一元一次方程应用(2)行程问题2020-2021年七年级数学上册尖子生同步培优题(原卷版)【浙教版】
第14讲用一元一次方程解决问题七年级数学上册同步学与练(苏科版2024)[含答案]
第14讲 用一元一次方程解决问题课程标准学习目标①引导学生学会分析实际问题中的数量关系,将其转化为一元一次方程.②培养学生运用一元一次方程解决实际问题的能力,包括设未知数、列方程、解方程、检验答案等步骤.③让学生体会方程思想在解决实际问题中的重要性,感受数学与生活的紧密联系.1.掌握用一元一次方程解决问题的基本方法和步骤.2.能够准确找出实际问题中的等量关系,建立一元一次方程模型并求解.3.培养学生解决实际问题的兴趣和信心,提高应用数学的意识.知识点一、用一元一次方程解决实际问题的一般步骤1.审:审清题意(注意关键词),找出题中的等量关系,理清题中的已知量与未知量;2.设:设未知数,并用含未知数的代数式表示其他未知量;①设直接未知数:一般情况下,题中问什么就设什么;②设间接未知数:特殊情况下,设直接未知数难以列出方程时,可设另一个相关的量为未知数;③设辅助未知数:在某些问题中,为了便于列方程,可以设辅助未知数.3.列:根据题中相等关系,列出一元一次方程;4.解:解所列出的一元一次方程;5.验:检验所得的解是不是所列方程的解、是否符合实际意义(这一步可在草稿纸上完成);6.答:写出答案,包括单位.知识点二、常见列方程解决问题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一、同地不同时出发:前者走的路程=追者走的路程;第二、同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.5.利润问题(1)利润利润率=100%进价´(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损,打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1 127.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.题型01比例分配问题1.甲、乙、丙三位同学向灾区捐款.已知他们捐款金额之比为7:5:8,且共捐款200元,则甲同学所捐款金额为元.2.甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,使三个瓶中水量的比为3:2:1,那么乙瓶需倒出水升.3.超市原有某品牌纯牛奶和酸牛奶共80箱,其数量之比为9:7,现新进一批纯牛奶和酸牛奶,箱数之比为2:5,将新进牛奶分别放置于超市A,B两个空置区域(A区域放纯牛奶,B 区域放酸牛奶),在搬运过程中工作人员不小心将2箱酸牛奶放到了A区域,结果导致A,B 两区域的牛奶箱数之比为3:7,求目前超市中纯牛奶、酸牛奶各有多少箱.4.甲、乙两个瓶子里共有药片260片,如果将甲瓶药片的18装入乙瓶里,那么这时两瓶里药片的片数之比为76:.原来两个瓶子里分别有多少片药片?题型02 配套问题5.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x 名工人生产螺母,由题意可知下面所列的方程正确的是( )A .212002000(22)x x ´=-B .21200(22)2000x x ´-=C .220001200(22)x x ´=-D .22000(22)1200x x´-=6.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?7.某车间有60个工人,生产甲,乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型03 调配问题8.在甲处工作的有132人,在乙处工作的有108人,如要使乙处工作的人数是甲处工作人数的12,应从乙处调多少人到甲处?若设应从乙处调x 人到甲处,则下列方程中正确的是( )A .()11321082x x +=-B .()11321082x x -=-C .11321082x x ´+=-D .()11321082x x +=-9.在植树节活动中,A 班有30人,B 班有21人,现从B 班调一部分人去A 班,使A 班人数为B 班人数的2倍,那么应从B 班调出 人.10.受连日暴雨影响,某地甲、乙两个村庄突发泥石流灾害,急需从市中心东、西两个储备仓库调运救灾物资,已知两个储备仓库均有救灾物资15吨,其中A 村需要18吨,B 村需要12吨,从东仓库运往A 、B 两村的运费分别为60元/吨和20元/吨,从西仓库运往A 、B 两村的运费分别为40元/吨和30元/吨.(1)若从东仓库运往A 村10吨,则从西仓库运往B 村的物资为 吨;(2)设从东仓库调运x 吨救灾物资去A 村,完成表格中的填空;运往A 村的物资/吨运往B 村的物资/吨东仓库x西仓库(3)调运结束后结算时发现,支付给东、西两个仓库的运费相差220元.求从东仓库运往A 村物资是多少吨?