吸收和吸附式制冷
冷源的种类及应用
冷源的种类及应用冷源是指能够提供冷量的设备或系统,其种类和应用非常广泛。
下面将介绍几种常见的冷源及其应用。
1. 压缩机制冷机组压缩机制冷机组是最常见的冷源之一。
它通过压缩机将制冷剂压缩成高温高压气体,然后通过冷凝器散热变成高压液体,再通过膨胀阀降温变成低温低压液体,最后通过蒸发器吸收热量变成低温低压气体,循环往复完成制冷过程。
这种冷源广泛应用于空调、冷库、冷藏车、制冷设备等领域。
2. 吸收式制冷机组吸收式制冷机组是通过热量驱动制冷的一种冷源。
它由吸收器、发生器、冷凝器、膨胀阀和蒸发器组成。
其中,发生器和冷凝器是核心部件,它们通过热量驱动制冷剂的吸收和放出来达到制冷目的。
吸收式制冷机组具有无震动、无噪音、可靠性高等特点,被广泛应用于医疗、化工、酒店、食品加工等领域。
3. 螺杆式冷水机组螺杆式冷水机组是一种高效节能的冷源。
它通过两个相互螺旋且相互啮合的螺杆进行工作,实现压缩和膨胀过程,从而实现制冷过程。
螺杆式冷水机组具有高效、稳定、噪音低、可靠性高等优点,被广泛应用于商业建筑、工业制冷、医疗机构等领域。
4. 离心式冷水机组离心式冷水机组是通过离心式压缩机驱动制冷剂进行制冷的冷源。
它具有制冷量大、效率高、适应范围广等特点,被广泛应用于空调、工业冷水供应、制冷设备等领域。
5. 涡旋式冷水机组涡旋式冷水机组是通过涡旋式压缩机进行制冷的一种冷源。
涡旋式冷水机组具有体积小、噪音低、运行稳定等特点,被广泛应用于工业制冷、电子制造、医疗、商业建筑等领域。
6. 吸附式制冷机组吸附式制冷机组是利用吸附剂与制冷剂之间的吸附和解吸过程来实现制冷的一种冷源。
它具有无动力驱动、环保、可靠性高等优点,被广泛应用于太阳能、天然气等非传统能源领域。
以上是几种常见的冷源及其应用。
随着科技的进步和工业的发展,冷源的种类和应用还将不断涌现和变革,为人们的生活和工作提供更加舒适、便利和高效的冷藏、制冷和空调条件。
太阳能吸附式制冷原理
太阳能吸附式制冷原理
太阳能吸附式制冷(Solar adsorption refrigeration)是一种利用
太阳能来驱动制冷过程的技术。
其原理如下:
1. 吸附剂选择:选择具有较强吸附特性的物质作为吸附剂。
常见的吸附剂包括硅胶、活性炭等。
2. 吸附过程:当太阳能照射到吸附剂上时,吸附剂吸附传统冷却剂(如氨或水)中的蒸汽分子。
吸附剂在吸附过程中释放出一定的吸附热,导致吸附剂温度升高。
3. 脱附过程:当太阳能逐渐减弱或停止供应时,吸附剂温度下降,将吸附的蒸汽分子释放出来。
这个过程叫做脱附。
脱附过程中吸附剂吸收环境中的热量,使其温度降低。
4. 冷却效果:通过吸附剂吸附和脱附的交替进行,制冷剂中的蒸汽分子被不断吸附和释放,从而使制冷剂的温度降低,达到制冷效果。
这个过程是一个循环过程。
太阳能吸附式制冷技术利用太阳能提供的热能来驱动吸附剂的吸附和脱附过程,无需额外的电力或化石燃料。
它具有环保、可再生能源的特点,适用于一些无电或电力供应不稳定的地区。
吸附式制冷的工作原理
吸附式制冷的工作原理一、引言吸附式制冷是一种新型的制冷技术,它具有无霜结、无噪音、无振动等优点,因此在空调、冰箱等领域得到了广泛应用。
本文将详细介绍吸附式制冷的工作原理。
二、吸附式制冷的基本原理1. 吸附剂的选择吸附式制冷系统中,吸附剂是起关键作用的物质。
一般来说,吸附剂应该具有以下特点:高吸收能力、低解吸能力、化学稳定性好等。
常见的吸附剂有硅胶、分子筛等。
2. 吸附与解吸过程在吸附式制冷系统中,通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程。
当压力升高时,气体会被固体表面上的孔隙所吸收;当压力下降时,气体会从固体表面上脱离出来,这个过程叫做解吸。
3. 热量传递在制冷过程中,热量需要被传递到外部环境中去。
吸附式制冷系统中,热量传递主要通过两种方式:一是通过吸附剂和气体之间的热传导;二是通过吸附剂和外部环境之间的热传导。
三、吸附式制冷的工作流程1. 吸附过程在吸附过程中,吸附剂会从低压区域向高压区域移动,同时吸收气体。
