2014年山东省莱芜市中考数学试卷(含答案和解析)

合集下载

最新山东省莱芜市中考数学试卷(含答案)

最新山东省莱芜市中考数学试卷(含答案)

山东省莱芜市中考数学试卷(含答案)绝密★启用前 试卷类型A莱芜市中等学校招生考试数 学 试 题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。

2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。

考试时间为120分钟。

3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。

4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。

第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.31-的倒数是A .3-B .31-C .31D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是A .B .C .D .4.4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元B .3.11×104元C .3.1×104元D .3.10×105元5.如图,数轴上A 、B 两点分别对应实数a 、b,则下列结论正确的是 A .0>abB .0>-b aC .0>+b aD .0||||>-b a6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A .B .C .D .7.已知反比例函数x y 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-28.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为 A .2.5 B .5 C .10 D .9.二次函数c bx ax y ++=2的图象如图所示,则一次函数bx y +=图象不经过 A .第一象限 B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y 随时间x (第9题图)乙甲 10 -1 a b BA (第5题图) (第6题图)列结论不正确...的是A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米绝密★启用前试卷类型A莱芜市中等学校招生考试数学试题第Ⅱ卷(非选择题共84分)注意事项:第II卷共6页,用钢笔或圆珠笔直接答在本试卷上。

2014年全国中考数学真题解析--26.梯形(29页)

2014年全国中考数学真题解析--26.梯形(29页)

梯形一选择题1. (2014•柳州,第9题3分)在下列所给出的4个图形中,对角线一定互相垂直的是()A.长方形B.平行四边形C.菱形D.直角梯形考点:多边形.分析:根据菱形的对角线互相垂直即可判断.解答:解:菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相垂直.故选C.点评:本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正方形的对角线互相垂直.1. (2014•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C.12 D.15考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.解答:解:过点A作AE∥CD,交BC于点E,∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.故选D.点评:本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.2.(2014•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°考点:梯形;等腰三角形的性质;平行四边形的判定与性质.分析:根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°.解答:解:∵DE=DC,∠C=80°,∴∠DEC=80°,∵AB∥DE,∴∠B=∠DEC=80°,∵AD∥BC,∴∠A=180°﹣80°=100°,故选:C.点评:此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补.1. (2014年广西钦州,第10题3分)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是()A.13 B. 26 C. 36 D. 39考点:等腰梯形的性质;中点四边形.分析:首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.解答:解:连接AC,BD,∵等腰梯形ABCD的对角线长为13,∴AC=BD=13,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EH=GF=BD=6.5,EF=GH=AC=6.5,∴四边形EFGH的周长是:EH+EF+FG+GF=26.故选B.点评:此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.(2014衡阳,第10题3分)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,i ,则坝底AD的长度为【】坝高12米,斜坡AB的坡度1:1.5A.26米B.28米C.30米D.46米3.(2014·台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥B C.若AB=10,BE=8,DE=6,则AD的长度为何?()A.8 B.9 C.6 2 D.6 3分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE=AB2-BE2=102-82=6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD=DE2-AE2=(63)2-62=62.故选C.点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.4.(2014•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3 B.2:5 C.4:9 D.:考点:相似三角形的判定与性质.分析:先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出△ABC 与△DCA的面积比=.解答:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC 与△DCA的面积比=.5. (2014•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.(第1题图)A.7.5 B.15 C.22.5 D.30考点:三角形中位线定理分析:根据三角形的中位线得出AB=2DE,代入即可求出答案.解答:解:∵D、E分别是AC、BC的中点,DE=15米,∴AB=2DE=30米,故选D.点评:本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.6.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选B.点评:此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.1. (2014•山东烟台,第7题3分)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A. 1.5 B. 3 C. 3.5 D. 4.5考点:等腰梯形的性质,直角三角形中30°锐角的性质,梯形及三角形的中位线.分析:根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.解答:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BD C.∴∠ABD=∠CBD,∠C=2∠DB C.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.2.(2014•湖南怀化,第5题,3分)如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC 与BD相交于点O,则下列判断不正确的是()A.△ABC≌△DCB B.△AOD≌△COB C.△ABO≌△DCO D.△ADB≌△DAC考点:等腰梯形的性质;全等三角形的判定.分析:由等腰梯形ABCD中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易证得△ABC≌△DCB,△ADB≌△DAC;继而可证得∠ABO=∠DCO,则可证得△ABO≌△DCO.解答:解:A、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS);故正确;B、∵AD∥BC,∴△AOD∽△COB,∵BC>AD,∴△AOD不全等于△COB;故错误;C、∵△ABC≌△DCB,∴∠ACB=∠DBC,∵∠ABC=∠DCB,∴∠ABO=∠DCO,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);故正确;D、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠BAD=∠CDA,在△ADB和△DAC中,,∴△ADB≌△DAC(SAS),故正确.故选B.点评:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.3. (2014•山东淄博,第7题4分)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=D C.则cos∠DPC的值是()A.B.C.D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.4.(2014•广东深圳,第12题3分)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠F AM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二填空题2. (2014•柳州,第15题3分)如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB= 5.考点:等腰梯形的性质.分析:根据等腰梯形的性质可得出AD=BC,再由BC=4,CD=3,得出AB的长.解答:解:∵四边形ABCD为等腰梯形,∴AD=BC,∵BC=4,∴AD=4,∵CD=3,等腰梯形ABCD的周长为16,∴AB=16﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.1. (2014•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是7+.考点:直角梯形.分析:根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.解答:解:过点A作AE⊥BD于点E,∵AD∥BC,∠A=120°,∴∠ABC=60°,∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABE=∠ADE=30°,∴AB=AD,∴AE=AD=1,∴DE=,则BD=2,∵∠C=90°,∠DBC=30°,∴DC=BD=,∴BC===3,∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+.故答案为:7+.点评:此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.2. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第1题图)考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.3. (2014•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40cm3.(第2题图)考点:翻折变换(折叠问题);三角形中位线定理分析:根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.解答:解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=40cm2.故答案为:40.点评:本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.3. (2014•青海西宁,第17题,2分)如图,已知直角梯形ABCD的一条对角线把梯形分为一个直角三角形和一个以BC为底的等腰三角形.若梯形上底为5,则连接△DBC两腰中点的线段的长为5.考点:直角梯形;等腰三角形的性质;三角形中位线定理.分析:利用直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质和三角形中位线性质进而得出四边形AEFD是平行四边形,进而求出EF的长.解答:解:连接△DBC两腰中点的线段EF,AE,由题意可得出:AD∥BC,∵EF是△DBC的中位线,∴EF BC∴AD∥BC,∵BD=CD,∴∠DBC=∠DCB,则∠DEF=∠DFE,∵AD∥EF,∴∠ADE=∠DEF,∵BE=DE,∠BAD=90°,∴AE=DE=BE,∴∠EAD=∠ADE,∴∠AED=∠FDE,∴AE∥DF,∴四边形AEFD是平行四边形,∴AD=EF=5.故答案为:5.点评:此题主要考查了直角梯形以及等腰三角形和三角形中位线定理等知识,得出四边形AEFD是平行四边形是解题关键.1. (2014•黑龙江龙东,第3题3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足AB=DC(或∠ABC=∠DCB、∠A=∠D)等条件时,有MB=MC (只填一个即可).考点:梯形;全等三角形的判定..专题:开放型.分析:根据题意得出△ABM≌△△DCM,进而得出MB=M C.解答:解:当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,在△ABM和△△DCM中,,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.点评:此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.2. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接P A,PB,则P A+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求P A+PB的最小值,P A、PB不能直接求,可考虑转化P A、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为P A+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴P A+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.3. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD 于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(2014•湖北黄石,第14题3分)如图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长为.考点:等腰梯形的性质.分析:首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.解答:解:∵梯形ABCD是等腰梯形,∴∠D=∠C=45°,∵EB∥AD,∴∠BEC=45°,∴∠EBC=90°,∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴AB=DE=1,∵CD=3,∴EC=3﹣1=2,∵EB2+CB2=EC2,∴EB=BC=,∴△BCE的周长为:2+2,故答案为:2+2.点评:此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.1.(2014•四川省德阳,第18题3分)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=A D.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.2.(2014•江苏省南通市,第15题3分)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BA C.若BC=4cm,AD=5cm,则AB=8cm.考点:勾股定理;直角梯形.分析:首先过点D作DE⊥AB于点E,易得四边形BCDE是矩形,则可由勾股定理求得AE的长,易得△ACD是等腰三角形,则可求得CD与BE的长,继而求得答案.解答:解:过点D作DE⊥AB于点E,∵在梯形ABCD中,AB∥CD,∴四边形BCDE是矩形,∴CD=BE,DE=BC=4cm,∠DEA=90°,∴AE==3(cm),∵AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DAC=∠DCA,∴CD=AD=5cm,∴BE=5cm,∴AB=AE+BE=8(cm).故答案为:8.点评:此题考查了梯形的性质、等腰三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3. (2014•贵港,第16题3分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥B D.若AD=4,BC=6,则梯形ABCD的面积是25.考点:等腰梯形的性质.分析:首先过点D作DE∥AC,交BC的延长线于点E,可得四边形ACED是平行四边形,又由在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,可得△BDE是等腰直角三角形,继而求得答案.解答:解:过点D作DE∥AC,交BC的延长线于点E,∵AD∥BC,∴四边形ACED是平行四边形,∴AC=DE,CE=AD=4,∴BE=BC+CE=6+4=10,∵AC⊥BD,∴DE⊥BD,∵四边形ABCD是等腰梯形,∴AC=BD,∴BD=DE,∴BD=DE==5,∴S梯形ABCD=×AC×BD=25.故答案为:25.点评:此题考查了等腰三角形的性质、平行四边形的性质与判定以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(2014•福建厦门,第14题4分)如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是.考点:等腰梯形的性质..分析:首先过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,易得四边形AEFD是长方形,易证得△ABE是等腰直角三角形,即可得∠B的度数.解答:过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,∵AD∥BC,∴四边形AEFD是长方形,∴EF=AD=2,∵四边形ABCD是等腰梯形,∴BE=(8﹣2)÷2=3,∵梯形的高是3,∴△ABE是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.考点:直角梯形;矩形的判定与性质;解直角三角形..分析:利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.解答:解:过点A作AH⊥BC于H,则AD=HC=1,在△ABH中,∠B=30°,AB=2,∴cos30°=,即BH=ABcos30°=2×=3,∴BC=BH+BC=4,∵CE⊥AB,∴CE=BC=2.点评:此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).(1)求过点B的双曲线的解析式;(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.考点:等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答;(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.解答:解:(1)如图,过点C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴点B的坐标为(2,5),设双曲线的解析式为y=(k≠0),则=5,解得k=10,∴双曲线的解析式为y=;(2)平移后的点C落在(1)中的双曲线上.理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),当x=5时,y==2,∴平移后的点C落在(1)中的双曲线上.点评:本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?(第1题图)考点:三角形的中位线、菱形的判定分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解答:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.1. (2014•黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.考点:旋转的性质;全等三角形的判定与性质;梯形中位线定理..分析:(1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;(2)根据题意得出图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.解答:解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME=(CF+CK)=(CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.。

