平行四边形的判定典型题备课讲稿

合集下载

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

初中数学《平行四边形的判定》教案+逐字稿

初中数学《平行四边形的判定》教案+逐字稿

《平行四边形的判定》教案【教学目标】知识与技能:通过平行四边形的性质,理解并探索并掌握平行四边形的判定条件,并能根据条件判定平行四边形。

过程与方法:经历平行四边形判别条件的探索过程,逐步掌握平行四边形判定的基本方法。

情感态度与价值观:主动参与探索的活动中,发展主动探究的习惯,激发学习数学的热情和兴趣。

【教学重难点】重点:平行四边形的判定方法。

难点:平行四边形判定方法的应用。

【教学过程】1)创设情境,导入新课出示下图:学生观察下图,并提出下列问题。

问题1:上图是什么图形呢?回忆平行四边形的定义,并从边、角、对角线、对称性四个角度回忆平行四边形的性质?找同学回答上节课所学。

问题2:我们可以说什么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?这就是咱们今天要学习的新内容,平行四边形的判断。

2)师生互动,探索新知通过前面的学习,我们知道,平行四边形的对边平行且相等,对角相等,对角线互相平分。

那么反过来,具有这些性质的四边形是不是平行四边形呢?下面我们先来探究第一个问题,两组对边分别相等的四边形是不是平行四边形呢?请同学们看以下实验:取两长两短的四根木条用小钉绞和在一起,做成一个四边形,使等长的木条成为对边。

转动这个四边形,使它形状改变,在图形变化的过程中,它是什么图形呢?都是平行四边形吗?下面我们分组进行实验,一前后桌为一组的小组进行分组讨论。

提问1:你能写出两个实验中的已知条件和求证的结论吗?提问2:根据你写的已知条件,你能得到求证的结论吗?3)知识剖析,深化理解在四边形ABCD中,AC,BD相交于点O,且AB=DC,BC=AD。

求证:四边形ABCD 是平行四边形。

根据边边边的条件,证明三角形ADC和三角形ABC全等即可。

4)生生合作,巩固提高例1若AD=8cm,AB=4cm,那么当BC=_________cm,CD=________cm时,四边形ABCD为平行四边形;5)课堂小结,布置作业总结本节课所学如何利用两组对边相等判定平行四边形,并为学习接下来的几个平行四边形判断定理做铺垫。

课程教学设计方案平行四边形的判定

课程教学设计方案平行四边形的判定

课程教学设计方案平行四边形的判定课程教学设计方案:平行四边形的判定一、课题内容课题名称:平行四边形的判定课时:2课时年级:八年级学科:数学二、教学目标1. 知识与技能:理解并掌握平行四边形的定义。

学会使用几何证明方法判定一个四边形是否为平行四边形。

2. 过程与方法:通过观察、推理、交流等活动,培养学生的空间想象能力和逻辑推理能力。

运用多媒体和实物模型,增强直观教学。

3. 情感态度与价值观:培养学生对几何学的兴趣和审美情感。

强调团队合作的重要性。

三、教学重点与难点重点:平行四边形的定义及判定方法。

难点:几何证明的过程和逻辑推理。

四、教学准备多媒体课件平行四边形的模型或图片绘图工具(如直尺、圆规等)五、教学过程1. 导入:利用多媒体展示生活中的平行四边形实例,如建筑物的结构、路标等,引发学生兴趣。