当气体被完全吸收后,压力达到最高点。
2. 膨胀过程在膨胀过程中,气体会从高压区域向低压区域移动,同时释放出来。
这个过程需要消耗一定的能量。
3. 冷却过程在冷却过程中,气体会被冷却到低温状态。
此时,气体的温度会比外界环境低很多。
4. 解吸过程在解吸过程中,低温下的气体会被重新释放出来,并且被带回到高压区域。
这个过程需要消耗一定的能量。
四、总结综上所述,吸附式制冷技术是一种新型的制冷技术,在空调、冰箱等领域得到了广泛应用。
吸附式制冷的基本原理是通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程,同时通过热量传递实现制冷效果。
了解吸附式制冷的工作原理,对于我们更好地使用这种新型技术具有重要意义。
吸附式制冷国内外研究概况
吸附式制冷国内外研究概况吸附式制冷(Adsorption Refrigeration)是一种基于物质吸附或脱附过程实现制冷的技术。
相对于传统的压缩式制冷,吸附式制冷具有低温工作、无噪音、无振动和更环保的特点,因此在一些特殊的领域得到了广泛的研究和应用。
国内吸附式制冷的研究起步较晚,但近年来取得了快速的发展。
国内的研究主要集中在吸附材料的开发和优化、制冷系统的设计和优化以及吸附式制冷系统在特定领域的应用等方面。
在吸附材料的研究中,许多国内研究团队致力于合成新型吸附剂,如金属有机框架材料(MOFs)和直链烷烃等。
这些材料具有高吸附容量、高吸附速率和良好的热稳定性,适用于吸附式制冷系统的制冷剂吸附和脱附过程。
在制冷系统的设计和优化方面,一些研究团队提出了新型的循环模式和系统结构,如多级循环和混合制冷等,以提高制冷效果和节能。
国外吸附式制冷的研究相对较早,取得了较为突出的成绩。
发达国家如美国、日本和德国在吸附式制冷研究中处于领先地位。
美国的研究主要集中在新型吸附剂的开发和制冷系统的优化。
例如,美国能源部(DOE)资助了一系列吸附合金材料的研究项目,通过合金化改善吸附材料的稳定性和吸附性能。
日本的研究主要关注于吸附式制冷系统在太阳能、地热和废热能利用等领域的应用。
日本的研究团队利用太阳能或其他低品位热源驱动吸附式制冷系统,实现了低温制冷的可持续供应。
德国的研究主要侧重于制冷系统的优化和集成。
德国的研究团队开发了多种新型系统结构,如吸附/蒸发混合循环和复合吸附/压缩循环等。
总的来说,吸附式制冷在国内外均受到了广泛的研究关注。
国内的研究主要集中在吸附材料的合成和吸附式制冷系统的设计和优化,而国外的研究则更加注重吸附式制冷系统在特定领域的应用和集成。
随着对环境友好和节能的需求不断增加,吸附式制冷将有更广泛的应用前景,并在未来的研究中得到更多的关注和投入。
制冷技术第四章 吸收式制冷循环
10-5.swf
机组特征
制 冷 原 理 与 装 置
单效制冷机使用能源广泛, 可以采用各种工业余热, 废热,也可以采用地热、 太阳能等作为驱动热源, 在能源的综合利用和梯级 利用方面有着显著的优势。 而且具有负荷及热源自动 跟踪功能,确保机组处于 最佳运行状态。 单效制冷机的驱动热源为 低品位热源,其COP在 0.65-0.7. 如果业主具备 高品位的热源,应选择远 大直燃机或蒸汽双效制冷 机,其COP在1.31以上。
2
MLiBr /MH O MLiBr 100%
2、溶液的摩尔分数
制 冷 原 理 与 装 置
溶液中某一组分的摩尔分数为
i Ni /N1 N2 Nn 100%
ni M i / M
双组分的吸收式制冷工质对是一种二元溶 液,其摩尔分数 是以溶液中溶质的摩尔百 分数表示的。 溴化锂溶液的摩尔分数为
a qmf (qmf qmd ) r a
令 qmf qmd qmf qmd ( qmf qmd 1) r
a,则
a
r a
r
循环倍率a: 表示发生器中每产生1kg水蒸气需要 的溴化锂稀溶液的循环量 放气范围: ξ r- ξ a
三、双级与双效溴化锂吸收式循环
制 冷 原 理 与 装 置
NLiBr /( NH O NLiBr ) 100%
2
3.