山东省莱芜2014-2015学年七年级上第二次月考数学试卷含解析

山东省莱芜2014-2015学年七年级上第二次月考数学试卷含解析

2014-2015学年山东省莱芜七年级(上)第二次月考数学试卷(五四学制)一、选择题(每小题3分,共计36分)1.下列图案中,是轴对称图形的是()A.B.C.D.2.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个 B.2个C.3个D.4个3.的算术平方根是()A.±4 B.4 C.±2 D.24.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或5.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55° B.50° C.45° D.40°8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.10.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.1011.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每小题4分,共计20分)13.若点P(m+3,m+1)在x轴上,则点P的坐标为.14.如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD= .15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.如图的方格图(每个小方格的边长为1)是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则校门的位置用坐标表示为.17.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.三、解答题(要写出必要的计算过程或推理步骤)18.计算:﹣|1﹣|+(﹣2)0.19.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.20.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)21.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.22.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.24.如图,在公路l的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?25.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?26.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.2014-2015学年山东省莱芜实验中学七年级(上)第二次月考数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计36分)1.下列图案中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个考点:无理数.分析:根据无理数的定义(无理数就是无限不循环小数)判断即可.解答:解:无理数有﹣π,0.1010010001…,共2个,故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.的算术平方根是()A.±4 B.4 C.±2 D.2考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.点评:此题主要考查了算术平方根的定义,解题的关键先计算出的值,再根据算术平方根的定义进行求解.4.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或考点:勾股定理.专题:分类讨论.分析:本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.解答:解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.点评:题主要考查学生对勾股定理的运用,注意分情况进行分析.5.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:关于x轴、y轴对称的点的坐标.分析:首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.解答:解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选:C.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化特点.6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解答:解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.7.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55° B.50° C.45° D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补),∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)考点:点的坐标.分析:先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.解答:解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.点评:解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.考点:剪纸问题.分析:根据题中所给剪纸方法,进行动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序进行操作,展开得到的图形如选项B中所示.故选B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.10考点:翻折变换(折叠问题).专题:探究型.分析:先根据翻折变换的性质得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的长,再根据AB=AE+BE求出AB的长,再由矩形的性质即可得出结论.解答:解:∵△DEF由△DEA翻折而成,∴EF=AE=5,在Rt△BEF中,∵EF=5,BF=3,∴BE===4,∴AB=AE+BE=5+4=9,∵四边形ABCD是矩形,∴CD=AB=9.故选C.点评:本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB 及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(每小题4分,共计20分)13.若点P(m+3,m+1)在x轴上,则点P的坐标为(2,0).考点:点的坐标.专题:计算题.分析:根据x轴上的点纵坐标等于0列出方程求解得到m的值,再进行计算即可得解.解答:解:∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故答案为:(2,0).点评:本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.14.如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD= 5 .考点:等腰三角形的性质;解直角三角形.分析:先求出底角等于30°,再根据30°的直角三角形的性质求解.解答:解:如图.∵∠BAC=120°,AB=AC,∴∠B=(180°﹣120°)=30°.∴AD==5.(直角三角形中30°所对直角边等于斜边的一半)即底边上的高AD=5.点评:本题考查了等腰三角形的三线合一性质和含30°角的直角三角形的性质.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49 cm2.考点:勾股定理.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解答:解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.点评:熟练运用勾股定理进行面积的转换.16.如图的方格图(每个小方格的边长为1)是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则校门的位置用坐标表示为(1,﹣1).考点:坐标确定位置.专题:数形结合.分析:先根据花坛的坐标画出直角坐标系,然后写出校门的坐标.解答:解:如图,校门的位置用坐标表示为(1,﹣1).故答案为(1,﹣1).点评:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标.17.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为 5 .考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.三、解答题(要写出必要的计算过程或推理步骤)18.计算:﹣|1﹣|+(﹣2)0.考点:实数的运算;零指数幂.分析:分别根据0指数幂的运算法则、数的开方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1﹣+1+1=3﹣.点评:本题考查的是实数的运算,熟知0指数幂的运算法则、数的开方法则及绝对值的性质是解答此题的关键.19.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.20.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.21.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.考点:等腰三角形的性质;三角形内角和定理.专题:计算题.分析:首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD 是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.解答:解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.点评:本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.22.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?考点:勾股定理的应用.专题:应用题;压轴题.分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.解答:解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).点评:通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出A B的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△A DB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.24.如图,在公路l的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?考点:轴对称-最短路线问题;作图—应用与设计作图.分析:作A点关于l的对称点A′,连接A′B,交直线l于M,此时AM+MB的和最小,M 所处的位置即为中转站应建的位置.解答:解:作A点关于l的对称点A′.连接A′B交l于点M,连接AM,此时AM+MB的和最小,M即为所求.点评:本题主要考查了轴对称﹣﹣最短路线问题,作出其中一点的对称点,并利用两点之间线段最短是解题的关键.25.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?考点:平面展开-最短路径问题.分析:先将圆柱的侧面展开,再根据勾股定理求解即可.解答:解:如图所示,∵圆柱形玻璃容器,高16cm,底面周长为24cm,∴SD=12cm,∴AB==20.∴蚂蚁A处到达B处的最短距离为20cm.点评:本题考查的是平面展开﹣最短路径问题,将图形展开,利用勾股定理进行计算是解题的关键.26.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为20 cm.考点:平面展开-最短路径问题.专题:操作型.分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.解答:解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为:20.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.。

【解析版】莱芜实验中学2014-2015年八年级下期中数学试卷

【解析版】莱芜实验中学2014-2015年八年级下期中数学试卷

2014-2015学年山东省莱芜实验中学八年级(下)期中数学试卷一、选择题(本大题共11小题,每小题3分,满分33分)1.方程x+y=6的解有()A.0个B.2个C.3个D.无数个2.若关于x、y的方程x a﹣b﹣2y a+b+2=11是二元一次方程,那么a、b的值分别是()A.1、0 B.0、﹣1 C.2、1 D.2、﹣33.如图,a,b,c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b4.函数的自变量x的取值范围在数轴上可表示为()A.B.C.D.5.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的两位数有()A.4个B.5个C.6个D.7个6.不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个7.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>28.与已知二元一次方程5x﹣y=2组成的方程组有无数多个解的方程是()A.10x+2y=4 B.4x﹣y=7 C.20x﹣4y=3 D.15x﹣3y=69.如果m满足|﹣m|>m,那么m是()A.正数B.负数C.非负数D.任何有理数10.在学校举行的秋季田径运动会中,七年级(1)班、(5)班的竞技实力相当.比赛结束后,甲、乙两位同学对这两个班的得分情况进行了比较,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.11.小明在解关于x、y的二元一次方程组时得到了正确结果后来发现“ⓧ”、“⊕”处被墨水污损了,请你帮他找出“ⓧ”、“⊕”处的值分别是()A.ⓧ=1,⊕=1 B.ⓧ=2,⊕=1 C.ⓧ=1,⊕=2 D.ⓧ=2,⊕=2二、填空题(本大题共6小题,每小题3分,满分23分)12.在x+3y=3中,若用x表示y,则,用y表示x,则.13.不等式2x+1>0的解集是.14.已知直线y=kx﹣3与y=2x﹣b的交点为(﹣5,﹣8),则方程组的解是.15.若x﹣2m<0,只有三个正整数解,则m的取值范围是.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为.17.已知x,y,t满足方程组,则x和y之间应满足的关系式是.三、解答题(本大题共7小题,满分64分)18.解方程组(1)(2).19.解不等式组并把其解集在数轴上表示出来:.20.已知|2x+3y+5|+(3x+2y﹣25)2=0,求x﹣y的值.21.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.22.一家电信公司给顾客提供两种上网收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计算.如何选择收费方式能使上网者更合算?23.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.3 4 x﹣2 y a2y﹣x c b备用图3 4﹣224.随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销商计划用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车.两种轿车的进价和售价如下表:类别甲乙进价(万元/台)10.5 6售价(万元/台)11.2 6.8(1)请你帮助经销商算一算共有哪几种进货方案?(2)如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.(注:其他费用不计,利润=售价﹣进价)2014-2015学年山东省莱芜实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共11小题,每小题3分,满分33分)1.方程x+y=6的解有()A.0个B.2个C.3个D.无数个考点:二元一次方程的解.专题:计算题.分析:根据二元一次方程的解有无数对,即可得到结果.解答:解:方程x+y=6的解有无数个,故选D点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.若关于x、y的方程x a﹣b﹣2y a+b+2=11是二元一次方程,那么a、b的值分别是()A.1、0 B.0、﹣1 C.2、1 D.2、﹣3考点:二元一次方程的定义.分析:由二元一次方程的定义可知x,y的次数为1,据此可列出方程组,并求解.解答:解:依题意,得,解这个方程组得a=0,b=﹣1.故选B点评:此题考查二元一次方程定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的次数都为一次;(3)方程是整式方程.3.如图,a,b,c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b考点:一元一次不等式的应用.分析:根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.解答:解:依图得3b<2a,∴a>b,∵2c=b,∴b>c,∴a>b>c故选C点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.函数的自变量x的取值范围在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;函数自变量的取值范围.专题:计算题.分析:根据二次根式有意义的条件,计算出(x﹣1)的取值范围,再在数轴上表示即可.解答:解:∵中,x﹣1≥0,∴x≥1,故在数轴上表示为:故选D.点评:本题考查了在数轴上表示不等式的解集,要注意,不等式的解集包括1.5.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的两位数有()A.4个B.5个C.6个D.7个考点:二元一次方程的应用.专题:数字问题.分析:设两位数个数上数字为x,则十位数上数字为y,确定出关于x与y的二元一次方程,找出方程的正整数解个数即可.解答:解:设两位数个数上数字为x,则十位数上数字为y,根据题意得:x+y=5,当x=1时,y=4;x=2,y=3;x=3,y=2;x=4,y=1;x=0,y=5;则符合条件的两位数有5个,故选B点评:此题考查了二元一次方程的应用,找出题中的等量关系是解本题的关键.6.不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选:B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.与已知二元一次方程5x﹣y=2组成的方程组有无数多个解的方程是()A.10x+2y=4 B.4x﹣y=7 C.20x﹣4y=3 D.15x﹣3y=6考点:二元一次方程组的解.专题:计算题.分析:找出方程整理后与已知方程相同的方程即可.解答:解:15x﹣3y=6化简得:5x﹣y=2,则15x﹣3y=6与二元一次方程5x﹣y=2组成的方程组有无数多个解.故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.9.如果m满足|﹣m|>m,那么m是()A.正数B.负数C.非负数D.任何有理数考点:绝对值.分析:由|﹣m|>m,则m|>m,根据绝对值的意义得到当m<0,m的绝对值大于它本身.解答:解:∵|﹣m|>m,∴|m|>m,∴m<0.故选B.点评:本题考查了绝对值的意义:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.10.在学校举行的秋季田径运动会中,七年级(1)班、(5)班的竞技实力相当.比赛结束后,甲、乙两位同学对这两个班的得分情况进行了比较,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设(1)班得x分,(5)班得y分,根据:(1)班与(5)班得分比为6:5;:(1)班得分比(5)班得分的2倍少40分.可列出方程组.解答:解:设(1)班得x分,(5)班得y分,.故选:B.点评:本题考查将现实生活中的实际问题转化为方程问题,并根据问题中数量关系列出二元一次方程组,由于数量关系中涉及比例,故属于中等题.11.小明在解关于x、y的二元一次方程组时得到了正确结果后来发现“ⓧ”、“⊕”处被墨水污损了,请你帮他找出“ⓧ”、“⊕”处的值分别是()A.ⓧ=1,⊕=1 B.ⓧ=2,⊕=1 C.ⓧ=1,⊕=2 D.ⓧ=2,⊕=2考点:解二元一次方程组.分析:把x,y的值代入原方程组,可得关于“ⓧ”、“⊕”的二元一次方程组,解方程组即可.解答:解:将代入方程组,两方程相加,得x=⊕=1;将x=⊕=1代入方程x+ⓧy=3中,得1+ⓧ=3,ⓧ=2.故选B.点评:要求学生掌握二元一次方程组常见解法,如加减消元法.二、填空题(本大题共6小题,每小题3分,满分23分)12.在x+3y=3中,若用x表示y,则y=,用y表示x,则x=3﹣3y.考点:解二元一次方程.专题:计算题.分析:把x看做已知数求出y,把y看做已知数求出x即可.解答:解:方程x+3y=3,解得:y=;x=3﹣3y.故答案为:y=;x=3﹣3y.点评:此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.13.不等式2x+1>0的解集是x>﹣.考点:解一元一次不等式.专题:计算题.分析:利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.解答:解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.已知直线y=kx﹣3与y=2x﹣b的交点为(﹣5,﹣8),则方程组的解是.考点:一次函数与二元一次方程(组).分析:一次函数的交点就是两个函数组成的方程组的解.解答:解:∵直线y=kx﹣3与y=2x﹣b的交点为(﹣5,﹣8),∴方程组的解是,故答案为:.点评:此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握二元一次方程(组)的解就是一次函数图象的交点坐标.15.若x﹣2m<0,只有三个正整数解,则m的取值范围是 1.5<m≤2.考点:一元一次不等式的整数解.分析:先求出不等式的解集,根据已知得出关于m的不等式组,求出即可.解答:解:∵x﹣2m<0,∴x<2m,∵不等式x﹣2m<0只有三个正整数解,∴3<2m≤4,∴1.5<m≤2,故答案为:1.5<m≤2.点评:本题考查了解一元一次不等式和一元一次不等式的整数解等知识点,关键是能根据不等式的解集和已知得出关于m的不等式组.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为x<﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:由图象可以知道,当x=﹣1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.解答:解:两个条直线的交点坐标为(﹣1,3),且当x>﹣1时,直线l1在直线l2的上方,故不等式k2x>k1x+b的解集为x<﹣1.故本题答案为:x<﹣1.点评:本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.17.已知x,y,t满足方程组,则x和y之间应满足的关系式是x+3y=3.考点:解二元一次方程组.专题:计算题.分析:方程组中两方程消去t即可得到x与y的关系式.解答:解:,由①得:5t=3﹣2x③,③代入②得:3y﹣3+2x=x,则x与y的关系式为x+3y=3.故答案为:x+3y=3点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题(本大题共7小题,满分64分)18.解方程组(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1),①×2+②得:5x=10,即x=2,把x=2代入②得:y=﹣3,则方程组的解为;(2),①×3+②×2得:5x=20,即x=4,把x=4代入②得:y=3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组并把其解集在数轴上表示出来:.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各个不等式的解集,再求出这些解集的公共部分.解答:解:,由①,得x≤4,由②,得x>1,把它们的解集在数轴上表示如下:∴原不等式组的解集是1<x≤4.点评:本题考查不等式组的解法和在数轴上的表示不等式组的解集,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.20.已知|2x+3y+5|+(3x+2y﹣25)2=0,求x﹣y的值.考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x﹣y 的值.解答:解:∵|2x+3y+5|+(3x+2y﹣25)2=0,∴,②×3﹣①×2得:5x=85,即x=17,把x=17代入①得:y=﹣13,则x﹣y=17+13=30.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.考点:二元一次方程组的应用.分析:这是行程问题中的相遇问题,三个基本量:路程、速度、时间.关系式为:路程=速度×时间.题中的两个等量关系是:4小时×甲的速度+4小时×乙的速度千米,36千米﹣6小时×甲的速度=2倍的(36千米﹣6小时×乙的速度).解答:解:设甲的速度是x千米/时,乙的速度是y千米/时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时.点评:本题是行程问题中的相遇问题,解题关键是如何建立二元一次方程组的模型.22.一家电信公司给顾客提供两种上网收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计算.如何选择收费方式能使上网者更合算?考点:一元一次不等式的应用.分析:根据方式A的费用=0.1×上网时间;方式B的费用=月基费+0.05×上网时间分别求出即可,把两函数解析式联立,利用方程求出缴费一样的时间,即可得出答案,即可得出最省钱方案即可.解答:解:方式A:y=0.1x;方式B:y=0.05x+20;当0.1x=0.05x+20时,解得x=400,故当x=400时,选择方式A与方式B上网两种方式的计费相等,费用为:0.1x=0.1×400=40元;故当x<400时,即上网时间小于400分钟时,选择方式A上网更合算,当x>400时,即上网时间大于400分钟时,选择方式B上网更合算.点评:此题主要考查了一次函数的应用;得到两种收费方式的关系式是解决本题的关键.注意较合算的收费的方式应通过具体值的代入得到结果.23.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图.3 4 x﹣2 y a2y﹣x c b备用图3 4﹣2考点:二元一次方程组的应用.分析:(1)要求x,y的值,根据表格中的数据,即可找到只含有x,y的行或列,列出方程组即可;(2)根据(1)中求得的x,y的值和每行的3个数、每列的3个数、斜对角的3个数之和均相等即可完成表格的填写.解答:解:(1)由题意,得,解得;(2)如图点评:此题中根据要求的是x,y的值,因此要能够列出关于x,y的方程组,不要涉及a,b,c的行或列.24.随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销商计划用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车.两种轿车的进价和售价如下表:类别甲乙进价(万元/台)10.5 6售价(万元/台)11.2 6.8(1)请你帮助经销商算一算共有哪几种进货方案?(2)如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.(注:其他费用不计,利润=售价﹣进价)考点:一次函数的应用;一元一次不等式组的应用.专题:压轴题.分析:(1)设购进甲款轿车x辆,则购进乙款轿车(30﹣x)辆,根据:用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车,列不等式组,求x的取值范围,再求正整数x的值,确定方案;(2)根据:利润=(售价﹣进价)×辆数,总利润=甲轿车的利润+乙轿车的利润,列出函数关系式,根据x的取值范围求最大利润.解答:解:(1)设购进甲款轿车x辆,则购进乙款轿车(30﹣x)辆,依题意,得228≤10.5x+6(30﹣x)≤240,解得10≤x≤13,∴整数x=11,12,13,有三种进货方案:购进甲款轿车11辆,购进乙款轿车19辆;购进甲款轿车12辆,购进乙款轿车18辆;购进甲款轿车13辆,购进乙款轿车17辆.(2)设总利润为W(万元),则W=(11.2﹣10.5)x+(6.8﹣6)(30﹣x)=﹣0.1x+24,∵﹣0.1<0,W随x的减小而增大,∴当x=11时,即购进甲款轿车11辆,购进乙款轿车19辆,利润最大,最大利润为W=﹣0.1×11+24=22.9万元.点评:本题考查了一次函数的应用.关键是明确进价,售价,购进费用,销售利润之间的关系,利用一次函数的增减性求解.。

