速率。

在单模光纤中,另一种色散现象是偏振模色散(PMD),由于PMD是不稳定的,因而不能进行补偿。

2.多模光纤多模光纤中,模式色散与模内色散是影响带宽的主要因素。

PCVD工艺能够很好地控制折射率分布曲线,给出优秀的折射率分布曲线,对渐变型多模光纤(GIMM),可限制模式色散而得到高的模式带宽。

全系统带宽达到一定程度时,同样也受到模内色散的制约,尤其在850nm处,多模光纤的模内色散非常大。

一些国际标准给出的多模光纤在850nm处的色散系数为-120ps/(nm·km),而PCVD多模光纤的色散值介于-95~-110 ps/(nm·km)。

单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。

多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

光纤使用注意!光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。

一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。

光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。

光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。

为什么多模光纤比单模光纤用的频繁?在什么情况下应该用单模光纤?一般来说,多模光纤要比单模光纤来的便宜。

多模和单模的优缺点

多模和单模的优缺点

多模和单模的优缺点————————————————————————————————作者: ————————————————————————————————日期:ﻩ单模光纤和多模光纤的区别详解两者的优缺点按光在光纤中的传输模式可分为:单模光纤和多模光纤。

单模和多模只有一字之差,那么这两者有什么区别呢,只是简单的摸的数量区别吗?下面我们就来了解两者的区别。

单模光纤和多模光纤的区别单模光纤只能传输的是单模信号,而多模光纤可以传输多模信号, 多模光纤(Multimode o ptical fiber= MMF):顾名思义就是能够传播多种模式电磁波(这里当然是光波)的光纤;由于有多个模式传送,所以存在有很大的模间色散,可传输的信息容量较小;多模光纤纤芯较大,一般为50um,数值孔径为0.2左右;模的数量取决于纤芯的直径、数值孔径和波长。

单模光纤(Single-mode fiber = SMF):则只能够传输一个模式的信号波,但是必须是符合条件的:好象记得教材上说于那个叫归一化频率的东西有关,纤芯特别需要细一点,最好是工作波长的3、4倍;所以单模光线从外形来说就比多模光纤细的多;单模光纤因为只传输一个模式,所以不存在模式色散。

单模光纤和多模光纤的区别多模光纤用于小容量,短距离的系统,单模光纤用于主干,大容量,长距离的系统单模光纤芯径一般是9/125,而多模为50/125或62.5/125。

单模和多模是相对特定波长而言的,相同的光纤在不同的波长可能是单模也可能是多模,光没有单多模之分,光源有单纵模~(dfb)和多纵模(fp)之分,多模光纤在纤径上要比单模细点,单模652是62.5/125,而多模的有50/125和62.5/125两种,从价格上来说,多模的一般是同芯数单模的1.5~2倍,从实际应用来看,多模的基本上用于数据接入光缆中,多模相对于单模来说最大的劣势是模间色散(由于同种光在不同模式内的速率不同)。

在国内主要用的是62.5/125的多模光纤,至于两者的区别好像是成缆后的用途不一样,50的多用于室内光缆。

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别根据传输点模数的不同,光纤可分为单模光纤和多模光纤。

所谓"模"是指以一定角速度进入光纤的一束光。

单模光纤采用固体激光器做光源,多模光纤则采用发光二极管做光源。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个“模”光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散。

),模分散技术限制了多模光纤的带宽和距离,因此,多模光纤的芯线粗,传输速度低、距离短,整体的传输性能差,但其成本比较低,一般用于建筑物内或地理位置相邻的环境下。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性,因而,单模光纤的纤芯相应较细,传输频带宽、容量大,传输距离长,但因其需要激光源,成本较高。