制 冷 原 理 与 装 置
溶液的相平衡
(1)气液相平衡
双组分的吸收式制冷工质对气液相平 衡状态方程式为
F p, T , 0
(2)溶液的p—t图
制 冷 原 理 与 装 置
溴化锂溶液的p—t图,图中标出等质量 分数线簇,左侧的 0 线代表水的特 性,并标出了水的饱和温度 t’。
吸附式制冷的制冷原理
吸附式制冷的制冷原理吸附式制冷是一种利用吸附剂对气体份子进行吸附和脱附的原理来实现制冷的技术。
该技术主要应用于低温制冷和低温储能领域。
一、吸附式制冷的基本原理吸附式制冷系统由吸附器、脱附器、蒸发器和冷凝器等组成。
其中,吸附器和脱附器是吸附剂的主要工作区域,蒸发器和冷凝器则是制冷循环的关键部份。
在吸附式制冷系统中,吸附剂是一个关键的组成部份。
吸附剂通常是一种多孔材料,具有高表面积和良好的吸附性能。
常见的吸附剂有活性炭、份子筛和金属有机骨架材料等。
制冷过程中,吸附剂首先处于吸附状态。
当制冷剂通过吸附器时,吸附剂的孔隙结构会吸附制冷剂中的气体份子。
此时,吸附剂会释放出吸附剂内部的热量,使制冷剂的温度降低。
然后,吸附剂将制冷剂输送到脱附器中。
在脱附器中,吸附剂经过加热,释放出吸附剂中吸附的制冷剂份子。
这个过程称为脱附。
脱附过程中,吸附剂会吸收外部的热量,使制冷剂的温度升高。
然后,制冷剂再次进入吸附器,循环进行吸附和脱附过程,从而实现制冷效果。
二、吸附式制冷的工作原理吸附式制冷系统的工作原理可以分为两个主要的循环:吸附循环和脱附循环。
1. 吸附循环在吸附循环中,制冷剂从蒸发器中进入吸附器。
在吸附器中,制冷剂被吸附剂吸附,同时释放出热量。
此时,制冷剂的温度降低,变成低温制冷剂。
然后,低温制冷剂进入脱附器。
2. 脱附循环在脱附循环中,吸附剂通过加热,释放出吸附的制冷剂份子。
这个过程称为脱附。
脱附过程中,吸附剂吸收外部的热量,使制冷剂的温度升高。
然后,制冷剂再次进入吸附器,循环进行吸附和脱附过程。
通过不断循环吸附和脱附过程,吸附式制冷系统可以实现制冷效果。
而且,吸附剂的选择和控制可以根据需要进行调整,以实现不同温度范围的制冷要求。
三、吸附式制冷的优点和应用吸附式制冷技术具有以下几个优点:1. 低温制冷能力强:吸附剂具有高表面积和良好的吸附性能,可以实现较低的制冷温度。
2. 能源效率高:吸附式制冷系统可以利用废热或者低温热源进行制冷,提高能源利用效率。
吸附式制冷的制冷原理
吸附式制冷的制冷原理吸附制冷系统是以热能为动力的能量转换系统。
其道理是:一定的固体吸附剂对某种制冷剂气体具有吸附作用。
吸附能力随吸附温度的不同而不同。
周期性地冷却和加热吸附剂,使之交替吸附和解析。
解析时,释放出制冷剂气体,并使之凝为液体;吸附时,制冷级液体蒸发,产生制冷作用。
所以,吸附制冷的工作介质是吸附剂-制冷剂工质对,工质对有多种,按吸附的机理说,有物理吸附与化学吸附之别。
以常见的沸石-水吸附对为例。
沸石是一种铝硅酸盐矿物,它能够吸附水蒸气,且吸附能力的变化对温度特别敏感。
因而它们是较理想的吸附制冷工质对之一。
图1示出一个利用太阳能驱动的沸石-水吸附制冷系统原理。
它包括吸附床、冷凝器和蒸发器,用管道连接成一个封闭的系统。
吸附床是充装了吸附剂(沸石)的金属盒;制冷剂液体(水)贮集在蒸发器中。
白天,吸附床受到日照加热,沸石温度升高,产生解吸作用。
从沸石中脱附出水蒸气,系统内的水蒸气压力上升,达到与环境温度对应的饱和压力时,水蒸气在冷凝器中凝结,同时放出潜热,凝水贮存在蒸发器中。
夜间,吸附床冷下来,沸石温度逐渐降低,它吸附水蒸气的能力逐步提高,造成系统内气体压力降低,同时,蒸发器中的水不断蒸发出来,用以补充沸石对水蒸气的吸附。
蒸发过程吸热,达到制冷的目的。
如果采用其它热源,只要保证能够交替地加热和冷却吸附床,使沸石周期性地解析和吸附,同样能达到制冷的目的。
由上可知,吸附制冷属于液体汽化制冷。
与蒸气压缩式制冷机相类比,吸附床起到压缩机的作用。
但上述吸附系统只能间歇制冷。
吸附器处于吸附过程中产生冷效应,吸附结束后必须有一个解析过程使吸附剂状态还原,这时将停止制冷。
为了连续制冷,可以采用两个吸附器。
美国学者乔纳斯(Jones)还提出用三个或四个吸附器进行系统循环,不仅实现连续制冷,还可以利用一个吸附床的排热去加热另一个吸附床,从而使热能充分利用。
现在对吸附制冷的研究正在不断深入和发展。
为了使吸附制冷成为一种使用话的制冷方式,人们在吸附工质对及其吸附机理、改善吸附床传热传质、以及吸附制冷的系统结构方面进行不懈的努力。
吸收式制冷和吸附式制冷
一、制冷技术1、吸收式制冷吸收式制冷是利用某些具有特殊性质的工质对,通过一种物质对另一种物质的吸收和释放,产生物质的状态变化,从而伴随吸热和放热过程。
吸收式制冷的原理:常用的工质对有氨水和水/溴化锂。
吸收制冷的基本原理一般分为以下五个步骤:(1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度的溶液,并使溶液中的大部分低沸点制冷剂蒸发出来。
(2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体,再经节流器降压到蒸发压力。
