5.3 平面向量的数量积导学案
平面向量数量积导学案(3课时)
平面向量的数量积的物理背景及其含义导学案(1)学习目标:1、利用物理中功的概念了解平面向量数量积的物理背景,理解向量的数量积概念及几何 意义;能够运用这一概念求两个向量的数量积,并能根据条件逆用等式求向量的夹角;2、掌握由定义得到的数量积的5条重要性质,并能运用性质进行相关的判断和运算;3、了解用平面向量数量积可以处理有关长度、角度和垂直的问题,培养学生的应用意识.学习过程 一、课前准备 复习:1、向量加法和减法运算的两个法则是 和 .2、向量数乘运算的定义是 . 思考:通过前面的学习我们知道向量的运算有向量的加法、减法、数乘,那么向量与向量 能否“相乘”呢? 二、新课导学探究1:如下图,如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W = ,其中θ是 . 思考:这个公式的有什么特点?请完成下列填空:F (力)是 量;S (位移)是 量;θ是 ;W (功)是 量; 结论:功是一个标量,功是力与位移两个向量的大小及其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种运算的结果呢? 新知1:向量的数量积(或内积)的定义已知两个非零向量a 和b ,我们把数量cos a b θ叫做a 和b 的数量积(或内积),记作a b ⋅,即cos a b a b θ⋅=.其中θ是a 和b 的夹角(0≤θ≤π)说明:①记法“a ·b ”中间的“· ”不可以省略,也不可以用“⨯ ”代替。
② 两个非零向量夹角的概念:非零向量a 与b ,作OA =a,OB =b ,则∠AOB=θ(0≤θ≤π)叫a 与b的夹角(两向量必须是同起点的)特别地:当θ=0时,a 与b 同向;当θ=π时,a 与b反向;当θ=2π时,a 与b 垂直,记a ⊥b ;③“规定”:零向量与任何向量的数量积为零,即00a ⋅=。
探究2:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小因素有哪些? 期望学生回答:线性运算的结果是向量;数量积的结果则是数,这个数值的大小不仅和向量a 与b 的模有关,还和它们的夹角有关。
2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析
2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析第3讲平面向量的数量积及应用基础知识整合1.向量的夹角定义图示范围共线与垂直已知两个非零向量a和b,作错误!=a,错误!=b,则错误!∠AOB就是a与b 的夹角设θ是a与b的夹角,则θ的取值范围是020°≤θ≤180°错误!θ=0°或θ=180°⇔a∥b,错误!θ=90°⇔a⊥b2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量错误!|a||b|·cosθ叫做a与b的数量积,记作a·b投影错误!|a|cosθ叫做向量a在b方向上的投影,错误!|b|cosθ叫做向量b在a方向上的投影几何意义数量积a·b等于错误!a的长度|a|与错误!b在a的方向上的投影|b|cosθ的乘积3.向量数量积的运算律交换律a·b=错误!b·a分配律(a+b)·c错误!a·c+b·c数乘结合律(λa)·b=λ(a·b)=12a·(λb)4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论几何表示坐标表示模|a|=错误!|a|=错误!错误!夹角cosθ=错误!cosθ=错误!错误!a⊥b的充要条件a·b=0错误!x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤错误!1.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.2.数量积不满足结合律,即(a ·b)·c≠a·(b·c).3.当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,特别地,a·a=a2或|a|=错误!.4.有关向量夹角的两个结论:(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为a与b夹角为0时也有a·b>0).(2)两个向量a与b的夹角为钝角,则有a·b〈0,反之不成立(因为a与b夹角为π时也有a·b〈0).1.(2019·重庆模拟)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a -3b)⊥c,则实数k=()A.-错误!B.0C.3 D.错误!答案C解析因为2a-3b=(2k-3,-6),(2a-3b)⊥c,所以(2a -3b)·c=2(2k-3)-6=0,解得k=3.选C.2.(2019·全国卷Ⅱ)已知向量a=(2,3),b=(3,2),则|a-b|=()A.错误!B.2C.5 2 D.50答案A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|=错误!=错误!.故选A。
第五章5.3 平面向量的数量积
30,则 x 等于
(C )
A.6 B.5 C.4 D.3
思维启迪 解析 答案 探究提高
(1) A→B·A→C=(C→B-C→A)·(-C→A) =-C→B·C→A+C→A2=16. (2)∵a=(1,1),b=(2,5),
∴8a-b=(8,8)-(2,5)=(6,3).
又∵(8a-b)·c=30,∴(6,3)·(3, x)=18+3x=30. ∴x=4.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
向量的夹角与向量的模
【例 2】 已知|a|=4,|b|=3,(2a- 思维启迪
解析
探究提高
3b)·(2a+b)=61,
∴|a+b|= 13.
(1)求 a 与 b 的夹角 θ; (2)求|a+b|; (3)若A→B=a,B→C=b,求△ABC 的
当 a 与 b 反向时,a·b=_-__|a_|_|b_|_,
夹角为锐角的必要不
a·a=_a_2 ,|a|=__a_·_a__; a·b
(4)cos θ=_|_a_||_b_|_;
(5)|a·b|_≤__|a||b|. 4.平面向量数量积满足的运算律
充分条件.因为若〈a, b〉=0,则 a·b>0,而 a,b 夹角不是锐角; 另外还要注意区分 △ABC 中,A→B、B→C的
故D→E·D→C的最大值为 1.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 1 (2012·北京)已知正方形 ABCD 的边长为 1,点 E 是 AB
边上的动点,则D→E·C→B的值为__1_;D→E·D→C的最大值为_1__.
方法二 由图知,无论 E 点在哪个位置,D→E在C→B方 向上的投影都是 CB=1,∴D→E·C→B=|C→B|·1=1,当 E 运动到 B 点时,D→E在D→C方向上的投影最大即为 DC=1, ∴(D→E·D→C)max=|D→C|·1=1.
平面向量的数量积教案(带答案)
平面向量的数量积教案教学目标: (i)知识目标:(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示. (2) 平面向量数量积的应用. (ii)能力目标:(1) 培养学生应用平面向量积解决相关问题的能力. (2) 正确运用向量运算律进行推理、运算.教学重点: 1. 掌握平面向量的数量积及其几何意义.2. 用数量积求夹角、距离及平面向量数量积的坐标运算.教学难点: 平面向量数量积的综合应用. 教学过程: 一、知识梳理1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b|cos θ叫a 与b 的数量积,记作a ⋅b ,即a ⋅b = |a ||b|cos θ,(0)θπ≤≤并规定0 与任何向量的数量积为2.平面向量的数量积的几何意义:数量积a ⋅b 等于a的长度与b 在a 方向上投影|b |c os θ的乘积. 3.两个向量的数量积的性质 设a 、b 为两个非零向量,e是与b 同向的单位向量1︒e ⋅a = a ⋅e =|a |cos θ; 2︒a ⊥b ⇔ a ⋅b= 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |,特别地a ⋅a = |a |24︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b | ≤ |a ||b|4.平面向量数量积的运算律① 交换律:a ⋅ b = b ⋅ a ② 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a⋅(λb ) ③ 分配律:(a + b )⋅c = a ⋅c+ b ⋅c5.平面向量数量积的坐标表示①已知两个向量),(11y x a =,),(22y x b = ,则b a ⋅2121y y x x +=.②设),(y x a = ,则22||y x a +=.③平面内两点间的距离公式 如果表示向量a的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=.④向量垂直的判定 两个非零向量),(11y x a =,),(22y x b = ,则b a ⊥⇔02121=+y y x x .⑤两向量夹角的余弦 co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=(πθ≤≤0). 二、典型例题1. 平面向量数量积的运算 例题1 已知下列命题:①()0a a +-= ; ②()()a b c a b c ++=++ ; ③()()a b c a b c = ; ④()a b c a c b c +=+其中正确命题序号是 ②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知2,5,(1)||a b a b == 若; (2) a b ⊥ ;(3) a b 与的夹角为030,分别求a b. 解(1)当 ||a b 时, a b=0cos025110a b =⨯⨯= 或a b =0cos18025(1)10a b =⨯⨯-=- . (2)当a b ⊥ 时, a b=0cos902500a b =⨯⨯=. (3)当a b 与的夹角为030时, a b =03cos3025532a b =⨯⨯= .变式训练:已知0000(cos23,cos67),(cos68,cos22)a b == ,求a b解:0000cos23cos68cos67cos22a b =+ = 000002cos 23sin 22sin 23cos 22sin 452+==点评: 熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整. 2.夹角问题例题3 若1,2,a b c a b ===+ ,且c a ⊥,则向量a 与向量b 的夹角为 ( )A. 030 B. 060 C. 0120 D. 0150解:依题意2()0cos 0a a b a a b θ⋅+=⇒+= 1c o s2θ⇒=- 0120θ∴= 故选C 变式训练1:① 已知2,3,7a b a b ==-=,求向量a 与向量b 的夹角.② 已知(1,2),(4,2)a b =-= ,)a a b -与(夹角为θ,则cos θ= .解: ① 7a b -=⇒ 2227a a b b -+= 31cos ,232a b a b a b ⇒〈〉===⨯,故夹角为060. ②依题意得)(3,4)a b -=-- (()385cos 555a ab a a b θ--+⇒===⨯-. 变式训练2:已知,a b是两个非零向量,同时满足a b a b ==- ,求a a b + 与的夹角.法一 解:将a b a b ==- 两边平方得 221122a b a b == , 2223a b a a b b a ∴+=++=则222221()32cos 23a a a a b a a ba a ba ab a aθ+++====++, 故a a b + 与的夹角.为030. 法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 3.向量模的问题例题4 已知向量,a b 满足6,4a b == ,且a b 与的夹角为060,求3a b a b +- 和.解: 6,4a b == ,且a b 与的夹角为060 12a b ∴=22276219a b a a b b ∴+=++== ; 223691086 3.a b a a b b -=-+==变式训练 :①(2005年湖北)已知向量(2,2),(5,)a b k =-=,若a b + 不超过5,则k 的取值范围 ( )A. [4,6]-B. [6,4]-C. [6,2]-D. [2,6]-②(2006年福建) 已知a b 与的夹角为0120,3a = ,13a b += ,则b 等于( )A 5 B. 4 C. 3 D. 1解: ① 2(3,2)(2)95a b k k +=+=++≤ ,62k ⇒-≤≤ 故选C②2222a b a a b b +=++ , 222cos12013a a b b ∴++= ,解得4b = ,故选B点评:涉及向量模的问题一般利用22a a a a ==,注意两边平方是常用的方法. 