厅堂建筑声学设计要点和手段

合集下载

歌剧院音乐厅的声学设计要点

歌剧院音乐厅的声学设计要点

歌剧院音乐厅的声学设计要点歌剧院和音乐厅的声学设计是为了提供最佳的音频体验和音乐表演环境而进行的。

下面是一些声学设计的要点:1.自然反射和吸收:声学设计应该提供合适的反射和吸收来实现音响效果。

反射有助于将声音传播到空间的各个方向,而吸收则可以减少声音的混响和回响。

2.声学分离:为了避免声音的混淆和重叠,声学设计需要通过合适的墙壁、隔板和天花板等来实现音频的清晰分离。

这有助于确保观众能够适当地听到音乐表演的细节和差异。

3.音频均衡:声学设计需要考虑到音频的均衡,即确保不同音调的声音能够在整个空间中保持平衡。

这可以通过使用合适的材料和吸音设备来实现。

4.声音扩散:为了让观众能够均匀地听到音乐表演,声学设计应该提供合适的声音扩散。

这可以通过使用合适的反射板和凸面来实现,从而将声音扩散到整个观众席上。

5.控制混响:混响是指声音在闭合空间内反射和回响的现象。

为了避免混响对音频质量的不利影响,声学设计需要使用合适的吸音材料,例如音频吸音板和可调节的声学隔断。

6.控制噪音:声学设计也应该考虑到外部噪音的控制,例如交通声和机械噪音。

这可以通过使用密封门窗和隔音材料来实现,从而保持室内环境的安静。

7.观众体验:声学设计需要考虑到观众的听觉体验。

这可以通过确定合适的座位布局、调整音量和均衡来实现,从而确保观众在音乐表演中获得最佳的听觉体验。

8.灯光和摄影设备:声学设计也应该考虑到灯光和摄影设备对声音的影响。

这可以通过合理安置灯光设备和使用吸声材料来实现,从而减少光影对声音的干扰。

总之,歌剧院和音乐厅的声学设计需要考虑到自然反射和吸收、声学分离、音频均衡、声音扩散、控制混响和噪音、观众体验以及灯光和摄影设备对声音的影响等要点。

通过合理应用这些要点,可以提供最佳的音频体验和音乐表演环境。

厅堂扩声设计规范要点(2009规范)

厅堂扩声设计规范要点(2009规范)

厅堂扩声设计规范要点(GB/T50371-2006《厅堂扩声系统设计规范》)湖北艺术职业学院范国志一.厅堂扩声系统组成1.观众厅扩声系统(观众厅扩声、舞台返送)2.内部广播与通信系统(机房、化妆、服装、候场等工作房间)3.背景音乐系统(休息厅、门厅)二.厅堂扩声系统设计文件组成1.系统原理图、设备布置图、设备接线图、管线图、安装节点图、声场分布分析图2.系统设计(含辅助设计)与设备选型说明三.设计步骤与主要技术内容1.确定厅堂扩声级别与其声学特性。

即依功能要求确定其属文艺演出类/多用途含戏曲类/会议类及其级别。

2.确定厅堂扩声系统的组成。

即观众厅扩声系统/内部广播与通信系统/背景音乐系统。

3.确定主扩声系统的扩声制式(单声道扩声/双声道立体声扩声/多声道立体声扩声)、扬声器布置方式(集中式/分区式/分散式)、音频信号分频数与其方式(功率分频/电子分频、二分频/三分频/四分频)4.设计技术参数计算(最大声压级、声场分布(每个声道扬声器全场独立全覆盖)、传声增益、背景噪声)与设备选型。

5.确定音源包括传声器的分布与选型。

6. 利用辅助设计软件绘制声场分布分析图。

7.编绘系统原理图、设备布置图、设备接线图、管线图、安装节点图。

四.主要要求1.传声器(1)数量、类型要满足功能要求,有利于抑制声反馈(2)插座分布在台口、乐池及侧台等处(3)选用屏敝的平衡电缆2.扬声器与功率放大器(1)由主扩、补充与辅助、次低频及效果扬声器组成。

(2)主扬声器应与声源的视觉方向尽量一致,最大扩声距离应不大于三倍临界距离,扬声器与任一只传声器的距离宜尽量大于临界距离且在扬声器辐射角范围之外。

(3)文艺演出的大、中型场所应选用三声道分别独立覆盖全场的主扩声系统组成,使之具有较好立体声效果。

(4)主扬声器装在较高台口上方的,应在台口两侧下方安装补充扬声器,以拉低声像高度。

(5)同一声道多只扬声器要减少声波干涉。

(6)严格控制不同扬声器的声程差引起双重声或干扰主声源的方向。

建筑设计声学方案设计说明

建筑设计声学方案设计说明

建筑设计声学方案设计说明一、背景介绍声学是关于声音和听觉的科学,声学方案设计是在建筑设计过程中,针对建筑物内部和周围的声学环境进行合理的规划和设计,以达到良好的声学效果。