(3)制冷剂经节流进入蒸发器中,吸收被冷却系统中的热量而激化成蒸发压力下的制冷剂蒸气。
(4)在发生器A中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。
(5)吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。
在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。
吸收式制冷机利用溶液在一定条件下能析出低沸点组分的蒸气,在另一条件下又能强烈地吸收低沸点组分蒸气这一特性完成制冷循环。
目前吸收式制冷机中多采用二元溶液作为工质,习惯上称低沸点组分为制冷剂,高沸点组分为吸收剂,二者组成工质对。
原理图:吸收式制冷的特点:吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
整套装置除了泵和阀件外,绝大部分是换热器,运转安静,振动小;同时,制冷机在真空状态下运行,结构简单,安全可靠,安装方便。
在当前能源紧缺,电力供应紧张,环境问题日益严峻的形势下,吸收式制冷技术以其特有的优势已经受到广泛的关注。
(1) 无原动力,直接使用热原理,因此机器坚固亦无震动,少噪音,能安装于任何地点,从地室一直到屋顶均可。
吸收式、吸附式太阳能制冷空调的应用探讨
吸收式、吸附式太阳能制冷空调的应用探讨◊江苏省人民政府办公厅后勤服务中心陈伟现如今科技程度的不断提高使得社会的发展程度加快,而且同时也使得人们的生活习惯得到巨大的改变。
例如之前冬天吃冷饮,夏天吃火锅这可能会被很多人认为这是一种不可思议的想法,但是现在这种想法却变得习以为常。
对这一问题进行仔细分析,其实也不难发现,这种现象得到改变的最主要的原因就是空调的出现。
但是事物都是具有两面性的,有利必有弊,现在可以发现空调已经得到全面使用,但是生态环境却变得越来越差。
而且全球变暖这一问题也使得必须要重视能源结构问题,所以对可再生能源使空调运行和使用需要进行深入研究。
从全球变暖这一问题出现以后,很多研究人员对于制冷空调使用的能源开始重视起来,把工作的重心放在了这一方面。
一些科技人员都开始注意绿色清洁能源,而且还使其列为主要发展对象。
如果想要把这种能源的利用率提高,那么在制冷空调方面下手可能会尽快实现这一想法。
经过这段时间细致的研究,科研人员明显可以看到太阳能作为一种可再生能源使用,而且甚至还符合取之不尽,用之不竭的目的。
所以,从种种现象来看,如果将其使用在制冷空调方面效果可能极佳。
经过长时间的积累研究人员发明了太阳能吸收式制冷空调和太阳能吸附式制冷空调这两种产品。
而本文就是对这两种产品进行详细的介绍。
1太阳能吸收式、吸附式制冷空调的工作原理1.1太阳能及其应用范围简介太阳能顾名思义就是通过太阳辐射出的能量,一般通常来说就是太阳光线。
而且由于人类的不断开采,使得地球的化石燃料逐渐减少,所以这就从某种程度来说太阳能占据着人类可使用能源中一个位置,而且经过多年的研究使得其不断发展。
在太阳能进行使用时主要是两种方式,而且从未来发展前景来看太阳能发电可以作为一种新型的可再生能源。
太阳能发电应用特别广泛,例如像太阳能路灯、太阳能杀虫灯等很多方面都有使用,所以这使得人们的日常生活和生产应用都变得极为简洁。
而且根据研究表明太阳能也可以在制冷领域发挥出不可替代的作用,所以也受到很多方面关注。
第五节 吸附式制冷..
德国Freiburg示范应用的太阳能吸附空调
吸附式制冷
物) ,从而完成一次吸附制冷循环过程。
吸附式制冷 2、吸附式制冷的优点
(1)吸附式制冷所使用的制冷剂是对环境相对友好的 物质(甲醇,氨,水等)不采用氯氟烃类制冷剂那样会 破坏臭氧层的物质,值得开发。 (2)吸附式制冷可采用余热驱动,不仅对电力的紧张供应 可起到减缓作用,而且能有效利用大量低品位热能,如 太阳能,清洁没有污染。 (3)太阳能吸附式制冷具有结构简单,无运动部件,噪声 低,寿命长等特点。
吸附式制冷
强化换热系数的吸附床技术
吸附式制冷系统的应用实例
以船用吸附制冰机为例: ������ 驱动热源:发动机废热;制冷机冷源:冷海水
������ 制冷量输出:制冷量输入到鱼舱中。有两种方式,一种是直接制冰,为鱼类 的冰鲜提供冷量。此种方式的缺点是初投资较大。另外一种方式是采用风机盘管 来向鱼舱吹冷风,从而保证鱼舱内的温度。
解吸:与吸附相反的过程,是指物质将 吸附的周围物质释放的过程,一般需要 吸收热量达到一定的温度或温度范围来 克服作用力。
吸附式制冷
吸附式制冷
太阳能吸附制冷原理图
一个基本的吸附式制冷系统由吸附床 (集热器) 、冷凝器、蒸环过程是利用太阳能或者其他热源, 使吸附剂和吸附质形成的混合物(或络合物) 在吸附器中发生解吸, 放出高温高压的制冷 剂气体进入冷凝器,冷凝出来的制冷剂液体 由节流阀进入蒸发器。制冷剂蒸发时吸收热 量,产生制冷效果,蒸发出来的制冷剂气体进 入吸附发生器,被吸附后形成新的混合物(或络合
吸附式制冷 3、吸附式制冷的缺点
(1)固体吸附剂为多微孔介质,比表面积大,导热性能很低 ,因而吸附/解吸时间长。(可以开发新型吸附剂,从吸收 式制冷系统采用液体工质中是否可以有所启发?)