题型04 环形跑道问题11.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是( )米/分.A .120B .160C .180D .20012.已知甲沿周长为300米的环形跑道按逆时针方向跑步,速度为a 米/秒,与此同时在甲后面100米的乙也沿该环形跑道按逆时针方向跑步,速度为3米/秒.(1)若a =1,求甲、乙两人第一次相遇所用的时间;(2)若a >3,甲、乙两人第一次相遇所用的时间为80秒,试求a 的值.13.学校运动场环形跑道周长400m ,李老师的跑步速度是小明的35,他们从同一起点沿跑道的同一方向出发,5分钟后小明第一次与李老师相遇.求:(1)小明和李老师跑步的速度各是多少?(2)如果李老师与小明第一次相遇后立即转身沿相反方向跑,那么再过几分钟后小明第二次与李老师相遇?题型05 航行问题14.某轮船在静水中的速度为20km /h ,水流速度为4km /h ,该船从甲码头顺流航行到乙码头,再返回甲码头,共用时5h (不计停留时间),设甲、乙两码头之间的距离为km x ,则可列方程为()A .2045x x +=B . (204)(204)5x x ++-=C .5204x x +=D . 5204204x x +=+-15.轮船往返A B 、两港之间,逆水航行需要3小时,顺水航行需要2小时,水流速度为3千米/时,则船在静水中的速度是 千米/时.16.甲、乙两船分别从A ,B 码头同时出发相向而行,两船在静水中的速度都是km/h a ,水流速度是km/h b .已知甲船从A 码头到B 码头顺流而行,用了2h ;乙船从B 码头到A 码头逆流而行,用了2.5小时.(1)A ,B 两码头相距______km ;(用含有a ,b 的式子表示)(2)1.5h 后甲船比乙船多航行多少千米?(用含有b 的式子表示)(3)若两船相距50km ,且5b =时,甲船行驶的时间是多少小时?题型06 火车过桥问题17.已知某铁路桥长1500米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是60秒.则这列火车长为( )A .100mB .200mC .300mD .400m18.一列匀速前进的火车,从它进入320m 长的隧道到完全通过隧道需要18s ,隧道顶部一盏固定的灯在火车上照了10s ,则这列火车的长为 m .19.我县境内的某段铁路桥长2200m ,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s ,整列高铁在桥上的时间是25s ,试求此列高铁的车速和车长.题型07 销售问题20.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变21.某种商品的进价为100元,出售标价为150元,由于该商品积压,商店准备打折销售,为保证获得20%利润率,则要打 折.22.某商场购进了A 、B 两种商品,其中A 种商品每件的进价比B 种商品每件的进价多20元,购进A 种商品3件与购进B 种商品4件的进价相同.(1)求A 、B 两种商品每件的进价分别是多少元?(2)该商场购进了A 、B 两种商品共100件,所用资金为6900元,出售时,A 种商品按标价出售每件的利润率为25%,B 种商品按标价出售每件可获利15元.若按标价出售A 、B 两种商品,则全部售完商场共可获利多少元?(3)在(2)的条件下,A 商品按标价全部出售,B 商品按标价先出售一部分后,余下的再按标价九折出售,A ,B 两种商品全部售出,总获利比全部按标价售出获利少了150元,则B 商品按标价售出多少件?题型08 银行利率问题23.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和(本金+利息)为33852元.若设王先生存入的本金为x 元,则下面所列方程正确的是( )A .3 2.75%33825x x +´=B . 2.75%33825x x ´+=C .3 2.75%33825x ´=D .()3 2.75%33825x x +=24.李先生到银行存了一笔三年期的定期存款,年利率是4.25%,到期后取出得到本息和(本金+利息)共33825元,设王先生存入的本金为x 元,则所列方程为 .25.小明的爸爸于2021年1月1号在银行存入了2年期的定期储蓄1万元,2022年年底到期后,按如图所示的程序,小明爸爸取出的本息和(本金与利息的和)为1.05万元,该银行2年期定期储蓄的年利率是 .(结果用百分数表示)26.越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.第一次第二次第三次手续费/元0 1.8 1.2(1)小新使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小新这两次提现分别需支付手续费多少元?(2)小管使用微信至今,用自己的微信账户共提现三次,若小管第三次提现金额恰好等于前两次提现金额的差,提现手续费如表,求小管第一次提现的金额.