单模光纤单模光纤的纤芯较细,使光线能够直接发射到中心。

建议距离较长时采用。

另外,单模信号的距离损失比多模的小。

在头英尺的距离下,多模光纤可能将损失其led光信号强度的50%,而单模在同样距离下只损失其激光信号的6.25%。

单模的带宽潜力使其成为高速和长距离数据传输的唯一选择。

最近的测试表明,在一根单模光缆上可将40g以太网的64信道传输长达2,英里的距离。

多模光纤多模光纤中光信号通过多个通路传播;通常建议在距离不到英里时应用。

多模光纤从发射机至接收机的有效率距离大约就是5英里。

需用跟离还受到升空/发送装置的类型和质量影响; 光源越弱、接收机越灵敏,距离越远。

研究说明,多模光纤的频宽大约为mb/s。

在安全应用中,选择多模还是单模的最常见决定因素是距离。

如果只有几英里,首选多模,因为led发射/接收机比单模需要的激光便宜得多。

如果距离大于5英里,单模光纤最佳。

另外一个要考虑的问题是带宽;如果将来的应用可能包括传输大带宽数据信号,那么单模将是最佳选择。

单模光纤积极支持单纤通话,它的同时实现就是一端采用的波长播发,的波长交,而另一端恰好相反,一端采用的波长交,的波长播发。

多模光纤和单模光纤

多模光纤和单模光纤

多模光纤和单模光纤一、多模光纤当光纤的几何尺寸远远大于光波波长时,光纤中会存在着几十种乃至几百种传播模式。

不同的传播模式具有不同的传播速度与相位,导致长距离的传输之后会产生时延、光脉冲变宽。

这种现象叫做光纤的模式色散。

模式色散会使多模光纤的带宽变窄,降低了其传输容量,因此多模光纤仅适用于较小容量的光纤通信。

二、单模光纤当光纤的几何尺寸可以与光波长相近时,光纤只允许一种模式在其中传播,其余的高次模全部截止,这样的光纤叫做单模光纤。

由于它只有一种模式传播,避免了模式色散的问题,故单模光纤具有极宽的带宽,特别适用于大容量的光纤通信。

三、使用光纤有哪些优点?1) 光纤的通频带很宽,理论可达30T。

2) 无中继支持长度可达几十到上百公里,铜线只有几百米。

3) 不受电磁场和电磁辐射的影响。

4) 重量轻,体积小。

5) 光纤通讯不带电,使用安全可用于易燃,易暴等场所。

6) 使用环境温度范围宽。

7) 使用寿命长。

四、如何选择光缆?光缆的选择除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的结构和外护套。

1、户外用光缆直埋时,宜选用松套铠装光缆。

架空时,可选用带两根或多根加强筋的黑色PE外护套的松套光缆。

2、建筑物内用的光缆在选用时应选用紧套光缆并注意其阻燃、毒和烟的特性。

一般在管道中或强制通风处可选用阻燃但有烟的类型(Plenum)或可燃无毒的类型(LSZH),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。