声学方案设计在商业建筑、教育机构、医疗建筑等领域都有重要的应用价值。

二、设计原则1.合理规划空间布局:根据建筑功能和使用需求,对空间进行科学合理的布局,避免利用不当造成声音传播障碍。

2.控制噪声源:对于制造噪声的设备或工艺,采取措施降低噪声产生,以减少噪声对建筑环境的干扰。

3.增强吸声功能:通过运用吸声材料,调整空间各面的反射系数,减少声音反射,降低噪音干扰。

4.增加隔声功能:通过采用隔音材料和隔音技术,有效阻隔外部噪声进入建筑内部,提高内部环境的舒适度。

5.考虑活动特点:根据不同活动的声学需求,合理选择吸声、隔声等措施,以提供良好的声学环境。

三、方案设计要点1.大厅与走廊设计:大厅是接待和会客的场所,设计应考虑室内吸声装饰,如吸声墙面、吸音板等,以减少反射声和噪声传播,提高语音清晰度。

走廊是人员流动的区域,应使用隔音门和隔音墙,减少走廊噪声对室内的干扰。

2.办公室设计:办公室是工作和思考的场所,需要提供相对安静的环境。

设计应采用吸声墙体材料,避免声音在空间中反射和传播,同时可以设置活动隔音屏风,提供私密的办公环境。

3.会议室设计:会议室是举行讨论和洽谈的场所,需要保证语音清晰度。

设计时应采用吸声装饰材料,如吸音板、吸声天花板等,减少声音反射,提高听音质量。

同时,采用隔音门和双层玻璃窗,减少外部噪声对室内的干扰。

4.校园教室设计:校园教室是学生学习和教师授课的场所,需要提供良好的听音环境。

设计时应选用吸音墙体材料,控制声音反射,同时设置吸声天花板和地面,减少声音在教室内的传播。

此外,采用隔音门和隔音窗,减少外部噪声的干扰。

四、技术措施1.吸声材料的选择:吸声装饰材料一般采用吸声板、吸声拼花砖等。

根据不同场所的需求,选择合适的吸声材料,进行装饰和安装,以提高声学效果。

音乐厅声学设计要点

音乐厅声学设计要点

音乐厅声学设计要点音乐厅声学设计是为了使音乐的演奏效果达到最佳,同时确保听众能够获得清晰、均匀和优质的音响效果。

在进行音乐厅声学设计时,有以下要点需要考虑:1. 声学理论基础音乐厅声学设计依赖于一些基本的声学理论。

设计师需要了解波动、衍射、吸音、反射等声学原理,以便能够正确地规划和布局音频设备和空间。

2. 几何和结构设计音乐厅的几何形状和结构设计对声学效果有着重要影响。

设计师需要考虑音乐厅的长宽比、高度、天花板形状等因素,以确保声音能够得到适当的扩散和反射,同时减少混响和不良回声。

3. 吸音材料的选择和布置吸音材料对于控制混响和提供清晰声音非常重要。

设计师需要选择适当的吸音材料,如吸音板、吸音隔板等,并将其正确地布置在音乐厅的墙壁、天花板和地板上,以减少声音的反射和回声。

4. 扬声器的布置扬声器的布置是音乐厅声学设计中不可忽视的一部分。

设计师需要根据音乐厅的大小和形状来决定扬声器的位置和数量。

合理的扬声器布置可以确保声音在整个音乐厅中的均匀分布,使每个听众都能获得良好的音响效果。

5. 控制回声和混响回声和混响是影响音乐厅声学的两个重要因素。

设计师需要通过控制材料的吸音特性和布置来减少回声和混响的影响。

这可以通过调整吸音材料的密度、厚度和位置来实现。

6. 噪音控制噪音控制是音乐厅声学设计中另一个需要考虑的重要因素。

设计师需要采取措施来降低外部噪音对音乐厅内部的干扰。

这可以通过增加隔音窗、门和墙壁厚度等方式来实现。

7. 观众席和舞台布局观众席和舞台的布局也是音乐厅声学设计的一个关键要点。

设计师需要确保观众席能够提供良好的音响效果,并使每个听众都能够听到清晰、均匀的声音。

同时,舞台的布局和设计也需要考虑到演奏者能够得到良好的音响反馈。

8. 考虑实际需求最后,音乐厅声学设计需要根据实际需求进行调整和优化。

设计师需要考虑音乐厅的用途、演出类型和音乐风格等因素来确定最佳的声学设计方案。

以上是音乐厅声学设计的一些要点。

音乐厅的声学设计要求

音乐厅的声学设计要求

音乐厅的声学设计要求
引言
音乐厅的声学设计在保证演出质量的同时,为观众带来丰富的听觉体验。

本文将介绍音乐厅声学设计的要求,包括空间布局、吸音材料的选择和声学参数的调整等。

空间布局
1.听众席的布置应合理,确保观众与乐团之间的距离适中,以保证声音
的传播效果和清晰度。

2.音乐厅的屋顶和墙壁应具有适当的倾斜度和曲线形状,以避免声波的
反射和干涉,提升音质。

3.音乐厅的大小应根据观众席的容量和平均听力距离进行合理规划,以
确保每个观众都能获得良好的音效。

吸音材料的选择
1.音乐厅的吸音材料应有较高的吸音系数,以减少声波的反射和回声。

常用的吸音材料包括吸声板、吸声布和吸声砖等。

2.吸音材料的布置应均匀分布在音乐厅的墙壁、屋顶和地板上,以避免
局部吸音过强或过弱的现象。

声学参数的调整
1.音乐厅的混响时间应根据演出类型和音乐风格进行调整。

一般来说,
古典音乐需要较长的混响时间,而摇滚音乐需要较短的混响时间。

2.音乐厅的回声时间应适中,既能让音乐声音有一定的回响效果,又不
会使声音变得模糊不清。

3.声音扩散的均匀性也是音乐厅声学设计的重要考虑因素,应根据人耳
的声源定位能力进行调整,以确保观众能够感受到全面的音效。

结论
通过合理的空间布局、适当的吸音材料选择和声学参数的调整,音乐厅的声学设计可以达到理想的效果,为观众提供高品质的音乐体验。

在实际设计中,需要综合考虑各种因素,并根据具体情况进行调整和优化,以满足不同类型音乐演出的需求。

厅堂建筑声学设计的要求标准及设计方法

厅堂建筑声学设计的要求标准及设计方法

厅堂建筑空间都比较大,所以在设计上尤其是保证其内部声学设计合理到位,吸音材料以及其他的各种声学材料不可缺少,所以合理的设计及材料设备的正确使用才能确保其音质效果,只有了解厅堂上的声学要求和设计方法才能保障有效的音质设计。

一、建筑声学设计的要点一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。

(一)噪声控制通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。

另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。

保证厅堂建成后能达到预定的室内噪声标准。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

(二)音质设计音质设计通常包括下述工作内容:1.确定厅堂体型及体量。

2.确定音质设计指标及其优选值。

根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。

3.对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。

4.计算厅堂音质参量。

当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。

5.进行声学构造设计。

厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。

声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

6.声场计算机仿真。

对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。

7.缩尺模型试验。

对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。

8.可听化主观评价。

可听化技术是通过仿真计算。

或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。

建筑声学-11室内声学与厅堂音质设计

建筑声学-11室内声学与厅堂音质设计
原来方向前进。 ▪ 把声波的传播看做沿声线传播的声能,而忽略声波的波动性能。
4
几何声学方法: 适用条件:反射面或障碍物的尺寸要远大于声波的波长。 ——中高频声音、房间尺度较大。 ——对于低频声,如63~125Hz,波长为5.4m~2.7m。因此,在一个各个表
面尺寸均小于声波波长的小房间内,几何反射定律将不适用。
▪ P376 表17-1
27
二、客观技术指标 2.频率特性 ▪ 为了使音乐各声部和语音的低、中、高频的分量平衡,使音色不失
真,还必须照顾到低、中、高频声能之间的比例关系。 ▪ 由于人耳对低频声的宽容度较大,同时厅堂内界面和观众衣饰对中
高频的声能吸收较大,所以允许低频混响时间有15%-45%的提升。 ▪ 对于不同厅堂有不同具体要求。(录音室——以平直为主)
i 1
i 1
V T60 0.161 A
13
▪ 工程中普遍采用伊林(Erying)公式 ▪ 伊林公式在赛宾公式的基础上考虑了空气吸收的影响。
T60
-
S
0.161V
ln(1 ) 4 m V
▪ 空气吸声与声音频率有关,频率越高,空气吸声系数(4m)越大;频 率小于1000Hz时,4mV一项可省去。
25
4.优美的音质 ▪ 对于音乐声来说,除了听得见、听得清这些基本要求外,室内音质
设计还需要给听众提供听得舒服的环境。因此,为了让室内声音具 有优美的音质,还需要注意以下两方面: 1)足够的丰满度。丰满度的含意有:声音饱满、圆润,音色浑厚、温 暖,余音悠扬、有弹性。总之,它可以定义为声源在室内发声与在 露天发声相比较,在音质上的提高程度。(反射声:温暖or活跃) 2)良好的空间感。是指室内声场给听者提供的一种声音在室内的空间 传播感觉。其中包括听者对声源方向的判断(方向感),距声源远 近的判断(距离感)和对属于室内声场的空间感觉(环绕感、围绕 感)。

剧院厅堂室内声学设计要点

剧院厅堂室内声学设计要点

剧院厅堂室内声学设计要点剧院厅堂室内声学设计要点歌剧院、音乐厅、戏剧院等观演空间实际上是音质第一的听音场所。

这些文化建筑往往投资巨大,若音质不佳,实乃资源、经费的巨大浪费。

注重表演厅堂的形体、容量、地面起坡、边界面的布置和表面处理等要点的设计,是保证剧院室内声学效果的重要支持。

例如:要保持声音响度,需要合理的厅堂体型、观众席起坡设计及充足早期反射声;要保持声音的均匀分布,除了合理的体型还需恰当的声扩散处理配合;控制适当的每座容积及吸声、反声的正确选择、布置则是最佳混响的保证。

观众区平面设计作为表演厅堂最基本的组成部分--观众区,其体型设计是厅堂内部优良音质的先决条件。

欧洲古典的歌剧院,多采用古典风格的马蹄形或接近马蹄形的"U"形平面。

其特点是容量大、视距短,而设置于周边的层层包厢、繁琐浮雕装饰起到良好的声扩散作用。

维也纳国家歌剧院、巴黎伽涅尔歌剧院、伦敦考文特花园皇家歌剧院等均为马蹄形平面。

但其缺陷是声学处理较麻烦,容易造成沿边反射,甚至出现声聚焦,且台口两侧的观众视觉效果较差。

现在使用的马蹄形是改进版,台口两侧不再设观众席,会处理成斜面,增强中前区观众席的侧墙早期反射声。

美国的肯尼迪演艺中心便是采用此种方式。

现代风格剧院的观众区平面形式则有更多的选择--矩形、钟形、扇形、多边形及复合形等。

如:法国巴士底歌剧院采用的是钟形;东京新国立歌剧院是矩形和扇形的结合。

矩形平面的优点是规整、结构简单,声能分布均匀;但两平行侧墙之间容易产生颤动回声,不过,可通过墙面处理解决。

如杭州大剧院便将矩形观众区的两侧墙面做成锯齿形状,避免可能产生的颤动回声。

扇形平面的观众容量较大,但偏远座较多,后排座视距较远,难以接收直达声,且池座大部分座席几乎得不到侧墙的早期反射声。

钟形平面与矩形平面基本相似,也可以说是矩形的一种改进形式。

其偏座区比扇形平面少而结构可按矩形的处理(相同容量情况下)。

台口两侧逐渐收拢的斜墙面为观众区提供了早期反射声。

厅堂建筑声学设计的要求标准及设计方法

厅堂建筑声学设计的要求标准及设计方法

厅堂建筑空间都比较大,所以在设计上尤其是保证其内部声学设计合理到位,吸音材料以及其他的各种声学材料不可缺少,所以合理的设计及材料设备的正确使用才能确保其音质效果,只有了解厅堂上的声学要求和设计方法才能保障有效的音质设计。

一、建筑声学设计的要点一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。

(一)噪声控制通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。

另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。

保证厅堂建成后能达到预定的室内噪声标准。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

(二)音质设计音质设计通常包括下述工作内容:1.确定厅堂体型及体量。

2.确定音质设计指标及其优选值。

根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。

3.对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。

4.计算厅堂音质参量。

当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。

5.进行声学构造设计。

厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。

声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

6.声场计算机仿真。

对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。

7.缩尺模型试验。

对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。

8.可听化主观评价。

可听化技术是通过仿真计算。

或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。

大型厅堂室内设计中的建筑声学设计方法研究

大型厅堂室内设计中的建筑声学设计方法研究

大型厅堂室内设计中的建筑声学设计方法研究大型的厅堂一般用作艺术表演、会议报告等用途,其特殊的作用决定了它对声学设计的要求,建筑师设计时必须充分考虑到建筑外形和内部的声学效果,以期达到两者的平衡。

大型厅堂室内的建筑声学设计主要包括噪音的控制和音质的设计,通过选址、隔音材料的运用来尽量隔绝外界的噪音干扰;通过墙面、顶棚等方面设计来保证室内的音质与音响设备相匹配。

标签:厅堂声学设计;噪音的控制;音质设计随着我国经济的快速发展,人们不再仅仅满足于物质需求,对精神文明的需求也日益提高,同时快速发展的经济又为精神文明发展提供了物质保障,近些年来我国各地纷纷兴建的音乐厅、剧院等就是较好的证明。

这些大型的厅堂建筑一方面有着亮丽的外形,如造型美轮美奂的国家大剧院,往往一经建成就会成为城市的新地标,但是这些建筑的主要使用目标还是音乐艺术、会议报告等,对厅堂内的声学效果有着格外高的要求。

如果一个歌剧院或者报告厅仅仅拥有一个漂亮的外表,而内在的声学效果糟糕,我们很难称其为成功的建筑设计,因为它违背了这座建筑设计的初衷,所以一个好的大型厅堂设计离不开良好的声学设计。

一、大型厅堂室内的建筑声学设计的主要内容大型厅堂内的建筑声学设计主要有两大方面的内容,外界噪音的控制和音质的设计。

一方面,大型厅堂里面必须能够保持相对的安静,尽量减少外界环境噪音对室内声音的冲击,营造出一种安全静谧的氛围,才能使观众不受干扰、专心致志的欣赏演出;另一方面,要求室内的设计布局有良好的声学特性,音质良好,又要防止设计缺陷,如回声、声聚焦等,保证有足够的的响度却又不失自然,合适的混响时间、足够的空间感等。

二、噪音控制和音质设计的方法和途径设计师在进行室内声学设计时,应该在噪音控制和音质设计方面着手,追求最佳的效果。

通过合理的选址、设计建筑物内部结构、选用良好的建筑材料等实现各种音学效果的有机平衡。

1.噪音的控制安静的氛围才能使艺术家全神贯注的投入到表演中去,给观众带来良好的视听效果;观众也需要一个安静的环境来欣赏表演。

会议厅堂声学设计要点

会议厅堂声学设计要点

会议厅堂声学设计要点1、会议厅堂声环境概述会议厅的声学设计应确保厅内的语言清晰度,通常采用强吸声短混响的声学处理方式。

会议厅的规模(容积和容量)的差异较大,小至十几人,容积100m³左右;大的可容纳万名听众,容积为100000m3乃至更大规模的会议厅,差距达千倍。

因而相应的混响时间差别也很大,必须根据容积确定混响时间值,通常在0.5s~1.8s范围内;会议厅的等级、用途和标准的差异很大,如有本部门或本系统的会议厅,也有供国际会议使用的各类会议厅、室。

由于等级、用途和标准的不同,所用的设备、内装修和声学处理,显然也有较大的差别。

由于会议厅均采用强吸声、短混响的声学处理方式,因此,体形在声学上作用不大,选择比较自由。

会议厅根据容量和用途可采用扩声系统,也可用自然声,这在建筑设计和声学处理上也将区别对待。

会议厅堂平面示意图2、音质评价技术指标(1).混响时间及其频率特性混响时间是最早提出的也是至今最重要的音质评价指标,它由赛宾(Sabine)于 1895 年提出,定义为声音已达到稳态后停止声源,平均声能密度自原始值衰变到其百万分之一(60dB)所需要的时间,以秒计。

在实际测量过程中,总会存在背景噪声,当背景噪声级与接收点实际声级的差值小于 60dB 时,由于噪声的掩蔽作用,声音将难以衰变到原始值的百万分之一。

此时,可用平均声能密度自原始值衰变 30dB (或 20dB )外推至衰变 60dB 所需的时间作为混响时间,以T30(或 T20)标记。

以后来依林(Eyring)发现在吸收较大的房间中(平均吸声系数大于 0.2 时),需要对赛宾混响公式进行修正,在室内音质的计算机模拟计算中一般采用 Eyring 公式,以下式计算:式中:V ——房间容积,m ³;S ——室内总表面积,m ²; α ——室内平均吸声系数;m ——空气中声衰减系数 m -1;混响时间是建声设计的基本参数之一,表示初始声能衰减到百万分之一所经历的时间。

音乐厅建筑声学设计方案

音乐厅建筑声学设计方案

音乐厅建筑声学设计方案1. 背景介绍音乐厅作为演出和表演艺术的重要场所,其声学设计方案对演出效果和观众体验起着关键作用。

合理的声学设计可以提升音乐厅的音质,减少噪音干扰,提供良好的听觉体验。

本文将介绍一种音乐厅建筑的声学设计方案。

2. 声学设计原则2.1 听声区域设计音乐厅的听声区域应该满足观众听到清晰、平衡的音质。

为了实现这一目标,建议在音乐厅内设置一系列吸声装置,如吸声板、吸声墙等。

这些装置可以吸收部分音频的能量,减少声音的反射和回声。

2.2 听众位置分布合理的听众位置分布可以确保观众均匀分布在音乐厅内,从而使得每个观众都可以享受到优质的音质。

研究表明,最佳的听众位置是位于舞台前部的区域。

此外,观众席应该设计成略微倾斜的形状,以提供更好的视野和听觉效果。

2.3 控制噪声干扰音乐厅周围环境的噪声干扰会严重影响观众的听觉体验。

为了控制噪声干扰,建议在音乐厅的外墙和屋顶采用隔音材料,减少来自外界的噪音。

此外,可以在音乐厅的周围设置一层隔音屏障,阻隔噪音的传播。

3. 声学设计实施方案3.1 反射控制为了控制声音的反射和回声,在音乐厅内设置吸声板、吸声墙等装置。

这些装置可以吸收音频的能量,减少声音的反射和回声,提供更清晰、平衡的音质。

3.2 优化吸声体积为了提高音乐厅的声学效果,需要对吸声区域的体积进行优化。

通过计算和仿真,确定吸声体积的大小和位置,以最大限度地吸收声音的反射和回声。

3.3 听众区域设计在音乐厅内设置合理的听众区域,确保观众均匀分布,并能够享受优质的音质。

设计师可以使用计算机模拟和声学测试来确定最佳的观众位置和观众席的设计形式。

3.4 隔音设计隔音设计是控制音乐厅周围环境噪声干扰的关键。

建议采用隔音材料和隔音屏障来减少来自外界的噪音。

在音乐厅的外墙和屋顶使用隔音材料,以减少噪声的传递。

此外,设置隔音屏障可以阻挡噪音的扩散。

4. 声学设计效果评估在完成声学设计方案之后,需要对设计效果进行评估。

音乐厅建筑室内设计中声学设计与装饰设计

音乐厅建筑室内设计中声学设计与装饰设计

音乐厅建筑室内设计中声学设计与装饰设计摘要:音乐厅作为一种特殊的建筑结构,对建筑的要求较高,需要以声学功能为主进行建造,还需要具有较好的声学效果。

因此,在音乐厅建筑室内设计过程中,需要注重装饰设计,更需要注重声学设计,需要保证音乐厅的功能,确保能够给予观众优质的音乐体验与感受。

基于此,研究音乐厅建筑室内设计中的声学设计与装饰设计非常重要,有助于保证音乐厅建筑的质量,发挥音乐厅建筑的重要功能。

关键词:音乐厅建筑;室内设计;声学设计;装饰设计前言音乐厅建筑设计中声学设计是其中的关键,通过注重声学设计,可以保证良好的声学效果,给予观众优质的体验,由此可见,音乐厅设计的重点就在于声学设计,保证设计效果,明确设计重点非常重要,有助于达到理想的设计效果。

本文从音乐厅设计的思路着手,结合装饰设计的重点,通过对音乐厅建筑室内设计中的装饰设计与声学设计研究,希望可以达到理想的设计效果,发挥音乐厅的功能。

一、音乐厅概述音乐厅作为举行音乐会的场所,会开展一系类音乐相关活动,能够使观众感受到音乐的魅力,给予观众优质的音乐体验。

音乐厅设计过程中,需要考虑多种因素,既要追求光线明亮,保证照度合理,还需要具备当地的特征,满足观众的要求,使观众感觉到亲切感。

音乐厅配备各种专业的音乐设备,包含大量音乐乐器,需要为观众提供舒适的环境与条件,给予观众精神享受。

调查研究显示,视听角表现与色彩存在密切的关系,因此,音乐厅设计过程中,注重色彩选择,进行恰当的调色非常重要,直接关系到观众的主观感受。

一般情况下,音乐厅的颜色大概以木色为主,木色能够凸显音乐厅的特色,彰显音乐厅的特点。

在音乐厅建造设计过程中,需要考虑以下几方面内容,才能保证音乐厅设计的合理性,才能够保证设计效果与质量。

第一,在音乐厅设计过程中,需要注意混响时间,混响时间设计合理、会给予观众更加优质的体验,使声音听起来更加浑厚,音质更加饱满[1]。

第二,需要注重结构的吸音性,保证材料与结构的合理性,避免出现回声,有效吸收噪音。

报告厅的声学设计

报告厅的声学设计

报告厅的声学设计报告厅声学设计是指在报告厅建筑内对声学环境进行设计和控制,以实现良好的音响效果和舒适的听觉体验。

报告厅声学设计要考虑到声波的传播、反射、吸收和扩散等因素,结合建筑和材料等参数,以达到优化声学效果的目标。

在报告厅声学设计中,要考虑到以下几个方面的因素:1.声学反射和吸收:报告厅内部建筑构造和材料的选择对声波的反射和吸收起着很大的影响。

要尽量避免声波在空间内反射过多,避免干扰听者对原始声音的感知。

同时,报告厅内部应具备一定的吸音能力,以减少声音的余响和混响,提高音质和语音的清晰度。

2.声学扩散:为了使声音均匀分布,避免出现声障和声影等问题,报告厅内部应设计合适的声学扩散装置,以确保各个座位都能够听到清晰而均匀的声音。

3.噪声控制:报告厅周围环境噪声的控制也是声学设计的重要部分。

要通过合理的建筑设计和材料选择,有效地隔离外部噪声的干扰,以保证听者在内部环境中能够聚焦于演讲者的声音。

4.频率响应均衡:报告厅内的声学设计应考虑到不同频率的声音处理,以保证整个频谱能够得到均衡而准确的传播,确保听者能够听到真实的声音。

5.控制声音反射:报告厅内的墙壁、地板、天花板等结构物的材料和表面处理也会对声音反射起到决定性的作用。

通过合理的材料选择和表面处理,可以有效地控制声音的反射特性,降低反射导致的声音混响和失真。

在具体的报告厅声学设计中,可以采用一些常见的声学调控手段,如使用声学吸音板、声学隔音设备、扩音系统等。

此外,还可以通过合理的布局设计来控制声音传播方向和路径,以达到最佳声学效果。

总之,报告厅声学设计要综合考虑建筑结构、材料、声音反射、吸收、扩散等因素,以最大程度地提高声学效果和听觉体验。

通过合理的设计和控制,可以使报告厅成为一个具有良好声学效果的演讲和演出场所。

建筑声学_第四章厅堂音质设计

建筑声学_第四章厅堂音质设计
5、音乐厅一般不作吸声处理。
二、会议厅 设计特点:
1、混响时间根据容积大小确定,0.5—1.8S。 尽量控制短混响。对较大型会议厅作强吸声 处理。
2、作强吸声处理的会议厅体型设计比 较自 由。没有特别的要求。
3、如果天花或其他部位不做吸声处理,则应 按声学要求设计,做声线图使反射声音均 匀分布在观众席上,并注意避免回声。
是防止外界噪声和附属房间对主要听音房 间的噪声干扰。 2)确定容积:在满足使用要求的前提下,确定经济
合理的房间容积和每座容积。
3)通过体型设计,充分利用有效声能,使反射 声在时间和空间上合理分布,并防止声学缺 陷。
4)根据使用要求,确定合适的混响时间及频率 特性,计算大厅吸声量,选择吸声材料与结 构。
吸声量占所需总吸声量的1/2~2/3,故观众吸 声量起很大的作用。
控制好厅堂的容积V与观众人数的比例,就 在相当程度上保证或控制了RT
2、每座容积
对已判定为音质良好的厅堂大量统计分 析所得到的结果。
音乐厅8—10m3/ 每座, 歌剧院6—8 m3/每座, 多用途剧场、礼堂5—6m3/每座, 讲演厅、大教室4m3/每座(推荐值)。
3、 确定V方法 功能——选每座容积 容量——观众数量
考虑其它要求
体积
根据功能确定选每座容积 根据观众数量确定厅堂面积 由上两项确定层高。
作业:
设计一个1000座的剧场,请问剧场面 积是多少,层高是多少?假设每人平 均占地1平米。
第三节、体型设计
一 体型设计原则 1、 充分利用直达声——保 证直达声可达到每个听众 1)影响因素: a 长距离的自然衰减- 6dB/
5)根据房间情况及声源声功率大小计算室内声 压级大小,并决定是否采用电声系统。

会议厅建筑设计中的声学原理及应用技术

会议厅建筑设计中的声学原理及应用技术

会议厅建筑设计中的声学原理及应用技术会议厅是一个专业性非常强的场所,对于声学原理、工程设计及音响设备都有非常具体、严格的要求。

好的声学设计能在会议中让人们更清晰地听到讲话内容,避免杂音、回音等不良影响。

因此,在会议厅的建筑设计阶段,就必须考虑其内部的声学参数,并采取一定的措施来提升其声学性能。

会议厅中声学的参数声学参数是指某一场所内部对于声音的反映和响应情况,包括声场分布、频响特性、混响时间等等。

在会议厅中,这些参数的具体要求会根据场馆的使用场合和规模不同而有所区别。

例如要求声音具有均匀的覆盖性,以保证所有观众都能听清讲话内容;同时又需要减少回声,保证讲话内容不出现混响效果。

下面分别介绍一下会议厅的声学参数要求。

声场分布声场分布是指会议厅内声音传播的分布特征。

一个好的会议厅应该具有均匀、自然的声场分布,让每个听者都能听到相同的语音清晰度和声响强度。

而声场分布的均匀性取决于会议厅的形状,声音源的位置和人声反射等因素。

会议厅内必须考虑对观众和发言人的听觉需求,合理放置扬声器组,完成声学分区设计,设置音频处理设备,以平衡声场分布。

频响特性要保证听者听到的声音质量好,就必须控制会议厅内的频响特性。

频响特性反映了对于不同频率的声音如何通过吸音、反射等方式在空间内分布和变化,如果会议厅的吸声系数不够理想,那么回声干扰就会严重影响听者的语音清晰度。

因此,在设计之初,就必须考虑空间的几何形状,控制反射性和吸声性,以实现频响曲线的平稳。

混响时间混响时间是指声音在会议厅内传播后被反射、折射多次,产生的声音持续时间。

一般来说,会议厅应尽量保证混响时间短,以提升听者的语音清晰度。

可采取吸声厚度和数量,平衡声学反射与吸声角度的方法,来达到优化混响时间的效果。

声学应用技术会议厅的声学参数设置和优化涉及了很多相关技术。

下面就来介绍一些声学应用技术的原理和实施方法。

优化扬声器布置一个好的会议厅设计应该能够保证听众和演讲者都能听到优质的语音效果。

厅堂声学设计与装修方案

厅堂声学设计与装修方案

厅堂声学设计与装修方案1、噪声控制厅堂的噪声来自多方面,既有厅堂外部的噪声,又有厅堂内部的噪声。

厅堂的外部噪声可分为二类,一类来自厅堂建筑之外,例如过往车辆、飞机所产生的交通噪声;另一类来自建筑物之内,但又在厅堂之外的噪声。

厅堂的内部噪声主要来自空调系统,灯光控制系统和厅堂工作时,摄像机的移动噪声和工作人员的走动噪声等。

噪声传入厅堂主要通过三种途径,一是声波的透射性,噪声作用于墙壁、地板、天花板而产生振动,把声能辐射进会堂;二是通过施工时留下的缝隙传入厅堂;三是通过固体传声而进入厅堂。

1)隔声量的计算厅堂的噪声评价与建筑隔声设计的好坏有着密切的关系,在建筑设计的初始阶段应给予高度的重视。

这是因为不同用途的厅堂其噪声评价曲线有所不同(见下表),墙体门窗的隔声设计也不同。

厅堂主要用于开会及演出,为了节省投资,可以适当放宽噪声控制要求,该厅堂噪声评价曲线选定NR-30。

隔声量的计算应按频率125Hz x250Hz x5OOHz x100OHz x2000Hz和4000Hz分别进行计算(一般以100OHz为主)厅堂与其他房间相邻时,其隔声量可按下式计算:式中:R一声量(dB)1.pl——邻室室内平均声压级(dB)1.p2——厅堂内允许的噪声声压级(dB)S一外墙面对邻室公共墙面积(m2)a——厅堂吸声量其中吸声量A应按下式计算:式中:V——厅堂容积(m3)T60——混响时间(s)式中隔声量的计算结果,再加上2-3dB设计裕量作为对墙体门窗隔声性能的要求。

2)隔声处理噪声传播有空气声和固体声两种途径,该厅堂的隔声处理主要是空气声的隔绝。

墙体:采用中空加石棉墙隔声,价廉而隔声效果好。

门:门的隔声量主要取决于它的质量、刚性及气密封性。

用质量大的材料制造隔声门时隔声量就大,但制造安装工艺比较麻烦,而且整个门看上去显得笨重。

该室的隔声门使用轻质材料制作,(如图2)所示。

在三层13mm厚的木板中夹两层Ilmm厚的玻璃棉,两面再各加一层五合板和一层棒木饰面板,门框及门的边缘敷上毛毡对门缝进行密封。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厅堂建筑声学设计要点和手段
摘要:作为听音场所,厅堂建筑的听音质量是第一重要的。