2014年山东省莱芜市中考数学试卷(内含答案和解析)

2014年山东省莱芜市中考数学试卷(内含答案和解析)

2014年山东省莱芜市中考数学试卷一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)D.3.(3分)(2014•莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将15004.(3分)(2014•莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是().C D.7.(3分)(2014•莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方.C D.8.(3分)(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()DC D.10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()12.(3分)(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=_________.14.(4分)(2014•莱芜)计算:=_________.15.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=_________.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为_________.17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为_________.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.2014年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)D.=2是无理数正确;是无限循环小数,是有理数,选项错误.3.(3分)(2014•莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将15004.(3分)(2014•莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是().C D.7.(3分)(2014•莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方.C D.由题意得,=8.(3分)(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()DC D.R=10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=(),然==11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()=12.(3分)(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()<<<﹣﹣二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).14.(4分)(2014•莱芜)计算:=2.3+1+3+1+215.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=﹣1.得出,进行求解.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为y=x﹣2.中求出y=得y=得﹣,,17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.÷19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.×=108×=600020.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)=18米,21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?平方米,园林绿化面积为平方米,园林绿化面积为由题意,得23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.(=AE=BE=rr r r=AH=EF=r=rr x=rr=r=AH=EF== EC=rEC=24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.MN=|x|x;当.,解得﹣+k=y=x,,﹣xx﹣(﹣x|=||.的横坐标为:或y=+(x t tPG=tOF OE(+•t•(有最大值为.。

2014中考数学真题解析 压轴题4(含答案)

2014中考数学真题解析 压轴题4(含答案)

页眉内容(2012年1月最新最细)2011全国中考真题解析120考点汇编压轴题4127.(2011山东淄博24,分)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x 交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。

专题:计算题。

分析:(1)把C的坐标代入求出c的值,把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可求出抛物线的解析式;(2)以点P,M,Q,N为顶点的四边形能为平行四边形,当M在OA上,N在OB 上时,以点P,M,Q,N为顶点的四边形为平行四边形,求出N的横坐标,求出ND、MD,根据勾股定理求出m即可.解答:(1)解:∵抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),代入得:c=﹣2,∴y=ax2+bx﹣2,把A(﹣2,﹣2),B(2,2)代入得:2422 2422a ba b-=--⎧⎨=+-⎩,解得:121ab⎧=⎪⎨⎪=⎩,∴y=12x2+x﹣2,答:抛物线的解析式是y=12x2+x﹣2.(2)解:以点P,M,Q,N为顶点的四边形能为平行四边形.理由如下:∵M、N在直线y=x上,∴OP=PM,OQ=QN,只有M在OA上,N在OB上时,ON=OM时,以点P,M,Q,N为顶点的四边形为平行四边形,过M作MC⊥y轴于C,交NQ的延长线于D ,∵M点的横坐标为m,∴N的横坐标是﹣m,MD=ND=|2m|,由勾股定理得:(2m)2+(2m)22=,∵m<0,m=12 -.答:以点P,M,Q,N为顶点的四边形能为平行四边形,m的值是12 .点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键.128.(2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t >0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为.(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.考点:二次函数综合题。

2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上28229m ∴--+=解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点1F ⎛ ⎝⎭ ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =-(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得6k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos30322OF OM ===.1sin 3032MF OM ===.∴点M 坐标为32⎛ ⎝⎭············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠32k =,k ∴= ····· 7分∴切线OM 的函数解析式为y =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==113P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==在2Rt OP H △中,223cos 4OH OP AOP =∠==,2221sin 2P H OP AOP =∠==2344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若A M P △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,A M t =,tg 603PM AM t ∴==.2133(01)2y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2363y t t t t t =-=-+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30)QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△. ··············································································· 9分除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQ t ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y =23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,。

山东省济南市2014年中考数学真题试题(含解析)

山东省济南市2014年中考数学真题试题(含解析)

山东省济南市2014年中考数学真题试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试卷共8页,满分为120分.考试时间为120分钟.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第Ⅰ卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮檫干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的算术平方根是A .2B .-2C .±2D .16 【解析】4算术平方根为非负数,且平方后等于4,故选A .2.如图,点O在直线AB 上,若401=∠,则2∠的度数是 A . 50 B . 60 C . 140 D .150 【解析】因为 18021=∠+∠,所以1402=∠,故选C . 3.下列运算中,结果是5a 的是A .23a a ⋅B .210a a ÷ C .32)(a D .5)(a -【解析】由同底的幂的运算性质,可知A 正确.4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .2107.3⨯B .3107.3⨯C .21037⨯D .41037.0⨯ 【解析】3700用科学计数法表示为3107.3⨯,可知B 正确. 5.下列图案既是轴对称图形又是中心对称图形的是AB O 2 1第2题图A .B .C .D .【解析】图A 为轴对称图但不是中心对称图形;图B 为中心对称图但不是轴对称图形; 图C 既不是轴对称图也不是中心对称图形; 图D 既是轴对称图形又是中心对称图形.6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成, 下列关于这个几何体的说法正确的是A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B . 7.化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A . 8.下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以A ,D 都不是真命题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选B . 9.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m【解析】由函数值y 随x 的增大而增大,可知一次函数的斜率03>-m ,所以3>m ,故选C . 10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=【解析】由题意可得FBE FCD ∆≅∆,于是A ,B 都一定成立;又由BE =AB ,可知BF AD 2=,所以C 所给结论一定成立,于是不一定成立的应选D . 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为正面 第6题ABCDEF第10题图A .32 B .21 C .31 D .41 【解析】用H ,C ,N 分别表示航模、彩绘、泥塑三个社团,用数组(X ,Y )中的X 表示征征选择的社团,Y 表示舟舟选择的社团. 于是可得到(H ,H ),(H ,C ),(H ,N ), (C ,H ),(C ,C ),(C ,N ),(N ,H ),(N ,C ),(N ,N ),共9中不同的选择结果, 而征征和舟舟选到同一社团的只有(H ,H ),(C ,C ),(N ,N )三种, 所以,所求概率为3193=,故选C . 12.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点, 把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是A .)3,3(B .)3,3(C .)32,2(D .)4,32(【解析】连接OO ',由直线233+-=x y 可知223OB=,OA=,故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OA 长度的一半3,纵坐标则是AOO ∆'的高3,故选A .13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形, 点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是A .2B .3C .23D .23【解析】1=OA ,知3,1==BC CD ,所以矩形的面积是3.14.现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)ABOO'xyABCDE.O第13题图C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D . 15.二次函数的图象如图,对称轴为1=x . 若关于x 的一元二次方程02=-+t bx x (t 为实数) 在41<<-x 的范围内有解,则t 的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤, 即81<≤-t ,故选C .第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.=--37________.【解析】101037=-=--,应填10. 17.分解因式:=++122x x ________. 【解析】22)1(12+=++x x x ,应填2)1(+x .18.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________. 【解析】设口袋中球的总个数为N ,则摸到红球的概率为513=N ,所以15=N ,应填15. 19.若代数式21-x 和123+x 的值相等,则=x .【解析】解方程12321+=-x x ,的7=x ,应填7.20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________. 【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.1 BOxy4A DADA ’DAyB21.如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xk y =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,, 于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22. (本小题满分7分) (1)化简:)4()3)(3(a a a a -+-+.【解析】9449)4()3)(3(22-=-+-=-+-+a a a a a a a a(2)解不等式组:⎩⎨⎧+≥-<-24413x x x .【解析】由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x .23.(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.A BCDE第23题(1)图(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.【解析】在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有 ⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.(本小题满分8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时) 频数 (人数) 频率 0.5 12 0.121 30 0.3 1.5 x 0.42 18y 合计 m 1(1)统计表中的=m ,=x ,=y ; (2)被调查同学劳动时间的中位数是 时;ABCO第23题(2)图0 时间(时) 人数102030 40 123018 0.5 1 2(3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.【解析】(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时.26.(本小题满分9分)如图1,反比例函数)0(>=x xky 的图象经过点A (32,1),射线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75轴,垂足为D . (1)求k 的值;(2)求DAC ∠tan 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线x l ⊥轴,与AC 相交于N ,连接CM ,求CMN ∆面积的最大值. 【解析】(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 第26题图1ABCDO xy点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆mm m S CMN ])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839.27.(本小题满分9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF .(1)=AE ,正方形ABCD 的边长= ;(2)如图2,将AEG ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900(<<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若30=α,求菱形B C D A '''的边长.第26题图2AB CDOxyMNl 1l 2l 3lABDEF 1l 2l 3lAE ’D ’B ’【解析】(1)在R T R T A E D G D C∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE , 又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在R TR T ’A E D AB M ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', 533E D ''=,由勾股定理可知菱形边长为2584133+=.28.(本小题满分9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D . (1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求:①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少. 【解析】(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.ABCDxyO第28题图1PAB CM Nxy O第28题图2(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q , ①当MN =AN 时, N 点的横坐标为82t +,纵坐标为2438t-,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-,MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQOM OP =得:()388556t t t --=,解得:t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,当CM 垂直于x 轴且M 为OQ 中点时PN 最小, 此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C 若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大, 故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM =35与MN =352,15=2PN . 故当t =3时,PN 取最小值为152.方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立,得点N 的横坐标为t t x N 292722++=,即029362=-+-N N x t x t ,由判别式0)2936(42≥--=∆N N x x ,得6≥N x 或14-≤N x ,又80<<N x , 所以N x 的最小值为6,此时t =3, 当t =3时,N 的坐标为(6,23),此时PN 取最小值为152.。