3、楼内垂直或水平布缆时,可选用与建筑物内通用的紧套光缆、配线光缆或分支光缆时。

4、根据网络应用和光缆应用参数选择单模和多模光缆,通常室内和短距离应用以多模光缆为主,室外和长距离应用以单模光缆为主。

五、光纤越来越接近用户终端,“光纤到桌面”的意义和系统设计时需要注意哪些因素?“光纤到桌面”在水平子系统的应用中,和铜缆的关系是相辅相成不可或缺的。

光纤有其特有的长处,比如传输距离远、传输稳定、不受电磁干扰的影响、支持带宽高、不会产生电磁泄露。

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

一、纤芯直径不同
1、多模:多模光纤的纤芯直径多为是50μm/62.5μm。

2、单模:单模光纤的纤芯直径多为是9μm。

二、光源不同
1、多模:采用LED(发光二极管)或垂直腔面发射激光器(VCSEL)作为光源,因为LED光源能产生许多模式的光(光较分散)。

2、单模:采用激光器或激光二极管作为光源,因为激光光源能产生单一模式的光,具备高亮度、高功率等优势。

三、色散不同
1、多模:多模光纤的折射率分为渐变和阶跃两种类型。

2、单模:单模光纤的纤芯多为为单一材质,古折射率。

四、带宽不同
光纤的色散是影响光纤带宽的因素,光纤色散越小,光纤带宽就越宽。

单模光纤是几乎不存在色散,因此单模光纤的带宽比多模光纤的带宽宽。

单模与多模光纤区别及相关介绍

单模与多模光纤区别及相关介绍

单模光纤与多模光纤区别单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。

单模光纤的纤芯很小,约4~10um,只传输主模态。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势。

多模光纤又分为多模突变型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。

而单模光纤就能用在无中继的光通讯上。

在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难。

2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm 或1310nm。

与光器件的耦合相对容易。

而对于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。

一般有以下区别:1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好。

单模光纤只传基模一种模式,多模可以传多种模式。

单模主要用于长途干线,多模用于局域。

前面有人说单模比多模细得多,其实是不对的,两种纤包层直径都为125只是芯径不一样,单模为9多模一般常用的有50和62.5两种。

一般情况单模不会直接和多模相接是通过设备转换。

下面是一些更详细的介绍:一、光纤二、光缆三、光纤通信系统及其构成四、光缆的种类和机械性能一、光纤1、概述光纤和同轴电缆相似,只是没有网状屏蔽层。

单模光纤与多模光纤的区别(记忆版)

单模光纤与多模光纤的区别(记忆版)

单模光纤与多模光纤的区别(记忆版)
根据光纤传输模式的不同,分为单模光纤和多模光纤。

单模光纤只允许一个模式传输;多模光纤允许上百个模式同时传输。

(所谓"模"是指以一定角速度进入光纤的一束光)
从传输来看:
多模光纤传输速度低、传输距离短,整体的传输性能比较差,但它成本低。

如果传输距离或传送数据的速率要求不高,那么,多模光纤就可以了。

一般用在建筑物内或地理位置相邻的环境下。

单模光纤只能允许一个模式传输,也就不存在模式分散,传输容量大,传输距离长,一般应用在电信领域,成本比较高。

从外观来看:
单模光纤(Single-mode Fiber)接头和保护套是蓝色,光纤跳线为黄色;适合波长较长的光使用,以保证数据传输的准确性,比如1310nm,1550nm的光波使用的就是单模光纤。

多模光纤(Multi-mode Fiber)接头和保护套是米色或者黑色,光纤跳线为橙色;适合波长较短的光使用,比如850nm的光波使用多模光纤。

另外,多模光纤的纤芯直径为50~62.5μm,包层外径125μm;单模光纤的纤芯直径只有7~9μm,包层外径125μm。

从光纤熔接机上看:中间是空的是单模光纤,看上去一个整体的是多模光纤。

多模光纤和单模光纤的区别

多模光纤和单模光纤的区别

多模光纤和单模光纤的区别光纤的类型1.单模光纤单模光纤中,模内色散是比特率的主要制约因素。

由于其比较稳定,如果需要的话,可以通过增加一段一定长度的“色散补偿单模光纤”来补偿色散。

零色散补偿光纤就是使用一段有很大负色散系数的光纤,来补偿在1550nm处具有较高色散的光纤。

使得光纤在1550nm 附近的色散很小或为零,从而可以实现光纤在1550nm处具有更高的传输速率。

在单模光纤中,另一种色散现象是偏振模色散(PMD),由于PMD是不稳定的,因而不能进行补偿。

2.多模光纤多模光纤中,模式色散与模内色散是影响带宽的主要因素。

PCVD工艺能够很好地控制折射率分布曲线,给出优秀的折射率分布曲线,对渐变型多模光纤(GIMM),可限制模式色散而得到高的模式带宽。

全系统带宽达到一定程度时,同样也受到模内色散的制约,尤其在850nm处,多模光纤的模内色散非常大。

一些国际标准给出的多模光纤在850nm处的色散系数为-120ps/(nm·km),而PCVD多模光纤的色散值介于-95~-110 ps/(nm·km)。

单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。

多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

光纤使用注意!光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。

一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。

光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。

光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。

为什么多模光纤比单模光纤用的频繁?在什么情况下应该用单模光纤?一般来说,多模光纤要比单模光纤来的便宜。

单模、多模光纤的区别

单模、多模光纤的区别

光纤通信的特点光纤通信以其独特的优越性成为当今信息传输的主要手段,与卫星通信、微波通信共同支撑着全球通讯网,同时80﹪以上的信息在光纤中传送,光复用技术已极大地提高了网络的传输容量,而全光传送网将是光纤通信技术的发展方向。