针对厅堂建筑声学设计要点和手段进行简要论述。

关键词:厅堂建筑;声学;设计
作为听音场所。

厅堂建筑的听音质量是第一重要的,因此必须认真做好建筑声学设计,确保其音质。

只有明确建筑声学设计的要点和手段,才能保证厅堂建筑具有良好的音质。

一、建筑声学设计的要点
一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。

(一)噪声控制
通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。

另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。

保证厅堂建成后能达到预定的室内噪声标准。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

(二)音质设计
音质设计通常包括下述工作内容:
1.确定厅堂体型及体量。

2.确定音质设计指标及其优选值。

根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。

3.对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。

4.计算厅堂音质参量。

当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。

5.进行声学构造设计。

厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。

声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

6.声场计算机仿真。

对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。

7.缩尺模型试验。

对于重要的厅堂,除了计算机仿真外,通常还须建立一
定缩尺比的厅堂模型,进行缩尺模型声学试验。

8.可听化主观评价。

可听化技术是通过仿真计算。

或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。

这是近年发展起来的建筑声学领域一项高新技术。

9.建筑声学测量。

建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。

10.对电声系统设计提供咨询意见。

对于需要安装电声系统的厅堂,建筑声学专家尚需与音响工程师配合,对电声系统的设备选型、设计与安装提供咨询意见。

11.组织主观评价。

对于重要厅堂,在工程落成后,组织专门的演出和主观评价,来检验建成后厅堂的音质效果,是建筑声学设计最后一个重要环节。

二、声学设计的手段
准确地预测房间的音质效果一直是建筑声学研究者追求的理想。

厅堂音质模型测定是建筑声学设计的重要手段。

随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。

近年来,使用基于有限元理论的方法模拟声音的高阶波动特性,在低频模拟上获得了一些进展。

厅堂中短延时反射声的分布,是决定音质的重要因素。

在缩尺模型中,用电火花作为脉冲声源测得的短延时反射声分布,与实际大厅的短延时反射声分布有良好的对应,对在设计阶段确定厅堂的大小、体型等有重要参考意义。

混响时间是公认的一个可定量的音质参数,通过模型试验可以预测所要兴建厅堂的混响时间。

声场不均匀度也是一个重要的音质参数。

模型试验的测量系统、测量方法和结果的表达与实际厅堂相同,但需要根据厅堂模型的缩尺比s,在混响时间测量和声场不均匀度测量时对测量频率作相应改变。

不同频率的声波,在空气介质中传播,特别是高频声波,它的由空气吸收引起的衰减在不同温、湿度条件下差别很大,对混响时间测量结果,需采取对空气吸收的影响作相应的修正,且有足够的精度。

对于短延时反射声分布测量,厅堂音质模型的缩尺比s一般采用1/5或1/10,也有采用1/20的,但因受试验设备和频率过高的限制,精度受到一定影响。

对混响时间的测量,缩尺比s为1/20时只能对应实际厅堂1000Hz或2 000Hz 以下的频率。

推荐缩尺比s不小于1/10,对混响时间和声场不均匀度的测量可扩展至实际厅堂中的4000Hz。

短延时反射声分布测量的精度也较高。

模型的内表面形状,有些起伏尺寸比较小,对声波的反射和扩散没有多大影响,在制作模型时可适当简化。

但必须保留等于或大于实际厅堂中声波为
20XXHz的波长的起伏,不能省略。

因为这些部分会对声场的不均匀
度有较大影响。

要使厅堂音质模型的内表面各个部分,包括观众席的吸声系数在所测量的频率范围内与相对应的实际厅堂内表面各部分及观众席的吸声系数完全相符,实际上有很大难度,因此允许有±10%的误差。

为了避免在模型中的背景噪声过高导至动态范围达不到要求而影响精度,厅堂音质模型的外壳必须有足够的隔声量。

舞台空间大小、形状及吸声状况,对观众厅的短延时反射声分布、混响时间及声压级分布有很大影响。

在模型试验时,这部分宜包括在内。

舞台空间部分的吸声状况也应进行相应的模拟。

短延时反射声分布测量所用的声源信号为电容器放电时产生的脉冲声,适于用做模型试验中的脉冲声源信号。

声源中心位置规定为一般演出区的中心,高度相当于人口的高度。

声场不均匀度测量的声源位置与高度,与混响时间测量相同。

短延时反射声分布测量常用的方法是将接收到的直达声和反射声信号经过放大,以时间为横轴在示波器上显示,即脉冲响应声图谱(回声图)。

接收用传声器,可以用电容传声器或灵敏度比较高的球形压电晶体传声器。

传声器口径不宜过大,防止传声器的圆柱体型在接收位置对声场形成影响。

在测量时要求记录模型内空气的温度和相对湿度,是为了修正由于高频声在模型内过量的空气吸收所造成的低于实际厅堂混响时间的偏差。

论文在线::s://。

相关文档
最新文档