4.平面向量数量积的综合应用例题5 已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若,a b θ⊥求 ; (2)求a b + 的最大值 .解:(1)若a b ⊥ ,则sin cos 0θθ+=,tan 1,()224πππθθθ⇒=--<<∴=-.(2) a b + =22(sin 1)(1cos )32(sin cos )θθθθ+++=++=322sin()4πθ++3,,22444πππππθθ-<<∴-<+<2sin()(,1]42πθ∴+∈- 4πθ∴=当时,a b +的最大值为2322(21)21+=+=+.例题6已知向量(cos ,sin ),(cos ,sin )a b ααββ== ,且,a b 满足3ka b a kb +=- ,k R +∈ (1) 求证()()a b a b +⊥-; (2)将a 与b 的数量积表示为关于k 的函数()f k ;(3)求函数()f k 的最小值及取得最小值时向量a 与向量b的夹角θ.解:(1) (cos ,sin ),(cos ,sin )a b ααββ==2222()()||||110a b a b a b a b ∴+-=-=-=-= , 故 ()()a b a b +⊥-(2) 3ka b a kb +=-,2222223,121363,ka b a kb a b k ka b ka b k ∴+=-∴==∴++=-+ 又21,(0)4k a b k k +∴=> 故21(),(0)4k f k k k+=>.(3) 21111()2444442k k k f k k k k +==+≥= ,此时当1,()k f k =最小值为12.1cos 2a b a b θ∴==,量a 与向量b 的夹角θ 3π=小结1. 掌握平面向量数量积的定义及几何意义,熟练掌握两个向量数量积的五个性质及三个运算率.2.灵活应用公式a ⋅b = |a ||b |cos θ , b a⋅2121y y x x += , 22||y x a +=.3. 平面向量数量积的综合应用 作业1.设i ,j 是互相垂直的单位向量,向量a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则实数m 的值为( )A .-2B .2C .-12D .不存在解析:由题设知:a =(m +1,-3),b =(1,m -1),∴a +b =(m +2,m -4),a -b =(m ,-m -2).∵(a +b )⊥(a -b ),∴(a +b )·(a -b )=0,∴m (m +2)+(m -4)(-m -2)=0,解之得m =-2.故应选A.答案:A2.设a ,b 是非零向量,若函数f (x )=(xa +b )·(a -xb )的图象是一条直线,则必有( )A .a ⊥bB .a ∥bC .|a |=|b |D .|a |≠|b |解析:f (x )=(xa +b )·(a -xb )的图象是一条直线,即f (x )的表达式是关于x 的一次函数.而(xa +b )·(a -xb )=x |a |2-x 2a ·b +a ·b -x |b |2,故a ·b =0,又∵a ,b 为非零向量,∴a ⊥b ,故应选A.答案:A3.向量a =(-1,1),且a 与a +2b 方向相同,则a ·b 的范围是( )A .(1,+∞)B .(-1,1)C .(-1,+∞)D .(-∞,1)解析:∵a 与a +2b 同向,∴可设a +2b =λa (λ>0),则有b =λ-12a ,又∵|a |=12+12=2,∴a ·b =λ-12·|a |2=λ-12×2=λ-1>-1,∴a ·b 的范围是(-1,+∞),故应选C.答案:C4.已知△ABC 中,,,AB a AC b == a ·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于( )A .30°B .-150°C .150°D .30°或150°解析:∵S △ABC =12|a ||b |sin ∠B AC =154,∴sin ∠BAC =12,又a ·b <0,∴∠BAC 为钝角,∴∠BAC =150°. 答案:C5.(2010·辽宁)平面上O ,A ,B 三点不共线,设,,OA a OB b ==则△OAB 的面积等于( )A.|a |2|b |2-(a ·b )2B.|a |2|b |2+(a ·b )2C.12|a |2|b |2-(a ·b )2D.12|a |2|b |2+(a ·b )2解析:cos 〈a ,b 〉=a ·b|a |·|b |,sin ∠AOB =1-cos 2〈a ,b 〉=1-⎝⎛⎭⎫a ·b |a |·|b |2, 所以S △OAB =12|a ||b |sin ∠AOB =12|a |2|b |2-(a ·b )2.答案:C6.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB AC等于( )A .-16B .-8C .8D .16解析:解法一:因为cos A =ACAB ,故||||AB AC AB AC = cos A =AC 2=16,故选D.解法二:AB 在AC 上的投影为|AB|cos A =|AC |, 故||||AB AC AC AB = cos A =A C 2=16,故选D.答案:D7.(2010·江西)已知向量a ,b 满足|b |=2,a 与b 的夹角为60°,则b 在a 上的投影是________.解析:b 在a 上的投影是|b |cos 〈a ,b 〉=2cos60°=1. 答案:18.(2010·浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.解析:由于α⊥(α-2β),所以α·(α-2β)=|α|2-2α·β=0,故2α·β=1,所以|2α+β|=4|α|2+4α·β+|β|2=4+2+4=10.答案:109.已知|a |=2,|b |=2,a 与b 的夹角为45°,要使λb -a 与a 垂直,则λ=________.解析:由λb -a 与a 垂直,(λb -a )·a =λa ·b -a 2=0,所以λ=2. 答案:210.在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则(OA OB OC + )的最小值是________.解析:令|OM |=x 且0≤x ≤2,则|OA |=2-x . ()2OA OB OC OA OM +==-2(2-x )x =2(x 26-2x )=2(x -1)2-2≥-2. ∴()OA OB OC + 的最小值为-2.答案:-211.已知|a |=2,|b |=1,a 与b 的夹角为45°,求使向量(2a +λb )与(λa -3b )的夹角是锐角的λ的取值范围.解:由|a |=2,|b |=1,a 与b 的夹角为45°,则a ·b =|a ||b |cos45°=2×1×22=1. 而(2a +λb )·(λa -3b )=2λa 2-6a ·b +λ2a ·b -3λb 2=λ2+λ-6.设向量(2a +λb )与(λa -3b )的夹角为θ,则cos θ=(2a +λb )·(λa -3b )|2a +λb ||λa -3b |>0,且cos θ≠1,∴(2a +λb )·(λa -3b )>0,∴λ2+λ-6>0,∴λ>2或λ<-3.假设cos θ=1,则2a +λb =k (λa -3b )(k >0),∴⎩⎪⎨⎪⎧2=kλ,λ=-3k ,解得k 2=-23.故使向量2a +λb 和λa -3b 夹角为0°的λ不存在.所以当λ>2或λ<-3时,向量(2a +λb )与(λa -3b )的夹角是锐角.评析:由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a ·b |a ||b |去判断θ分五种情况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.12.设在平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =⎝⎛⎭⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.解:(1)证明:因为(a +b )·(a -b )=|a |2-|b |2=(cos 2α+sin 2α)-⎝⎛⎭⎫14+34=0,故a +b 与a -b 垂直.(2)由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,则⎝⎛⎭⎫-12·cos α+32·sin α=0, 即cos(α+60°)=0,∴α+60°=k ·180°+90°,即α=k ·180°+30°,k ∈Z , 又0°≤α<360°,则α=30°或α=210°.13.已知向量a =(cos(-θ),sin(-θ)),b =⎝⎛⎭⎫cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ,(1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-ka +tb 满足x ⊥y ,试求此时k +t 2t的最小值.解:(1)证明:∵a ·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin(-θ)·sin ⎝⎛⎭⎫π2-θ=sin θcos θ-sin θcos θ=0. ∴a ⊥b .(2)由x ⊥y ,得x ·y =0,即[a +(t 2+3)b ]·(-ka +tb )=0,∴-ka 2+(t 3+3t )b 2+[t -k (t 2+3)]a ·b =0,∴-k |a |2+(t 3+3t )|b |2=0.7又|a|2=1,|b|2=1,∴-k+t3+3t=0,∴k=t3+3t,∴k+t2t=t3+t2+3tt=t2+t+3=⎝⎛⎭⎫t+122+114.故当t=-12时,k+t2t有最小值114.。
平面向量的数量积学案
平面向量的数量积学案一、学案背景平面向量的数量积是数学中的一个重要概念,通过数量积可以研究向量之间的夹角关系、向量的投影以及向量的模长等问题。
掌握了平面向量的数量积的性质和应用,可以帮助我们更好地理解和解决实际问题。
二、学习目标1. 了解平面向量的数量积的定义。
2. 掌握平面向量的数量积的计算方法和性质。
3. 理解平面向量的数量积与向量的夹角、投影和模长之间的关系。
4. 能够应用平面向量的数量积解决实际问题。
三、学习内容1. 平面向量的数量积的定义:平面向量a = (x1, y1) 和 b = (x2, y2) 的数量积(又称点积、内积)定义为 a · b = x1 * x2 + y1 * y2。
2. 平面向量的数量积的性质:a. a · b = b · a(数量积的交换律)。
b. a · (b + c) = a · b + a · c(数量积的分配律)。
c. k(a · b) = (ka) · b = a · (kb) = k(a · b)(数量积的结合律,其中k为实数)。
3. 平面向量的数量积与向量的夹角的关系:a. 如果 a · b = 0,则向量a和b垂直(夹角为90°)。
b. 如果 a · b > 0,则向量a和b夹角锐角。
c. 如果 a · b < 0,则向量a和b夹角钝角。
4. 平面向量的数量积与向量的投影的关系:a. 向量a在向量b上的投影p的长度为 |p| = |a| * cosθ,其中θ为a和b的夹角。
b. a · b = |a| * |b| * cosθ。
5. 平面向量的数量积与向量的模长的关系:a. a · a = |a|^2,其中|a|表示向量a的模长。
b. |a| = √(a · a)。
四、学习方法1. 技巧讲解与练习:通过教师的讲解,学习平面向量的数量积的定义、计算方法和性质。
专题5.3 平面向量的数量积(重难点突破)(解析版)
专题5.3 平面向量的数量积一、考情分析1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题。