提问:“你们在哪里还见过平行四边形?它们有什么特点?”2. 新课导入:回顾四边形的定义和分类。

引入平行四边形的定义,并通过模型展示其特征。

3. 探究活动:分组活动:每组学生得到不同的四边形模型,判断哪些是平行四边形。

讨论与分享:每组汇报他们的发现,并讨论如何判定一个四边形是平行四边形。

4. 讲解与示范:讲解平行四边形的判定方法,如对边平行、对角线互相平分等。

通过示例演示如何使用这些方法进行证明。

5. 巩固练习:发放练习题,让学生独立完成。

随机选择几名学生上黑板展示解题过程。

展示平行四边形在实际生活中的应用,如建筑设计、艺术作品等。

7. 作业布置:分配相关的练习题,巩固所学知识。

探索任务:让学生寻找生活中的平行四边形,并尝试用今天学到的知识进行解释。

六、教学反思教学结束后,教师应反思教学效果,特别是学生对平行四边形判定方法的掌握程度。

调整教学方法,以适应不同学生的学习风格和需求。

课程教学设计方案:分数的加减法一、课题内容课题名称:分数的加减法课时:2课时年级:五年级学科:数学二、教学目标1. 知识与技能:理解并掌握分数加减法的运算规则。

初中数学-面试试讲真题-《平行四边形的判定》逐字稿、说课稿、教案

初中数学-面试试讲真题-《平行四边形的判定》逐字稿、说课稿、教案

《平行四边形的判定》逐字稿、说课稿、教案导入尊敬的评委老师大家好,我试讲的内容是《平行四边形的判定》,接下来开始我的试讲。

同学们好,上课,请坐!同学们,在正式开启本节课的内容之前,我们先来回顾一下我们所认识的平行四边形,都有哪些性质呢?平行四边形的对边相等,对角相等,对角线互相平分。

那么反过来,当一个四边形满足对边相等,或满足对角相等,或满足对角线互相平分,这个四边形一定是平行四边形吗?这节课一起来探究《平行四边形的判定》。

新授新课伊始,老师想提问大家,平行四边形性质的逆命题分别是什么呢?两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

下面请同学们根据大屏幕上所展示的四边形 ABCD,将以上逆命题用数学符合表示出来。

我们分别请三位同学来描述。

第一个,“两组对边分别相等的四边形是平行四边形”用数学符号语言来描述:如图,在四边形 ABCD 中,AC,BD 相交于点 O,且 AB=CD,AD=BC,则四边形 ABCD 是平行四边形,很好请坐。

第二个“两组对角分别相等的四边形是平行四边形”用数学符号语言来描述:如图,在四边形 ABCD 中,∠BAD = ∠BCD, ∠ABC = ∠ADC ,则四边形 ABCD 是平行四边形。

第三个“对角线互相平分的四边形是平行四边形”请这位女生用数学语言来描述:如图,在四边形 ABCD 中,AC,BD 相交于点 O,且 OA=OC,OB=OD,则四边形 ABCD 是平行四边形。

大家描述的都很准确,那么能否根据平行四边形的定义去证明他们呢?我们以“对角线互相平分的四边形是平行四边形”为例,请同学们看大屏幕。

如图,在四边形 ABCD 中,AC,BD 相交于点 O,且 OA=OC,OB=OD,求证:四边形 ABCD 是平行四边形。

请同学们以同桌合作的方式,利用所学习的知识,快速证明。

好了,老师看到大家已经完成了,我们请一位同学将他们的证明过程投影到大屏幕上。

八年级下册《平行四边形的判定》说课稿.doc

八年级下册《平行四边形的判定》说课稿.doc

八年级下册《平行四边形的判定》说课稿尊敬的评委老师:您们好!我今天说课的内容是平行四边形的判定。

下面我从教目标、教法、学法、教学过程四个方面加以阐述。

一、说目标我确定的教学目标是:1、理解平行四边形的判定定理,会用平行四边形的判定定理解决简单的问题;2、经历平行四边形判定定理的证明和运用过程,培养学生的逻辑思维能力和运用意识;3、通过数学活动,培养学生的探索、合作交流的意识。

确定以上教学目标的依据是:1、基于对课标的理解。

新课程标准提出,经历图形性质和判定的探究,掌握几何图形的基础知识和基本技能;掌握几何图形基本证明方法和作图技巧;本章目标要求:利用平行四边形的性质,探究并证明平行四边形的判定。

2、基于对教材的分析。

本章是在学习了平行线、三角形、平行四边形的性质的基础上,对平行四边形的判定进行探究的;它既是对平行四边形性质知识的一个延续,也是后面学习矩形、菱形、正方形等相关知识的基础。

3、基于对学情的分析。

八年级学生已经具备了探究图形性质的能力,已经接触过逆否命题的证明,具备探究平行四边形判定的基础,但在演绎推理方面还有待加强。

二、说教法有什么样的教材就有什么样的教法;本节课教学内容分为四个教学片段,每个片段的教法我是这样设计的:引入新课,我采用“创设情境”的办法进行教学;定理教学我采用“自主探究”的办法进行教学;定理的运用我采用“学生独立作业、合作交流”的办法进行教学;小结我采用“回顾总结”的办法进行教学。

整堂课中,我把“学生的自主探究、合作交流和教师是组织者、引导着、合作者” 两大理念贯穿始终。

三、说学法有什么样的教法就培养什么样的学法。

通过导入教学激发学生的学习兴趣,调动学生的积极性;通过平行四边形的判定定理教学进一步培养学生观察、比较、总结、归纳的能力以及逻辑思维能力和语言表达能力;通过定理运用教学培养学生概念运用、独立作业、合作交流的能力;通过小结教学培养学生回顾总结的能力、归纳梳理和语言表达能力。

平行四边形的判定》说课稿(比赛)

平行四边形的判定》说课稿(比赛)

平行四边形的判定》说课稿(比赛)本节课是关于平行四边形判定的第一课,主要探究两种判定方法:对边相等和对角线互相平行。

在研究三角形和平行四边形的相关知识、定义和性质后,本节课起着承上启下的作用。

通过引入新课时的类比性质和判定定理,本节课为研究特殊的平行四边形奠定了基础。

此外,本节内容也可以培养学生的创新思维和探索精神。

教学目标分为知识技能、数学思考、解决问题和情感态度四个方面。

知识技能目标包括掌握类比方法和两种判定方法,数学思考目标则是培养学生的动手能力和推理能力。

解决问题目标则是将平行四边形问题转化为三角形问题,提高学生的解决问题能力。

情感态度目标则是让学生感受数学思考过程中的合理性和严谨性,认识事物的相互联系和转化。

教学重点在于平行四边形判定方法的探究、运用和性质判定的综合运用。

教学难点则在于平行四边形判定方法的证明和性质判定的综合运用。

为了达到教学目标,本节课采用引导启发和激趣教学法。

教师通过创设问题情境和游戏、拼图等方式,引导学生发现、解决问题,激发学生的研究兴趣,提高研究效率。

在教学中,除了要合理选择教法,还要注重对学生研究方法的指导。

本节课主要指导学生两种研究方法:自主探究和合作研究。

自主探究是通过学生的动手操作、观察、实验、猜想、推理等活动得出知识,使学生变得主动探究。

合作研究则鼓励学生积极合作、充分交流,帮助学生在研究活动中获得最大的成功,促使学生研究方式的改变。

在教学过程中,需要明确问题与情境。

活动一中,教师提出问题1、2,由学生独立思考并口答出定义、正反两方面的作用,引起学生的思考。

然后让学生小组合作整理出平行四边形的其他性质,最后让学生准确地用文字表达各条性质的逆命题。

在活动二中,学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究明确本节课的研究任务,起到了提纲挈领的作用。

探究1让学生自己动手、实验,亲历将两两相等的木条作为对边得到平行四边形,然后教师演示flash动画,共同得到逆命题A、逆命题C。

数学教案-平行四边形的判定

数学教案-平行四边形的判定

数学教案-平行四边形的判定数学教案-平行四边形的判定(精选3篇)数学教案-平行四边形的判定篇1教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。

快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。

平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。

它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。

二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。

学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。

因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。

2、理解平行四边形的这两种判定方法,并学会简单运用。

【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。

2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。

3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定【知识梳理】一、什么是平行四边形?两组对边分别平行的四边形就是平行四边形.如图四边形ABCD ,AB CD AD BC ∥,∥,四边形ABCD 就是平行四边形二、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形的对称性平行四边形是中心对称图形平行四边形的周长与面积周长:邻边之和的2倍面积:底乘高(常利用面积相等来求线段的长)三、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形四、三角形中位线性质:三角形的中位线平行且等于第三边长的一半判定:点E 是三角形ABC △的中点,且DE BC ∥,则点D 为AB 中点【诊断自测】1.下列说法错误的是()A .对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.3.四边形ABCD中,AB=7cm,BC=5cm,CD=7cm,当AD=cm时,四边形ABCD 是平行四边形.4.如图所示,DE∥BC,DF∥AC,EF∥AB,图中共有个平行四边形.【考点突破】类型一:平行四边形的性质例1、如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.26答案:B解析:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.例2、如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.答案:50°.解析:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.例3、如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.答案:1<a<7.解析:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.例4、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.类型二:平行四边形的判定例5、如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A 出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s答案:B解析:设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选B.例6、四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①∠ABC=∠ADC,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC,其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组答案:B解析:如图,①∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形;②∵AB=CD,AD=BC,∴四边形ABCD是平行四边形;③∵AO=CO,BO=DO,∴四边形ABCD是平行四边形;④∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.∴其中一定能判定这个四边形是平行四边形的条件有3组.故选B.例7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.答案:见解析解析:证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.例8、如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.答案:见解析解析:证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.类型三:平行四边形的性质和判定例9、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.答案:见解析解析:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.例10、如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.例11、如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.答案:见解析解析:证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.类型三:中位线定理例12、如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE答案:B解析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.例13、如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).答案:见解析解析:证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).【易错精选】1.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°2.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.63.已知:A(﹣2,1),B(﹣3,﹣1),C(0,﹣1).点D在坐标平面内,且以A、B、C、D四个点构成的四边形是平行四边形,则这样的D点有个.4.如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.【精华提炼】一、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形是中心对称图形二、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形【本节训练】训练【1】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC ⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm训练【2】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DCB.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE训练【3】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC 为对角线的平行四边形ADCE中,DE的最小值是.训练【4】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.基础巩固一.填空题1.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE 的面积为cm2.2.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是cm.3.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.4.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.5.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.二、选择题1.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.112.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm3.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.724.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE 的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m5.如图,在▱ABCD中,AB=3,AD=5,AM平分∠BAD,交BC于点M,点E,F分别是AB,CD的中点,DM与EF交于点N,则NF的长等于()A.0.5B.1C.D.2三、简答题1.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=2DE,连接CF.判断四边形BCFE的形状,并证明.2.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.巅峰突破1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.2.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.3.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN ∥AB,连接NH,如果∠D=68°,则∠CHN=.4.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.5.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.参考答案【诊断自测】1、D解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.2、解:可以添加:AD∥BC(答案不唯一).3、5.解:当AD=5cm时,四边形ABCD是平行四边形,∵AB=7cm,BC=5cm,CD=7cm,AD=5cm,∴四边形ABCD是平行四边形,故答案为:5.4、3个.解:由两组对边分别平行的四边形是平行四边形,可得图中的平行四边形有▱ADFE、▱BFED、▱CFDE三个.故答案为:3个【易错精选】1、C解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.2、C解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.3、3解:如图,D点共有3个,故答案为:3.4、.解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.【本节训练】1、B解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.2、D解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.3、4解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.4、2解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.基础巩固一、填空题1、解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.2、解:∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.3、解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.4、解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.5、解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.二、选择题1、解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.2、解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.3、解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选D.4、解:∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.5、解:过点M作MG∥AB交AD于点G,∵AD∥BC,AB∥MG,∴四边形ABMG是平行四边形,∴∠AGM=∠ABM.∵AM平分∠BAD,∴∠GAM=∠MAB,∴∠AMB=∠AMG.在△AGM与△ABM中,,∴△AGM≌△ABM,∴AB=AG=3,∴四边形ABMG是菱形,∴MC=5﹣3=2.∵EF∥BC,点E,F分别是AB,CD的中点,∴NF是△DCM的中位线,∴NF=MC=1.故选B.三、简答题1、证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.2、(1)证明:∵AD平分∠BAC ∴∠BAD=∠DAE∵AD⊥BD∴∠ADB=∠ADE=90°在△ADB与△ADE中∴△ADB≌△ADE∴BD=DE(2)∵△ADB≌△ADE∴AE=AB=12∴EC=AC﹣AE=8∵M是BC的中点,BD=DEDM=EC=4巅峰突破1、解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.2.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.3.解:连接MH,∵AH⊥CD于H,M为AD的中点,∴MH=AD=DM,∴∠D=∠MHD=68°,∵MN∥AB,∴∠NMH=∠MHD=68°,又∵MN=AB=AD,∴MN=MH,∴∠MHN=(180°﹣68°)÷2=56°,∴∠CHN=180°﹣∠DHM﹣∠MHN=56°.故答案为:56°4.解:(1)∵四边形PQDC是平行四边形∴DQ=CP当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t∴16﹣t=21﹣2t解得t=5当P从C运动到B时,∵DQ=AD﹣AQ=16﹣t,CP=2t﹣21∴16﹣t=2t﹣21,解得t=,∴当t=5或秒时,四边形PQDC是平行四边形;(2)若点P、Q分别沿AD、BC运动时,即解得t=9(秒)若点P返回时,CP=2(t﹣),则解得t=15(秒).故当t=9或15秒时,以C ,D ,Q ,P 为顶点的梯形面积等60cm 2;(3)当PQ=PD 时作PH ⊥AD 于H ,则HQ=HD∵QH=HD=QD=(16﹣t )由AH=BP 得解得秒;当PQ=QD 时QH=AH ﹣AQ=BP ﹣AQ=2t ﹣t=t ,QD=16﹣t ,∵QD 2=PQ 2=t 2+122∴(16﹣t )2=122+t 2解得(秒);当QD=PD 时DH=AD ﹣AH=AD ﹣BP=16﹣2t ,∵QD 2=PD 2=PH 2+HD 2=122+(16﹣2t )2∴(16﹣t )2=122+(16﹣2t )2即3t 2﹣32t+144=0∵△<0,∴方程无实根,当点P 从C 向B 运动时,观察图象可知,只有PQ=PD ,由题意:2t ﹣26=(16﹣t ),t=.综上可知,当秒或秒或秒时,△PQD是等腰三角形.5.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.第31/31页。

2023年人教版八年级下册数学_ 平行四边形的判定1 第1课时 同步典型例题精讲课件

2023年人教版八年级下册数学_  平行四边形的判定1 第1课时  同步典型例题精讲课件

6
C.1∶2∶1∶2
D.1∶1∶2∶2
7
解析:由题意,得∠A与∠C是对角,∠B与∠D是对角.当∠A=∠C,
8
∠B=∠D时,四边形ABCD是平行四边形,故选项A,B,D不符合
9
题意,选项C符合题意.
第1课时 平行四边形的判定1
STEP1 知识理解与运用
返回目录
1
7.在下列条件中,不能确定四边形ABCD为平行四边形的是( D )
1
2.小红同学周末在家做家务,不慎把家里的一块
2
平行四边形玻璃打碎成如图所示的四块,为了
3
能从玻璃店配到一块与原来相同的玻璃,他应
4
该带去玻璃店的是( B )
5
A.①② B.②④ C.②③ D.①③
返回目录
6
7
解析:只有②④两块角的两边互相平行,且中间部分相连,角的两边
8
的延长线的交点就是平行四边形的顶点.
STEP1 知识理解与运用
返回目录
1
知识点四 对角线互相平分
2
8.如图,四边形ABCD的对角线AC和BD相交于点O,下列能判定四边
3
形ABCD是平行四边形的是( D )
4
A.AO=OC,AC=BD
5
B.BO=OD,AC=BD
6
C.AO=BO,CO=DO
D.AO=OC,BO=OD
7
8
解析:∵AC,BD是四边形ABCD的对角线,AO=OC,BO=OD,
6
∴四边形为平行四边形.
7
8
9
第1课时 平行四边形的判定1
STEP1 知识理解与运用
返回目录
1
知识点三 两组对角分别相等

平行四边形的判定优秀教案

平行四边形的判定优秀教案

平行四边形的判定优秀教案一、教学目标【知识与技能】理解并掌握平行四边形的四条判定定理,会用判定定理解决相应问题。

【过程与方法】经历探究和证明平行四边形判定定理的过程,提升逻辑推理能力和解决问题的能力。

【情感、态度与价值观】体会方法的多样性,激发学习兴趣,感受几何思维的真正内涵。

二、教学重难点【教学重点】平行四边形的判定定理。

【教学难点】平行四边形判定定理的证明和应用。

三、教学过程(一)导入新课复习提问:平行四边形的定义是什么?平行四边形有什么性质?引题:怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?今天我们就来探究《平行四边形的判定》。

(二)探索新知提问:刚才我们回顾了平行四边形的性质——对边相等,对角相等,对角线互相平分。

那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?也就是它们的逆命题是否成立呢?学生活动:前后四人为一小组,利用下发的学具做以下实验。

实验一:取两长两短的四根木条用小钉钉在一起,做成一个四边形,其中两根长木条长度相等,两根短木条长度相等。

如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。

转动两根木条,这个四边形是平行四边形。

引导学生观察得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

提问:你能根据平行四边形的定义证明它们吗?如何证明对角线互相平分的四边形是平行四边形?教师板书作图,请学生将命题翻译成符号语言,指出已知和待证结论。

教师引导:观察两条对角线将平行四边形分割成什么样的图形?如何判定其中一组对边平行?判定平行需要的条件怎么得到?学生活动:前后四人为一小组,交流讨论完成证明,限时八分钟。

预设:根据对角线互相平分、对顶角相等,利用SAS判定对角线分割所得两个相对的三角形全等,再由全等三角形的性质得到一组内错角相等,进而得到一组对边平行。

人教版数学八年级下册18.1.2《平行四边形的判定》说课稿

人教版数学八年级下册18.1.2《平行四边形的判定》说课稿
4.鼓励学生课堂上积极提问,充分尊重他们的个性差异,及时给予反馈和鼓励,增强学生的学习自信心。
5.结合学生的兴趣和实际需求,设计分层作业和拓展任务,让每个学生都能在原有基础上获得提高,感受到学习的成就感。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、探究式学习和小组合作学习。选择这些方法的理论依据是:启发式教学能够激发学生的思维,引导学生主动探索新知识,培养学生的问题解决能力;探究式学习能够鼓励学生通过实践和思考来建构知识,提高学生的自主学习和创新能力;小组合作学习则有助于培养学生的团队协作能力和社交技能,同时通过同伴互助,提高学习效率。
3.教师针对学生的表现给予有效的反馈和建议,鼓励学生持续进步。
(五)作业布置
课后作业布置如下:
1.设计适量的基础题,帮助学生巩固平行四边形的判定方法。
2.设计一定数量的提高题,培养学生解题技巧和灵活运用知识的能力。
3.布置开放性问题,激发学生的创新思维和探究精神。
作业的目的是让学生在课后进一步消化和吸收所学知识,培养独立思考和解决问题的能力。同时,通过作业的完成情况,教师可以了解学生的学习状况,为下一节课的教学提供依据。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用结构化的布局,主要内容分为三部分:平行四边形的定义、五种判定方法及其应用。板书风格简洁明了,使用不同颜色的粉笔突出重点和关键信息。
板书在教学过程中的作用是帮助学生构建知识框架,强化记忆,同时作为视觉辅助,帮助学生跟随教学进度。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
3.课堂时间有限,可能无法充分满足所有学生的个性化需求。
应对措施:
1.对于逻辑推理困难的学生,我将提供更多的实例和图示,帮助他们理解。

6.2.平行四边形的判定(教案)

6.2.平行四边形的判定(教案)
二、核心素养目标
《数学》八年级上册,6.2节:平行四边形的判定。本节核心素养目标如下:
1.培养学生的几何直观和空间想象能力,通过对平行四边形的观察、分析,提高对几何图形的认识和把握;
2.培养学生逻辑推理和问题解决能力,掌握平行四边形的判定方法,能够运用所学知识解决实际问题;
3.培养学生的数学抽象和数学建模能力,通过探索平行四边形的性质和判定方法,发展数学思维,提高数学素养;
其次,在新课讲授中,我发现有些学生对判定方法的逻辑推理过程感到困惑。为了帮助他们理解,我计划在下节课中增加一些步骤性的引导,让学生逐步跟随我的思路,从已知条件推导出结论。这样,他们可以更清晰地把握证明过程中的关键步骤。
此外,实践活动中的分组讨论环节,我发现有些小组的讨论不够深入,部分学生参与度不高。为了提高学生的参与度,我打算在下次活动中,提前准备一些引导性问题或案例,激发学生的思考和讨论兴趣。同时,我也会加强在讨论过程中的个别指导,鼓励每个学生都能积极参与。
4.培养学生的合作交流意识,通过小组讨论、互动交流,学会倾听、表达和分享,增强团队协作能力。
三、教学难点与重点
1.教学重点
-平行四边形的定义及性质:理解平行四边形的含义,掌握其对边平行且相等、对角线互相平分等基本性质。
-平行四边形的判定方法:掌握并能够灵活运用四种判定方法(对边平行、对角线互相平分、一组对边平行且相等、两组对边分别相等)。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两组对边分别平行且相等的四边形。它在几何图形中非常重要,因为许多图形的性质和计算都基于平行四边形。
2.案例分析:接下来,我们来看解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

平行四边形的判定(1)集体备课

平行四边形的判定(1)集体备课

课题 平行四边形的判定(1)主备人:简远福、王梅参与人:简远福、王梅、潘琴、向利奎、吴明瑞【学习目标】1、掌握平行四边形的四个判定定理:2、会用平行四边形的判定方法判定一个四边形是平行四边形;3、能综合运用平行四边形的判定和性质解题。

【学习重点】平行四边形的判定方法的证明;【学习难点】用平行四边形的判定方法判定(证明)一个四边形是平行四边形。

【学习导航】 一、复习1、平行四边形边的定义:叫做平行四边形。

2、平行四边形边的性质:(1)边:平行四边形边的两组对边分别 。

(2)角:平行四边形边的两组对角分别 ,邻角 。

(3)对角线:平行四边形边的两条对角线 。

二、探究新知1、你能用几何语言表述一下平行四边形边的定义吗?如图,在四边形ABCD 中∵AB 础达标1、请你识别下列四边形哪些是平行四边形 ? 为什么?B.能力测试2、 在下列条件中,不能判定四边形是平行四边形的是( )(A) AB ∥CD,AD ∥BC (B) AB=CD,AD=BC (C) ∠BAD=∠BCD, ∠ABC=∠ADC (D) OA=OC,OB=OD ADCB110°70°110°⑴⑷⑶AB CD120°60°5㎝5㎝㎝5ABDO 5㎝4㎝4㎝BADC4.8㎝4.8㎝⑵7.6㎝BACB D AC(E) AB∥CD, ∠A=∠C (F) AB=BC,AD=DC(G) AB∥CD,AD=BC (H) AB∥CD,AB=CD3、在四边形ABCD中,∠A,∠B,∠C,∠D的度数之比如下,其中能判定四边形ABCD是平行四边形的是()A、1:2:3:4B、2:3:2:3C、2:2:3:3D、1:2:2:14、一个四边形的三个相邻内角的度数如下,其中是平行四边形的是()A、88°,108°,88°B、88°,104°,108°C、88°,92°,92°D、108°,72°,108°C、拓展与提高5、如图、□ABCD的对角线AC,BD相交于点O,E,F是AC 上的两点,并且AE=CF。

教学备课平行四边形的性质与判定

教学备课平行四边形的性质与判定

教学备课平行四边形的性质与判定在教学备课中,平行四边形是一个重要的几何概念。

本文将从平行四边形的性质和判定两个方面进行论述,以帮助教师在备课过程中更好地理解和教授这一内容。

一、平行四边形的性质平行四边形是一种具有特殊性质的四边形。

以下是平行四边形的基本性质:1. 对角线性质平行四边形的对角线互相平分,并且对角线的交点将对角线分成两条相等的线段。

换句话说,平行四边形的对角线是等分对角线。

2. 边对边性质平行四边形的对边互相平行,并且对边长度相等。

也就是说,平行四边形的相对边是平行且相等的。

3. 角性质平行四边形的内角和为180度。

具体而言,相邻内角互补,即一个内角与其相邻内角的和为180度。

以上是平行四边形的基本性质,教师在备课过程中可以通过示意图和实例演算来帮助学生理解这些性质。

二、平行四边形的判定在备课中,了解如何判定一个四边形是否为平行四边形也是至关重要的。

下面介绍几种判定平行四边形的方法:1. 同位角判定法如果一个四边形的对应内角互等(即同位角相等),那么这个四边形就是平行四边形。

2. 三角形判定法如果一个四边形的一对对边相等,并且另一对对边也相等,那么这个四边形就是平行四边形。

3. 对角线判定法如果一个四边形的对角线互相等分,并且对边互相平分,那么这个四边形就是平行四边形。

通过掌握以上的平行四边形判定法,教师可以在备课中设计相关练习题目,帮助学生提高对平行四边形的理解和判定能力。

在备课中,教师可以通过以下步骤来设计合适的教学内容:1. 引入阶段:可以通过一些生活中的例子引起学生的兴趣,比如平行四边形在建筑设计中的应用等。

2. 概念解释阶段:详细讲解平行四边形的性质和判定方法,并且通过示意图和实例演算来帮助学生理解。

3. 练习巩固阶段:设计一些练习题,让学生运用所学的知识进行实际操作,并及时纠正他们的错误,加深对平行四边形的理解。

4. 拓展运用阶段:引导学生将所学的平行四边形的知识应用到实际问题中,比如计算物体的面积等。

《平行四边形的判定》的说课稿

《平行四边形的判定》的说课稿

《平行四边形的判定》的说课稿
本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

重点:探索并掌握平行四边形的判别条件。

难点:对平行四边形判别条件的理解及说理的基本方法的掌握。

两根长40厘米和两根长30厘米的木条
首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。

最后依靠课本所设计的“做一做”,“议一议”以及“随堂练习”加深对平行四边形判定定理的理解。

1、复习平行四边形的定义。

2、小组活动
用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。

平行四边形的判定定理——两组对边相等的四边形是平行四边形。

3、课本91页的“做一做”
4、“议一议”
问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。

问题2、要判别一个四边形是平行四边形,你有哪些方法?
5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的判定
例题1:BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要添加的一个条件是_________
练习:1、如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。

求证:四边形BFDE 是平行四边形。

2.如图所示,在平行四边形ABCD 中,P 1、P 2是对角线BD 的三等分点,求证:•四边形AP 1CP 2是平行四边形.
3、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,
那么请说明AM=DC 且AM ∥DC
例题2:(2013•镇江)如图,AB∥CD,AB=CD ,点E 、F 在BC 上,且BE=CF .
(1)求证:△ABE≌△DCF;
(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形.
O
A
B
D
练习:1、11、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、
H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形
2.(2012•惠城区模拟)如图,D 是AB 上的一点,DF 与AC 相交于E ,DE=EF ,CF∥BA.
求证:四边形ADCF 是平行四边形.
3、已知:如图所示,平行四边形ABCD 的对角线AC 、BD•相交于点
O ,EF 经过点O 并且分别和AB 、CD 相交于点E 、F ,又知G 、H 分别为OA 、OC 的中点.
求证:四边形EHFG 是平行四边形.
例题3:、如图4.4-17,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF 的值为一个定值.这个定值是多少?请你说出这个定值的来历.
H G
F
E O A B
C
D
H
G
F
E
O A
B
C D
H
G
F
E
O A
B
C D H
G
F
E O A
B
C D
练习1:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。

求证:EG 和HF
互相平分。

2、 如图,△ACD、△ABE、△BCF 均为直线BC 同侧的等边三角形.当AB≠AC 时,求证:四边形ADFE 为平行四边形.
三角形的中位线
1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______ . 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、
AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______
5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF 的关系是___
6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .
H
G
图20.1.3-1
F
E
D
C
B
A
(1) (2) (3) (4)
7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.
8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.
9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()
A.4.5cm B.18cm C.9cm D.36cm
13.如图4,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF•的周长是() A.10 B.20 C.30 D.40
例题1:.已知:如图,DE是△ABC的中位线,AF是BC边上的中线,
求证:DE与AF互相平分
例题2:已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA 的中点.求证:四边形EFGH是平行四边形.
14.如图所示,□ ABCD的对角线AC,BD相交于点O,AE=EB,求证:OE∥BC.
17.已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;
F
E D
B C
A
18.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=
1
2
BD .
19.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .
20.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.
21.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。

求证:四边形EFGH 是平行四边形。

H G
F
E D C
B
A。

相关文档
最新文档