题型09 比赛积分问题27.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A .2B .3C .4D .528.在2022年女足亚洲杯决赛中,中国女足以3:2逆转韩国女足,时隔16年再夺亚洲杯冠军!某学校掀起一股足球热,举行了班级联赛,九(1)班开局11场保持不败,共积25分,按照比赛规则,胜一场积3分,平一场积1分,负一场积0分,求该班获胜的场数.题型10 数字问题29.小王编了一道数学谜题:42233´-=W W ,若等号左、右两边的“W ”内表示同一个数字,若设这个数字为x ,则所列方程是( )A .4223103x x ´-=+B .()4223103x x +-=+C .()420233x x +-=D .()42023103x x +-=+30.一个两位数,个位上的数字为3,交换这个两位数个位和十位的数字后,得到新的两位数比原来的两位数小45,则这个两位数是 .31.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是 .题型11 规律问题32.如图,将正整数1至1000按一定规律排列,整体平移表中带阴影的三个方框,平移后被方框遮住的三个数的和可能是( )A .1002B .1004C .1006D .100833.有一列数,按一定的规律排列成:1-,3,9-,27,81-,….若其中某三个相邻数的和是567-,则这三个数中第一个数是 .34.将连续的奇数1、3、5、7…排成如图所示的数阵:(1)如图,十字框中五个数的和与框正中心的数17有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于295吗?若能,请写出这五个数;若不能,请说明理由.题型12分段计费问题35.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x公里,应付给司机21元,则x=.36.大润发和通用两家超市相同商品的标价相同,在2024新年即将到来之际,两大超市分别推出如下促销活动:大润发超市:全场均按八五折优惠;通用超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;(1)当购物总额是多少时,大润发、通用两家超市实际付款相同?(2)某顾客在通用超市购物实际付款490元,试问该顾客的选择划算吗?试说明理由.37.已知甲地到乙地的单程汽车票价为75元/人,春运期间,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打六折;非学生10人以下(含10人)没有优惠:团购:超过10人,其中10人按原价售票,超出部分每张票打八折.(1)若有8名学生乘客买票,则总票款为______元;(2)若20名非学生乘客采用团购方式买票,则总票款为______元;(3)一辆汽车共有50名乘客,其中非学生乘客若达到团购人数则按团购方式买票,已知该车乘客总票款为3000元,问:车上有学生乘客、非学生乘客各多少人?38.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过40时,应收水费为 (用x 的代数式表示);当x 超过40时,应收水费为 (用x 的代数式表示化简后的结果);(2)小明家四月份用水26立方米,五月份用水52立方米,请帮小明计算一下他家这两个月一共应交多少元水费?(3)小明家六月份交水费150元,请帮小明计算一下他家这个月用水量多少立方米?39.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=40.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x 人,根据题意,可列方程为( )A .54573x x -=+B .54573x x +=-C .54573x x -=-D .54573x x +=+41.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x 天完成,则符合题意的方程是( )A .222214530x -+=B .222213045x ++=C .222214530x ++=D .2213045x x -+=42.如图,在两个完全相同的大长方形中各放入五个完全一样的白色小长方形,得到图(1)与图(2).若AB m =,则图(1)与图(2)阴影部分周长的差是( )A.m B.54m C.65m D.76m43.如图,沿着边长为90米的正方形,按A B C D A®®®®××××××方向,甲从A以63米/分的速度,乙从B以72米/分的速度同时行走,当乙第一次追上甲时是在正方形的某个顶点处,则这个顶点是()A.顶点A B.顶点B C.顶点C D.顶点D44.在数轴上,点A、点B 表示的数分别是8-,16.点P 以2个单位/秒的速度从A 出发沿数轴向右运动,同时点Q 以3个单位/秒的速度从点B 出发沿数轴在B、A之间往返运动.