1、巨大的传输容量这是光纤通信优于其他通信的最显著特点。

现在光纤通信使用的频率为1014—1015Hz 数量级,比常用的微波频率高104—105倍,因而信息容量理论上比微波高出104—105倍。

梯度多模光纤每公里带宽可达数GHz,单模光纤带宽可达数百THz数量级。

注:(1T=103G=106M=109K=1012单位常量)2、极低的传输衰耗多模光纤在850nm波长下的衰减系数为0.8—2.0dB/Km,在1300 nm波长下的衰减系数为0.8—1.5dB/Km ;单模光纤在1310nm波长下的衰减系数为0.3—0.45dB/Km,在1550nm 波长下的衰减系数为0.2—0.28dB/Km。

与其相比,同轴电缆对60MHz信号的衰耗为19dB/Km,市话电缆对4MHz信号的衰耗为20dB/Km,所以光纤传输比电缆传输中继距离要大得多。

3、抗电磁干扰光纤由介电材料制成,不怕电磁干扰,也不受外界光的影响,在核辐射的环境中也能正常通信。

4、信道干扰小、保密性好光纤的结构保证了光在传输中很少向外泄露,因而光纤中传输的信号之间不会产生串扰,更不易被窃取,保密性优于传统的电通信方式。

5、光缆尺寸小、重量轻、可挠性好光纤的外径仅125µm,弯曲成直径数毫米的小圈也不至于折断,同时光纤材料资源丰富,广泛运用可节省大量的铜、铝等矿产资源,光缆质量轻,相对电缆更易于敷设,光纤不会锈蚀、不怕高温、接头不会产生电火花。

光纤传输概述光纤传输系统是以光波为载波、以光纤为传输介质、由光缆及光传输设备构成的现代通信传输系统。

它的基本单元是点到点的传输线路,每个基本单元是由光发送端机、光缆线路和光接收端机三部分构成(光发送端机和光接收端机简称光端机)。

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别单模光纤单模光纤是只有一股(大多数应用中为两股)玻璃光纤的光纤,纤芯直径为8.3μm~10μm,只有一种传输模式。

由于芯径相对较窄,单模光纤只能传输波长为1310nm或1550nm的光信号。

单模光纤的带宽比多模光纤高,但是对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

单模光纤主要用在多频数据传输应用中,例如,波分多路复用(WDM,Wave-Division-Multiplexing)系统中经过复用的光信号只需要用一根单模光纤就能实现数据传输。

单模光纤的传输速率比多模光纤要高,而且传输距离也比多模光纤要高出50倍不止,因此,其价格也高于多模光纤。

与多模光纤相比,单模光纤的芯径要小得多,小芯径和单模传输的特点使得在单模光纤中传输的光信号不会因为光脉冲重叠而失真。

在所有光纤种类中,单模光纤的信号衰减率最低,传输速度最大。

多模光纤多模光纤是另一种常见的光纤类型,纤芯直径为50μm~100μm,它可以在给定的工作波长上传输多种模式。

相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离。

常见多模光纤的芯径为50μm、62.5μm和100μm。

由于多模光纤中传输的模式多达数百个,各个模式的传播常数和群速率不同,使光纤的带宽窄,色散大,损耗也大,只适于中短距离和小容量的光纤通信系统。

光纤的种类阶跃型:阶跃型光纤是一种多模光纤,其芯径达到了100μm。

阶跃型是指光纤的折射率的分布方式,纤芯和包层的折射率都是均匀分布,而它们之间有一个折射率差,纤芯折射率大于包层折射率,在纤芯和包层边界有一个台阶,所以称之为阶跃型光纤。