六种常见制冷方式
六种常见制冷方式一、蒸汽式压缩制冷原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽,经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量,从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机,如此循环工作。
压缩机功能:把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的条件。
被称为整个装置的“心脏”。
冷凝器功能:使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。
分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。
风冷式冷凝器:使用和安装方便,不需要冷却水、热量由分机将其带入大气中。
但同样传热系数低,相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。
蒸发器功能:依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务是对外输出冷量。
分类:满液式(沉浸式)蒸发器、干式蒸发器。
干式蒸发器:沉浸式蛇管、壳管式、板式、喷淋式等。
节流装置功能:截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。
控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。
控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的传热面积的充分利用,又防止压缩机冲缸事故的发生。
分类:手动节流阀、热力膨胀阀、毛细管、电子膨胀阀、浮球板、固定孔板、可变孔板。
二、蒸汽吸收式制冷以制冷剂-吸收剂为工作流体,称为吸收工质对。
常用工质对:溴化锂-水(制冷剂是水)、氨-水(制冷剂是氨)-低沸点工质是制冷剂。
装置:吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。
新型制冷技术
新型制冷技术新型制冷技术是指相对传统制冷技术而言的一种更加高效、环保的制冷方式。
随着科技的不断进步,新型制冷技术在各个领域得到了广泛应用,为人们的生活带来了极大的便利。
一、新型制冷技术的背景传统制冷技术使用的制冷剂通常是氟利昂等化学物质,这些物质对大气层臭氧层的破坏以及全球变暖有着重要的影响。
因此,更加环保的制冷技术成为了迫切需要解决的问题。
同时,随着能源消耗和能源浪费的问题日益突出,提高制冷效率也成为了新型制冷技术发展的重要目标。
1. 吸附式制冷技术:吸附式制冷技术是一种利用吸附剂和冷热源进行制冷的技术。
吸附剂可以吸附和释放制冷剂,从而实现制冷效果。
这种技术具有结构简单、无噪音、无污染等特点,适用于小型制冷设备。
2. 磁制冷技术:磁制冷技术利用磁场对磁性材料进行调控,通过改变磁场的强度和方向来实现制冷效果。
这种技术具有高效节能、无污染、可靠性高等优点,适用于大型制冷设备。
3. 微通道制冷技术:微通道制冷技术利用微通道内的流体对冷却物体进行制冷。
微通道制冷技术具有体积小、制冷速度快、能耗低等优点,适用于微型制冷设备。
4. 热电制冷技术:热电制冷技术是一种利用热电材料产生的温差效应进行制冷的技术。
热电制冷技术具有高效节能、无噪音、无污染等优点,适用于小型制冷设备。
三、新型制冷技术的应用领域1. 家用制冷设备:新型制冷技术在家用制冷设备中的应用越来越广泛。
例如,吸附式制冷技术可以用于制造小型冰箱和冷柜,磁制冷技术可以用于制造大型冰箱和冷库。
2. 车载制冷设备:新型制冷技术在汽车冷暖系统中的应用也逐渐增多。
微通道制冷技术可以用于汽车空调系统,热电制冷技术可以用于汽车冷藏箱。
3. 工业制冷设备:新型制冷技术在工业制冷设备中的应用也非常广泛。
例如,吸附式制冷技术可以用于制造工业冷却水机组,磁制冷技术可以用于制造工业冷冻设备。
四、新型制冷技术的优势和挑战新型制冷技术相比传统制冷技术具有许多优势,例如更高的制冷效率、更低的能耗、更环保的制冷剂等。
吸收式制冷原理
吸收式制冷原理
吸收式制冷是一种利用热能进行制冷的技术,它的原理是利用吸收剂对蒸发剂进行吸收,然后通过加热使得吸收剂释放出蒸汽,从而实现制冷的过程。
吸收式制冷原理主要包括溶液的吸收和蒸汽的释放两个过程。
首先,我们来看溶液的吸收过程。
在吸收式制冷系统中,溶液是由吸收剂和蒸发剂组成的。
当蒸发剂被吸收剂吸收时,会释放出大量的热量,使得吸收剂的温度升高。
这时,我们需要将吸收剂的温度降低,以便进行下一轮的吸收过程。
因此,溶液的吸收过程需要不断地进行循环,以维持制冷系统的正常运转。
接下来是蒸汽的释放过程。