当点P 到达点B 时,点Q 表示的数是.45.如下表,乐乐将7-,5-,3-,1-,1,3,5,7,9分别填入九宫格内.使每行、每列、每条对角线上的三个数之和相等,现在a、b、c、d分别标上其中的一个数,则a b c d-+-的值为.a95-3-1bd c346.一个奇怪的动物庄园里住着猫和狗,狗比猫多180只,有15的狗错认为自己是猫;有15的猫错认为自己是狗.在所有的猫和狗中,有825认为自己是猫,那么狗有只.47.如图所示“L”形图形的面积为29cm,如果4cmb=,那么a=cm.48.轮船沿江从A港顺流行驶到B港,比从B港原路返回A港少用1小时,若船自身速度为20千米/小时,水速为2千米/时,则A港和B港相距千米.a=,49.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,10+=,080a bab<.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.t>时电子蚂蚁P表示的数是______,Q表示的数是______(用含t的式子表①运动t秒()0示);②设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?50.为了丰富学生的课余生活、拓展学生的视野,学校小卖部准备购进甲、乙两类中学生书刊.若购买400本甲和300本乙共需要6400元.其中甲、乙两类书刊的进价和售价如下表:甲乙m-进价(元/本)m2售价(元/本)2013(1)求甲、乙两类书刊的进价各是多少元?(2)第一次小卖部购进的甲、乙两类书刊共800本,全部售完后总利润(利润=售价-进价)为5750元,求小卖部甲、乙两类书刊分别购进多少本?(3)第二次小卖部购进了与上次一样多的甲、乙两类书刊,由于两类书刊进价都比上次优惠了10%,小卖部准备对甲书刊进行打折出售,让利于学生,乙书刊价格不变,全部售完后总利润比上次还多赚10元,求甲书刊打了几折?51.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?52.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?53.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.1.70【分析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据他们共捐款200元列出方程,求解即可.【详解】解:设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据题意得758200x x x ++=,解得10x =,所以甲捐款770x =元,答:甲捐款70元.故答案为:70.2.3升或513【分析】根据题意和题目中的数据,可以计算出最后三个瓶中水的升数,再根据题意可以确定最少的为甲瓶中的水,然后分两种情况,列出相应的方程,再求解即可.【详解】解:(10+4)÷(3+2+1)=14÷6=73(升),则最后三个瓶中的水分别为:73=73´(升),722=433´(升),771=33´(升),∵甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,∴最后甲瓶中一定有水73升,则乙瓶中有水7升或243升,设乙瓶倒出水x 升,则10﹣x =7或10﹣x =243,解得x =3或1=53x ,即乙瓶需倒出水3升或153升,故答案为:3升或153.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程,注意要分类讨论,不要漏解.3.目前超市中纯牛奶、酸牛奶各有85箱,135箱【分析】此题考查了一元一次方程的应用,设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,A ,B 两区域的牛奶箱数之比为3:7,据此列出比例式,得到方程并解方程,进一步即可求出答案.【详解】解:设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,则根据题意可得:(22):(52)3:7x x +-=,则7(22)3(52)x x +=-解得20x =.目前纯牛奶有9220808597´+´=+(箱)目前酸牛奶有57520801397´+´=+(箱)答:目前超市中纯牛奶、酸牛奶各有85箱,135箱.4.原来两个瓶子里分别有160和100片药片.【分析】本题考查比例和百分比,先计算出最后药片的分数,根据总药品的数量求出每份的数量,从而计算出最后甲瓶中药片的数量,根据导入得比例即可求出甲瓶原有的数量,即可求得答案.【详解】解:两瓶里药片的片数之比为76:,说明甲是7份,乙是6份,甲乙一共6713+=份,一共有260片药,一共13分,∴每份药为2601320¸=片,∴最后甲瓶子有720140´=片,∴甲原来的药片数量为:71401608¸=片,∴乙瓶子原来有260160100-=片.