在多模阶跃折射率光纤中,满足全反射,单入射角不同的光线的传输路径是不同的,结果使不同的光线所携带的能量到达终端的时间不同,从而产生了脉冲展宽,这就限制了光纤的传输容量。

这种光纤比较适合短距离传输应用。

单模光纤和多模光纤的介绍及区别

单模光纤和多模光纤的介绍及区别

单模光纤和多模光纤的介绍及区别
摘要:
单、多模光纤的概念及如何区别。

内容:
1、单模光纤:
单模光纤由9um的玻璃芯和125um的覆盖层组成。

单模光纤主要用来承载具有长波长的激光束,单模只传输一种模式。

和多模光纤相比色散要少。

由于使用更小的玻璃芯和单模光源,所以单模光纤支持很长的距离,传输距离可达10km甚至几十km。

2、多模光纤
多模光纤主要使用短波激光,具有50um或者62.5um的玻璃芯以及125um的覆盖层。

多模允许同时传输多个模式,覆盖层的反射限制了玻璃芯中的光,使之不会泄漏。

短波长的激光束由那些从缆芯中以不同角度反射出来的光模所组成。

这种色散效果降低了可以恢复的原始信号的最长距离。

在Fibre Channel配置中,使用62.5um/125um光缆的多模光纤支持的距离是175m,使用50um/125um光缆的多模光纤支持的距离是500m。

3、单多模光纤的区分方法
可以通过光纤表面的印记来区分是单模还是多模,比如单模印有9/125,多模印有50/125或者62.5/125。

可以通过光纤线缆的表面颜色区分,一般单模光纤是黄色的,多模光纤基本都是橙色的。

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别在多模光纤中,光线在光纤中沿折线传播,折射较多,在折射过程中能量损失较大,传输距离也相对较短。

在单模光纤中,光线在光纤中沿直线传播,能量损失很小,传输距离也相对较长。

在多模光纤中,采用的是波长较短的光线SWL(Short Wave Length),光源可以是发光二极管LED。

在单模光纤中,采用的是波长固定的长波光线LWL (Long Wage Length),光源是激光器,采用频率单一的激光传输信号。

人能看到的可见光范围大约从710nm到1000nm间,所以多模光纤中的SWL 是能够被肉眼直接识看到,一般是颜色为红色的光线。

而单模光纤的LWL不能被肉眼看到,也一定不要直接观看,LWL能量较高,有可能对肉眼造成损伤。

单模光纤的光纤跳线颜色多为黄色。

根据传输点模数的不同,光纤可分为单模光纤和多模光纤。

所谓"模"是指以一定角速度进入光纤的一束光。

单模光纤采用固体激光器做光源,多模光纤则采用发光二极管做光源。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个“模”光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散。

),模分散技术限制了多模光纤的带宽和距离,因此,多模光纤的芯线粗,传输速度低、距离短,整体的传输性能差,但其成本比较低,一般用于建筑物内或地理位置相邻的环境下。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性,因而,单模光纤的纤芯相应较细,传输频带宽、容量大,传输距离长,但因其需要激光源,成本较高,通常在建筑物之间或地域分散时使用。

同时,单模光纤是当前计算机网络中研究和应用的重点,也是光纤通信与光波技术发展的必然趋势。

多模光纤又根据其包层的折射率进一步分为突变型折射率和渐变型折射率。

以突变型折射率光纤作为传输媒介时,发光管以小于临界角发射的所有光都在光缆包层接口进行反射,并通过多次内部反射沿纤心传播。

这种类型的光缆主要适用于适度比特率的场合,多模突变型折射率光纤的散射通过使用具有可变折射率的纤心材料来减小,折射率随离开纤心的距离增加导致光沿纤心的传播好象是正弦波。

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别
区别:
1、不同的光源
单模光纤使用固态激光器作为光源。