当吸收剂吸收了蒸发剂后,我们需要通过加热的方式使得吸收剂释放出蒸汽。
这样一来,蒸汽就可以进入冷凝器进行冷凝,从而实现制冷效果。
蒸汽的释放过程需要耗费大量的热能,因此热源的选择对于吸收式制冷系统的效率至关重要。
在吸收式制冷系统中,吸收剂的选择直接影响着系统的性能。
一般来说,我们会选择具有较高吸收性能和稳定性的吸收剂,以确
保系统的稳定运行。
此外,吸收式制冷系统还需要配备冷凝器、蒸发器、吸收器等关键部件,以实现制冷循环的顺利进行。
总的来说,吸收式制冷原理是一种利用热能进行制冷的技术,通过溶液的吸收和蒸汽的释放两个过程来实现制冷效果。
吸收剂的选择和热源的设计是影响系统性能的重要因素,而关键部件的设计和运行也直接关系着系统的稳定性和效率。
通过深入理解吸收式制冷原理,我们可以更好地应用这一技术,为人们的生活和生产提供更加可靠和高效的制冷解决方案。
吸收式制冷和吸附式制冷
制冷技术1、吸收式制冷吸收式制冷是利用某些具有特殊性质的工质对,通过一种物质对另一种物质的吸收和释放,产生物质的状态变化,从而伴随吸热和放热过程。
吸收式制冷的原理:常用的工质对有氨水和水/溴化锂。
吸收制冷的基本原理一般分为以下五个步骤:(1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度的溶液,并使溶液中的大部分低沸点制冷剂蒸发出来。
(2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体,再经节流器降压到蒸发压力。
(3)制冷剂经节流进入蒸发器中,吸收被冷却系统中的热量而激化成蒸发压力下的制冷剂蒸气。
(4 )在发生器A中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。
(5 )吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。
在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。
吸收式制冷机利用溶液在一定条件下能析出低沸点组分的蒸气,在另一条件下又能强烈地吸收低沸点组分蒸气这一特性完成制冷循环。
目前吸收式制冷机中多采用二元溶液作为工质,习惯上称低沸点组分为制冷剂,高沸点组分为吸收剂,二者组成工质对。
原理图:K1倚单吸收氏制冲系统循环吸收式制冷的特点:吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
整套装置除了泵和阀件外,绝大部分是换热器,运转安静,振动小;同时,制冷机在真空状态下运行,结构简单,安全可靠,安装方便。
在当前能源紧缺,电力供应紧张,环境问题日益严峻的形势下,吸收式制冷技术以其特有的优势已经受到广泛的关注。
(1) 无原动力,直接使用热原理,因此机器坚固亦无震动,少噪音,能安装于任何地点,从地室一直到屋顶均可。
吸附式制冷的工作原理
吸附式制冷的工作原理引言随着人们对环保和节能的关注度不断提高,制冷技术也在不断发展。
吸附式制冷作为一种新兴的制冷技术,因其高效节能和环保的特点受到了广泛的关注。
本文将详细介绍吸附式制冷的工作原理。
概述吸附式制冷是利用吸附剂的吸附和脱附作用实现制冷的一种技术。
与传统的蒸发制冷相比,吸附式制冷具有更高的能效和更低的环境污染。
工作原理吸附式制冷的工作原理可以分为吸附过程、解吸过程和再生过程三个阶段。
吸附过程1.蒸发器:在吸附剂中加热制冷剂,使其转化为气态。
2.吸附器:制冷剂被吸附在吸附剂表面,释放出热量,从而冷却吸附器。
3.冷凝器:通过外部冷却介质使制冷剂重新凝结成液态。
解吸过程1.加热器:吸附剂在加热作用下释放出吸附的制冷剂。
2.蒸发器:制冷剂重新蒸发成气态。
再生过程1.再生器:通过加热过程将吸附剂中的吸附剂脱附,使吸附剂恢复到初始状态。
优点和应用优点1.高效节能:吸附式制冷利用吸附剂的吸附和脱附过程实现制冷,不需要额外的能量供应,大大节约了能源消耗。
2.环保:吸附剂一般选用天然气或环保材料,不会对环境造成污染。
3.稳定性好:吸附剂的选择多样,可以根据不同的工况选择合适的吸附剂,提高系统的稳定性。
应用1.家用制冷:吸附式制冷可以应用在家用制冷领域,如冰箱、空调等,实现高效节能的制冷效果。
2.工业制冷:吸附式制冷可以应用在工业制冷领域,如化工、食品等,满足不同行业的制冷需求。
3.新能源利用:吸附式制冷可以结合太阳能等新能源利用,实现绿色制冷。
前景展望吸附式制冷作为一种高效节能、环保的制冷技术,具有广阔的发展前景。
随着科技的不断进步和人们对环保的追求,吸附式制冷将在未来得到更广泛的应用。
结论吸附式制冷是一种利用吸附剂的吸附和脱附过程实现制冷的技术。
其工作原理包括吸附过程、解吸过程和再生过程三个阶段。
吸附式制冷具有高效节能、环保和稳定性好的优点,在家用制冷、工业制冷和新能源利用等领域具有广阔的应用前景。
制冷解决方案
制冷解决方案制冷解决方案是针对需要降低温度的环境提供的一种解决方案,其目的是降低或维持环境的温度在一定范围内,以适应人类或其它物体的需求。