答:甲瓶原来有160片药片,乙瓶原来有100片药片.5.B【分析】题目已经设出分配x 名工人生产螺母,则(22-x )人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【详解】解:设分配x 名工人生产螺母,则(22-x )人生产螺钉,由题意得2000x=2×1200(22-x ),故B 答案正确,故选:B .【点睛】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.生产大齿轮20人,生产小齿轮48人【分析】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,再由2个大齿轮与3个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,因为平均每人每天可加工大齿轮16个或小齿轮10个,所以x 人生产大齿轮的个数为16x 个,(68x -)人生产小齿轮的个数为10×()68x -个又两个大齿轮与三个小齿轮酿成一套,可得:3162x ´=´10×()68x -,解得:20x =,68682048x -=-=(人),答:生产大齿轮的人数为20人,生产小齿轮的人数为48人.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【分析】本题考查一元一次方程的应用和理解题意的能力.设应分配x 人生产甲种零件,则()60x -人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.【详解】解:设分配x 人生产甲种零件,则共生产甲零件24x 个和乙零件()1260x -,依题意得方程:()22412603x x =×-,解得15x =,601545-=(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.8.D【分析】用含x 的式子表示出调动后甲处和乙处的人数,再根据等量关系列方程即可.【详解】解:设应从乙处调x 人到甲处,则甲处现有的工作人数为()132x +人,乙处现有的。
人教版七年级上册《一元一次方程》应用题分类练习(二)
人教版七年级上册《一元一次方程》应用题分类练习(二)一.打折问题1.列一元一次方程解应用题为喜迎中华人民共和国成立70周年,博文中学将举行以“歌唱祖国“为主题的歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,而且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张,小红旗1面.恰好全部分完,请问贴纸和小红旗各多少袋?(3)在(2)条件下,两家文具店的有优惠如下:A.文具店:全场商品物超过800元后,超出800元的部分打八五折;B.文具店,相同商品,“买十件赠一件”.请问在哪家文具店购买比较优惠?并说明理由.2.这个星期周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.(I)2班有61名学生,他该选择哪个方案?(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?3.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:购物总金额(原价)折扣不超过5000元的部分九折超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?4.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?二.数轴问题6.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?7.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?8.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.9.如图,在数轴上点A表示的数为20,点B表示的数为﹣40,动点P从点A出发以每秒5个单位长度的速度沿负方向运动,动点Q从原点出发以每秒4个单位长度的速度沿负方向运动,动点N从点B出发以每秒8个单位的速度先沿正方向运动,到达原点后立即按原速反方向运动,三点同时出发,出发时间为t (秒).(1)点P、Q在数轴上所表示的数分别为:、;(2)当N、Q两点重合时,求此时点P在数轴上所表示的数;(3)当NQ=PQ时,求t的值10.如图,点A在数轴上表示的数是﹣6,点B表示的数是+10,P,Q两点同时分别以1个单位/秒和2个单位/秒的速度从A,B两点出发,沿数轴做匀速运动,设运动时间为t(秒).(1)线段AB的长度为个单位;(2)如果点P向右运动,点Q向左运动,求:①当t为何值时,P与点Q相遇?②当t为何值时,PQ=AB?