以发光二zhi极管为光源的多模光纤。

2、不同的成本
单模光纤具有较宽的传输频率带宽和较长的传输距离,但由于需要激光源,因此成本较高。

多模光纤传输速度低,距离短,但成本相对较低。

3、传输方式的数量不同
单模光纤的纤芯直径和色散很小,并且仅允许一种模式传输。

多模光纤芯径和色散大,允许上百种模式传输。

4、单模光缆的表面通常印有G652B或G652D或芯号+ B1.x,例如24B1.1,表示有24芯B1.1光纤,即G.652B。

例如48B1.3,表示存在48芯B1.3光纤,即G.2D光纤。

多模光缆通常具有相对较少的芯数。

通常,它们印有芯号+ A1b或A1a(注意,A1a代表50/125多模光纤,A1b代表62.5 / 125多模光纤),或直接印有50/125或62.5 / 125和其他标识,例如MM,OM1,Om2,OM3等。

单模单芯和多模双芯

单模单芯和多模双芯

单模单芯和多模双芯光纤的主要区别如下:
1. 纤芯数量:单模单芯的光纤只有一根纤芯,而多模双芯的光纤有两根纤芯。

2. 传输模式:单模光纤为单模传输,多模光纤为多模传输。

3. 传输距离:单模光纤的传输距离较长,而多模光纤的传输距离较短。

4. 芯径和波长:单模光纤的芯径和波长比多模光纤的要小。

5. 成本:单模光纤的制造成本比多模光纤的要高。

6. 应用场景:单模光纤适合于远距离通信和特殊环境的应用,而多模光纤适合于短距离通信和普通环境的应用。

总的来说,单模单芯光纤和多模双芯光纤的主要区别在于纤芯数量、传输模式、传输距离、芯径和波长、成本以及应用场景等方面。

单模光纤和多模光纤的区别?

单模光纤和多模光纤的区别?

单模光纤和多模光纤的区别?我们知道光纤和光模块都有单模和多模两种类型,那么我们可能在使用中会产生疑问,单模/多模光纤和单模/多模光模块如何配套使用?它们可以混用吗?这里我们将通过问答的方式来为大家解答这个疑惑。

1、问:单模光纤和多模光纤有什么区别?答:单模光纤采用固体激光器做光源;多模光纤则采用发光二极管做光源;单模光纤传输频带宽、传输距离长,但因其需要激光源,成本较高;多模光纤传输速度低、距离短,但其成本比较低;单模光纤芯径和色散小,仅允许一种模式传输;多模光纤芯径和色散大,允许上百种模式传输。

多模光缆纤芯粗,价格相对会贵一点。

2、问:单模光模块和多模光模块有什么区别?答:多模光模块的工作波长为850nm;单模光模块的工作波长为1310nm、1550nm;单模光模块中使用的器件是多模光模块的两倍,所以单模光模块的总体成本要远远高于多模光模块;单模光模块的传输距离可达150至200km;多模光模块的传输距离仅可达5km。

多模黑色拉环波长是850nm上电后可以看到红色的光单模蓝色拉环1310nm看不到光波长1550nm看不到光单模黄色或者绿色单模紫色拉环波长1490nm看不到光3、问:单模/多模光纤和单模/多模光模块应用在哪里?答:单模光纤能够使光纤直接发射到中心,一般用于长距离的数据传输;多模光纤中光信号通过多个通路传播,因此多模光纤常用于短距离的数据传输中。

单模光模块常用于远距离和传输速率相对较高的城域网;多模光模块则用于短距离传输中。

4、问:单模/多模光纤可以和单模/多模光模块可以混用吗?答:单模/多模光纤可以和单模/多模光模块混用结果如下表所示,我们可以看到它们是不能混用的,必须要将光纤和光模块匹配好才可以正常使用。

光模块类型光纤类型是否能正常工作单模光模块多模光纤短距离可以工作,但无法保障效果单模光模块单模光纤正常工作多模光模块单模光纤无法工作多模光模块多模光纤正常工作单模光模块在多模上传输会出现很大的丢包。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多模光纤和单模光纤区别1、多模光纤是光纤通信最原始的技术,这一技术是人类首次实现通过光纤来进行通信的一项革命性的突破。

2、随着光纤通信技术的发展,特别是激光器技术的发展以及人们对长距离、大信息量通信的迫切需求,人们又寻找到了更好的光纤通信技术----单模光纤通信。

3、光纤通信技术发展到今天,多模光纤通信固有的很多局限性愈发显得突出:①、多模发光器件为发光二极管(LED),光频谱宽、光波不纯净、光传输色散大、传输距离小。

1000M bit/s带宽传输,可靠距离为255米(m)。

100M bit/s带宽传输,可靠距离为2公里(km)。

②、因多模发光器件固有的局限性和多模光纤已有的光学特性限制,多模光纤通信的带宽最大为1000M bit/s。

4、单模光纤通信突破了多模光纤通信的局限:①、单模光纤通信的带宽大,通常可传100G bit/s以上。

实际使用一般分为155M bit/s、1.25G bit/s、2.5G bit/s、10G bit/s。

②、单模发光器件为激光器,光频谱窄、光波纯净、光传输色散小,传输距离远。

单模激光器又分为FP、DFB、CWDM三种。

FP激光器通常可传输60公里(km),DFB和CWDM 激光器通常可传输100公里(km)。

5、数字式光端机采用视频无压缩传输技术,以保证高质量的视频信号实时无延迟传输并确保图像的高清晰度及色彩纯正。

这种传输方式信息数据量很大,4路以上视频的光端机均采用1.25G bit/s以上的数据流传输。

8路视频的数据流高达1.5G bit/s。

因多模光纤最大带宽仅为1G bit/s,如果采用多模光纤传输,势必造成信息丢失、视频图像出现大量雪花甚至白斑、数据控制失常。

另一个致命的因素就是传输距离的限制,多模光纤1G bit/s带宽的传输距离理论上是255米(m),如果考虑到光链路损耗,实际距离还要小几十米。

6、从单模光纤通信技术诞生之日起,就意味着多模光纤通信方式的淘汰。

目前用多模光纤传输的已经很少了,只是因为市场的惯性而延续至今,对光纤通信这一行业的人来说,这早已是不争的事实。

我们认为应该本照着对用户负责,对用户长远需求负责的精神提出合理建议根据传输点模数的不同,光纤可分为单模光纤和多模光纤。

所谓"模"是指以一定角速度进入光纤的一束光。

单模光纤采用固体激光器做光源,多模光纤则采用发光二极管做光源。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个“模”光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散。

),模分散技术限制了多模光纤的带宽和距离,因此,多模光纤的芯线粗,传输速度低、距离短,整体的传输性能差,但其成本比较低,一般用于建筑物内或地理位置相邻的环境下。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性,因而,单模光纤的纤芯相应较细,传输频带宽、容量大,传输距离长,但因其需要激光源,成本较高。