【精校】2014年山东省莱芜市中考真题数学

【精校】2014年山东省莱芜市中考真题数学

2014年山东省莱芜市中考真题数学一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)下列四个实数中,是无理数的为( )A.0B.-3C.D.解析:A、0是整数,是有理数,选项错误;B、-3是整数,是有理数,选项错误;C、=2是无理数正确;D、是无限循环小数,是有理数,选项错误.答案:C.2.(3分)下面计算正确的是( )A. 3a-2a=1B. 3a2+2a=5a3C. (2ab)3=6a3b3D. -a4·a4=-a8解析:A、3a-2a=a,原式计算错误,故本选项错误;B、3a2和2a不是同类项,不能合并,故本选项错误;C、(2ab)3=8a3b3,原式计算错误,故本选项错误;D、-a4·a4=-a8,计算正确,故本选项正确.答案:D.3.(3分)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为( )A. 15×105B. 1.5×106C. 1.5×107D. 0.15×108解析:将1500万用科学记数法表示为:1.5×107.答案:C.4.(3分)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是( )A.B.C.D.解析:从上面可看到从左往右有三个正方形,答案:A.5.(3分)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数和中位数分别是( )A. 17,15.5B. 17,16C. 15,15.5D. 16,16解析:17出现的次数最多,17是众数.第15和第16个数分别是15、16,所以中位数为16.5.答案:A.6.(3分)若一个正n边形的每个内角为156°,则这个正n边形的边数是( )A. 13B. 14C. 15D. 16解析:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°-156°=24°,∴这个多边形的边数为:360°÷24°=15,答案:C.7.(3分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.解析:由题意得,=.答案:B.8.(3分)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为( )A. πB. 2πC.D. 4π解析:∵S阴影=S扇形ABA′+S半圆-S半圆=S扇形ABA′==2π,答案:B.9.(3分)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是( )A. RB.C.D.解析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R. 由勾股定理得到圆锥的高为=,答案:D.10.(3分)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=( )A. 1:16B.1:18C. 1:20D. 1:24解析:∵S△BDE:S△CDE=1:4,∴设△BDE的面积为a,则△CDE的面积为4a,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=25a-a-4a=20a,∴S△BDE:S△ACD=a:20a=1:20.答案:C.11.(3分)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是( )A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE解析:∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,∴四边形ABCF是菱形,∴CF=AF,∴△CDF的周长等于CF+DF+CD,即△CDF的周长等于AD+CD,故A说法正确;∵四边形ABCF是菱形,∴AC⊥BF,设AC与BF交于点O,由勾股定理得OB2+OC2=BC2,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,∴AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴=,∴DE2=EF·CE,故C说法正确;答案:B.12.(3分)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2其中正确的个数有( )A. 1B. 2C. 3D. 4解析:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=-<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵-1<-<0,∴2a-b<0,所以②正确;∵当x=-2时,y<0,∴4a-2b+c<0,所以③正确;∵当x=-1时,y>0,∴a-b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a-b+c)(a+b+c)<0,即(a+c-b)(a+c+b)<0,∴(a+c)2-b2<0,所以④正确.答案:D.二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)分解因式:a3-4ab2= .解析:a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).答案:a(a+2b)(a-2b).14.(4分)计算:= .解析:原式=2-3+1+=2-3+1+=2-3+1+2=2.答案:2.15.(4分)若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k= .解析:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或-1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,答案:-1.16.(4分)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(-2,m)两点,则一次函数的表达式为.解析:把A(4,2)代入得k=4×2=8,所以反比例函数解析式为y=,把B(-2,m)代入y=得-2m=8,解得m=-4,把A(4,2)、B(-2,-4)代入y=ax+b得,解得,所以一次函数解析式为y=x-2.[来源:学,科,网Z,X,X,K]答案:y=x-2.17.(4分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.解析:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)先化简,再求值:,其中a=-1.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.答案:原式=÷=·=a(a-2),当a=-1时,原式=-1×(-3)=3.19.(8分)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.解析:(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.答案:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75.;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=6000(人).20.(9分)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)解析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DC-BE即可求解.答案:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB·sin62°=25×0.88=22米,BE=A·cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DC-BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.21.(9分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.解析:(1)根据旋转可得∠BAE=∠CAD,从而SAS证明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF∥BC,∠DBF=∠EFB,从而得出∠EBF=∠EFB,则EB=EF,证明得出四边形BDFE为菱形.答案:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB=AC,∴∠BAE=∠CAD,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴BE=CD;(2)∵AD⊥BC,∴BD=CD,∴BE=BD=CD,∠BAD=∠CAD,∴∠BAE=∠BAD,在△ABD和△ABE中,,∴△ABD≌△ABE(SAS),∴∠EBF=∠DBF,∵EF∥BC,∴∠DBF=∠EFB,∴∠EBF=∠EFB,∴EB=EF,∴BD=BE=EF=FD,∴四边形BDFE为菱形.22.(10分)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?解析:(1)设平均每年投资增长的百分率是x.根据2013年投资1000万元,得出2014年投资1000(1+x)万元,2015年投资1000(1+x)2万元,而2015年投资1210万元.据此列方程求解;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,根据2015年河道治污及园林绿化总面积不少于35000平方米及河道治污费用不少于园林绿化费用的4倍列出不等式组,解不等式组即可.答案:(1)设平均每年投资增长的百分率是x.由题意得1000(1+x)2=1210,解得x1=0.1,x2=-2.1(不合题意舍去).答:平均每年投资增长的百分率为10%;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,由题意,得,由①得a≤25500,由②得a≥24200,∴24200≤a≤25500,∴968万≤400a≤1020万,∴190万≤1210万-400a≤242万,答:园林绿化的费用应在190万~242万的范围内.23.(10分)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF·EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.解析:(1)连结OC、OE,OE交AB于H,如图1,由E是弧AB的中点,根据垂径定理的推论得到OE⊥AB,则∠HEF+∠HFE=90°,由对顶相等得∠HFE=∠CFD,则∠HEF+∠CFD=90°,再由DC=DF得∠CFD=∠DCF,加上∠OCE=∠O EC,所以∠OCE+∠DCE=∠HEF+∠CFD=90°,于是根据切线的判定定理得直线DC与⊙O相切;(2)由弧AE=弧BE,根据圆周角定理得到∠ABE=∠BCE,加上∠FEB=∠BEC,于是可判断△EBF∽△ECB,利用相似比得到EF·EC=BE2=(r)2=r2;(3)如图2,连结OA,由弧AE=弧BE得AE=BE=r,设OH=x,则HE=r-x,根据勾股定理,在Rt△OAH中有AH2+x2=r2;在Rt△EAH中由AH2+(r-x)2=(r)2,利用等式的性质得x2-(r-x)2=r2-(r)2,即得x=r,则HE=r-r=r,在Rt△OAH中,根据勾股定理计算出AH=,由OE⊥AB得AH=BH,而F是AB的四等分点,所以HF=AH=,于是在Rt△EFH中可计算出EF=r,然后利用(2)中的结论可计算出EC.答案:(1)连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF·EC=BE2=(r)2=r2;(3)如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r-x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r-x)2=(r)2,∴x2-(r-x)2=r2-(r)2,即得x=r,∴HE=r-r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF·EC=r2,∴r·EC=r2,∴EC=r.24.(12分)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4-x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.解析:(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|x2-4x|;解方程|x2-4x|=3,求出x的值,即点M 横坐标的值;(3)设水平方向的平移距离为t(0≤t<2),利用平移性质求出S的表达式:S=-(t-1)2+;当t=1时,s有最大值为.答案:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴,解得,∴抛物线的表达式为:y=-x2+x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代入求得k=,∴直线OD解析式为y=x.设点M的横坐标为x,则M(x,x),N(x,-x2+x),∴MN=|y M-y N|=|x-(-x2+x)|=|x2-4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3. ∴|x2-4x|=3.若x2-4x=3,整理得:4x2-12x-9=0,解得:x=或x=;若x2-4x=-3,整理得:4x2-12x+9=0,解得:x=.∴存在满足条件的点M,点M的横坐标为:或或.(3)∵C(1,3),D(3,1)∴易得直线OC的解析式为y=3x,直线OD的解析式为y=x.如图所示,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t),Q(1+t,+t),C′(1+t,3-t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3-t)代入得:b=-4t,∴直线O′C′的解析式为y=3x-4t.∴E(t,0).联立y=3x-4t与y=x,解得x=t,∴P(t,t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△OFQ-S△OEP=OF·FQ-OE·PG=(1+t)(+t)-·t·t=-(t-1)2+当t=1时,S有最大值为.∴S的最大值为.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

山东省莱芜市中考数学试卷含答案

山东省莱芜市中考数学试卷含答案

绝密★启用前 试卷类型A莱芜市中等学校招生考试数 学 试 题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。

2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。

考试时间为120分钟。

3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。

4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。

第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.31-的倒数是A .3-B .31-C .31 D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅ C .22)21(21-=-- D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是C .D .4.4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元 B .3.11×104元 C .3.1×104元 D .3.10×105元 5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是10 -1 a b BA (第5题图) (第6题图)A.B.C.D.7.已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2 8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .159.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 A .第一象限 B .第二象限 C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米(第9题图)(第12题图)乙甲绝密★启用前试卷类型A莱芜市中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:第II 卷共6页,用钢笔或圆珠笔直接答在本试卷上。

一元一次方程应用题及答案(2014山东17地市中考题)

一元一次方程应用题及答案(2014山东17地市中考题)

2014山东17地市中考一元一次方程应用题1、(2014·东营)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【分析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2、(2014·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【分析】根据题意设出未知数,再根据题目中“700克该添加剂恰好生产了A,B两种饮料共500瓶”得出等量关系列出方程(组),求出结果即可【解答】解:设A种饮料生产了x瓶,则B种饮料生产了(500-x)瓶,根据题意得出:x+2(500-x)=700 解得:x=300 所以500-300=200答:A种饮料生产了300瓶,则B种饮料生产了200瓶。

山东莱芜中考数学试题及答案解析-中考.doc

山东莱芜中考数学试题及答案解析-中考.doc

2014年山东莱芜中考数学试题及答案解析-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

(2020年编辑)山东省莱芜市中考数学试卷(含答案和解析)

(2020年编辑)山东省莱芜市中考数学试卷(含答案和解析)

2014年山东省莱芜市中考数学试卷一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)D.3.(3分)(2014•莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将15004.(3分)(2014•莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是().C D.7.(3分)(2014•莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方.C D.8.(3分)(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()DC D.10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()12.(3分)(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=_________.14.(4分)(2014•莱芜)计算:=_________.15.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=_________.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为_________.17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为_________.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.2014年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)D.=2是无理数正确;是无限循环小数,是有理数,选项错误.3.(3分)(2014•莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将15004.(3分)(2014•莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是().C D.7.(3分)(2014•莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方.C D.由题意得,=8.(3分)(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()DC.R=10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()根据等高的三角形的面积的比等于底边的比求出==11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()=12.(3分)(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()<﹣<<<﹣﹣二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).14.(4分)(2014•莱芜)计算:=2.3+1+3+1+215.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=﹣1.得出,进行求解.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为y=x﹣2.中求出,得y=得﹣,17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.÷19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.×=108×=600020.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)=18米,21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?平方米,园林绿化面积为平方米,根据平方米,园林绿化面积为由题意,得23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.r rr r x=r=AH=EF=r=rr x=rr=r=AH=EF== EC=rEC=24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.MN=|x|x(;当有最大值为,解得﹣+k=y=x,x xx﹣(﹣x|=||.的横坐标为:或y=+(x t tPG=tOF OE(+•t•(有最大值为.。

年山东省莱芜市中考数学试卷(含答案解析版)

年山东省莱芜市中考数学试卷(含答案解析版)

2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是( )A .﹣16ﻩB .16 C.﹣6 D.62.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A.7.8×10﹣7 B.7.8×10﹣8ﻩC .0.78×10﹣7 D.78×10﹣83.(3分)下列运算正确的是( )A.2x 2﹣x 2=1 B.x 6÷x 3=x2 C .4x•x 4=4x 5ﻩD .(3xy 2)2=6x2y 44.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为( )A .30x ﹣1=40x−25B .30x ﹣1=40x+25 C.30x +1=40x−25 D.30x +1=40x+255.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A.ﻩB.C.ﻩD.6.(3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切与点A,D O交⊙O于点C,连接B C,若∠A BC=21°,则∠ADC 的度数为( )A .46°ﻩB .47°ﻩC.48° D.49°7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14ﻩD .158.(3分)如图,在Rt △ABC 中,∠BCA=90°,∠BA C=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE,则B C扫过的面积为( )A.π2B.(2﹣√3)π C .2−√32πﻩD.π 9.(3分)如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +P M的值最小时,PM 的长是( )A.√72ﻩB .2√73 C.3√55ﻩD .√26410.(3分)如图,在四边形ABCD 中,DC ∥AB,AD=5,CD=3,sinA=si nB=13,动点P自A点出发,沿着边A B向点B 匀速运动,同时动点Q 自点A出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ 的面积为s,则s 关于t的函数图象是( )A .ﻩB .C . D.11.(3分)对于实数a,b ,定义符号mi n{a ,b },其意义为:当a ≥b时,min {a,b }=b;当a <b 时,min {a,b }=a.例如:min={2,﹣1}=﹣1,若关于x 的函数y=min {2x﹣1,﹣x +3},则该函数的最大值为( )A .23 B.1 C.43 D.5312.(3分)如图,正五边形ABCD E的边长为2,连结AC 、AD 、BE,BE 分别与AC 和AD 相交于点F 、G ,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣√5;③(S四边形CDEF )2=9+2√5;④DF2﹣DG 2=7﹣2√5.其中正确结论的个数是( )A.1ﻩB.2ﻩC.3ﻩD.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣12)﹣3﹣2c os 45°+(3.14﹣π)0+√8= . 14.(4分)圆锥的底面周长为2π3,母线长为2,点P 是母线O A的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P,则细绳的最短长度为 .15.(4分)直线y =k x+b与双曲线y=﹣6x交于A (﹣3,m),B (n,﹣6)两点,将直线y=kx +b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △AD E= .16.(4分)二次函数y =ax 2+bx +c (a <0)图象与x 轴的交点A 、B的横坐标分别为﹣3,1,与y 轴交于点C ,下面四个结论:①16a﹣4b +c <0;②若P(﹣5,y 1),Q (52,y2)是函数图象上的两点,则y 1>y 2;③a=﹣13c ;④若△ABC 是等腰三角形,则b=﹣2√73.其中正确的有 (请将结论正确的序号全部填上)17.(4分)如图,在矩形ABC D中,BE⊥AC 分别交AC 、AD于点F、E ,若AD=1,AB=CF,则AE= .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a +6a a−3)÷(a +9a+9a−3),其中a =√3﹣3. 19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名) 百分比(%) 袋鼠跳45 15 夹球跑30 c 跳大绳75 25 绑腿跑b 20 拔河赛90 30 根据图表中提供的信息,解答下列问题:(1)a = ,b= ,c= .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?23.(10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BA C的平分线交⊙O 于点D,过D 作D E⊥AC 交AC 的延长线于点E,如图①.(1)求证:D是⊙O的切线;(2)若AB=10,A C=6,求BD 的长;(3)如图②,若F是OA 中点,FG ⊥O A交直线D E于点G,若FG=194,t an∠BAD =34,求⊙O 的半径.24.(12分)抛物线y =ax 2+b x+c 过A(2,3),B (4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足DE AE =√52,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q 在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.ﻩ2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2017•莱芜)﹣6的倒数是( )A.﹣16ﻩB.16C.﹣6D.6【考点】17:倒数.【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣1 6.故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•莱芜)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A .7.8×10﹣7B .7.8×10﹣8ﻩC.0.78×10﹣7D .78×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选A .【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017•莱芜)下列运算正确的是( )A.2x2﹣x 2=1ﻩB.x 6÷x 3=x 2 C .4x•x 4=4x 5ﻩD .(3xy 2)2=6x 2y 4【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A 、原式=x 2,不符合题意;B、原式=x 3,不符合题意;C 、原式=4x5,符合题意;D、原式=9x 2y 4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•莱芜)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为( )A.30x ﹣1=40x−25ﻩB .30x ﹣1=40x+25 C.30x +1=40x−25 D.30x +1=40x+25 【考点】B6:由实际问题抽象出分式方程.【分析】根据电动车每小时比自行车多行驶了25千米,可用x 表示出电动车的速度,再由自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程.【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程30x﹣1=40x+25,故选B.【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键. 5.(3分)(2017•莱芜)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A.B. C.ﻩD.【考点】U2:简单组合体的三视图.【分析】根据左视图的定义,画出左视图即可判断.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选C.【点评】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.(3分)(2017•莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切与点A,D O交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°ﻩB.47°C.48°ﻩD.49°【考点】MC:切线的性质.【分析】根据等边对等角可得∠B=∠BCO,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠B+∠BCO,根据切线的性质可得∠OAD=90°,然后根据直角三角形两锐角互余求解即可.【解答】解:∵OB=OC,∴∠B=∠BCO=21°,∴∠AOD=∠B+∠BCO=21°+21°=42°,∵AB是⊙O的直径,直线DA与⊙O相切与点A,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C.【点评】本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.(3分)(2017•莱芜)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12ﻩB.13ﻩC.14D.15【考点】L3:多边形内角与外角;L2:多边形的对角线.【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数,进而求出对角线的条数.【解答】解:根据题意,得(n﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7×(7−3)2=14, 故选C.【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.8.(3分)(2017•莱芜)如图,在Rt △ABC 中,∠BCA=90°,∠BA C=30°,BC=2,将Rt △A BC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A.π2 B.(2﹣√3)πﻩC.2−√32πﻩD .π 【考点】MO:扇形面积的计算;KO :含30度角的直角三角形;R2:旋转的性质.【分析】解直角三角形得到A C,A B,根据旋转推出△ABC 的面积等于△ADE 的面积,根据扇形和三角形的面积公式即可得到结论.【解答】解:在Rt △AB C中,∠BCA=90°,∠B AC=30°,BC=2,∴AC=2√3,A B=4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt△ADE,∴△ABC 的面积等于△ADE 的面积,∠CAB=∠DAE,AE=A C=2√3,AD=AB=4, ∴∠CA E=∠D AB=90°,∴阴影部分的面积S =S 扇形BAD +S △A BC ﹣S扇形CAE ﹣S△ADE=90π×42360+12×2×2√3﹣90π×(2√3)2360﹣12×2×2√3=π. 故选D.【点评】本题考查了三角形、扇形的面积,旋转的旋转,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积.9.(3分)(2017•莱芜)如图,菱形A BCD的边长为6,∠ABC=120°,M 是B C边的一个三等分点,P 是对角线AC 上的动点,当P B+PM 的值最小时,PM 的长是( )A.√72 B.2√73ﻩC.3√55 D .√264【考点】PA :轴对称﹣最短路线问题;L8:菱形的性质.【分析】如图,连接DP,BD,作D H⊥B C于H .当D 、P 、M 共线时,P′B +P′M=DM 的值最小,利用勾股定理求出DM ,再利用平行线的性质即可解决问题.【解答】解:如图,连接DP ,BD ,作D H⊥BC 于H.∵四边形AB CD是菱形,∴A C⊥B D,B 、D 关于AC 对称,∴PB+PM=PD +PM,∴当D 、P 、M 共线时,P′B +P′M=DM 的值最小,∵CM =13B C=2, ∵∠ABC =120°,∴∠D BC=∠A BD=60°,∴△D BC是等边三角形,∵BC=6,∴CM=2,HM =1,DH =3√3,在R t△DMH 中,DM=√DH 2+HM 2=√(3√3)2+12=2√7,∵CM ∥A D,∴P′M DP′=CM AD =26=13, ∴P′M =14D M=√72. 故选A.【点评】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10.(3分)(2017•莱芜)如图,在四边形A BCD 中,DC∥AB,A D=5,CD=3,sinA=sin B=13,动点P 自A 点出发,沿着边AB 向点B匀速运动,同时动点Q自点A 出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t(秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A.ﻩB.ﻩC .ﻩD.【考点】E7:动点问题的函数图象.【分析】过点Q 做Q M⊥A B于点M,分点Q 在线段A D、DC 、C B上三种情况考虑,根据三角形的面积公式找出s 关于t 的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q 做QM⊥AB于点M .当点Q 在线段AD 上时,如图1所示,∵AP=AQ=t(0≤t ≤5),si nA=13, ∴QM=13t , ∴s=12AP•QM=16t2; 当点Q 在线段CD上时,如图2所示,∵AP =t(5≤t ≤8),QM=AD•sinA=53, ∴s=12AP•Q M=56t ; 当点Q在线段CB 上时,如图3所示,∵AP=t(8≤t≤20√23+3(利用解直角三角形求出AB =20√23+3),BQ=5+3+5﹣t=13﹣t ,si nB =13, ∴QM=13(13﹣t ), ∴s=12AP•QM =﹣16(t2﹣13t ), ∴s=﹣16(t 2﹣13t )的对称轴为直线x=132. 综上观察函数图象可知B 选项中的图象符合题意.故选B.【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q 在线段AD 、DC 、C B上三种情况找出s 关于t 的函数关系式是解题的关键.11.(3分)(2017•莱芜)对于实数a,b,定义符号min {a,b },其意义为:当a≥b 时,m in {a,b}=b;当a <b 时,m in {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于x 的函数y=min {2x ﹣1,﹣x +3},则该函数的最大值为( )A .23B .1ﻩC.43 D.53【考点】F5:一次函数的性质.【分析】根据定义先列不等式:2x﹣1≥﹣x +3和2x ﹣1<﹣x+3,确定其y =min {2x ﹣1,﹣x +3}对应的函数,画图象可知其最大值.【解答】解:由题意得:{y =2x −1y =−x +3,解得:{x =43y =53, 当2x﹣1≥﹣x +3时,x≥43, ∴当x ≥43时,y=min {2x﹣1,﹣x +3}=﹣x+3, 由图象可知:此时该函数的最大值为53; 当2x ﹣1<﹣x +3时,x <43, ∴当x <43时,y =m in {2x ﹣1,﹣x +3}=2x ﹣1, 由图象可知:此时该函数的最大值为53;综上所述,y=m in {2x ﹣1,﹣x +3}的最大值是当x=43所对应的y 的值, 如图所示,当x=43时,y =53, 故选D.【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.12.(3分)(2017•莱芜)如图,正五边形ABC DE的边长为2,连结AC 、AD 、B E,BE 分别与A C和AD 相交于点F 、G,连结DF ,给出下列结论:①∠F DG=18°;②F G=3﹣√5;③(S四边形CDE F)2=9+2√5;④DF 2﹣DG 2=7﹣2√5.其中正确结论的个数是( )A.1ﻩB .2 C .3 D.4【考点】MM :正多边形和圆;S9:相似三角形的判定与性质.【分析】①先根据正五方形ABCDE 的性质得:∠ABC=180°﹣360°5=108°,由等边对等角可得:∠BAC=∠AC B=36°,再利用角相等求BC=C F=CD,得∠CDF=∠CFD=180°−72°2=54°,可得∠FDG=18°;②证明△ABF ∽△ACB ,得AB AC =EG ED ,代入可得FG 的长;③如图1,先证明四边形CDEF 是平行四边形,根据平行四边形的面积公式可得:(S 四边形CDEF )2=EF 2•DM 2=4×10+2√54=10+2√5; ④如图2,ﻩCD EF是菱形,先计算EC=BE=4﹣FG=1+√5,由S 四边形CDEF =12FD•EC=2×√10+2√54,可得FD 2=10﹣2√5,计算可得结论. 【解答】解:①∵五方形A BC DE是正五边形,∴AB=BC,∠A BC=180°﹣360°5=108°, ∴∠BAC=∠ACB=36°,∴∠A CD=108°﹣36°=72°,同理得:∠AD E=36°,∵∠BAE =108°,A B=A E,∴∠ABE =36°,∴∠CBF=108°﹣36°=72°,∴BC=F C,∵BC =CD,∴CD =CF, ∴∠CDF=∠CFD=180°−72°2=54°, ∴∠FD G=∠CD E﹣∠CDF ﹣∠ADE=108°﹣54°﹣36°=18°;所以①正确;②∵∠ABE=∠AC B=36°,∠BAC=∠B AF,∴△ABF ∽△ACB,∴AB AC =EG ED, ∴A B•ED=AC•EG,∵AB=ED=2,AC=BE=BG +EF ﹣FG=2AB ﹣FG=4﹣F G,E G=BG ﹣F G=2﹣FG , ∴22=(2﹣FG )(4﹣FG ),∴F G=3+√5>2(舍),FG =3﹣√5;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°,∴∠E BC +∠BC D=180°,∴EF ∥CD,∵E F=CD=2,∴四边形CDEF 是平行四边形,过D 作DM ⊥EG 于M,∵DG =D E,∴EM=MG=12EG=12(E F﹣FG)=12(2﹣3+√5)=√5−12, 由勾股定理得:DM=√DE 2−EM 2=2−(5−12)=√10+254,∴(S 四边形CDEF )2=EF 2•DM2=4×10+2√54=10+2√5; 所以③不正确;④如图2,连接EC,∵EF=ED,∴ﻩC DE F是菱形,∴FD ⊥E C,∵E C=BE =4﹣FG=4﹣(3﹣√5)=1+√5,∴S四边形CDE F=12FD•EC=2×√10+254, 12×FD ×(1+√5)=√10+2√5,FD2=10﹣2√5,∴DF2﹣DG2=10﹣2√5﹣4=6﹣2√5,所以④不正确;本题正确的有两个,故选B.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2017•莱芜)(﹣12)﹣3﹣2cos45°+(3.14﹣π)0+√8= ﹣7+√2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣8﹣√2+1+2√2=﹣7+√2,故答案为:﹣7+√2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)(2017•莱芜)圆锥的底面周长为2π3,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为2√3.【考点】KV:平面展开﹣最短路径问题;MP:圆锥的计算.【分析】连接AA′,根据弧长公式可得出圆心角的度数,由勾股定理可得出AA′.【解答】解:如图,连接AA′,∵底面周长为2π3,∴弧长=nπ×2180=2π3,∴n=60°即∠AOA′=60°,∴∠A=60°,作OB⊥AA′于B,在Rt△OBA中,∵OA=2,∴OB=1,∴AB=√3,∴AA′=2√3.故答案是:2√3.【点评】本题考查了圆锥的计算,平面展开﹣路径最短问题,注意“数形结合”数学思想的应用.15.(4分)(2017•莱芜)直线y=kx+b与双曲线y=﹣6x交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= 16.【考点】G8:反比例函数与一次函数的交点问题.【分析】利用待定系数法求出平移后的直线的解析式,求出点D 、E 的左边,再利用分割法求出三角形的面积即可.【解答】解:由题意A(﹣3,2),B (1,﹣6), ∵直线y =kx +b经过点A(﹣3,2),B(1,﹣6), ∴{−3k +b =2k +b =−6,解得{k =−2b =−4,∴y=﹣2x ﹣4,向上平移8个单位得到直线y =﹣2x +4,由{y =−6x y =−2x +4,解得{x =3y =−2和{x =−1y =6,不妨设D (3,﹣2),E (﹣1,6),∴S△AD E=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为16.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.16.(4分)(2017•莱芜)二次函数y=a x2+bx +c(a <0)图象与x轴的交点A 、B的横坐标分别为﹣3,1,与y 轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y 1),Q(52,y 2)是函数图象上的两点,则y 1>y2;③a=﹣13c;④若△AB C是等腰三角形,则b=﹣2√73.其中正确的有 ①③ (请将结论正确的序号全部填上)【考点】H4:二次函数图象与系数的关系;H A:抛物线与x轴的交点;KH:等腰三角形的性质.【分析】①根据抛物线开口方向和与x 轴的两交点可知:当x=﹣4时,y <0,即16a ﹣4b +c<0;②根据图象与x 轴的交点A 、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y 3)与Q(52,y 2)是对称点,所以y 1<y 2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(52,y2),﹣1﹣(﹣5)=4,52﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(52,y2)是对称点,∴则y1<y2;故②不正确;③∵﹣b2a=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0, 3a+c=0,a=﹣13c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵O C的长即为|c |, ∴c 2=16﹣9=7,∵由抛物线与y 轴的交点在y 轴的正半轴上, ∴c=√7,与b=2a 、a+b+c=0联立组成解方程组,解得b=﹣2√73;同理当AB=AC=4时∵A O=1,△AO C为直角三角形, 又∵O C的长即为|c |, ∴c 2=16﹣1=15,∵由抛物线与y 轴的交点在y 轴的正半轴上, ∴c =√15与b=2a、a +b +c=0联立组成解方程组,解得b =﹣2√153; 同理当AC=B C时在△AOC 中,AC 2=1+c 2, 在△B OC 中BC2=c 2+9, ∵AC=BC ,∴1+c2=c 2+9,此方程无实数解. 经解方程组可知有两个b值满足条件. 故⑤错误.综上所述,正确的结论是①③. 故答案是:①③.【点评】本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax 2+bx +c 的图象与系数的关系:当a <0,抛物线开口向下;抛物线的对称轴为直线x=﹣b2a;抛物线与y 轴的交点坐标为(0,c),与x 轴的交点为(x 1,0)、(x 2,0).17.(4分)(2017•莱芜)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=√5−1 2.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LB:矩形的性质.【分析】利用互余先判断出∠ABE=FCB,进而得出△ABE≌△FCB,即可得出BF=AE,BE=BC=1,再判断出∠BAF=∠AEB,进而得出△ABE∽△FBA,即可得出AE=AB2,最后用勾股定理即可得出结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE⊥AC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,在△ABE和△FCB中,{∠EAB=∠BFC=90°AB=CF∠ABE=∠FCB,∴△ABE≌△FCB,∴BF=AE,BE=BC=1,∵BE⊥AC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△A BE∽△F BA,∴AB BF =BE AB , ∴AB AE =1AB, ∴AE =AB 2,在R t△ABE 中,BE =1,根据勾股定理得,A B2+AE2=BE 2=1, ∴AE +A E2=1, ∵AE >0,∴AE =√5−12.【点评】此题主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出AE=AB 2.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2017•莱芜)先化简,再求值:(a +6aa−3)÷(a +9a+9a−3),其中a=√3﹣3.【考点】6D :分式的化简求值. 【分析】先将原分式化简成aa+3,再代入a 的值,即可求出结论.【解答】解:原式=a(a−3)+6aa−3÷a(a−3)+9a+9a−3,=a 2+3a a−3×a−3a 2+6a+9,=a(a+3)a−3×a−3(a+3), =aa+3. 当a=√3﹣3时,原式=aa+3=√3−3√3−3+3=√3−3√3=1﹣√3.【点评】本题考查了分式的化简求值,将原分式化简成aa+3是解题的关键.19.(8分)(2017•莱芜)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a=300,b=60,c=10 .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据学生数和相应的百分比,即可得到a的值,根据总人数乘以百分比,即可得到b的值,根据学生数除以总人数,可得百分比,即可得出c的值;(2)根据b的值,即可将条形统计图补充完整;(3)根据最喜欢绑腿跑的百分比乘以该校学生数,即可得到结果;(4)根据树状图或列表的结果中,选到“C”和“E”的占2种,即可得出恰好选到学生喜欢程度最高的两项的概率.【解答】解:(1)由题可得,a=45÷15%=300,b=300×20%=60,c=30300×100=10,故答案为:300,60,10;(2)如图:(3)3000×20%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,∴恰好选到“C”和“E”的概率是220=110.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图的应用,熟练掌握运算法则是解本题的关键.20.(9分)(2017•莱芜)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在直角三角形ABE中,利用锐角三角函数定义求出AE与BE的长即可;(2)过点F作FM⊥GD,交GD于M,在直角三角形GMF中,利用锐角三角函数定义表示出GM与GD,设甲乙两楼之间的距离为xm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)在Rt△ABE中,BE=AB•tan31°=31•tan31°≈18.60,AE=ABcos31°=31cos31°≈36.05,则甲楼的高度为18.60m,彩旗的长度为36.05m;(2)过点F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FM•tan19°,在Rt△GDC中,DG=CD•tan40°,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:xtan40°﹣xtan19°=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.21.(9分)(2017•莱芜)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△B CD≌Rt△ACE,根据全等三角形的性质解答;(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.【解答】解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,{AC=BC∠ACE=∠BCD CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,{BE=AD∠EBD=∠ADF DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(10分)(2017•莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【考点】FH:一次函数的应用;9A :二元一次方程组的应用;CE :一元一次不等式组的应用.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可;(2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大于乙种口罩的45,得出不等式求出后,根据m 的取值,得到5种方案,设网店获利w元,则有w=(25﹣22.4)m +(20﹣18)(500﹣m)=0.6m +1000,故当m=227时,w 最大,求出即可.【解答】解:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y 元,根据题意得:{x −y =52x +3y =110, 解这个方程组得:{x =25y =20, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m 袋,购进乙种口罩(500﹣m)袋,根据题意得{m >45(500−m)22.4m +18(500−m)≤10000, 解这个不等式组得:222,2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;。

2014年各地中考数学试卷解析版分类精品汇编函数、一次函数反比例函数

2014年各地中考数学试卷解析版分类精品汇编函数、一次函数反比例函数

2014年各地中考数学试卷解析版分类汇编函数、一次函数反比例函数一、选择题1. (2014•安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P 的位置分两种情况讨论.2. (2014•福建泉州)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3. (2014•广西贺州)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4. (2014•广西贺州)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2014•广西玉林市、防城港市)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.6.(2014年四川资阳)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(2014年广东)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2014年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2014•毕节)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3考点:一次函数与一元一次不等式分析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.11.(2014•邵阳)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b 的大小关系是()A.a>b B.a=b C.a<b D.以上都不对考点:一次函数图象上点的坐标特征分析:根据一次函数的增减性,k<0,y随x的增大而减小解答.解答:解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.12.(2014•四川自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.13.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时考点:函数的图象分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故此选项正确;B由图象可得出张强在体育场锻炼45﹣15=30(分钟),故此选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故此选项错误;D、∵张强从早餐店回家所用时间为100﹣65=35分钟,距离为1.5km,∴张强从早餐店回家的平均速度1.5÷=(千米/时),故此选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.14.(2014•济宁)函数y=中的自变量x的取值范围是()A.x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.二.填空题1.(2014年四川资阳)函数y=1+中自变量x的取值范围是.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.(2014•舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.4.(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200 米.考点:一次函数的应用分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.5.(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.考点:一次函数与一元一次不等式分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3.解2x﹣3≥0得,x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.6.(2014•孝感)函数的自变量x的取值范围为x≠1.考点:函数自变量的取值范围;分式有意义的条件专题:计算题.分析:根据分式的意义,分母不能为0,据此求解.解答:解:根据题意,得x﹣1≠0,解得x≠1.故答案为x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.(2014•孝感)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3考点:一次函数与一元一次不等式.分析:满足不等式﹣x+m>nx+4n>0就是直线y=﹣x+m位于直线y=nx+4n的上方且位于x 轴的上方的图象,据此求得自变量的取值范围即可.解答:解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n>0的解集为x<﹣2,∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选D.点评:本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.8.(2014•四川自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.考点:一次函数的性质分析:由于k的符号不能确定,故应分k>0和k<0两种进行解答.解答:解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.9.(2014·浙江金华)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行▲ 米.【答案】80.【解析】10. (2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.(第1题图)考点:函数的图象.分析:他步行回家的平均速度=总路程÷总时间,据此解答即可.解答:解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.11. (2014•株洲)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于4.考点:两条直线相交或平行问题.分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.解答:解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为4.点评:本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12. (2014•泰州)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2.考点:一次函数图象与几何变换分析:根据“上加下减”的平移规律解答即可.解答:解:将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x﹣1+3,即y=3x+2.故答案为y=3x+2.点评:此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k 的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.三.解答题1. (2014•安徽)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•福建泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t≤1时,d2﹣d1>10;当1<t≤3时,d1﹣d2>10,分类讨论是解题关键.3. (2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.4. (2014•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点:一次函数的应用分析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,5586<5592所以选择方案一更省钱.点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题.5. (2014•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD 在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.6.(2014年四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.7.(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg 部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.。

2014省会数学中考试卷)

2014省会数学中考试卷)

2014年济南市初三年级学业水平考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的算术平方根是( )A.2B.-2C.±2D.162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是( )A.50°B.60°C.140°D.150°3.下列运算中,结果是a5的是( )A.a2·a3B.a10÷a2C.(a2)3D.(-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约3 700千克,3 700用科学记数法表示为( )A.3.7×102B.3.7×103C.37×102D.0.37×1045.下列图案中既是轴对称图形又是中心对称图形的是( )6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.主视图的面积为5B.左视图的面积为3C.俯视图的面积为3D.三种视图的面积都是47.化简m-1m ÷m-1m2的结果是( )A.mB.1m C.m-1 D.1m-18.下列命题中,真命题是( )A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形9.若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则( )A.m>0B.m<0C.m>3D.m<310.如图,在▱ABCD中,延长AB到点E,使BE=AB,连结DE交BC于点F,则下列结论不一定成立·····的是( )A.∠E=∠CDFB.EF=DFC.AD=2BFD.BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( )A.23B.12C.13D.1412.如图,直线y=-√33x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO'B,则点O'的坐标是( )A.(√3,3)B.(√3,√3)C.(2,2√3)D.(2√3,4)13.如图,☉O的半径为1,△ABC是☉O的内接等边三角形,点D,E在圆上,四边形BCDE为矩形,这个矩形的面积是( )A.2B.√3C.32D.√3214.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1.例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2).若S0可以为任意序列,则下面的序列可作为S1的是( )A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x的一元二次方程x2+bx-t=0(t 为实数)在-1<x<4的范围内有解,则t的取值范围是( )A.t>-1B.-1<t<3C.-1<t<8D.3<t<8第Ⅱ卷(非选择题,共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)16.|-7-3|= .17.分解因式:x2+2x+1= .18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为15,那么口袋中球的总个数为.19.若代数式1m-2和32m+1的值相等,则x= .20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A'B'C',当两个三角形重叠部分的面积为32时,它移动的距离AA'等于.21.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=mm在第一象限的图象经过点B,若OA2-AB2=12,则k的值为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)(1)化简:(a+3)(a-3)+a(4-a);(2)解不等式组:{m -3<1,4m -4≥m +2.23.(本小题满分7分)(1)如图,四边形ABCD 是矩形,点E 是边AD 的中点.求证:EB=EC.(2)如图,AB 与☉O 相切于点C,∠A=∠B,☉O 的半径为6,AB=16.求OA 的长.2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预订了小组赛和淘汰赛的球票各多少张?25.(本小题满分8分)在济南市开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1(1)统计表中的m= ,x= ,y= ;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.如图1,反比例函数y=m(x>0)的图象经过点A(2√3,1),射线AB与反比例函数图象交于另一m点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连结CM,求△CMN面积的最大值.图1图227.(本小题满分9分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l4,l3上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE= ,正方形ABCD的边长= ;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE'D',旋转角为α(0°<α<90°),点D'在直线l3上,以AD'为边在E'D'左侧作菱形AB'C'D',使点B',C'分别在直线l2,l4上.①写出∠B'AD'与α的数量关系并给出证明;②若α=30°,求菱形AB'C'D'的边长.图1图228.(本小题满分9分)x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛如图1,抛物线y=-316物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N.设OM=t,试探究:①t为何值时△MAN为等腰三角形?②t为何值时线段PN的长度最小?最小长度是多少?图1图2备用图答案全解全析:一、选择题1.A 因为正数的算术平方根只有一个,且是正数,所以4的算术平方根是2,故选A.2.C ∠2=180°-∠1=180°-40°=140°,故选C.3.A a 2·a 3=a 5,a 10÷a 2=a 8,(a 2)3=a 6,(-a)5=-a 5,故选A.评析 此题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方的运算法则.4.B 3 700=3.7×103.5.D A 选项是轴对称图形但不是中心对称图形,B 选项是中心对称图形但不是轴对称图形,C 选项既不是轴对称图形也不是中心对称图形,D 选项既是轴对称图形又是中心对称图形.故选D.6.B 主视图的面积是4,左视图的面积是3,俯视图的面积是4,A 、C 、D 选项都是错的,故选B.评析 此题考查由小正方体组合而成的立体图形的三视图及其面积的计算,较简单. 7.A原式=m -1m ·m2m -1=m.8.B 两对角线相等且互相平分的四边形是矩形,所以A 选项是错的;两对角线互相平分的四边形是平行四边形,所以B 选项是对的;两对角线互相垂直且平分的四边形是菱形,所以C 选项是错的;两对角线相等的梯形是等腰梯形,所以D 选项是错的.故选B. 评析 本题考查矩形、菱形、平行四边形、等腰梯形的判定方法.9.C 因为该一次函数的函数值y 随x 的增大而增大,所以m-3>0,所以m>3.故选C. 评析 此题考查一次函数的增减性与自变量系数的关系. 10.D ∵CD∥BE,∴∠E=∠CDF,又BE=AB=CD,∠BFE=∠CFD,∴△BEF≌△CDF,∴EF=DF.∵BE=AB,AD∥BF, ∴AD=2BF,故A 、B 、C 选项均正确,只有D 选项不一定正确.故选D. 11.C 分别用a,b,c 表示航模,彩绘,泥塑三个社团.画树状图如下.本次试验结果有9个,选到同一社团的结果有3个.所以选到同一社团的概率P=39=13,故选C.12.A 如图,作O'C⊥y 轴,垂足为 C.易得A(2√3,0),B(0,2),所以OA=2√3,OB=2,所以tan∠BAO=√33,所以∠BAO=30°.因为△AOB≌△AO'B,所以∠OBA=∠O'BA=60°,OB=O'B,所以∠O'BC=60°,所以BC=1,O'C=√3,所以OC=2+1=3.所以点O'(√3,3).评析 此题考查一次函数图象与坐标轴的交点、轴对称的性质、锐角三角函数、解直角三角形的知识.13.B 连结OB,OC,作OM⊥BC 于M.因为△ABC 为等边三角形,所以∠A=60°,所以∠BOC=120°.因为OB=OC=1,所以∠OCB=30°,所以OM=12,CM=√32.在矩形BCDE 中,易得CD=2OM=1,BC=2CM=√3,所以S 矩形BCDE =BC·CD=√3.14.D 结合该变换的定义,运用排除法.例如A 选项,变换中共五个数,其中两个数各出现一次,还有三个数,这三个数不可能各自出现两次. 评析 此题考查序列变换,属于新概念题,有新意.15.C 因为抛物线y=x 2+bx 的对称轴为直线x=1,所以b=-2,则y=x 2-2x,所以当x=1时,y 有最小值-1,把x=-1代入x 2-2x-t=0,得t=3.把x=4代入x 2-2x-t=0,得t=8.所以当-1<x<4时,-1≤t<8.故当-1<t<8时,一元二次方程x 2+bx-t=0在-1<x<4的范围内有解.故选C. 二、填空题 16.答案 10解析 因为负数的绝对值是它的相反数,所以|-7-3|=|-10|=10.17.答案 (x+1)2解析 x 2+2x+1=x 2+2·x·1+12=(x+1)2. 18.答案 15 解析 P(摸到红球)=3球的总个数=15,∴球的总个数=3÷15=15.19.答案 7解析 根据题意列方程为1m -2=32m +1,去分母得3(x-2)=2x+1,解得x=7.经检验,x=7是原分式方程的根.20.答案 4或8解析 设AA'=x,则A'D=12-x,则有x(12-x)=32,解得x=4或8,经检验均符合题意. 21.答案 6解析 设OC=AC=a,AD=BD=b,则点B(a+b,a-b),因为点B 在反比例函数y=mm 的图象上,所以(a+b)(a-b)=k,即a 2-b 2=k,又因为OA 2-AB 2=2a 2-2b 2=12,所以a 2-b 2=k=6.评析 解决此题的关键是通过等腰直角三角形的直角边长表示出点B 的坐标,从而利用点B 在反比例函数图象上列出等式,进而求得k 值. 三、解答题22.解析 (1)(a+3)(a-3)+a(4-a) =a 2-9+4a-a 2(2分) =4a-9.(3分)(2){m -3<1,①4m -4≥m +2,②由①得x<4,(4分) 由②得x≥2.(5分)在数轴上表示不等式①,②的解集,如图:∴不等式组的解集为2≤x<4.(7分)23.解析 (1)证明:∵四边形ABCD 是矩形, ∴∠A=∠D=90°,AB=CD.(1分) ∵E 是边AD 的中点, ∴AE=DE,∴△ABE≌△DCE,(2分) ∴EB=EC.(3分) (2)连结OC.∵AB 与☉O 相切于点C, ∴OC⊥AB.(4分) ∵∠A=∠B, ∴OA=OB,(5分) ∴AC=BC=12AB=8.(6分) ∵OC=6,∴OA=√62+82=10.(7分)评析 第(1)问考查矩形的性质和三角形全等,第(2)问考查圆的切线、等腰三角形的性质及勾股定理.24.解析 设小李预订了小组赛的球票x 张,淘汰赛的球票y 张,(1分)根据题意得{m +m =10,550m +700m =5 800,(5分)解得{m =8,m =2.(7分) 答:小李预订了小组赛的球票8张,淘汰赛的球票2张.(8分)评析 此题以世界杯足球赛为背景,考查学生建立方程组模型解决实际问题的能力. 25.解析 (1)统计表中的m=100,x=40,y=0.18.(3分) (2)被调查同学劳动时间的中位数是1.5时.(5分) (3)补充完整的频数分布直方图如图:(6分)(4)m =12×0.5+30×1+40×1.5+18×2100=1.32(时).答:所有被调查同学的平均劳动时间为1.32时.(8分)评析 此题考查频数分布表、频数分布直方图以及中位数、平均数的计算,较简单. 26.解析 (1)∵反比例函数y=m m(x>0)的图象经过点A(2√3,1),∴k=2√3.(2分) (2)如图,过点B 作BE⊥x 轴,垂足为E,交AD 于F.∵点B(1,a)在反比例函数y=m m(x>0)的图象上, ∴a=2√3.(3分) ∴BF=AF=2√3-1, ∴∠BAD=45°,∵∠BAC=75°,∴∠DAC=30°, ∴tan∠DAC=tan 30°=√33.(4分) ∴DC=AD·tan 30°=2,∴C(0,-1). 设直线AC 的解析式为y=k 1x+b, ∴{-1=m ,1=2√3m 1+b,(5分) 解得{m =-1,m 1=√33.∴直线AC 的解析式为y=√33x-1.(6分) (3)设△CMN 的面积为S,M (m ,2√3m ),N (m ,√33m -1),则MN=2√3m -√33m+1,(7分)S=12m (2√3m -√33m +1)=-√36m 2+12m+√3=-√36(m -√32)2+9√38,(8分)∴当m=√32时,△CMN 面积最大,最大值为9√38.(9分)评析 此题考查了待定系数法求反比例函数解析式、锐角三角函数及三角形面积的最大值的计算,难点是构造二次函数求面积最大值,关键是通过确定点的坐标表示出三角形的底和高.27.解析 (1)AE=1,正方形ABCD 的边长=√10.(3分) (2)①∠B'AD'+α=90°.(4分)证明:过点B'作B'H⊥l 1于H,则∠B'HA=∠AE'D'=90°,B'H=AE'=1. ∵四边形AB'C'D'为菱形,∴AB'=AD'. ∴Rt△B'HA≌Rt△AE'D',(5分) ∴∠B'AH=∠AD'E'.∵∠AD'E'+∠D'AE'=90°, ∴∠B'AH+∠D'AE'=90°, ∴∠B'AD'+α=90°.(6分)②过点E'作KL⊥l 1于点K,交l 3于点L,则KL=3. ∵∠AE'K+∠KAE'=90°,∠AE'K+∠D'E'L=90°, ∴∠KAE'=∠D'E'L=α=30°.(7分) ∵AE'=1, ∴KE'=12,LE'=52, ∴D'E'=mm 'cos30°=5√33,(8分)∴AD'=√mm '2+D'E'2=2√213,即菱形AB'C'D'的边长为2√213.(9分)28.解析 (1)设平移后的抛物线解析式为y=-316x 2+bx+c.(1分)11 ∵平移后的抛物线过原点和A(8,0),∴{m =0,-12+8m +m =0,解得{m =0,m =32. ∴平移后的抛物线的解析式为y=-316x 2+32x.(2分)S 阴影=12.(3分)(2)①如图,由(1)可知顶点B 的坐标为(4,3).∵BC 垂直平分线段OA,∴OP=2BC=6.(4分)∵∠MNA 为Rt△PMN 的外角,∴∠MNA 一定为钝角,∴△MAN 为等腰三角形时,只能是∠NMA=∠NAM.∵∠OPM+∠OMP=90°,∠NMA+∠OMP=90°,∴∠OPM=∠NMA,∴∠OPM=∠NAM,∴△OPM∽△OAP,(5分)∴mm mm =mm mm ,即68=m 6.∴t=92,即当t=92时,△MAN 是等腰三角形.(6分)②如图,以PN 为直径作☉Q,当☉Q 与x 轴相切时,PN 的值最小.(7分)由OA=8,OP=6,可得AP=10.连结QM,则QM⊥OA,∴△AMQ∽△AOP,∴mm mm =mm mm ,∴mm mm =mm -mm mm ,即mm 6=10-mm 10,∴QM=154, ∴AQ=10-154=254,AM=√(254)2-(154)2=5,∴当OM=3,即t=3时,PN 的长度最小.(8分)PN 的最小长度为152.(9分)评析 此题涉及一次函数、二次函数、三角形、相似、圆,渗透了分类讨论、数形结合、函数、转化等数学思想,难度大.第(2)问的关键是构造圆,运用圆及其切线的关系判断最小值.。

2014-2015年莱芜实验中学七年级下期中数学试卷及答案解析

2014-2015年莱芜实验中学七年级下期中数学试卷及答案解析
2014-2015 学年山东省莱芜实验中学七年级(下)期中数学试卷
一、精心选一选(每小题 3 分,共 36 分)
1.(3 分)(2015 春•莱芜校级期中)下列各式计算正确的是(
A.(a2 )2 =a4
B. a+a=a2
C.3a2 ÷2a =22a
) D.a4 •a2 =8a
2.(3 分)(2015 春•莱芜校级期中)下列多项式的计算中,可以用平方差公式的是( ) A.(x+1)•(2+x) B. ( a+b)•(b﹣ a)C.(﹣a+b)•(a﹣2b)D.(﹣x﹣ y)•
1.(3 分)(2015 春•莱芜校级期中)下列各式计算正确的是(
A.(a2 )2 =a4
B. a+a=a2
C.3a2 ÷2a =22a
) D.a4 •a2 =8a
考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
专题:计算题.
分析:A、原式利用幂的乘方运算法则计算得到结果,即可做出判断; B、原式合并同类项得到结果,即可做出判断; C、原式利用单项式除以单项式法则计算得到结果,即可做出判断; D、原式利用同底数幂的乘法法则计算得到结果,即可做出判断.
B. 2.5×10﹣6
C. 0.25×10﹣5
D.2.5×10﹣7
11.(3 分)(2015 春•莱芜校级期中)如图,OC 平分∠AOD,OD 平分∠BOC,下列结论不 成立的是( )
A.∠AOC=∠BOD B. ∠COD= AOB C.∠AOC= ∠AOD D.∠BOC=2∠BOD
12.(3 分)(2012•定西)如图,边长为(m+3)的正方形纸片,剪出一个边长为 m 的正方 形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为 3,则另一 边长是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年山东省莱芜市中考数学试卷、选择题(本题共 12小题,每小题选对得 3分,选错、不选或选出的答案超过一个均记零分,共36分)1. (3 分)(2014?莱芜) 下列四个实数中,是无理数的为()A .0 B . — 3C. .:■: D .:112. (3 分)(2014?莱芜)下面计算正确的是()A .3a — 2a=1 B . 3a 2+2a=5a 333 3C . (2ab ) 3=6a 3b 3D . - a 4?a 4 = — a 85. ( 3分)(2014?莱芜)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18人数4 56 672则这些学生年龄的众数和中位数分别是( )A . 17, 15.5B . 17, 16C . 15, 15.5D .16, 166. ( 3 分)(2014?莱芜)若一个正 n 边形的每个内角为 156 °则这个正 n 边形的边数是() A . 13 B . 14C . 15D .167. ( 3分)(2014?莱芜)已知 A、 C 两地相距 40千米, B 、C 两地相距 50千米,甲乙两车分别从 A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶 12千米,则两车同时到达 C 地.设乙车的速度为 x 千米/小时,依题意列方程正确的是()A . 4050 B .40 50C. 40 50D.40 50X12 x _ 12 Ki+12 x3.( 3 分)(2014?莱芜) 2014年4月25日青岛世界园艺博览会成功开幕,预计将接待 万用科学记数法表示为( ) A . 15XI05B . 1.5XI06C . 1.5X 071500万人前来观赏,将 1500 8D . 0.15X 0如图是由 4个相同的小正方形搭成的一个几何体,则它的俯视图是(&( 3分)(2014?莱芜)如图,AB 为半圆的直径,且 则图中阴影部分的面积为()AB=4,半圆绕点B 顺时针旋转45°点A 旋转到A 的位置,4. (3 分)(2014?莱芜)A .11. ( 3分)(2014?莱芜)如图,在正五边形 ABCDE 中,连接 AC 、AD 、CE , CE 交AD 于点F ,连接BF ,下列说法不正确的是( )2 2 2C . AC 2+BF 2=4CD212. (3分)(2014?莱芜)已知二次函数 y=ax 2+bx+c 的图象如图所示.下列结论:2 2① abc > 0;② 2a - b v 0;③ 4a -2b+c v 0;④ (a+c ) < bA . nB . 2nC . IT2D . 4 n9. (3 分) (2014 ?莱芜)一个圆锥的侧面展开图是半径为 R 的半圆,则该圆锥的高是() A .R B . 1 C . V3RD . kf?10. (3分)(2014?莱芜)如图,在 △ ABC 中,D 、E 分别是 AB 、BC 上的点,且 4,贝U S A BDE : S A ACD =()DE // AC ,若 S A BDE : S A CDE =1 :C . 1: 20D . 1: 24A . △ CDF 的周长等于AD+CDB . FC 平分 / BFD2D . DE =EF?CEB . 1: 18二、填空题(本题包括5小题,每小题4分,共20分)13. ___________________________________________________ (4 分)(2014?莱芜)分解因式:a3- 4ab2= .14. _____________________________________________________________________________ (4 分)(2014?莱芜)计算:|3- 2血|+ (兀 - 2014 )呻(.寺)7= _______________________________________ .15. _____________________________________________________________________________________ (4分)(2014 ?莱芜)若关于x的方程x2+ (k- 2)x+k2=0的两根互为倒数,则k= __________________________ .16. ____________________________ (4分)(2014?莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A (4, 2)、B (- 2, m)两点,则一次函数的表达式为.17. (4分)(2014?莱芜)如图在坐标系中放置一菱形OABC,已知/ ABC=60 ° OA=1 .先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°连续翻转2014次,点B的落点依次为B1, B2, B3,…,贝B2014的坐标为_三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)4 a ~5 1 n18. (6分)(2014?莱芜)先化简,再求值:(a+1 ---------- )亍(------- - ------ ),其中a=- 1.□_ 1 a ~ 1 /一只19. (8分)(2014?莱芜)在某市开展的读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1〜1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5〜1.5小时的多少人.20. (9分)(2014?莱芜)如图,一堤坝的坡角 / ABC=62 °坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角/ ADB=50 °则此时应将坝底向外拓宽多少米?(结果保留到0.01答下列问题:⑷二闔45过15米)(参考数据:sin62° 出88, cos62° M7, tan50° 核0)21. (9分)(2014?莱芜)如图,已知△ ABC是等腰三角形,顶角 / BAC= a(aV 60°, D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转a到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF .(1)求证:BE=CD ;(2)若AD丄BC,试判断四边形BDFE的形状,并给出证明.22. (10分)(2014?莱芜)某市为打造绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入面积不少于35000平方米,且河道治污费用不少于园林绿化费用的23. (10分)(2014?莱芜)如图1,在O O中,E是弧AB的中点,9接EC交AB于点F, EB=_ +3(1)D为AB延长线上一点,若DC=DF,证明:直线DC与O O相切;(2)求EF?EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.24. (12分)(2014?莱芜)如图,过A (1, 0)、B (3, 0)作x轴的垂线,分别交直线y=4 - x于C、D两点.抛物线y=ax +bx+c经过0、C、D三点.(1)求抛物线的表达式;)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M ,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若厶AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△ AOC与厶OBD重叠部分的面积记为S,试求S的最大值.2013 年200元,若要求2015年河道治污及园林绿化总4倍,那么园林绿化的费用应在什么范围内?C为O O上的一动点(C与E在AB异侧),连(r是O O的半径).2014年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2014?莱芜)下列四个实数中,是无理数的为()A . 0B. - 3 C . :: D . ■:IT考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要冋时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,选项错误;B、- 3是整数,是有理数,选项错误;C、「=2 .:是无理数正确;D、一是无限循环小数,是有理数,选项错误.故选:C .点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n 2 n等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. (3分)(2014?莱芜)下面计算正确的是()A . 3a- 2a=1B . 3a2+2a=5a3C. (2ab)3=6a3b3 D . - a4?a4 = - a8考点:幕的乘方与积的乘方;合并冋类项;冋底数幕的乘法.分析:分别进行合并冋类项、积的乘方和幕的乘方等运算,然后选择正确答案.解答:解:A、3a- 2a=a,原式计算错误,故本选项错误;B、3a2和2a不是同类项,不能合并,故本选项错误;C、(2ab)3=8a3b3,原式计算错误,故本选项错误;D、- a4?a4= - a8,计算正确,故本选项正确.故选D .点评:本题考查了合并冋类项、积的乘方和幕的乘方等知识,掌握运算法则是解答本题的关键.3. (3分)(2014?莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A . 15XI05B . 1.5XI06C . 1.5X107D . 0.15X10*考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为a X0n的形式,其中1书|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将1500万用科学记数法表示为:1.5 X07.故选:C .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.4. (3分)(2014?莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是(C .D .考点: 分析: 解答: 点评: 简单组合体的三视图. 根据俯视图是从上面看到的图形判定即可. 解:从上面可看到从左往右有三个正方形, 故选A . 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. ( 3分)(2014?莱芜)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 13 14 15 16 人数 4566 则这些学生年龄的众数和中位数分别是( A . 17, 15.5 B . 17, 16 17 182 C . 15, 15.5 D . 16, 16 考点: 分析: 解答: 点评: 众数;中位数. 出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确 定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 解:17出现的次数最多,17是众数. 第15和第16个数分别是15、16,所以中位数为16.5 .故选A . 本题考查了众数及中位数的知识,掌握各部分的概念是解题关键. 6. (3分)(2014?莱芜)若一个正n 边形的每个内角为156°则这个正n 边形的边数是( A . 13 B . 14 C . 15 ) D . 16 考点: 分析:解答: 点评: 多边形内角与外角. 由一个正多边形的每个内角都为 156°可求得其外角的度数,继而可求得此多边形的边数,则可求得答案. 解:•••一个正多边形的每个内角都为 156° •••这个正多边形的每个外角都为: 180°- 156°=24°, •••这个多边形的边数为:360°^24°=15, 故选C .此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键. 7. ( 3分)(2014?莱芜)已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从 A 、B 两地同时出 发到C 地.若乙车每小时比甲车多行驶 12千米,则两车同时到达 C 地.设乙车的速度为 x 千米/小时,依题意列方 程正确的是( )A. 40 50 ~=K- 12 x-12 C .__ ! IT =X +12r+12_考点: 分析:解答: 由实际问题抽象出分式方程. 设乙车的速度为x 千米/小时,则甲车的速度为( 50千米,列出方程. 解:设乙车的速度为 x 千米/小时,则甲车的速度为(x - 12)千米/小时, X - 12)千米/小时,根据用相同的时间甲走 40千米,乙走由题意得,_1二’川•x x - 12故选B •点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系, 列出方程.&( 3分)(2014?莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°点A旋转到A的位置, 则图中阴影部分的面积为()A . nB . 2 nC .兀D . 4 n考点:扇形面积的计算;旋转的性质.分析:根据题意可得出阴影部分的面积等于扇形ABA 的面积加上半圆面积再减去半圆面积,即为扇形面积即可.解答:解:T S阴影=S扇形ABA '+S半圆—S半圆45X 7T X 42=S扇形ABA ==2 n,故选B .点评:本题考查了扇形面积的计算以及旋转的性质,是基础知识,难度不大.9. (3分)(2014?莱芜)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A . RB . 1C . D. ■:2K考点:圆锥的计算.分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.解答:解:圆锥的底面周长是:K R;设圆锥的底面半径是r,则2 n= K R .解得:r= R.[2由勾股定理得到圆锥的高为故选D.点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.10. (3 分)(2014?莱芜)如图,在△ ABC 中,D、E 分别是AB、BC 上的点,且DE // AC ,若S^BDE:S^CDE=1 : 4,贝U S A BDE : S^ACD=()D. 1: 24考点:相似三角形的判定与性质.分析:设厶BDE的面积为a,表示出△ CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出翌,然CE后求出△ DBE和厶ABC相似,根据相似三角形面积的比等于相似比的平方求出△ ABC的面积,然后表示出厶ACD的面积,再求出比值即可.解答:解:T S^BDE : S A CDE=1 : 4,•••设厶BDE的面积为玄,则厶CDE的面积为4a, ••• △ BDE和厶CDE的点D到BC的距离相等,1 =1::4L-=11 -si•/ DE // AC,••• △ DBE ABC,•S A DBE : S A ABC=1 : 25,•-S A ACD =25a — a _4a=20a,•- S A BDE : S A ACD=a:20a=1: 20.故选C.点评:本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方用△ BDE的面积表示出△ ABC的面积是解题的关键.11. (3分)(2014?莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A . △ CDF的周长等于AD+CDB . FC平分/ BFDC . AC2+BF2=4CD2D . DE2=EF?CE考点:正多边形和圆.分析:首先由正五边形的性质可得AB=BC=CD=DE=AE ,BA // CE,AD // BC,AC // DE,AC=AD=CE,根据有一组邻边相等的平行四边形是菱形即可证得四边形ABCF为菱形,得CF=AF,即厶CDF的周长等于AD+CD,由菱形的性质和勾股定理得出AC2+BF2=4CD2,可证明△ CDEDFE,即可得出DE2=EF?CE .解答:解:•••五边形ABCDE是正五边形,• AB=BC=CD=DE=AE ,BA // CE,AD // BC,AC // DE,AC=AD=CE,•四边形ABCF是菱形,••• CF=AF ,••• △ CDF 的周长等于CF+DF+CD ,即厶CDF的周长等于AD+CD ,故A说法正确;B. 1: 18由勾股定理得OB2+OC2=BC2,2 2 2 2 2 2 2• AC +BF = (20C) + (2OB ) =40C +40B =4BC ,• AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ ADE也△ CDE ,•/ DCE= / EDF ,•△ CDEDFE ,•二—…I =1,2•DE2=EF?CE,故C说法正确;点评:本题考查了正五边形的性质,全等三角形的判定,综合考察的知识点较多,难度中等,解答本题注意已经证明的结论,可以直接拿来使用.12. (3分)(2014?莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:2 2①abc> 0;②2a- b v 0;③4a-2b+c v0;④(a+c) < b其中正确的个数有考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线开口方向得a< 0,由抛物线对称轴在y轴的左侧得a、b同号,即b< 0,由抛物线与y轴的交点在x轴上方得c> 0,所以abc> 0;根据抛物线对称轴的位置得到- 1 <- — < 0,则根据不等式性质即可得2a到2a- b<0;由于x= - 2时,对应的函数值小于0,则4a- 2b+c< 0;同样当x= - 1时,a- b+c>0, x=1 时,a+b+c< 0,则(a- b+c)(a+b+c)< 0,利用平方差公式展开得到(a+c)2- b2< 0,即(a+c)2< b2.解答:解:•••抛物线开口向下,••• av 0,•/抛物线的对称轴在y轴的左侧,•- x= ——v 0,• b v 0,•••抛物线与y轴的交点在x轴上方,• c> 0,• abc>0,所以①正确;•/ - i v-丄v0,2a• 2a- b v 0,所以②正确;•••当x= - 2 时,y v 0,• 4a- 2b+c v 0,所以③ 正确;•••当x= - 1 时,y> 0,• a- b+c>0,■/ 当x=1 时,y v 0,• a+b+c v 0,•(a- b+c) (a+b+c) v 0,即(a+c- b) (a+c+b)v 0,•(a+c) 2- b2v 0,所以④正确.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c (a用)的图象为抛物线,当a> 0,抛物线开口向上;对称轴为直线x=-上;抛物线与y轴的交点坐标为(0, c);当b2- 4ac>0,抛物线与x轴有2a两个交点;当b2- 4ac=0,抛物线与x轴有一个交点;当b2- 4ac v 0,抛物线与x轴没有交点.二、填空题(本题包括5小题,每小题4分,共20分)3 213. (4 分)(2014?莱芜)分解因式:a - 4ab = a (a+2b) (a- 2b) .考点:提公因式法与公式法的综合运用.分析:观察原式a3-4ab2,找到公因式a,提出公因式后发现a2- 4b2符合平方差公式的形式,再利用平方差公式继续分解因式.解答:解:a3- 4ab2=a (a2- 4b2)=a (a+2b) (a- 2b).故答案为:a (a+2b) (a- 2b).点评:本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.14. (4 分) (2014?莱芜)计算:|3-2亦|+ (兀一2014 ) 7=一^怎_.考点:实数的运算;零指数幕;负整数指数幕.分析:本题涉及零指数幕、绝对值、负指数幕等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:2=2 :■- 3+1+2 =2 :;. 故答案为2 :点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是掌握零指数幕、 绝对值、负指数幕等考点的运算.15. (4分)(2014?莱芜)若关于x 的方程x 2+ (k - 2) x+k 2=0的两根互为倒数,则 k= - 1 • 考点:根与系数的关系.分析:分析:根据已知和根与系数的关系X 1x 2=—得出k 2=1,求出k 的值,再根据原方程有两个实数根,求出符所以一次函数解析式为 y=x - 2. 故答案为y=x - 2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.解答: k 的值.解:I X 1x 2=k 2,两根互为倒数, ••• k =1, 解得k=1或-1;•••方程有两个实数根, △> 0, •当k=1时,△< 0,舍去, 故k 的值为-1.点评:本题考查了根与系数的关系,根据 X 1, X 2是关于x 的一元二次方程ax 2+bx+c=0 (a 老,a , b , 两个实数根,则 X 1+x 2= - —, x 1x 2=^进行求解.c 为常数)的16. (4分)(2014?莱芜)已知一次函数 y=ax+b 与反比例函数的图象相交于 A (4, 2)、B (- 2, 一次函数的表达式为 y=x - 2 .考点:反比例函数与一次函数的交点问题. 专题:计算题.分析:先把A 点坐标代入尸上中求出k ,得到反比例函数解析式为 y 昌,再利用反比例函数解析式确定 然后利用待定系数法求一次函数解析式.解答:解:把A (4, 2)代入 尸上得k=4X2=8 ,I所以反比例函数解析式为沪丄,把 B (- 2, m )代入 y=—得-2m=8,解得 m= - 4, m )两点,则 B 定坐标,解得把 A (4, 2)、B (- 2,17. (4分)(2014?莱芜)如图在坐标系中放置一菱形OABC,已知/ ABC=60 ° OA=1 .先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°连续翻转2014次,点B的落点依次为B i,B2,B3,…,则B2014的坐标为(1342,考点:规律型:点的坐标;等边三角形的判定与性质;菱形的性质.专题:规律型.分析:连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转 6 次,图形向右平移4.由于2014=335 >6+4,因此点B4向右平移1340 (即335总)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.解答:解:连接AC,如图所示.•/四边形OABC是菱形,••• OA=AB=BC=OC .•/ / ABC=90 °•△ ABC是等边三角形.• AC=AB .• AC=OA .•/ OA=1 ,• AC=1 .画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.•/ 2014=335 >6+4,•点B4向右平移1340 (即335 >)到点B2014.•/ B4的坐标为(2, 0),• B2014 的坐标为(2+1340 , 0),点评:本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现每翻转6次,图形向右平移4”是解决本题的关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)4 已一5 1 □18. (6分)(2014?莱芜)先化简,再求值:(a+1 --------- )亡(---------- 一------- ),其中a=- 1.□ _1 a ~ 1 J 一乂考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用冋分母分式的减法法则计算,冋时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值.解答:解:原式=-1; I ・-) --4十 ■ 」、|a _ 1 a (a _ 1)_ (且一 2 )(且-1) a - 1 ? a-2=a (a - 2),当 a= - 1 时,原式=-1 x (- 3) =3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19. ( 8分)(2014?莱芜)在某市开展的 读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问 题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解(1) 本次抽样调查的样本容量是多少? (2) 请将条形统计图补充完整. (3) 在扇形统计图中,计算出日人均阅读时间在 1〜1.5小时对应的圆心角度数. (4) 根据本次抽样调查,试估计该市 12000名初二学生中日人均阅读时间在0.5〜1.5小时的多少人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据第一组的人数是 30,占20%,即可求得总数,即样本容量;(2)禾U 用总数减去另外两段的人数,即可求得 0.5〜1小时的人数,从而作出直方图;(3) 利用360。

相关文档
最新文档