(3)如果点P,点Q同时向左运动,是否存在这样的时间t使得P,Q两点到A点距离相等?若存在,求出t的值,若不存在,请说明理由.三.行程问题11.一个长跑训练队进行训练,训练时所有队员都以6km/h的速度前进,突然,1号队员以8km/h的速度独自跑进,跑进7km后掉头,仍以8km/h的速度往回跑,直到与其他队员会合,1号队员从离开队伍开始到与队员重新会合,经过了多长时间?12.两辆汽车从相距84km的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?13.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.14.一架在无风情况下航速为696km/h的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8h.求:(1)风速;(2)这条航线的长度.15.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?四.工程问题16.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?17.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?18.整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?19.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?参考答案1.解:(1)设每袋贴纸为x元,每条红旗为(x+5)元,根据题意列出方程可得:4x=3(x+5),∴x=15,∴x+5=20,答:每袋国旗图案贴纸和每袋小红旗的价格各是15和20元.(2)设购买贴纸y袋,购买小红旗(90﹣y)袋,根据题意可知:=20(90﹣y),∴y=40,∴90﹣y=50,答:购买贴纸40袋,购买小红旗50袋.(3)由(2)知购买贴纸40袋,购买小红旗50袋,因为贴纸每袋15元,红旗每袋20元,∴全部金额为:40×15+50×20=1600,在A文具店的应付金额为:800+800×0.85=1480,在B文具店的应付金额为:37×15+46×20=1475,答:在B文具店购买比较优惠.2.解:(Ⅰ)∵方案一:61×20×0.8=976(元),方案二:(61﹣7)×0.9×20=972(元),∴选择方案二.(Ⅱ)假设1班有x人,根据题意得出:x×20×0.8=(x﹣7)×0.9×20,解得:x=63,答:1班有63人.3.解:(1)5000×+(8000﹣5000)×=6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000×+(x﹣5000)×=57004500+0.8x﹣4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.4.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.5.解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=27.25答:办卡购书比不办卡购书共节省27.25元.6.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.7.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.8.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.9.解:(1)当运动时间为t秒时,点P表示的数为20﹣5t,点Q表示的数为﹣4t.故答案为:20﹣5t,﹣4t.(2)当0<t≤5时,点N表示的数为8t﹣40;当t>5时,点N表示的数为﹣8(t﹣5)=40﹣8t.∵当N、Q两点重合,∴8t﹣40=﹣4t或40﹣8t=﹣4t,解得:t=或t=10.当t=时,20﹣5t=;当t=10时,20﹣5t=﹣30.∴当N、Q两点重合时,点P在数轴上所表示的数为或﹣30.(3)依题意,得:|﹣40+8t﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|或|﹣8t+40﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|,解得:t1=,t2=(不合题意,舍去)或t1=,t2=12.答:t的值为或或或12.10.解:(1)∵点A在数轴上表示的数是﹣6,点B表示的数是+10,∴AB=|﹣6﹣10|=16.故答案为:16.(2)当运动时间为t秒时,点P表示的数为t﹣6,点Q表示的数为﹣2t+10.①∵点P与点Q相遇,∴t﹣6=﹣2t+10,解得:t=.答:当t的值为(秒)时,P与点Q相遇.②∵PQ=AB,∴|t﹣6﹣(﹣2t+10)|=×16,即16﹣3t=8或3t﹣16=8,解得:t=或t=8.