多模光纤多模光纤中光信号通过多个通路传播;通常建议在距离不到英里时应用。

多模光纤从发射机到接收机的有效距离大约是5英里。

可用跟离还受发射/接收装置的类型和质量影响; 光源越强、接收机越灵敏,距离越远。

研究表明,多模光纤的带宽大约为4000Mb/s。

制造的单模光纤是为了消除脉冲展宽。

由于纤芯尺寸很小(7-9微米),因此消除了光线的跳跃。

在1310和 1550nm波长使用聚焦激光源。

这些激光直接照射进微小的纤芯、并传播到接收机,没有明显的跳跃。

如果可以把多模比作猎怆,能够同时把许多弹丸装人枪筒,那么单模就是步枪,单一光线就像一颗子弹。

单模光纤单模光纤的纤芯较细,使光线能够直接发射到中心。

建议距离较长时采用。

另外,单模信号的距离损失比多模的小。

在头3000英尺的距离下,多模光纤可能损失其LED光信号强度的50%,而单模在同样距离下只损失其激光信号的6.25%。

单模的带宽潜力使其成为高速和长距离数据传输的唯一选择。

最近的测试表明,在一根单模光缆上可将40G以太网的64信道传输长达2,840英里的距离。

在安全应用中,选择多模还是单模的最常见决定因素是距离。

如果只有儿英里,首选多模,因为LED发射/接收机比单模需要的激光便宜得多。

如果距离大于5英里,单模光纤最佳。

另外一个要考虑的问题是带宽;如果将来的应用可能包括传输大带宽数据信号,那么单模将是最佳选择。

单模光纤只有单一的传播路径,一般用于长距离传输,多模光纤有多种传播路径,多模光纤的带宽为50MHz~500MHz/Km,单模光纤的带宽为2000MHz/Km,光纤波长有850nm,1310nm和1550nm等。

850nm 波长区为多模光纤通信方式;1550nm波长区为单模光纤通信方式;1310nm波长区有多模和单模两种;850nm的衰减较大,但对于2~3MILE(1MILE=1604m)的通信较经济。

光纤尺寸按纤维直径划分有50μm缓变型多模光纤、62.5μm缓变增强型多模光纤和8.3μm突变型单模光纤,光纤的包层直径均为125μm,故有62.5/125μm、50/125μm、9/125μm等不同种类。

光缆外套标识,50/125, 62.5/125为多模,9/125(g652)为单模光纤可磨接后用100/200倍放大镜察看,一个小黑点的是单模,大一点有双环的是多模。

纤芯在熔接机内也能分辩出,在熔接机显示器看中间是空的是单模,看上去一体的是多模。

简单的用途区别:多模一般应用在园区内较近的地方之间;单模传输距离较远,一般应用在电信领域。

单模传输与多模传输在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相对困难2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容易而对于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。

一般有以下区别:1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好1、光纤分类光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

光纤的工作波长有短波850nm、长波1310nm和1550nm。

光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、多模光缆多模光纤(Multi Mode Fiber) -芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

因此,多模光纤传输的距离就比较近,一般只有几公里。

如下表,为多模光缆的带宽的比较:提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。

因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。

OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。

采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。

美国康普公司的多模光缆分为多模OptiSPEED®解决方案(62.5/125μm)和万兆多模LazrSPEED® 解决方案(激光优化万兆50/125μm)。

LazrSPEED分成三个系列,即LazrSPEED 150、300、550系列,且LazrSPEED万兆多模光缆均通过UL DMD认证。

具体传输指标请看下表:3、单模光缆单模光纤(Single Mode Fiber):中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来发现在1310nm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。

这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

上面提到由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。

目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED 系统通过消除了1400nm 水峰的影响因素, 从而为用户提供了更广泛的传输带宽, 用户可以自由使用从1260nm 到1620nm 的所有波段, 因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM 粗波分复用技术打下了坚实的基础,TeraSPEED 解决方案为园区/城市级理想的主干光纤系统。

同时,由于G.652.D 是单模光纤的最新的指标,是所有G.652级别中指标最严格的并且完全向下兼容的。

如果,仅指明G.652意味着 G.652.A 的性能规范,这一点应特别注意。

TeraSPEED 光纤超过所有的指标均满足 G.652.A, .B, .C 和.D 的性能规范,如下表:而我们对于单模光缆的选型建议如下:A.从传输距离的角度,如果希望今后支持万兆传输,而距离较远应考虑采用单模光缆。

B.从造价的角度,零水峰光缆提供比单模光纤多50%带宽,而造价上又相差不多,事实上美国康普公司目前已经不提供普通单模光纤,只提供零水峰光纤这样的更高性能的产品给用户。

4、结论:单模还是多模?综合以上的分析,我们认为,用户应从应用的角度、传输距离的角度、前瞻性的角度、造价的角度,综合以上因素,以最低的价格投资最好的性能!。

相关文档
最新文档