制冷解决方案主要通过利用制冷系统和技术来达到降低温度的目的。
下面将介绍一些常见的制冷解决方案。
首先,最常见的制冷解决方案是使用空调系统。
空调系统是利用制冷剂循环流动实现热量传输的设备。
空调系统由压缩机、冷凝器、膨胀阀和蒸发器等组成。
通过压缩机将低压低温的制冷剂压缩成高压高温的气态制冷剂,然后通过冷凝器将制冷剂冷却成液态,再通过膨胀阀将制冷剂膨胀、降温,最后通过蒸发器吸收空气中的热量,达到降低室内温度的目的。
其次,另一种常见的制冷解决方案是使用冷库/冷藏箱。
冷库/冷藏箱是为了冷藏和保鲜食物而设计的设备。
冷库/冷藏箱通过制冷剂的循环流动来降低箱内的温度。
冷库/冷藏箱一般由冷凝器、蒸发器、压缩机和控制系统等组成。
制冷剂在蒸发器中吸收空气中的热量,使蒸发器内的温度下降,然后通过压缩机将制冷剂压缩成高温高压气态,再通过冷凝器冷却制冷剂至液态,最后通过膨胀阀将制冷剂进一步降低温度,循环往复,以达到保持箱内低温的目的。
此外,还有一种制冷解决方案是利用吸附式制冷。
吸附式制冷是利用吸附剂吸附/脱附制冷剂的原理来实现制冷的技术。
吸附式制冷系统一般由吸附器、脱附器、冷凝器和蒸发器等组成。
吸附剂能够将制冷剂吸附在其表面,从而达到降低环境温度的目的。
在制冷过程中,吸附器将吸附剂与制冷剂混合,吸附剂吸附制冷剂,导致吸附器温度降低;然后通过加热脱附器中的吸附剂,脱附制冷剂,制冷剂被脱附到脱附器中,使脱附器中的温度升高;进一步通过冷凝器冷却制冷剂,最后通过蒸发器吸收热量,达到降低温度的目的。
总结来说,制冷解决方案是针对需要降低温度的环境所提供的解决方案。
常见的制冷解决方案包括空调系统、冷库/冷藏箱和吸附式制冷。
这些方案通过利用制冷系统和技术来实现降低温度的目的,从而满足人类和物体的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制
(1)可以利用各种热能驱动
冷
原
(2)可以大量节约用电
理
(3)结构简单,运动部件少,安全可靠
与
技
(4)对环境和大气臭氧层无害
术
(5)热力系数COP低于压缩式制冷循环
(二)工质对的状态参数
制 ➢ 压缩式制冷循环 冷 原 理 ➢ 吸收式制冷循环 与 技 ➢ 吸附式制冷循环 术
单一组分工质 双组分工质对 固—液工质对
次 驱动热源在机组内被直接和间接 地二次利用 驱动热源在机组内被直接和间接 地多次利用 驱动热源在多个压力不同的发生
器内被多次直接利用
低温 热源
水 空气 余热
以水冷却散热或作为热泵的低温 热源
以空气冷却散热或作为热泵的低 温热源 以各类余热作为热泵的低温热源
低温热源 的利用 方式
机组结构
第一类热泵 第二类热泵
技 术
性,右侧的 0 线代表水的特性,并在右
侧标出了氨的饱和温度 t’。
图2-131 氨水溶液的p—t图
图2-133
氨水溶液的h— 图
(3)溶液的h 图
制
如图2-133为氨水溶液的 h 图。
冷 3、液固相平衡 原
理
在一定的温度下, 溶质在溶剂中的溶解量
与
是有限的。这时的溶液称为 饱和溶液, 这时的 温度称为 结晶温度。图2-134为溴化锂溶液的
2、溶液的摩尔分数
溶液中某一组分的摩尔分数为
制
i mi /m1 m2 mn 100 % (2-70)
冷
mi Gi / M i
(2-71)
原
双组分的吸收式制冷工质对是一种二元溶
理 液,其摩尔分数 是以溶液中溶质的摩尔百
与 分数表示的。
技
术
溴化锂溶液的摩尔分数为
mLiBr /(mH2O mLiBr ) 100 % (2-72)
或向空间供热
采用NH3/H2O工质对 采用H2O/LiBr工质对 采用其它工质对
以蒸汽的潜热为驱动热源 以燃料的燃烧热为驱动热源 以热水的显热为驱动热源 以工业和生活余热为驱动热源 以其它类型的热源为驱动热源,如
太阳能、地热能等
驱动热 源的利 用方式
驱动热源在机组内被直接利用一
单效 双效 多效
多级发 生
原 给发生器 理
Qhot Qd
(2-87)
与
技
低温热源的热量供应给蒸发器
术
Qcold Qevap (2-88)
从目前吸收式系统制冷剂和吸收剂看,对 几个热量项可以概括如下:
制 冷
Qevpa Qcond
(2-89)
原
理
Qd Qabs
(2-90)
与
技
显然,对于一个制冷系统来说,单个的热
术 量独立调节是不可能的。
3、吸附式制冷工质对的浓度
活性炭一氨的浓度为
制 冷
x M NH3 / M c
(2-74)
原 (三) 溶液的相平衡 理 与 1、多元体系的相平衡关系式
技
根据吉布斯定律,多元体系的自由度为
术
N F NC N P 2 (2-75)
双组分的吸收式制冷工质对气液相
平衡状态方程式为
制
冷
Fp,T, 0
与
技
在吸收和吸附式制冷循环中,制冷剂的蒸 发或冷凝过程是在 恒定的 蒸发温度或冷凝温
术 度下进行的。
1000 100 10
0.6 0.1
0.05
1000 1
