高考数学(理)二轮练习【专题7】(第2讲)概率、随机变量及其分布(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 概率、随机变量及其分布
考情解读 1.该部分常考内容有几何概型、古典概型、条件概率,而几何概型常与平面几何、定积分交汇命题,古典概型常与排列、组合交汇命题;常考内容还有离散型随机变量的分布列、期望(均值)、方差,常与相互独立事件的概率、n 次独立重复试验交汇考查.2.从考查形式上来看,三种题型都有可能出现,选择题、填空题突出考查基础知识、基本技能,有时会在知识交汇点处命题;解答题则着重考查知识的综合运用,考查统计、古典概型、二项分布以及离散型随机变量的分布列等,都属于中、低档题.
1.随机事件的概率
(1)随机事件的概率范围:0≤P (A )≤1;必然事件的概率为1;不可能事件的概率为0. (2)古典概型的概率
P (A )=m n =A 中所含的基本事件数基本事件总数.
(3)几何概型的概率 P (A )=
构成事件A 的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
.
2.条件概率
在A 发生的条件下B 发生的概率: P (B |A )=
P (AB )
P (A )
. 3.相互独立事件同时发生的概率 P (AB )=P (A )P (B ). 4.独立重复试验
如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为
P n (k )=C k n p k (1-p )
n -
k ,k =0,1,2,…,n . 5.超几何分布
在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -
k
N -M
C n N
,k =
0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 6.离散型随机变量的分布列
(1)设离散型随机变量X 可能取的值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i 的概率为P (X =x i )=p i ,则称下表:
为离散型随机变量X (2)离散型随机变量X 的分布列具有两个性质:①p i ≥0,②p 1+p 2+…+p i +…+p n =1(i =1,2,3,…,n ).
(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为X 的均值或数学期望(简称期望).
D (X )=(x 1-
E (X ))2·p 1+(x 2-E (X ))2·p 2+…+(x i -E (X ))2·p i +…+(x n -E (X ))2·p n 叫做随机变量ξ的方差. (4)性质
①E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ); ②X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ); ③X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). 7.正态分布
若X ~N (μ,σ2),则正态总体在三个特殊区间内取值的概率 ①P (μ-σ 热点一 古典概型与几何概型 例1 (1)在1,2,3,4共4个数字中,任取两个数字(允许重复),其中一个数字是另一个数字的2倍的概率是________. (2)(2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34 D.78 思维启迪 (1)符合古典概型特点,求4个数字任取两个数字的方法种数和其中一个数字是另一个数字的2倍的方法数;(2)由几何概型的特点,利用数形结合求解. 答案 (1)1 4 (2)C 解析 (1)任取两个数字(可重复)共有4×4=16(种)排列方法,一个数字是另一个数字的2倍的 所有可能情况有12、21、24、42共4种,所以所求概率为P =416=1 4. (2)如图所示,设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎪⎨⎪ ⎧ 0≤x ≤40≤y ≤4 |x -y |≤2 ,所以两串彩灯第一 次亮的时间相差不超过2秒的概率为P (|x -y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×1 2×2×2 4×4=12 16= 3 4 . 思维升华 (1)解答有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识. (2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件个数的求法与基本事件总数的求法的一致性. (3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解. (1)(2014·广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是 6的概率为________. (2)在区间[-3,3]上随机取一个数x ,使得函数f (x )=1-x +x +3-1有意义的概率为________. 答案 (1)16 (2)2 3 解析 (1)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件总数共有C 7 10=120(个),记事件“七个数的中位数为6”为事件A ,则事件A 包含的基本事件的个数为C 36C 33=20,故所求概率 P (A )=20120=16 . (2)由⎩ ⎪⎨⎪⎧ 1-x ≥0,x +3≥0,得f (x )的定义域为[-3,1],由几何概型的概率公式,得所求概率为P = 1-(-3)3-(-3)=23 . 热点二 相互独立事件和独立重复试验 例2 甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75. (1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;