二、经验分享考点一 向量的夹角定义图示范围共线与垂直 已知两个非零向量a 和b ,作OA ―→=a ,OB ―→=b ,则∠AOB 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是0°≤θ≤180°θ=0°或θ=180°⇔a ∥b ,θ=90°⇔a ⊥b考点二 平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a||b|cos θ叫做a 与b 的数量积,记作a·b投影 |a|cos θ叫做向量a 在b 方向上的投影, |b|cos θ叫做向量b 在a 方向上的投影几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积考点三 向量数量积的运算律 交换律 a ·b =b ·a 分配律 (a +b)·c =a ·c +b ·c 数乘结合律(λa)·b =λ(a ·b)=a ·(λb)考点四 平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 几何表示 坐标表示模 |a|=a·a |a|=x 21+y 21夹角cos θ=a·b |a||b|cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22|x1x2+y1y2|≤ x21+y21x22+y22考点五必备结论1.平面向量数量积运算的常用公式:(1)(a+b)·(a-b)=a2-b2;(2) (a±b)2=a2±2a·b+b2.2.有关向量夹角的两个结论:(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为a与b夹角为0时不成立).(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为a与b夹角为π时不成立).三、题型分析重难点题型突破1 平面向量数量积的运算例1、(2020·西安调研)在梯形ABCD 中,AB ∥CD ,AB =4,BC =CD =DA =2,若E 为BC 的中点,则AC →·AE →=( ) A. 3 B .3 C .2 3 D .12【答案】D【解析】解法一:如图过点D 作DM ⊥AB ,交AB 于点M ,过点C 作CN ⊥AB ,交AB 于点N ,则MN =DC =2.在Rt △ADM 中,AD =2,AM =AB -MN 2=4-22=1,所以∠DAM =60°.因为AC →=AD →+DC →=AD →+12AB →,AE →=AD →+DC →+CE →=AD →+12AB →+12CB →=AD →+12AB →+12(CD →+DA →+AB →)=12AD →+34AB →,所以AC →·AE →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫12AD →+34AB →=12AD →2+AD →·AB →+38AB →2=12×22+2×4×cos60°+38×42=12.故选D.解法二:如图以A 为坐标原点,AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (4,0). 设D (m ,n )(n >0),则C (m +2,n ),因此BC 边的中点E ⎝⎛⎭⎫m +62,n 2.则AC →=(m +2,n ),AE →=⎝⎛⎭⎫m +62,n 2.又由BC =DA =2,得⎩⎨⎧(m +2-4)2+n 2=2,m 2+n 2=2,所以m =1,n 2=3.则AC →·AE →=(m +2)·m +62+n 22=3×72+32=12.故选D.【变式训练1-1】、(2020·河南安阳二模)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE →=-7DE →,3BF →=FC →,则AF →·BE →=( )A .11B .10C .-10D .-11【答案】D 【解析】:.以A 为坐标原点,建立直角坐标系如图所示.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE →=(-3,4),则AF →·BE →=-15+4=-11.故选D.【变式训练1-2】、(2020·黑龙江大庆实验中学高考模拟)在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF →=2,则AE →·BF →的值为( )A. 2 B .2 C .0 D .1【答案】A【解析】建立如图所示的坐标系可得A (0,0),B (2,0),E (2,1),F (x,2),∴AB →=(2,0),AF →=(x,2),∴AB →·AF →=2x =2,解得x =1,∴F (1,2), ∴AE →=(2,1),BF →=(1-2,2),重难点题型突破2平面向量数量积的性质例2、已知|a |=2,|b |=3,a 与b 的夹角为2π3,且a +b +c =0,则|c |=________.【答案】7【解析】因为a +b +c =0,所以c =-a -b ,所以c 2=a 2+b 2+2a ·b =22+32+2×2×3×cos 2π3=4+9-6=7.所以|c |=7.【变式训练2-1】、已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B .π3C.2π3 D .5π6【答案】B.【解析】:设a 与b 的夹角为α, 因为(a -b )⊥b , 所以(a -b )·b =0, 所以a ·b =b 2,所以|a |·|b |cos α=|b |2,又|a |=2|b |,所以cos α=12,因为α∈(0,π),所以α=π3.故选B.重难点题型突破3 向量数量积的综合应用例3、(2020·华南师大附中一模)已知向量|OA →|=3,|OB →|=2,BC →=(m -n )OA →+(2n -m -1)OB →,若OA →与OB →的夹角为60°,且OC →⊥AB →,则实数m n 的值为( )A.87B.43C.65D.16【答案】A【解析】由题意得,OC →=OB →+BC →=(m -n )OA →+(2n -m )OB →,AB →=OB →-OA →,OA →·OB →=3×2×cos60°=3.又因为OC →⊥AB →,所以OC →·AB →=[(m -n )OA →+(2n -m )OB →]·(OB →-OA →)=-(m -n )OA →2+(2m -3n )OA →·OB →+(2n -m )·OB →2=-9(m -n )+3(2m -3n )+4(2n -m )=0, 整理得7m -8n =0,故m n =87.【变式训练3-1】、(2020·天津市宁河区芦台第一中学高考模拟)如图所示,等边△ABC 的边长为2,D 为边AC 上的一点,且AD →=λAC →,△ADE 也是等边三角形,若BE →·BD →=449,则λ的值是( )A.23B.33C.34D.13【答案】A【解析】 BE →·BD →=(BA →+AE →)·(BA →+AE →+ED →)=BA →2+BA →·AE →+BA →·ED →+AE →·BA →+AE →2+AE →·ED →=22+2·2λcosπ3-2·2λ+2·2λcos π3+4λ2+4λ2cos 2π3=2λ2+4=449⇒λ2=49,因为λ>0,所以λ=23,选A.【变式训练3-2】、(2020·石家庄质量检测(一))已知AB →与AC →的夹角为90°,|AB →|=2,|AC →|=1,AM →=λAB →+μAC →(λ,μ∈R ),且AM →·BC →=0,则λμ的值为________.【答案】:14【解析】:根据题意,建立如图所示的平面直角坐标系则A (0,0),B (0,2),C (1,0),所以AB →=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.重难点题型突破4 平面向量与三角函数例4、(2020·开封模拟)已知AB →,AC →是非零向量,且满足(AB →-2AC →)⊥AB →,(AC →-2AB →)⊥AC →,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形【答案】C【解析】∵(AB →-2AC →)⊥AB →⇒(AB →-2AC →)·AB →=0,即AB →·AB →-2AC →·AB →=0,(AC →-2AB →)⊥AC →⇒(AC →-2AB →)·AC →=0,即AC →·AC →-2AB →·AC →=0,∴AB →·AB →=AC →·AC →=2AB →·AC →,即|AB →|=|AC →|,则cos A =AB →·AC →|AB →||AC →|=12,∴∠A =60°,∴△ABC 为等边三角形.【变式训练4-1】、在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0. (1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. 【答案】见解析【解析】:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0, sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而C ∈(0,π),所以∠C =π3.(2)由AD →=DB →知,CD →-CA →=CB →-CD →, 所以2CD →=CA →+CB →,两边平方得4|CD →|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.① 又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23四、迁移应用1.已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2 D .3【答案】C.【解析】:因为BC →=AC →-AB →=(1,t -3),所以|BC →|=1+(t -3)2=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2,故选C.2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB →,则实数m n 的值为( )A.16 B .14C .6D .4 【答案】A.【解析】:因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →夹角为60°,所以OA →·OB →=3×2×cos 60°=3,所以AB →·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16,故选A.3.已知向量a =(-2,m ),b =(1,2),若向量a 在向量b 方向上的投影为2,则实数m =( ) A .-4 B .-6 C .4 D.5+1【答案】D【解析】 ∵a ·b =-2+2m ,∴|a |cos θ=a ·b |b |=-2+2m1+4=2.解得m =5+1. 4.已知e 1,e 2为单位向量且夹角为2π3,设a =3e 1+2e 2,b =3e 2,则a 在b 方向上的投影为________.【答案】:12【解析】:根据题意得,a ·b =9e 1·e 2+6e 22=9×1×1×⎪⎭⎫⎝⎛21-+6=-92+6=32,又因为|b |=3,所以a 在b 方向上的投影为a ·b |b |=323=12.5.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求sin θ·cos θ1+3cos 2θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.【答案】见解析【解析】(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ; 当cos θ=0时,sin θ=0,与sin 2θ+cos 2θ=1矛盾, 所以cos θ≠0,故tan θ=14,所以sin θ·cos θ1+3cos 2θ=sin θ·cos θsin 2θ+4cos 2θ=tan θtan 2θ+4=465. (2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5, 即1-4sin θcos θ+4sin 2θ=5, 从而-2sin2θ+2(1-cos2θ)=4, 即sin2θ+cos2θ=-1, 于是sin ⎪⎭⎫⎝⎛+42πθ=-22, 又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4,因此θ=π2或θ=3π4.。
(完整版)5.3平面向量的数量积导学案
§5.3平面向量的数量积2014高考会这样考1.考查两个向量的数量积的求法;2.利用两个向量的数量积求向量的夹角、向量的模;3.利用两个向量的数量积证明两个向量垂直.复习备考要这样做1.理解数量积的意义,掌握求数量积的各种方法;2.理解数量积的运算性质;3.利用数量积解决向量的几何问题.1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos θ叫作a和b的数量积(或内积),记作a·b=|a||b|cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cos θ;(2)非零向量a,b,a⊥b⇔a·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=a·a;(4)cos θ=a·b|a||b|;(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律学#科#网Z#X#X#K](1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. [难点正本 疑点清源] 1. 向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2. a ·b >0是两个向量a ·b 夹角为锐角的必要不充分条件.因为若〈a ,b 〉=0,则a·b >0,而a ,b 夹角不是锐角;另外还要注意区分△ABC 中,AB →、BC →的夹角与角B 的关系. 3.计算数量积时利用数量积的几何意义是一种重要方法.1. 已知向量a 和向量b 的夹角为135°,|a |=2,|b |=3,则向量a 和向量b 的数量积a·b =________. 答案 -3 2解析 a·b =|a||b |cos 135°=2×3×⎝⎛⎭⎫-22=-3 2. 2. 已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________. 学_科_网Z_X_X_K]答案 32解析 由a ⊥b 知a·b =0.又3a +2b 与λa -b 垂直, ∴(3a +2b )·(λa -b )=3λa 2-2b 2=3λ×22-2×32=0.∴λ=32.3. 已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.答案655解析 设a 和b 的夹角为θ,|a |cos θ=|a |a·b|a||b |=2×(-4)+3×7(-4)2+72=1365=655.4. (2011·辽宁)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k 等于( )A .-12B .-6C .6D .12答案 D解析 由已知得a ·(2a -b )=2a 2-a·b =2(4+1)-(-2+k )=0,∴k =12.5. (2012·陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A.22B.12C .0D .-1答案 C解析 a =(1,cos θ),b =(-1,2cos θ). ∵a ⊥b ,∴a ·b =-1+2cos 2θ=0,∴cos 2θ=12,∴cos 2θ=2cos 2θ-1=1-1=0.题型一 平面向量的数量积的运算例1(1)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于( )A .-16B .-8C .8D .16(2)若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x 等于 ( ) A .6B .5C .4D .3思维启迪:(1)由于∠C =90°,因此选向量CA →,CB →为基底. (2)先算出8a -b ,再由向量的数量积列出方程,从而求出x . 答案 (1)D (2)C解析 (1)AB →·AC →=(CB →-CA →)·(-CA →) =-CB →·CA →+CA 2→=16. (2)∵a =(1,1),b =(2,5),∴8a -b =(8,8)-(2,5)=(6,3).又∵(8a -b )·c =30,∴(6,3)·(3,x )=18+3x =30. ∴x =4.探究提高 求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.本题从不同角度创造性地解题,充分利用了已知条件.(2012·北京)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 答案 1 1解析 方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角 坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),则E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1,∴(DE →·DC →)max =|DC →|·1=1. 题型二 向量的夹角与向量的模例2已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 思维启迪:运用数量积的定义和|a |=a·a . 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a·b -3|b |2=61. 学科 又|a |=4,|b |=3,∴64-4a·b -27=61,∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积. |a +b |2=(a +b )2=|a |2+2a·b +|b |2 =42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.探究提高 (1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,达到简化运算的目的.(1)已知向量a 、b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角为( )A.π6B.π4C.π3D.π2答案 C解析 ∵cos 〈a ,b 〉=a·b |a||b |=12,∴〈a ,b 〉=π3.(2)已知向量a =(1,3),b =(-1,0),则|a +2b |等于( )A .1 B. 2C .2D .4答案 C解析 |a +2b |2=a 2+4a·b +4b 2=4-4×1+4=4, ∴|a +2b |=2.题型三 向量数量积的综合应用例3已知a =(cos α,sin α),b =(cos β,sinβ)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证.(2)由模相等,列等式、化简.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β), a -k b =(cos α-k cos β,sin α-k sin β), |k a +b |=k 2+2k cos (β-α)+1, |a -k b |=1-2k cos (β-α)+k 2.∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.∵0<α<β<π,∴0<β-α<π,∴β-α=π2.探究提高 (1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a·b =0.(3)数量积的运算中,a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a ⊥b .已知平面向量a =(3,-1),b =⎝⎛⎭⎫12,32. (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).(1)证明 ∵a·b =3×12-1×32=0,∴a ⊥b .(2)解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d , ∴c·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a·b =0, 又a 2=|a |2=4,b 2=|b |2=1,a·b =0, ∴c·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t4(t ≠0).三审图形抓特点典例:(5分)如图所示,把两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.图形有一副三角板构成 ↓(注意一副三角板的特点) 令|AB |=1,|AC |=1↓(一副三角板的两斜边等长) |DE |=|BC |= 2↓(非等腰三角板的特点) |BD |=|DE |sin 60°=2×32=62↓(注意∠ABD =45°+90°=135°) AD →在AB →上的投影即为x ↓x =|AB |+|BD |cos 45°=1+62×22=1+32↓AD →在AC →上的投影即为y ↓y =|BD |·sin 45°=62×22=32. 解析 方法一 结合图形特点,设向量AB →,AC →为单位向量,由AD →=xAB →+yAC →知,x ,y 分别为AD →在AB →,AC →上的投影.又|BC |=|DE |=2,∴|BD →|=|DE →|·sin 60°=62.∴AD →在AB →上的投影 x =1+62cos 45°=1+62×22=1+32, AD →在AC →上的投影y =62sin 45°=32.方法二 ∵AD →=xAB →+yAC →,又AD →=AB →+BD →, ∴AB →+BD →=xAB →+yAC →,∴BD →=(x -1)AB →+yAC →. 又AC →⊥AB →,∴BD →·AB →=(x -1)AB →2. 设|AB →|=1,则由题意|DE →|=|BC →|= 2.又∠BED =60°,∴|BD →|=62.显然BD →与AB →的夹角为45°.∴由BD →·AB →=(x -1)AB →2, 得62×1×cos 45°=(x -1)×12.∴x =32+1. 同理,在BD →=(x -1)AB →+yAC →两边取数量积可得y =32. Zxxk答案 1+32 32温馨提醒 突破本题的关键是,要抓住图形的特点(图形由一副三角板构成).根据图形的特点,利用向量分解的几何意义,求解方便快捷.方法二是原试题所给答案,较方法一略显繁杂.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 失误与防范1.(1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b .3.a·b =a·c (a ≠0)不能推出b =c ,即消去律不成立.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( )A .-1B .-12C.12D .1答案 D解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a+b |等于( )A. 5B.10 C .2 5D .10答案 B解析 ∵a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x -4=0,∴x =2. 由b ∥c ,得1×(-4)-2y =0,∴y =-2. ∴a =(2,1),b =(1,-2). ∴a +b =(3,-1),∴|a +b |=32+(-1)2=10.3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), ZXXK] 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 联立①②解得x =-79,y =-73.4.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( )A .-32B .-23C.23D.32答案 D解析 由于AB →·AC →=|AB →|·|AC →|·cos ∠BAC=12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32. Zxxk 二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.答案 3 2解析 ∵a ,b 的夹角为45°,|a |=1, ∴a ·b =|a |·|b |cos 45°=22|b |, |2a -b |2=4-4×22|b |+|b |2=10,∴|b |=3 2. 6. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________.答案 -16解析 如图所示,AB →=AM →+MB →, AC →=AM →+MC → =AM →-MB →,∴AB →·AC →=(AM →+MB →)·(AM →-MB →)=AM →2-MB →2=|AM →|2-|MB →|2=9-25=-16.7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是____________.答案 (-∞,-6)∪⎝⎛⎭⎫-6,32 解析 由a·b <0,即2λ-3<0,解得λ<32,由a ∥b 得:6=-λ,即λ=-6.因此λ<32,且λ≠-6.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c . 解 (1)a·b =2n -2,|a |=5,|b |=n 2+4,∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0, ∴n =6或n =-23(舍),∴b =(-2,6).(2)由(1)知,a·b =10,|a |2=5.又c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0, ∴λb·a -|a |2=0,∴λ=|a |2b·a =510=12, ∴c =12b =(-1,3).9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围. 解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7.由已知得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时, 设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍).故t 的取值范围为(-7,-142)∪(-142,-12). ZXXK] B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC 等于( )A. 3B.7C .2 2D.23 ZXXK]答案 A解析 ∵AB →·BC →=1,且AB =2,∴1=|AB →||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×(-1). ∴|BC |= 3.2. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是 ( )A .-4B .4C .-2D .2答案 A解析 a·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉, ∴|a |·cos 〈a ,b 〉=-4.3. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2等于( )A .2B .4C .5D .10答案 D解析 ∵P A →=CA →-CP →, ∴|P A →|2=CA →2-2CP →·CA →+CP →2.∵PB →=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2.∴|P A →|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2 =AB →2-2CP →·2CD →+2CP →2. 又AB →2=16CP →2,CD →=2CP →,代入上式整理得|P A →|2+|PB →|2=10|CP →|2,故所求值为10. 二、填空题(每小题5分,共15分)4. (2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.答案2解析 a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b , Zxxk ∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0, ∴m =-12.∴a =(1,-1),∴|a |= 2.5. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________. 答案2解析 方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2).故AB →=(2,0),AF →=(x,2),AE →=(2,1),BF →=(x -2,2), ∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF →=2,∴x =1.∴BF →=(1-2,2). ZXXK] ∴AE →·BF →=(2,1)·(1-2,2)=2-2+2= 2. 方法二 用AB →,BC →表示AE →,BF →是关键. 设DF →=xAB →,则CF →=(x -1)AB →. AB →·AF →=AB →·(AD →+DF →) =AB →·(AD →+xAB →)=xAB →2=2x ,又∵AB →·AF →=2,∴2x =2, ∴x =22.∴BF →=BC →+CF →=BC →+⎝⎛⎭⎫22-1AB →. ∴AE →·BF →=(AB →+BE →)·⎣⎡⎦⎤BC →+⎝⎛⎭⎫22-1AB →=⎝⎛⎭⎫AB →+12BC →⎣⎡⎦⎤BC →+⎝⎛⎭⎫22-1AB →=⎝⎛⎭⎫22-1AB →2+12BC →2=⎝⎛⎭⎫22-1×2+12×4= 2. 6. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是________.答案 [1,4] 解析 如图所示, 设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),则BM →=λBC →, CN →=λCD →,DN →=CN →-CD → =(λ-1)CD →,∴AM →·AN →=(AB →+BM →)·(AD →+DN →) =(AB →+λBC →)·[AD →+(λ-1)CD →] =(λ-1)AB →·CD →+λBC →·AD → =4(1-λ)+λ=4-3λ,∴当λ=0时,AM →·AN →取得最大值4; 当λ=1时,AM →·AN →取得最小值1. ∴AM →·AN →∈[1,4]. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝⎛⎭⎫-12,32. (1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝⎛⎭⎫14+34=0,故向量a +b 与a -b 垂直.(2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a·b +|b |2=|a |2-23a·b +3|b |2,所以2(|a |2-|b |2)+43a·b =0,而|a |=|b |,所以a·b =0,即⎝⎛⎭⎫-12·cos α+32·sin α=0,即cos(α+60°)=0,∴α+60°=k ·180°+90°,k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.。
平面向量的数量积教案
平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。
2. 掌握平面向量的数量积的计算公式及运算性质。
3. 学会运用平面向量的数量积解决实际问题。
二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。
对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。
(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。
3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 教学难点:平面向量的数量积的几何意义的理解及应用。
四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。
3. 结合例题,引导学生运用平面向量的数量积解决实际问题。
五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 完成课后练习题,巩固所学知识。
3. 思考如何运用平面向量的数量积解决实际问题。
六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。
《平面向量的数量积》教案
《平面向量的数量积》教案《《平面向量的数量积》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程:一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.2.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ23.平面向量的坐标表示分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量的(直角)坐标,记作4.平面向量的坐标运算若,,则,,.若,,则5.∥(¹)的充要条件是x1y2-x2y1=06.线段的定比分点及λP1,P2是直线l上的两点,P是l上不同于P1,P2的任一点,存在实数λ,使=λ,λ叫做点P分所成的比,有三种情况:λ>0(内分)(外分)λ<0(λ<-1)(外分)λ<0(-1<λ<0)7.定比分点坐标公式:若点P1(x1,y1),P2(x2,y2),λ为实数,且=λ,则点P的坐标为(),我们称λ为点P分所成的比.8.点P的位置与λ的范围的关系:①当λ>0时,与同向共线,这时称点P为的内分点.②当λ<0()时,与反向共线,这时称点P为的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设=a,=b,可得=.10.力做的功:W=|F|×|s|cosq,q是F与s的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b 的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0°≤q≤180°2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).并规定0与任何向量的数量积为0.×探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a¹0,且a×b=0,则b=0;但是在数量积中,若a¹0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b¹0),则ab=bcÞa=c.但是a×b=b×ca=c如右图:a×b=|a||b|cosb=|b||OA|,b×c=|b||c|cosa=|b||OA|Þa×b=b×c但a¹c(5)在实数中,有(a×b)c=a(b×c),但是(a×b)c¹a(b×c)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.3.“投影”的概念:作图定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q=0°时投影为|b|;当q=180°时投影为-|b|.4.向量的数量积的几何意义:数量积a×b等于a的长度与b在a方向上投影|b|cosq的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1°e×a=a×e=|a|cosq2°a^bÛa×b=03°当a与b同向时,a×b=|a||b|;当a与b反向时,a×b=-|a||b|.特别的a×a=|a|2或4°cosq=5°|a×b|≤|a||b|三、讲解范例:例1已知|a|=5,|b|=4,a与b的夹角θ=120o,求a·b.例2已知|a|=6,|b|=4,a与b的夹角为60o求(a+2b)·(a-3b).例3已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直.例4判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a 与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们的夹角θ=90°,∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能.《平面向量的数量积》教案这篇文章共7523字。
平面向量的数量积
《平面向量数量积的物理背景及其含义》导学案编制人:刘胜红 审核人:高一数学组1.能说出向量数量积的概念,数量积的几何意义;2.能说出向量数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算. 3.体会类比的数学思想和方法.重点:平面向量数量积的含义、性质与运算律及其应用。
难点:平面向量数量积的概念(1) 阅读教材103---105页,回答预习案中的问题,并完成预习自测.(2) 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.预习案1.平面向量数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量 叫做a 与b 的 (或 ),记作: ,即: . 规定:零向量与任一向量的数量积均为 .2.向量的数量积的性质: 设a 和都是非零向量,θ为a 与的夹角. (1)、a ⊥⇔ . (2)、当a 与同向时,=⋅ ;当a 与b 反向时,=⋅b a , 特别地,=⋅aa 或= .(3)3.向量数量积的运算律(1)交换律:=⋅ ;(2)结合律:=⋅λ = ; (3)分配律:=⋅+)( .(4)思考:=⋅⋅c b a )()(c b a ⋅⋅,成立吗,为什么?a c b c ⋅=⋅ 若,则a b =成立吗?预习自测下列说法:①00=⋅;②0=⋅;③对任意向量a ,有=⋅;④若⋅=⋅,则≠当且仅当=时成立,其中正确的个数为( )A. 1B. 2C. 3D. 4我的疑惑探究案探究点一:向量数量积的概念及几何意义:如图所示,一物体在力F 的作用下产生位移S , 那么力F 所做的功:W= 。
这个公式的有什么特点?请完成下列填空:①W (功)是 量,②F (力)是 量,③S (位移)是 量,④α是 。
为此,引入向量数量积的概念, 定义说明:(1)记法“a ·”中间的“· ”不可以省略,也不可以用“⨯ ”代替。
(2)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?例1:已知|a |=3,|b |=6,当① a ∥ b ,② a ⊥ b ,③ a 与b 的夹角是60°时,分别求a ·.6=4=. 若12-=⋅b a ,求a 与 b 的夹角.向量数量积的几何意义:(1)投影的概念:如图,我们把│a │θcos (││θcos )叫做向量 在 方向上(在a 方向上)的 , 记作:=1OB .(2)几何意义:数量积⋅等于a 的长度____ 与在a 的方向上的投影 的乘积.注:投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |. 探究点二:向量数量积的性质、运算律及应用例2:已知︱a ︱=6,︱b ︱=4, a 与b 的夹角为60°,求(1)2()a b + (2)a b - (3)(a +2 )·(a -3)变式练习:4=3=,,61)2()32(=+⋅-求a 与的夹角.例3:互相垂直?与为何值时,向量不共线与已知b a b k a k b a b ak ,,4,3-+==(通过解决本节导学案的内容和疑惑点,归纳一下自己本节的收获,和大家交流一下,写下自己的所得)训练案1、若,0<⋅则a 与的夹角θ的取值范围是 ( )A900≤≤θ B18090≤≤θ C18090<≤θ D18090≤<θ 2、已知向量a 、,41==且2=⋅,则a 与的夹角为 ( )A.6π B. 4π C. 3π D. 2π3、已知两个非零向量a 与b ,6=,a 与b 的夹角为60,则a 在b 方向上的投影为 .4.已知两个单位向量、共线,则⋅等于.5、在ABC ∆,2==若,0=⋅BC AB 求.AC BA ⋅。
平面向量的数量积(经典导学案及练习答案详解)
§5.3 平面向量的数量积学习目标1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示坐标表示数量积 a·b =|a ||b |cos θ a·b =x 1x 2+y 1y 2模 |a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a ∥b 的充要条件 a =λb (λ∈R ) x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤(x 21+y 21)(x 22+y 22)常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2 答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3, cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+(t -3)2=1, 解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a=________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135 B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=(1,3)·(3,4)32+42=1525=35.教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e1,e2是两个单位向量,且|e1+e2|=3,则|e1-e2|=________.答案 1解析由|e1+e2|=3,两边平方,得e21+2e1·e2+e22=3.又e1,e2是单位向量,所以2e1·e2=1,所以|e1-e2|2=e21-2e1·e2+e22=1,所以|e1-e2|=1.思维升华(1)求平面向量的模的方法①公式法:利用|a|=a·a及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解.(2)求平面向量的夹角的方法①定义法:cos θ=a·b|a||b|,求解时应求出a·b,|a|,|b|的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a⊥b⇔a·b=0⇔|a-b|=|a+b|(其中a≠0,b≠0).跟踪训练2(1)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案 B解析方法一设a=(1,0),b=(0,1),则c=(7,2),∴cos〈a,c〉=a·c|a||c|=73,∴sin〈a,c〉=2 3.方法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.(2)(多选)(2021·新高考全国Ⅰ)已知O为坐标原点,点P1(cos α,sin α),P2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+(-sin β)2=1, 所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |22(1+cos θ).当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2 =12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ,则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+(1+3)2+2×1×(1+3)cos θ, 解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+(1+3)2-⎝ ⎛⎭⎪⎫6+2222×1×(1+3)=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[](a +b )2-(a -b )2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2,所以|a -b |=|a -b |2 =|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=(a -b )·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+(-3)2=±⎝⎛⎭⎫255,-55. 5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos 〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2, 故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为 a·b |b |·b |b |=12b ,B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233,在△BCE 中, BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的平分线. 因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC=12, 所以cos ∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N , ∴|F 1+F 2|=102×2=20 N , ∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x , DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m·n =sin C , 又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3.(2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
人教A版高中数学必修四 2.4《平面向量的数量积》导学案2
名师精编 优秀教案高中数学人教版必修4: 2.4《平面向量的数量积》导学案【学习目标】1、知道平面向量数量积的含义及其物理意义;2﹑知道平面向量数量积积与投影的关系;3、会运用平面向量的数量积及其运算律.【重点难点】▲重点:向量数量积的定义及运算律▲难点:数量积的应用【知识链接】1、 向量的线性运算;2、向量),(11y x a =,),(22y x b =共线01221=-⇔y x y x .【学习过程】阅读课本第103页到第105页的内容,尝试回答以下问题:知识点1:平面向量数量积的物理背景及其含义问题1﹑物体在力F 作用下产生位移S ,那么力F 所做的功_________=W .力和位移是矢量,功是标量,类比我们引入两个向量的数量积的概念: 已知两个非零向量a 与b ,我们把___________叫做a 与b 的数量积,记作a b ∙,即________ _________,其中θ是与的夹角.问题2、请叙述投影的定义.问题3、由投影的定义,你能叙述∙的几何意义吗?问题4﹑设与是非零向量则:(1)______⇔⊥;(2)当a 与b 同向时,b a ∙=_____________;当a 与b 反向时,b a ∙=_______________.特别地∙=_____________;名师精编 优秀教案(3; (4)=θcos.问题6、尝试用数量积的运算律证明下列等式:(1)()2222a ba ab b +=+∙+;(2)()()22a b a b a b +∙-=-;例15=2=,与的夹角为 120,求()()23a b a b +∙-的值.知识点2: 平面向量数量积的坐标表示,模,夹角阅读课本第106页到107页的内容,尝试回答以下问题:问题1、已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 与b 的坐标表示b a ∙呢?(提示:j y i x a 11+=,j y i x b 22+=)问题2﹑由问题1,若),(y x a ==____=_________.问题3、如果),(11y x =,),(22y x =,θ是与的夹角,则_____cos =θ.例2、在ABC ∆中,已知)2,1(-A ,)1,3(-B ,)2,5(C ,求BAC ∠∙cos ,.名师精编 优秀教案【基础达标】A1、已知8,6,p q ==p 和q 的夹角是60︒,求p q ∙.A26=,为单位向量,当与之间夹角θ分别为 135,90,45时,分别求出在方向上的投影.B3、已知)(3,2a =,)(4,2b -=,)(2,1c --=,求b a ∙,)()(b a b a -∙+,)(c b a +∙,2)(+.B44=3=,61)2)(32(=+-,求∙的夹角θ.C5、在ABC ∆中,设b CA a BC c AB ===,,,且a c c b b a ∙=∙=∙,试判断ABC ∆的形状.名师精编 优秀教案D6、已知∙-==,求与+的夹角【小结】【当堂检测】A1、已知∆ABC 中,5,8,60BC AC C ︒===,求BC CA ∙.B2、求证:A(1,0),B(5,-2),C(8,4),D(4,6)为顶点的四边形是一个矩形.【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是名师精编优秀教案。
平面向量的数量积导学案
河北孟村回民中学高一数学导学纲 编号 班级 姓名 【课程标准】1.掌握平面向量的数量积及其几何意义;2.了解并掌握平面向量数量积的重要性质及运算律;【重点】重点是数量积的定义、几何意义及运算律,. 【难点】难点是夹角公式和求模公式的应用. 【导学流程】 一、了解感知:(一)知识链接:1、向量加法和减法运算的法则_________________________________. 2、向量数乘运算的定义是 . 3、两个非零向量夹角的概念:_________________________________.思考:通过前面的学习我们知道向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘”呢? (二)自主探究:(预习教材P103-P106)探究1:如下图,如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W = ,其中θ是 .请完成下列填空:F (力)是 量;S (位移)是 量;θ是 ;W (功)是 量; 结论:功是一个标量,功是力与位移两个向量的大小及其夹角余弦的乘积 启示:能否把“功”看成是力与位移这两个向量的一种运算的结果呢?新知1向量的数量积(或内积)的定义已知两个非零向量a 和b ,我们把数量cos a b θ叫做a 和b 的数量积(或内积),记作a b ⋅,即 注:①记法“a ·b ”中间的“· ”不可以省略,也不可以用“⨯ ”代替。
②“规定”:零向量与任何向量的数量积为零,即00a ⋅=。
探究2:向量的数量积运算与向量数乘运算的结果有什么不同?影响数量积大小因素有哪些?小组讨论,完成下表:θ的范围 0°≤θ<90°θ=90°0°<θ≤180°a ·b 的符号新知2:向量的数量积(或内积)几何意义(1)向量投影的概念:如图,我们把cos a θ叫做向量a 在b 方向上的投影;cos b θ叫做向量b 在a 方向年级 高一作者温静时间 课题2.4平面向量的数量积课型新授上的投影.说明:如图,1cos OB b θ=. 向量投影也是一个数量,不是向量; 当θ为锐角时投影为_______值;当θ为钝角时投影为_______值; 当当θ = 0︒时投影为 ________;当θ=90︒时投影为__________; 当θ = 180︒时投影为__________.(2)向量的数量积的几何意义:数量积a ·b 等于a 的长度︱a ︱与b 在a 的方向上的投影 的乘积。
平面向量的数量积教案精品
平面向量的数量积教案精品教学目标:1.理解平面向量的数量积的概念和性质。
2.学会计算平面向量的数量积。
3.解决与平面向量的数量积相关的问题。
教学重点:1.平面向量的数量积的定义和性质。
2.使用平面向量的数量积计算向量的模长和夹角。
教学难点:1.运用平面向量的数量积解决实际问题。
2.掌握平面向量的数量积的计算方法。
教学准备:1.教师准备黑板、彩笔和相关教学资料。
2.学生准备课本、作业本、笔等。
教学过程:Step 1 引入教师用黑板上画两个平行且相等长的向量,并引出向量积的概念。
简单介绍向量的数量积和叉积,并引出本节课的内容是向量的数量积。
Step 2 讲解1. 向量的数量积的定义:向量a(x1, y1)和向量b(x2, y2)的数量积,记作a·b,等于,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示向量a和向量b的夹角。
2.向量的数量积的性质:a·b=b·a交换律a·(kb)=k(a·b) 数量积与数的结合a·a=,a,^2向量与自己的数量积等于向量的模长的平方a·b=0两个向量的数量积为0,表示两个向量垂直Step 3 讲解教师做一道具体的例题,先引入概念,并导出计算公式。
例题:已知向量a(3,2)和向量b(1,-4),求向量a和向量b的数量积。
解:根据定义公式,a·b, = ,a,·,b,·cosθ代入向量a和向量b的数值,得到3*1+2*(-4)=3+(-8)=-5Step 4 讲解教师通过例题引导学生讨论下面的性质并证明之。
向量a·b = ,a,·,b,·cosθ其中,0≤θ≤π。
当0≤θ≤π/2时,cosθ > 0;当π/2≤θ≤π时,cosθ<0。
Step 5 练习由简单到复杂给学生练习一些数量积的计算题目,并检查答案。
第五章 5.3平面向量的数量积
1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。
2022年 《向量数量积的概念 导学案》优秀教案
向量数量积的概念【学习重点】平面向量数量积的概念和物理意义、几何意义、应用【学习难点】平面向量数量积的几何意义理解答:问题1:向量的夹角新知新学〔一〕:向量夹角的定义给定两个非零向量,在平面内任选一点O,作错误!=,错误!=,那么称内的∠AOB为向量与向量的夹角,记作.如图,向量与的夹角为,即;向量与的夹角为,即;向量与的夹角为,即;向量与的夹角为,即。
新知新学〔二〕:向量夹角的性质〔1〕根据向量夹角的定义可知,两个非零向量的夹角是唯一确定的,而且;〔2〕当时,称向量与向量,记作,由于零向量方向是不确定的,在讨论垂直问题时,规定零向量与任意向量垂直.【对点快练】1.在等边三角形ABC中,向量错误!与错误!的夹角为A.60°B.12021C.90°D.30°2.假设向量a与b的夹角为60°,那么向量a与-b的夹角是A.60°B.12021C.30°D.150°问题2:向量数量积的性质新知新学〔三〕:向量数量积的定义数量积的定义:一般地,当都是非零向量时,称为向量的数量积也称为内积,记作,即=新知新学〔四〕:数量积的性质1|;2 ,即;3 ,即向量垂直的条件为;4例1〔1〕,求;〔2〕,求【变式练习1】在正三角形ABC中,边长为4,求1错误!·错误!;2错误!·错误!【变式练习2】|a|=2,|b|=1,a·b=-错误!,求〈a,b〉.【变式练习3】假设非零向量a,b满足|a|=|b|,2a·b+b2=0,那么a与b的夹角为A.30°B.60°C.12021D.150°问题3:向量的投影与向量数量积的几何意义新知新学〔五〕向量在直线上的投影、向量在向量上的投影如下图,设非零向量过分别作直线的垂线,垂足分别为,那么称向量为向量在直线上的。
类似地,给定平面上的一个非零向量,设所在的直线为,那么在直线上的投影称为在向量上的投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A§5.3 平面向量的数量积2014高考会这样考 1.考查两个向量的数量积的求法;2.利用两个向量的数量积求向量的夹角、向量的模;3.利用两个向量的数量积证明两个向量垂直.复习备考要这样做 1.理解数量积的意义,掌握求数量积的各种方法;2.理解数量积的运算性质;3.利用数量积解决向量的几何问题.1. 平面向量的数量积已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 和b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是a·b =0,两个非零向量a 与b 平行的充要条件是a·b =±|a||b|.2. 平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.3. 平面向量数量积的重要性质(1)e·a =a·e =|a |cos θ;(2)非零向量a ,b ,a ⊥b ⇔a·b =0;(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =a 2,|a |=;a·a (4)cos θ=;a·b|a||b|(5)|a·b |__≤__|a||b|.4. 平面向量数量积满足的运算律学#科#网Z#X#X#K](1)a·b =b·a (交换律);(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数);(3)(a +b )·c =a·c +b·c .5. 平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=.x 2+y 2(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=||=.AB→ (x 1-x 2)2+(y 1-y 2)2n de i (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.[难点正本 疑点清源]1. 向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2. a ·b >0是两个向量a ·b 夹角为锐角的必要不充分条件.因为若〈a ,b 〉=0,则a·b >0,而a ,b 夹角不是锐角;另外还要注意区分△ABC 中,、的夹角与角B 的关系.AB→ BC → 3.计算数量积时利用数量积的几何意义是一种重要方法.1. 已知向量a 和向量b 的夹角为135°,|a |=2,|b |=3,则向量a 和向量b 的数量积a·b =________.答案 -32解析 a·b =|a||b |cos 135°=2×3×=-3.(-22)22.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________.学_科_网Z_X_X_K]答案 32解析 由a ⊥b 知a·b =0.又3a +2b 与λa -b 垂直,∴(3a +2b )·(λa -b )=3λa 2-2b 2=3λ×22-2×32=0.∴λ=.323. 已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.答案 655解析 设a 和b 的夹角为θ,|a |cos θ=|a |a·b|a||b |===.2×(-4)+3×7(-4)2+7213656554. (2011·辽宁)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k 等于( )A .-12B .-6C .6D .12t h答案 D解析 由已知得a ·(2a -b )=2a 2-a·b =2(4+1)-(-2+k )=0,∴k =12.5. (2012·陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A. B.C .0D .-12212答案 C解析 a =(1,cos θ),b =(-1,2cos θ).∵a ⊥b ,∴a ·b =-1+2cos 2θ=0,∴cos 2θ=,∴cos 2θ=2cos 2θ-1=1-1=0.12题型一 平面向量的数量积的运算例1 (1)在Rt △ABC 中,∠C =90°,AC =4,则·等于( )AB→ AC → A .-16B .-8C .8D .16(2)若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x 等于( )A .6B .5C .4D .3思维启迪:(1)由于∠C =90°,因此选向量,为基底.CA→ CB → (2)先算出8a -b ,再由向量的数量积列出方程,从而求出x .答案 (1)D (2)C解析 (1)·=(-)·(-)AB → AC → CB → CA → CA→ =-·+=16.CB→ CA → CA 2→ (2)∵a =(1,1),b =(2,5),∴8a -b =(8,8)-(2,5)=(6,3).又∵(8a -b )·c =30,∴(6,3)·(3,x )=18+3x =30.∴x =4.探究提高 求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.本题从不同角度创造性地解题,充分利用了已知条件. (2012·北京)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则·的值为________;·的最大值为________.DE → CB → DE→ DC → 答案 1 1解析 方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),则E (t,0),t ∈[0,1],则=(t ,-1),=(0,-1),所以·=(t ,-1)·(0,-1)=1.DE → CB → DE→ CB → 因为=(1,0),所以·=(t ,-1)·(1,0)=t ≤1,DC → DE→ DC → 故·的最大值为1.DE→ DC → 方法二 由图知,无论E 点在哪个位置,在方向上的投影都DE→ CB → 是CB =1,∴·=||·1=1,DE→ CB → CB → 当E 运动到B 点时,在方向上的投影最大即为DC =1,∴(DE→ DC → ·)max =||·1=1.DE → DC → DC→ 题型二 向量的夹角与向量的模例2 已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若=a ,=b ,求△ABC 的面积.AB → BC→ 思维启迪:运用数量积的定义和|a |=.a·a 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a·b -3|b |2=61.学科又|a |=4,|b |=3,∴64-4a·b -27=61,∴a·b =-6.∴cos θ===-.a·b|a||b |-64×312又0≤θ≤π,∴θ=.2π3(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13,∴|a +b |=.13(3)∵与的夹角θ=,∴∠ABC =π-=.AB → BC→ 2π32π3π3又||=|a |=4,||=|b |=3,AB → BC→ ∴S △ABC =||||sin ∠ABC =×4×3×=3.12AB → BC→ 12323探究提高 (1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=要引起足够重视,它是求距离常用的公式.a·a (2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,达到简化运算的目的.(1)已知向量a 、b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角为( ) A. B. C.D.π6π4π3π2答案 C解析 ∵cos 〈a ,b 〉==,a·b |a||b |12∴〈a ,b 〉=.π3(2)已知向量a =(1,),b =(-1,0),则|a +2b |等于( )3A .1B.C .2D .42答案 C解析 |a +2b |2=a 2+4a·b +4b 2=4-4×1+4=4,∴|a +2b |=2.题型三 向量数量积的综合应用例3 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证.(2)由模相等,列等式、化简.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-(cos 2β+sin 2β)=0,∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -k b =(cos α-k cos β,sin α-k sin β),|k a +b |=,k 2+2k cos (β-α)+1|a -k b |=.1-2k cos (β-α)+k 2∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α).又k ≠0,∴cos(β-α)=0.∵0<α<β<π,∴0<β-α<π,∴β-α=.π2探究提高 (1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a·b =0.(3)数量积的运算中,a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a⊥b .已知平面向量a =(,-1),b =.3(12,32)(1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).l l t h (1)证明 ∵a·b =×-1×=0,∴a ⊥b .31232(2)解 ∵c =a +(t 2-3)b ,d=-k a +t b ,且c ⊥d ,∴c·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a·b =0,又a 2=|a |2=4,b 2=|b |2=1,a·b =0,∴c·d =-4k +t 3-3t =0,∴k =f (t )=(t ≠0).t 3-3t4三审图形抓特点典例:(5分)如图所示,把两块斜边长相等的直角三角板拼在一起,若=x +y ,则x =________,y =________.AD → AB → AC→ 图形有一副三角板构成↓(注意一副三角板的特点)令|AB |=1,|AC |=1↓(一副三角板的两斜边等长)|DE |=|BC |=2↓(非等腰三角板的特点)|BD |=|DE |sin 60°=×=23262↓(注意∠ABD =45°+90°=135°)在上的投影即为xAD→ AB → ↓x =|AB |+|BD |cos 45°=1+×=1+622232↓在上的投影即为yAD→ AC → ↓y =|BD |·sin 45°=×=.622232解析 方法一 结合图形特点,设向量,为单位向量,由=x +y 知,AB → AC → AD → AB → AC→ x ,y 分别为在,上的投影.又|BC |=|DE |=,∴||=||·sin 60°=.AD → AB → AC → 2BD → DE→ 62∴在上的投影AD→ AB → x =1+cos 45°=1+×=1+,62622232在上的投影y =sin 45°=.AD → AC→ 6232方法二 ∵=x +y ,又=+,AD → AB → AC → AD→ AB → BD → ∴+=x +y ,∴=(x -1)+y .AB → BD → AB → AC → BD → AB → AC → 又⊥,∴·=(x -1)2.AC → AB → BD → AB → AB → 设||=1,则由题意||=||=.AB → DE → BC→ 2又∠BED =60°,∴||=.显然与的夹角为45°.BD → 62BD→ AB → ∴由·=(x -1)2,BD → AB → AB → 得×1×cos 45°=(x -1)×12.∴x =+1.6232同理,在=(x -1)+y 两边取数量积可得y =.ZxxkBD → AB → AC→ 32答案 1+ 3232温馨提醒 突破本题的关键是,要抓住图形的特点(图形由一副三角板构成).根据图形的特点,利用向量分解的几何意义,求解方便快捷.方法二是原试题所给答案,较方法一略显繁杂.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.e 2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.失误与防范1.(1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系.2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b .3.a·b =a·c (a ≠0)不能推出b =c,即消去律不成立.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( )A .-1B .-C.D .11212答案 D解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A. B.C .2D .105105答案 B解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |==.32+(-1)2103. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.B.(79,73)(-73,-79)C.D.(73,79)(-79,-73)答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), ZXXK]又(c +a )∥b ,∴2(y +2)+3(x +1)=0.①又c ⊥(a +b ),∴(x,y )·(3,-1)=3x -y =0.②联立①②解得x =-,y =-.79734.在△ABC 中,AB =3,AC =2,BC =,则·等于( )10AB→ AC → A .- B .-C.D.32232332答案 D解析 由于·=||·||·cos ∠BAC AB→ AC → AB → AC → =(||2+||2-||2)=×(9+4-10)=. Zxxk12AB → AC → BC→ 1232二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=,则|b |=________.10答案 32解析 ∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |·|b |cos 45°=|b |,22|2a -b |2=4-4×|b |+|b |2=10,∴|b |=3.2226. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则·=________.AB→ AC → 答案 -16解析 如图所示,=+,AB→ AM → MB → =+AC→ AM → MC → =-,AM→ MB → ∴·=(+)·(-)AB→ AC → AM → MB → AM → MB → =2-2=||2-||2=9-25=-16.AM → MB → AM → MB →7.已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是____________.答案 (-∞,-6)∪(-6,32)解析 由a·b <0,即2λ-3<0,解得λ<,由a ∥b 得:326=-λ,即λ=-6.因此λ<,且λ≠-6.32三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c .解 (1)a·b =2n -2,|a |=,|b |=,5n 2+4∴cos 45°==,∴3n 2-16n -12=0,2n -25·n 2+422∴n =6或n =-(舍),∴b =(-2,6).23(2)由(1)知,a·b =10,|a |2=5.又c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0,∴λb·a -|a |2=0,∴λ===,|a |2b·a 51012∴c =b =(-1,3).129. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×=1,12∴(2t e 1+7e 2)·(e 1+t e 2)=2t e +7t e +(2t 2+7)e 1·e 2212=8t +7t +2t 2+7=2t 2+15t +7.由已知得2t 2+15t +7<0,解得-7<t <-.12当向量2t e 1+7e 2与向量e 1+t e 2反向时,设2t e 1+7e 2=λ(e 1+t e 2),λ<0,则Error!⇒2t 2=7⇒t =-或t =(舍).142142故t 的取值范围为(-7,-)∪(-,-).ZXXK]14214212B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,·=1,则BC 等于( )AB→ BC → A. B.C .2D.ZXXK]37223答案 A解析 ∵·=1,且AB =2,AB→ BC → ∴1=||||cos(π-B ),∴||||cos B =-1.AB → BC → AB→ BC → 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B ,即9=4+|BC |2-2×(-1).∴|BC |=.32. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .2答案 A解析 a·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉,∴|a |·cos 〈a ,b 〉=-4.3. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则等于 ( )|PA |2+|PB |2|PC |2A .2B .4C .5D .10答案 D解析 ∵=-,PA→ CA → CP →∴||2=2-2·+2.PA → CA → CP → CA → CP → ∵=-,∴||2=2-2·+2.PB → CB → CP → PB →CB → CP→ CB → CP → ∴||2+||2PA → PB → =(2+2)-2·(+)+22CA → CB → CP → CA → CB → CP → =2-2·2+22.AB → CP → CD → CP → 又2=162,=2,AB → CP → CD → CP → 代入上式整理得||2+||2=10||2,故所求值为10.PA → PB → CP → 二、填空题(每小题5分,共15分)4.(2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.答案 2解析 a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,Zxxk∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0,∴m =-.∴a =(1,-1),∴|a |=.1225. (2012·江苏)如图,在矩形ABCD 中,AB =,BC =2,点E 为BC 的2中点,点F 在边CD 上,若·=,则·的值是________.AB → AF → 2AE→ BF → 答案 2解析 方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (,0),E (,1),F (x,2).22故=(,0),=(x,2),=(,1),=(x -,2),AB → 2AF → AE → 2BF→ 2∴·=(,0)·(x,2)=x .AB→ AF → 22又·=,∴x =1.∴=(1-,2). ZXXK]AB → AF → 2BF→ 2∴·=(,1)·(1-,2)=-2+2=.AE→ BF → 2222方法二 用,表示,是关键.AB → BC → AE→ BF → 设=x ,则=(x -1).DF → AB → CF → AB → ·=·(+)AB→ AF → AB → AD → DF → =·(+x )=x 2=2x ,AB → AD → AB → AB→ 又∵·=,∴2x =,AB→ AF → 22∴x =.∴=+=+.22BF → BC → CF → BC→ (22-1)AB → ∴·=(+)·AE → BF → AB → BE → [BC → +(22-1)AB → ]=(AB → +12BC →)[BC → +(22-1)AB → ]=2+2(22-1)AB → 12BC → =×2+×4=.(22-1)1226. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足=,则·的取值范围是________.|BM → ||BC → ||CN → ||CD → |AM→ AN → 答案 [1,4]解析 如图所示,设=|BM→ ||BC→ ||CN → ||CD →|=λ(0≤λ≤1),则=λ,BM → BC→ =λ,=-CN → CD→ DN → CN → CD →=(λ-1),CD→ ∴·=(+)·(+)AM→AN → AB → BM → AD → DN →=(+λ)·[+(λ-1)]AB → BC → AD → CD → =(λ-1)·+λ·AB → CD → BC→ AD → =4(1-λ)+λ=4-3λ,∴当λ=0时,·取得最大值4;AM→ AN → 当λ=1时,·取得最小值1.AM→ AN → ∴·∈[1,4].AM→ AN → 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =.(-12,32)(1)求证:向量a +b 与a -b 垂直;(2)当向量a +b 与a -b 的模相等时,求α的大小.33(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-=0,(14+34)故向量a +b 与a -b 垂直.(2)解 由|a +b |=|a -b |,两边平方得333|a |2+2a·b +|b |2=|a |2-2a·b +3|b |2,33所以2(|a |2-|b |2)+4a·b =0,而|a |=|b |,3所以a·b =0,即·cos α+·sin α=0,(-12)32即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z ,即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.。