0 20 40 60 80 100 120 140
(a)活性炭纤维-甲醇
100
吸附制冷p-T-x图
10
(b) 活性炭-甲醇 吸附制冷p-T-x图
等量吸附线
这三种吸附曲线从本质是一致的,但它们对 于研究吸附现象各有长处:
制
冷
吸附等温线主要用于工业装置的微量吸附
原
理
等压吸附线主要用于解吸的操作设计
与
技
等量吸附线主要用于进行吸附热的计算和
术
吸附工质对的选择
(2) 吸附理论与吸附率方程
➢ 吸附势理论(Polanyi理论) 是从固体表面
制 存在吸附势能场出发,描述多分子层吸附的理 冷 论模型
1、溶液的质量分数
溶液中某组分的质量百分数为
制 冷
i = G i / ( G 1 + G 2 + + G i + + G n) 100 % (2-67)
原
双组分的吸收式制冷工质对是一种二元溶液,
理
其质量分数 示的。
是以溶液中溶质的质量百分数表
与
技
溴化锂溶液的摩尔分数为
术
GLiBr / GH2O GLiBr 100 % (2-68)
术
p p1 p2 pn (2-79)
图2-130 溴化锂溶液的p—t图
(2)溶液的p—t图
制
图2-130 为溴化锂溶液的p—t图,图中标
冷
出等质量分数线簇,左侧的 0线代表水的
特性,并标出了水的饱和温度 t’。
原
理
图2-131为氨水溶液的p—t图,图中标出
与 等质量分数线簇,左侧的 1线代表氨的特
(三) 吸收式机组
制
吸收式机组是一种以热能为驱动能源、以溴
冷
化锂溶液或氨水溶液等为工质对的吸收式制冷或 热泵装置。简单的分类如 表2-15 所示。
原
理
1、溴化锂吸收式制冷循环
与
技
术
2、氨水吸收式制冷循环
制 冷 原 理 与 技 术
NEXT
(四)单效蒸汽型溴化锂吸收式 冷水机组的循环流程
制
单效蒸汽型溴化锂吸收式冷水机组的应
2.2 吸收和吸附式制冷
吸收式制冷目前在日本,中国和韩国得到了较普遍的
制
应用.随着我国西气东输工程的实施和天然气的引进
冷
或开采,吸收式制冷正在制冷空调中发挥重要作用.
原
按充分利用余热的冷热电联产系统将使得吸收式制 冷必不可少; 广泛的燃气供应,以及夏季燃气低谷和
理
用电高峰,可以使得燃气直燃式吸收式空调得到更广
0.26 0.02
图2-135
1 0 20 40 60 80 100 120 140
在蒸发过程中: 制冷剂吸收蒸发潜热,由液体蒸发成气体
制
在冷凝过程中:
冷
制冷剂排放冷凝潜热,由蒸气冷凝成液体
原
理 2、吸收与发生过程
与
技 术
在吸收式制冷循环中,制冷剂蒸气的吸收或 发生过程是在 恒定的 压力下进行的
3、吸附与解吸过程
由此可以分析出理想单效吸收式制冷循环COP
制 冷 原
COPideal
1.2 TevapTcond Td Tabs
Qcond Qabs
0.8
(2-94)
理 在吸收式制冷中另一个有用的关系式为 与
技 术
Td min Tcond Tabs Tevpa (2-95)
图2-139 两级溴化锂吸收制冷机系统构成,1、2、3、4-溶液泵
与
为Henry定律
技
(2)特性曲线与温度无关的假说在吸附质
术
为极性物质时,其误差较大 (3)对表面孔径分布不均匀的情况没有给
出很好的解释
(3)描述气固相平衡的p-T-x图
图2-135示出了活性炭-甲醇吸附等量线,
制 其中(a)为活性炭纤维、(b)为活性炭。
冷
原 (四)工质对的热质传递过程
理
1、蒸发与冷凝过程
原 理 与
(
T
) V
S
0
(2-82)
技
术
其中 f V s 称为 特征吸附函数
离吸附表面L处摩尔气体吸附势能
制
l
RT
ln(
p0 p
)
(2-83)
冷
吸附达到平衡时
原
理
吸附率 x Ma Mc V s Mc
与
技
术
f1(V s ) f2 (x) 或 x f ()
D—R 方程:
制 冷
x
x0
与 技 2)第二类吸收式热泵
术
工作循环如图2-143b所示
以升温为目的,故又称为
热变换器
分类方式 用途
工质对
驱动 热源
表 2-15 吸收式机组的种类
机组名称
制冷机组 冷水机组 冷热水机组 热泵机组
氨—水 溴化锂 其它
蒸汽型 直燃型 热水型 余热型 其它型
分类依据、特点和应用
供应0C以下冷量 供应冷水 交替或同时供应冷水和热水 向低温热源吸热,供应热水或蒸汽
吸收热量制冷
理
与
技
术
气体制冷剂回复液体状态
利用吸收或吸附方式
制 冷 原 理 与 技 术
NEXT
如图2-129所示:
制 ➢ 在 压缩式 制冷循环中
冷
利用 压缩机 液化制冷剂蒸气
原
理 ➢ 在 吸收和吸附式 制冷循环中 与
技
利用 液体吸收剂或固体吸附剂
术
液化制冷剂蒸气
吸收或吸附式制冷与压缩式制冷相比有以下 特点:
exp
k
2
(2-84)
原
理
在实验中存在三种与式(2-84)偏离的形式
与
技 术
x
2
2
x01
exp
k1
x02
expk2
(2-85)
准高斯分布型方程(D-A方程)
制 冷
x
x0
exp
E
n
(2-86)
原
这种方程还存在一些缺点: