可逆矩阵及应用举例
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/54eaac403d1ec5da50e2524de518964bcf84d2a6.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。
(完整版)逆矩阵的几种求法与解析(很全很经典)
![(完整版)逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/9b40fda158fb770bf78a5596.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的性质及在考研中的应用
![逆矩阵的性质及在考研中的应用](https://img.taocdn.com/s3/m/0c935a3203768e9951e79b89680203d8ce2f6a8e.png)
逆矩阵的性质及在考研中的应用矩阵是线性代数中的基本概念之一,而逆矩阵是矩阵理论中的重要组成部分。
在研究生入学考试中,逆矩阵的出现频率较高,是考生必须掌握的重要内容之一。
本文将介绍逆矩阵的基本性质以及在考研中的应用场景,旨在帮助考生更好地理解和掌握这一部分内容。
逆矩阵是矩阵的一种重要性质,其定义如下:设A是一个可逆矩阵,那么存在一个矩阵B,使得$AB=BA=I$,其中I是单位矩阵。
在这个定义中,矩阵B被称为A的逆矩阵。
$A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}$计算行列式$det(A)$: $det(A) = |\begin{matrix} 2 & 3 \ 1 & 2 \end{matrix}| = 2 \times 2 - 3 \times 1 = 1$计算A的伴随矩阵A*: $A* = \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix}$计算A的逆矩阵A-¹: $A-¹ = \frac{1}{det(A)} \times A* =\frac{1}{1} \times \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix} = \begin{matrix} 2 & -3 \ -1 & 2 \end{matrix}$在考研中,逆矩阵的应用主要涉及以下几个方面:解方程:逆矩阵可以用来求解线性方程组。
当方程组的系数矩阵是可逆矩阵时,我们可以通过逆矩阵快速求解方程组。
证明不等式:在证明某些矩阵不等式时,可以通过引入逆矩阵来简化证明过程。
求特征值和特征向量:在计算矩阵的特征值和特征向量时,需要先求出矩阵的逆矩阵。
解决优化问题:在数学优化中,逆矩阵往往作为系数矩阵的逆出现,对于一些约束优化问题,可以通过求解线性方程组来得到优化解。
可逆矩阵在通信中的应用
![可逆矩阵在通信中的应用](https://img.taocdn.com/s3/m/43901e9551e79b89680226f7.png)
可逆矩阵在保密通信中的应用矩阵是数学的基本概念之一。
作为线性代数的核心内容,矩阵广泛运用于各个领域,如数学建模、密码学、化学、通信和计算机科学等,解决了大量的实际问题。
可逆矩阵是矩阵理论中一个很重要的概念,在线性代数中,给定一个n 阶方阵A ,若存在一个n 阶方阵B ,使得AB=BA=E (或AB=E 、BA=E 任满足一个),其中E 为n 阶单位矩阵,则称A 是可逆的,且B 是A 的逆矩阵,记作A -1。
可逆矩阵在通信中的典型应用就是在保密通信中。
保密通信是当今信息时代的一个非常重要的课题, 而逆矩阵正好在这一领域有其应用。
我们可以用逆矩阵对所传递的明文消息进行保密措施后( 即密文消息) 发给接收方, 而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。
一、算法的加密原理信息发送端首先根据密钥矩阵A 的阶数(||A||=n ) , 将明文转换为n 维数向量X, 然后将X 与A 相乘得到密文Y , 既Y=AX, 再将Y 发送, 信息端接受到Y 后, 则利用密钥矩阵A -1(其中A 与A -1互为可逆矩阵)与Y 相乘, 则会得到明文X , 既: A -1Y = A - 1AX = X 。
例如 : 一个密钥矩阵⎪⎪⎪⎭⎫ ⎝⎛=100110111A ,另一个密钥矩阵⎪⎪⎪⎭⎫ ⎝⎛=1001-1001-1A 1-,信息发送端欲发送信息ABC 。
首先根据ASC Ⅱ码表将ABC 传为三维向量⎪⎪⎪⎭⎫ ⎝⎛=676665X ,则对应的密文⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==67133198676665100110111AX Y ,然后将密文Y 传输,当信息端接收到密文Y 时,利用解密密钥矩阵A -1,根据公式求得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==676665671331981001-1001-1Y A X 1-,然后利用ASCII 码表即可解析出发送的信息为ABC 。
关于可逆矩阵及其应用的举例探讨
![关于可逆矩阵及其应用的举例探讨](https://img.taocdn.com/s3/m/91883c7ec950ad02de80d4d8d15abe23482f030c.png)
关于可逆矩阵及其应用的举例探讨矩阵是数学中一个重要的概念,也是许多科学领域中必不可少的工具。
可逆矩阵是研究矩阵的重要概念之一,具有广泛的应用。
本文将着重探讨可逆矩阵及其应用,并通过具体的实例进行阐述。
一、可逆矩阵的定义与性质可逆矩阵在数学上也称作非奇异矩阵(non-singular matrix)或满秩矩阵(full-rank matrix),其定义如下:假设矩阵$A$是一个$n \times n$的方阵,则称$A$为可逆矩阵,当且仅当它存在一个$n \times n$的矩阵$B$,满足$AB=BA=I$,其中$I$是单位矩阵。
可逆矩阵具有以下的性质:1. 对于任意一个可逆矩阵$A$,它的逆矩阵是唯一的,用$A^{-1}$表示。
2. 如果一个$n \times n$矩阵$A$是可逆的,那么它的$n$个列向量全部线性无关。
二、可逆矩阵的应用1. 方程组解唯一性可逆矩阵在解线性方程组中常常发挥着重要的作用。
假设有一个线性方程组$Ax=b$,其中$A$是一个$n \times n$的可逆矩阵,$x$和$b$都是$n$维列向量。
这个线性方程组的解为$x=A^{-1}b$。
由于可逆矩阵的逆矩阵是唯一的,所以当$A$是可逆矩阵时,线性方程组的解是唯一的。
这说明可逆矩阵作为解线性方程组的一个必要条件,也是一个非常重要的条件。
2. 矩阵的相似性如果矩阵$A$和$B$满足$B=P^{-1}AP$,其中$P$是一个可逆矩阵,则称矩阵$A$和$B$相似。
这个概念在矩阵理论中有着重要的应用。
对于相似的矩阵,它们之间具有许多相似的性质。
比如,它们的特征值相同,而特征向量之间的关系也相同。
通过这个概念,我们可以将矩阵分解成易于处理的形式,进一步进行计算和分析。
3. 线性变换在线性代数中,一个线性变换可以用一个矩阵来表示。
如果矩阵是可逆的,则线性变换是可逆的,它对向量的变换可以被逆转。
4. 数值计算在数值计算中,可逆矩阵是一个非常有用的工具。
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/b2f77a72ad51f01dc381f138.png)
E-A) 1= E + A + 2 K1 + … +A(E- A )(E+A + A 2+…+ AK 1)= E-A K(E-A) (E+A+A 2 + …+A K 1)=E,逆矩阵的几种求法与解析矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 .1. 利用定义求逆矩阵定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用.例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且证明因为E与A可以交换,所以因A K= 0 ,于是得同理可得( E + A + A 2 + … +A K 1 )(E-A)=E ,因此E-A是可逆矩阵,且(E-A) 1 = E + A + A 2 +…+A K 1同理可以证明 (E+ A) 也可逆,且E-A 的逆矩阵.(E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1.由此可知,只要满足A K=0,就可以利用此题求出一类矩阵E A 的逆矩阵.例2 设 A =00 20 00 03,求0003 0000分析 由于A 中有许多元素为零,考虑A K是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵.解 容易验证00 2 00 0 0 6200 0 630 0 0 04A 2=■A 3=, A 4 =000 0 00 00 0000 00 0 0 0而 (E-A)(E+A+ A2+ A 3 )=E , 所以1 12 61230 12 6 (E-A)E+A+ A2+ A.0 0 1 30 00 12. 初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法 •如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使(1) p 1 p 2 p s A=I ,用 A 1右乘上式两端,得:(2) p 1 p 2 p s I= A 1比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1.用矩阵表示( A I )为( I A 1 ),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等变换 .同样,只用列初等变换也可以求逆矩阵 .2 3 1例1 求矩阵A的逆矩阵•已知A= 0 1 31 2 52 3 1 1 0 0 1 2 5 0 0 1解[A I] 0 1 3 0 1 0 0 1 3 0 1 01 2 5 0 0 1 2 3 1 1 0 01 2 5 0 0 1 1 0 0 1/6 13/6 4/30 1 3 0 1 0 0 1 0 1/2 3/2 10 0 1 1/6 1/6 1/3 0 0 1 1/6 1/6 1/31/6 13/6 4/3故 A 1 = 1/2 3/2 11/6 1/6 1/3在事先不知道n阶矩阵是否可逆的情况下,也可以直接用此方法•如果在初等变换过程中发现左边的矩阵有一行元素全为 0,则意味着A不可逆,因为此时表明A =0,则A 1不存在.1 2 3例 2 求 A= 4 5 6.7 8 91 2 3 1 0 0 1 2 3 1 0 0解[A E]= 4 5 6 0 1 0 0 3 6 4 1 07 8 9 0 0 1 0 6 12 7 0 11 2 3 1 0 00 3 6 4 1 0 .0 0 0 1 2 1由于左端矩阵中有一行元素全为0,于是它不可逆,因此A不可逆.3. 伴随阵法定理 n阶矩阵A=[a j ]为可逆的充分必要条件是A非奇异.且A n1A n2矩阵A 21.A n1A 22...A 12称为矩阵A 的伴随矩阵,记作A 3,于是有A 1=-A A 3'' ''' )A 2n.A nnB=A n A 2n 由此可知,若A 可逆,则AA 3.其中A j 是A 中元素a j 的代数余子式.证明 必要性:设A 可逆,由A A 1=I ,有AA 1 = l |,则A A 1 =|l |,所以A 0 , 即A 为非奇异.充分性: 设A 为非奇异,存在矩其中a11 a12 ...a 1nA 11 A21...A n1 a 21a22...a2 n1 A 12A22A n2 AB=... ... ...A・・・an1an2...a nnA 1nA2n...A nnA 0...0 1 0=丄oA ...0 =010 = -1=A ... ... A ...1T0 0...A0 01同理可证BA=I.用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有A|2nAiA2 A inAI2A 22A nn证明 因为A =A ii0 0A22其中X A ii A 11A ii0 A 22=A 1i | |A22An 0 0A 22 i0,所以A 可逆.YW ,于是有X Y A ii ZWA22I n 00 I m n, 丫 A22 =0, ZA ii =0,W A 22 I m .又因为A ii 、A 22都可逆,用22 i 分别右乘上面左右两组等式得:规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对 角线的元素变号即可•若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过 AA 1=I 来检验.一 旦发现错误,必须对每一计算逐一排查.4 .分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A il 、A 22都是非奇异矩阵,且A il 为n 阶方阵,A 22为m 阶方阵iiX= A ii ,Y=0,Z=0,W= A 22A 2i =Aii0 A 22 i把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:iA i iA2 A2i42准三角形矩阵求逆命题设A11、A 22都是非奇异矩阵,则有A11 1 1A12 A111A11 A12 A22 10 A22 0 A22 1证明因为A11 A12 I 1A11 A12 =An 0 0 A22 0 I 0 A22两边求逆得I A11 1 1A12 A1 1 A12 1= A11 100 I 0 A22 0 A22 所以A11A12 1 _ I A11 A12 A1 100 A22 0 I 0 A22 1=A11 11 1 A11 A12 A220 A22 1 同理可证A1110 A11 10A21 A221 1A11 A21 A22 A22 1此方法适用于大型且能化成对角子块阵或三角块阵的矩阵•是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用•5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用 AA 1=E,把题目中的逆矩阵化简掉。
矩阵的行列式与逆矩阵
![矩阵的行列式与逆矩阵](https://img.taocdn.com/s3/m/6910bc5858eef8c75fbfc77da26925c52cc591e9.png)
矩阵的行列式与逆矩阵矩阵是线性代数中的一种基本概念,它是由数个数按照矩形排列而成的有限集合。
而矩阵的行列式与逆矩阵是矩阵运算中非常重要的概念与方法。
本文将详细介绍矩阵的行列式以及逆矩阵的定义、性质和计算方法。
1. 矩阵的行列式矩阵的行列式是一个标量,它与矩阵的元素及其排列有关。
对于n 阶方阵A=[a_ij],其中a_ij表示矩阵A的第i行第j列的元素,行列式的定义如下:det(A) = ∑[(-1)^(i+j) * a_ij * det(A_ij)]其中A_ij表示将矩阵A的第i行和第j列剔除后的(n-1)阶矩阵,det(A_ij)表示该(n-1)阶矩阵的行列式。
该定义可以通过递推公式简化计算。
行列式具有很多重要的性质,比如:- 行列式的转置等于行列式本身的值:det(A) = det(A^T)- 行列式相等的矩阵具有相同的行列式:如果A=B,则det(A) = det(B)- 互换矩阵的两行(或两列)会改变行列式的符号:如果B是通过交换A的两行得到的,则det(B) = -det(A)行列式的计算方法包括拉普拉斯展开和三角形展开等,根据矩阵的性质选择最合适的方法进行计算。
2. 逆矩阵对于n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为n阶单位矩阵,则称矩阵A为可逆矩阵,矩阵B为矩阵A的逆矩阵,记作A^(-1)。
可逆矩阵一定是方阵。
逆矩阵是矩阵运算中的重要工具,具有以下性质:- 若A为可逆矩阵,则A^(-1)也是可逆矩阵,(A^(-1))^(-1) = A- 若A、B都是可逆矩阵,则AB也是可逆矩阵,(AB)^(-1) = B^(-1)A^(-1)- 若A是可逆矩阵,则det(A)不等于0,且det(A^(-1)) = 1/det(A)逆矩阵的计算方法一般有初等变换法、伴随矩阵法和矩阵的分块法等。
其中初等变换法是最常用的方法,通过对矩阵A施行一系列初等行变换或初等列变换,将其化为阶梯形矩阵,再通过代换求解出逆矩阵。
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/b0525966f5335a8102d22078.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析(很全很经典)
![逆矩阵的几种求法与解析(很全很经典)](https://img.taocdn.com/s3/m/e3684706783e0912a2162aa1.png)
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。
逆矩阵三个公式
![逆矩阵三个公式](https://img.taocdn.com/s3/m/f32a451cbdd126fff705cc1755270722192e59b2.png)
逆矩阵三个公式逆矩阵是线性代数中一个重要的概念,它在求解线性方程组、计算矩阵的行列式、求解线性变换等问题中都有广泛的应用。
在本文中,我们将介绍逆矩阵的三个公式,并通过实例展示其应用。
一、逆矩阵的定义逆矩阵是指对于一个给定的方阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。
如果一个矩阵存在逆矩阵,则称之为可逆矩阵或非奇异矩阵,反之则称为奇异矩阵。
二、逆矩阵的计算公式1. 克拉默法则克拉默法则是求解线性方程组的一种方法,它可以通过逆矩阵的概念来推导。
对于一个n阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·adj(A),其中det(A)为A的行列式,adj(A)为A的伴随矩阵。
2. 初等变换法通过初等变换法,我们可以将方阵A通过一系列初等行变换或初等列变换转化为单位矩阵I,此时我们所做的变换操作在另一个矩阵上执行,得到的矩阵即为A的逆矩阵。
具体而言,设A经过一系列初等行变换得到I,则对应的初等行变换矩阵记为E1,同理,设A经过一系列初等列变换得到I,则对应的初等列变换矩阵记为E2,则A的逆矩阵为A^-1=E1·E2。
3. 公式法对于一个2阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[d -b;-c a],其中a、b、c、d分别为A的元素。
对于一个3阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[A11 A12 A13;A21 A22 A23;A31 A32 A33]的转置矩阵,其中Aij为A的代数余子式。
三、逆矩阵的应用实例为了更好地理解逆矩阵的应用,我们以线性方程组的求解为例进行说明。
考虑一个线性方程组:2x + 3y = 84x - 2y = 2我们可以将其表示为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
我们可以通过求解逆矩阵来解得未知数向量x。
可逆矩阵及应用举例.43页PPT
![可逆矩阵及应用举例.43页PPT](https://img.taocdn.com/s3/m/211936a25fbfc77da369b158.png)
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
Байду номын сангаас
43
可逆矩阵及应用举例.
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
可逆矩阵及其简单应用
![可逆矩阵及其简单应用](https://img.taocdn.com/s3/m/256e310f581b6bd97f19ea8e.png)
它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。
可逆矩阵作为矩阵乘法的逆运算,是矩阵的一种重要运算,在解决矩阵问题中起着重要的作用。
因而掌握可逆矩阵的求法,在解决实际问题时,往往可以起到事半功倍的效果。
本文将对一些常用的可逆矩阵的求法作系统的总结,并进一步介绍几种常见得可逆矩阵的在数学领域和通讯领域的简单应用。
【关键词】矩阵可逆矩阵通信【Abstract】In the discussion of linear equations, we can see that someimportant properties of the linear equations are reflected in its coefficient matrix and augmented matrix of nature, what`s more, the process of the solution performance of the process of transformation of these matrices. Invertible matrix multiplication as the inverse of the matrix is an important matrix operations,and plays an important role in solving the problem. master ring the method of Invertible matrix often can play a multiplier effect in solving practical problems.The following are the system summary of the commonly used reversible method for the evaluation of Invertible matrix, and further descripitions of several common application in the field of mathematics and simple communications.【Key Words】Matrix Invertible matrix Communications目录前言 (5)一、可逆矩阵 (5)二、可逆矩阵的性质及求法 (5)(一)性质 (5)(二)逆矩阵求法 (6)三、可逆矩阵的简单应用 (10)(一)可逆矩阵在数学方面的应用 (10)(二)可逆矩阵在通信方面的应用 (11)(1)加密保密通信模型 (12)(2)可逆矩阵的应用 (12)(3)加密密钥的生成 (13)(4)解密密钥的生成 (14)(5)明文矩阵的选择 (14)(6)加密矩阵的选择 (14)(7)算法优化 (14)结论 (15)参考文献 (15)致谢16前言矩阵作为高等代数,这一伟大数学图腾的重要分支的一大重要部分,在我们的生活,学习,工作,更是在人类的进步中发挥了卓越的工具作用。
可逆矩阵反求 -回复
![可逆矩阵反求 -回复](https://img.taocdn.com/s3/m/928efca29a89680203d8ce2f0066f5335a81670d.png)
可逆矩阵反求-回复可逆矩阵是线性代数中一个重要的概念,它在许多领域中都有广泛的应用。
在本文中,我将为您详细介绍可逆矩阵的概念并探讨找到逆矩阵的方法。
同时,我将提供一些例子来帮助您更好地理解这个主题。
首先,让我们来定义什么是可逆矩阵。
一个n×n矩阵A称为可逆矩阵,如果存在一个n×n矩阵B,使得AB=BA=I,其中I表示单位矩阵。
换句话说,如果一个矩阵乘上它的逆矩阵等于单位矩阵,那么这个矩阵就是可逆矩阵。
接下来,让我们来探讨如何找到逆矩阵。
首先,我们需要确定给定矩阵是否可逆。
为了判断一个矩阵是否可逆,我们可以计算其行列式。
如果矩阵A的行列式不为0,则A是可逆的;如果行列式为0,则A不可逆。
一旦我们确定了一个矩阵是可逆的,我们可以使用不同的方法来找到它的逆矩阵。
下面是两种常用的方法:方法一:伴随矩阵法假设A为可逆矩阵,我们可以找到其逆矩阵的方法之一是通过求解伴随矩阵。
伴随矩阵可以通过以下步骤得到:1. 首先,计算矩阵A的余子式。
余子式是指去掉A的第i行和第j列后剩余部分的行列式,记为A(i, j)。
2. 然后,用(-1)^(i+j)乘以余子式A(i, j)得到代数余子式A*(i, j)。
3. 最后,将代数余子式按照正常的行列顺序排列得到伴随矩阵adj(A)。
通过这个方法,我们可以得到可逆矩阵A的伴随矩阵adj(A)。
接下来,我们可以计算逆矩阵A^(-1) = adj(A)/det(A),其中det(A)表示矩阵A的行列式。
这样,我们就得到了矩阵A的逆矩阵。
方法二:初等行变换法另一种找到逆矩阵的方法是使用初等行变换。
记A为可逆矩阵,我们可以通过以下步骤找到其逆矩阵:1. 将矩阵A扩展成一个n×2n的矩阵,扩展的部分为单位矩阵I。
2. 使用初等行变换将矩阵A变为单位矩阵I。
3. 对矩阵A应用相同的初等行变换,使I变为A的逆矩阵。
通过这个方法,我们得到了矩阵A的逆矩阵。
现在,让我们通过一些例子来说明这些方法的应用。
二阶矩阵的可逆矩阵
![二阶矩阵的可逆矩阵](https://img.taocdn.com/s3/m/a1e713546d175f0e7cd184254b35eefdc8d315fe.png)
二阶矩阵的可逆矩阵
摘要:
一、可逆矩阵的定义
二、二阶矩阵的可逆矩阵判定方法
三、二阶矩阵可逆性的几何解释
四、可逆矩阵的性质与应用
正文:
二阶矩阵的可逆矩阵
矩阵是一种特殊的数学工具,广泛应用于各种领域。
在矩阵的研究中,可逆矩阵是一个重要的概念。
本文将重点介绍二阶矩阵的可逆矩阵及其相关性质。
一、可逆矩阵的定义
一个n阶方阵A,如果存在一个非奇异矩阵P,使得A和P的乘积AP是一个n阶单位矩阵,那么我们就称矩阵A是可逆的,P是A的可逆矩阵。
二、二阶矩阵的可逆矩阵判定方法
对于二阶矩阵,我们可以通过行列式来判断其是否可逆。
具体来说,如果二阶矩阵A的行列式|A|不等于0,那么矩阵A就是可逆的。
三、二阶矩阵可逆性的几何解释
从几何角度看,一个二阶矩阵可逆,意味着它能够将一个平面上的二维向量变换为另一个平面上的二维向量,且变换前后两个平面上的向量场是平行的。
四、可逆矩阵的性质与应用
可逆矩阵有许多重要的性质,如能逆矩阵一定能进行行列变换,能进行逆变换的矩阵一定是可逆矩阵等。
在实际应用中,可逆矩阵被广泛应用于线性方程组的求解,矩阵的对角化等问题中。
以上就是关于二阶矩阵的可逆矩阵的介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A2 A
,
其中
A1
b1
b2
a12 a22
, A2
a11
a21
b1 b2
.
现在把此结
论推广到 n 个未知数、 n 个方程的线性方程组的
情形. 定理 1.3 (克拉默法则)设 n 个未知数 x1, x2 ,…, xn n 个方程的线性方程组
a11x1 a12 x2 +…+a1n xn b1,
1 det AA1 det AdetA1,
所以 detA 0.
充分性:由例(1.32)的结果
AA* A*A diag A , A ,…,A A E,
当 A 0 时,有
A
1 A
A*
1 A
A*
A E.
由可逆矩阵的定义知 A 是可逆的,且 A1
1
A* ,
A
即(2)的结论也成立.
A+ 2E 都可逆,并求它们的逆阵. 解 由 A2 + A E 得
A A + E E,
由定理 1.2 之推论知, A 可逆,且 A1 A E.
又由 A2 + A E 得 A2 A - 2E E, 即
A + 2E A E E, A + 2E E A E,
同理,知 A+ 2E 可逆,且
a21x1
a22 x2 +…+a2n xn …………
b2 ,
an1x1 an2 x2 +…+ann xn bn ,
(1.19)
如果系数矩阵行列式 A 0 ,则方程组(1.19)有唯 一解:
x1
A1 A
, x2
A2 A
,…, xn
An A
,
其中 n 阶矩阵 Aj j 1, 2,…, n 是把系数矩阵 A
A1A2…As 1 As1…A21A11.
二、逆矩阵的求法
如前所述,当 A 是可逆阵时,线性方程组 Ax = b 有解 x = A1b, 因此就需要计算 A 的逆矩阵 A1 .
事实上,在线性代数的许多应用问题中都需要求 逆矩阵. 求逆矩阵一般有两种方法. 第一种方法是用公式(1.18),即
A1 1 A* . A
于是
A11 A21 A31 1 2 6
A*
=
A12
A22
A32
1
2
7
,
A13 A23 A33 1 1 2
由公式(1.18)
1 2 6
A1
1 A
A*
1
1
2 1
7 . 2
比较解一与解二,显见解一较简单.
例 1.36 设方阵 A 满足 A2 + A E, 证明 A 和
a
c
b d
1
ad
1
bc
d c
b a
.
上面的结果,可当公式使用.(两调一除)
例 1.35 求方阵
3 2 2
A
=
5
4
1
1 1 0
的逆矩阵.
解法一 用初等行变换.(只用行变换)
3 2 2 1 0 0
1 1 0 0 0 1
A,
E
5
4
1
0
1
0
r1r3
5
4
1
0
1
0
1 1 0 0 0 1
x
=
x2
1
A12
A22
A
xn
A1n A2n
An1 b1
An2
b2
Ann bn
b1 A11 b2 A21
1
b1
A12
b2 A22
A
b1 A1n b2 A2n
bn An1
bn
An2
.
bn Ann
另一方面
a11 b1
Aj
a21
b2
7 , 2
由定理 1.3, A 可逆,且
1 2 6
A1
=
1
2
7 .
1 1 2
解法二 用公式(1.18).
A = -1 0, 故 A 可逆.再计算 A 的代数余子式:
A11 1, A12 1, A13 1,
A21 2, A22 2, A23 1, A31 6, A32 7, A33 2,
AB E 的两边,得 A1A B A1, 即 A1 B.
上述结论对一阶方阵也是成立的.事实上,对于一
阶方阵 a ,当 a 0 时, a 1 1 ,由定理 1.2 的推论,
a 可逆,且 a1 1 .
a
a
方阵是否可逆,还有其他的判别方法,这将在以后
章节中陆续介绍.
例 1.33 判别矩阵 A 是否可逆?
2 1 1
A
=
0
1
5 .
1 1 3
21 1 解 A = 0 1 5 6 5 110 0.
11 3
由定理 1.2,矩阵 A 不可逆. 求可逆矩阵的逆阵是一种运算,它满足下述运算
规律:
( İ )若 A 可逆,则 A1 亦可逆,且
A1
1
A;
( İİ )若 A 可逆, 0 则 A 也可逆,且
方阵 A 是否可逆是 A 的一个重要属性,可逆矩阵
在线性代数的理论和应用中都起着重要的作用. 引入逆阵的概念后,就可以回答本节一开始提出
的问题.如果现行方程组 Ax = b 的系数矩阵 A 是
可逆的,则它有解 x = A1b..接下来需要解决的问
题是如何判别方阵 A 是否可逆?如果 A 可逆,如何 求他的逆阵 A1 ?下面的定理回答了这两个问题.
定理 1.2 (1) 方阵 A 可逆的充分必要条件是
A 的行列式 A 0 ;
(2) 当 A 可逆时,
A1 1 A* , A
(1.18)
其中 A* 是 A 的伴随矩阵.
证 (1)必要性:若 A 可逆,即有 A1 使
AA1 E,
于是
det AA1 det E 1.
由矩阵取行列式的性质(İİİ),得
aa0 02aa11
+a2 2, +4a2 3,
a0 3a1+9a2 5.
其系数行列式
11 1 D=1 2 4,
139
它的转置是一个范德蒙行列式.例 1.26,
D (2 1)(3 1)(3 2) 2 0
由克拉默法则,方程组有唯一解,且
211
1 a0 = D 3
2
4 4 2; 2
2
0 1
0
1
2
01 0
=
1
2
1
1
1
2
1
1
2 0
1
2
.
五、逆矩阵在加密传输中的应用
可逆方阵可用来对需传输的信息加密.首先给每 个字母指派一个码字,例如表 1.4 所示.
表 1.4
字
空
母abcdefghi j k l m n o p q r s t u v w x y z 格
=
2 1
0 2
,
BA
A B, 求矩阵
解 由 BA A B, 得 B A - E A
由于
A
-
E
=
1 1
0 1 ,
其行列式 A - E = 1 0, 故 A - E 可逆,用
A - E 1 右乘(1.22)式得两边,得
B A - E A - E 1 A A - E 1 .
于是 B = A A - E 1
an1 bn 第 j列
(1.20)
a1n a2n
ann
关注(1.20)式等号两边的第 j 个分量,即得
xj
Aj A
, j 1, 2,
n.
(略)例 1.37 设平面上二次曲线
y a0 a1x a2 x2
过三点(1,2),(2,3),(3,5),求此曲线方程.
解 把三个点的坐标代入曲线方程,得线性方程 组
B = BE B AC BAC EC C,
所以 A 的逆阵是唯一的.将 A 的逆阵记作
A1 ,即有
A1A AA1 E.
对于定义 1.11,读者应注意:
(1)可逆矩阵一定是方阵,并且其逆阵为同阶 方阵;
(2)(1.17)式中,矩阵 A 与 B 的地位是对称的. 所以,由(1.17)式, B 也是可逆阵,并且 A 与 B 互为 可逆阵,即 B = A1 ,同时 A = B1 .
的第 j 列用常数向量 b = b1,b2,…,bn T 代替后所
得的矩阵.
证 把方程组(1.19)写成矩阵形式
Ax = b,
(1.19’)
其中
x1 b1
x
=
x2
,
b
=
b2
,
xn
bn
分别是未知数向量和常数向量.
因 A 0, 故 A1 存在,令 x0 A1b ,有
Ax0 = A A1b = AA1 b b,
539
121
1
1
a1 = D 1
3
4 ; 2
15 9
11 2
1
1
a2 = D 1
2
3 . 2
135
所以该二次曲线的方程为 y 2 1 x 1 x2. 22
对于线性方程 (1.19′),若常数向量 b 0 ,
即 b1 b2 bn 0, 得齐次线性方程
Ax 0.
(1.21)
显然 x 0 ,即 x1 x2 xn 0 是它的解.这 个解成为方程(1.21)的零解;若 x 0 是方程(1.21)
§5 可逆矩阵及应用举例