答:当t的值为或8(秒)时,PQ=AB.(3)当运动时间为t秒时,点P表示的数为﹣t﹣6,点Q表示的数为﹣2t+10.∵PA=QA,∴|﹣t﹣6﹣(﹣6)|=|﹣2t+10﹣(﹣6)|,即t=16﹣2t或t=2t﹣16,解得:t=或t=16.答:存在这样的时间t使得P,Q两点到A点距离相等,t的值为或16(秒).11.解:设经过x小时后1号队员与队员重新会合,依题意得:8x+6x=7×2,解得:x=1,答:经过1小时后,1号队员与队友重新会合.12.解:设乙车的速度为xkm/h,甲车的速度为(x+20)km/h,根据题意得:(x+x+20)=84,解得:x=74,∴74+20=94,则甲车速度为94km/h,乙车速度为74km/h.13.解:设公路长x千米,则海路长(x﹣40)千米,﹣(10﹣7)=,解得x=280,280﹣40=240,答:公路长280千米,海路长240千米;解法二:设汽车行驶x小时,则轮船行驶(x+3)小时,40x=24(x+3)+40,解得x=7.公路长40x=280 千米,海路长24(x+3)=240 千米答:公路长280千米,海路长240千米.14.解:(1)设风速为xkm/h,根据题意得:3(696﹣x)=2.8(696+x)解得:x=24,所以风速为24km/h;(2)航线的长度为3×(696﹣24)=2016km,答:这条航线的长度为2016km.15.解:(1)设乙队追上甲队需要x小时,根据题意得:6x=4(x+1),解得:x=2.答:乙队追上甲队需要2小时.(2)设联络员追上甲队需要y小时,10y=4(y+1),∴y=,设联络员从甲队返回乙队需要a小时,6(+a)+10a=×10,∴a=,∴联络员跑步的总路程为10(+)=答:他跑步的总路程是千米.(3)要分三种情况讨论:设t小时两队间间隔的路程为1千米,则①当甲队出发不到1h,乙队还未出发时,甲队与乙队相距1km.由题意得4t=1,解得t=0.25.②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)=4×1﹣1,解得:t=2.5.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)═4×1+1,解得:t=3.5.答:0.25小时或2.5小时或3.5小时两队间间隔的路程为1千米.16.解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.17.解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.18.解:设具体应先安排x人工作,根据题意得:+=1,即:x+2(x+2)=10,解得:x=2.答:具体应先安排2人工作.19.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.20.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)∵甲单独做完整个工程需要12×2000=24000,乙单独做完整个工程需要24×1500=36000,∴应该让甲尽量多做,剩下的乙来做.所以甲做10天,乙做4天,总费用26000元,故甲乙合干4天,剩下的甲再干6天完成任务.。
七年级数学上第3章一次方程与方程组3.2一元一次方程的应用第2课时行程问题习题新版沪科版8
素养核心练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月21日星期一2022/3/212022/3/212022/3/21
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/212022/3/212022/3/213/21/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/212022/3/21March 21, 2022
起飞,7天后到达北海;大雁从北海起飞,9天后到达
南海,今野鸭和大雁分别从南海和北海同时起飞,几
天后相遇?设x天后相遇,可列方程为( B )
A.(7+9)x=1
B.17+19x=1
C.19-17x=1
D.17-19x=1
9.[2021·阜阳颍州区期末]中国古代数学著作《算法统宗》 中有这样一题:“三百七十八里关,初日健步不为难, 次日脚痛减一半,六朝才得到其关.”其大意是:有 人要去某关口,路程为378里,第一天健步行走,从 第二天起,由于脚痛,每天走的路程都为前一天的一 半,一共走了六天才到达目的地.请你求出此人第六 天走的路程.
解:2.5分钟=150秒,设列车的长度是x米. 根据题意,得7 310500+x=x4,解得 x=200. 列车的行驶速度为200÷4=50(米/秒).
答:列车的长度是200米,行驶速度是50米/秒.
8.我国古代名著《九章算术》中有一个问题,原文:
“今有凫起南海,七日至北海;雁起北海,九日至南
海.今凫雁俱起,问何日相逢?”译文:野鸭从南海
(2)A ,B两地相距多少千米?
初一数学一元一次方程的应用——行程问题
初一数学一元一次方程的应用——行程问题行程问题与一元一次方程的联系行程问题,属于一类所谓的“线性优化问题”,是一元一次方程的一种特殊应用。
基本的行程问题涉及求解一趟行程的最短时间,最短路径或者最少的花费,有时候它还要考虑动态的变化因素。
一元一次方程系统也可以用来求解行程问题,例如每一段路径的路程量,行驶时间和费用等信息。
行程问题是一类让人们在最短的时间内从一个地方到达另外一个地方的问题。
使用一元一次方程为基础,可以寻求一条比较理想的行程,并且它的路程总耗费也最少。
例如,有一位旅行者从广州出发,要到深圳终点,当用一元一次方程来研究其中的路途,就会发现它可以比较快地确定一条比较最优的行程。
因此,一元一次方程可以应用在行程问题上,可以让游客比较容易地求得一条有效最优行程。
接下来就看到一元一次方程在行程问题上有什么具体的应用案例:首先,当有一个普通的行程问题时,比如,要求从一个地点去往另一个地点的最短路程,可以将信息用一元一次方程来表达,再建立一个诸如“最大效益函数”之类的函数表达式,对于代价和时间权衡,求出一个最优目标点,以期获得最小耗费(或者各项费用权衡)和最短时间,使得游客可以以最快的时间内到达终点。
其次,在遇到一些动态变化的问题时,也可以利用一元一次方程来解决,比如,要在一段固定的时间里走最短的路径,可以先计算出各个路径的距离所花的费用,然后根据当前时速求解出走每一条路径所花的时间,再综合考虑各种因素,推算出一条最短的行程。
总而言之,一元一次方程可以用来求解行程问题,这样可以使游客更快地到达目的地,节省时间和金钱,也增加了出行的便利性。
希望大家再出游时多多利用一元一次方程来搜索最优行程,让出行更有效率,轻松愉快。
人教版七年级数学上册实际问题与一元一次方程(配套+行程问题)同步训练
17.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.
(1)调入多少名工人;
(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?
18.应分配30人生产甲种零件,45人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.
19.(1)80千米;(2)租用甲车合算
20.(1)15,45,180;(2) 小时或 小时
A. ቤተ መጻሕፍቲ ባይዱ.
C. D.
二、填空题
9.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分 张做侧面,另一部分 张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为__________.
10. 个工人生产螺栓和螺母,已知一个工人每天生产 个螺栓或 个螺母,且一个螺栓配 个螺母,如何分配工人使生产的螺栓与螺母恰好配成套.如果设生产螺栓的工人数为 个,根据题意可列方程为:__________________.
A. B.
C. D.
3.河北省某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有 名,则可列方程为()
A. B.
C. D.
4.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排 名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()
期末专训:一元一次方程应用题(行程问题)2023-2024学年人教版数学+七年级上册+
人教版数学2023-2024学年七年级上册期末专训一元一次方程应用题(行程问题)1.甲、乙两人练习短跑,甲每秒跑7m,乙每秒跑6.5m.(1)如果甲让乙先跑5m,那么甲追上乙需要多长时间?(2)如果甲让乙先跑1s,那么甲追上乙需要多长时间?(3)如果两人比赛百米短跑,甲让乙先跑0.5s,甲是否可以在终点前追上乙?2.某客运公司的甲、乙两辆客车分别从相距380千米的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时10分钟时也经过C地,未停留继续开往A地.(1)求甲、乙两车行驶的速度分别是多少千米/小时:(2)乙车出发多长时间,两车相距200千米?3.甲、乙两地相距2240km、复兴号高铁从甲地出发,平均每小时行320km;和谐号动车从乙地出发,平均每小时行240km.6.如图,M,N两地相距50千米,甲、乙两人于某日下午从M地前往N地,图中的折线ABC和线段EF分别表示甲与乙所行驶的路程s和时间t的关系.根据图象回答下列问题:(1)甲出发小时后,乙才开始出发;(2)甲在BC段路程中的平均速度是千米/小时;乙的平均速度是千米/小时;(3)乙出发后经过几小时就追上甲?7.(列方程解答)2023年10月18日至22日,中国体育彩票亚洲青年攀岩锦标赛在九龙坡区华岩壁虎国家攀岩示范公园(下简称攀岩公园)举行,来自亚洲各国的百余名运动员参加了比赛.10月19日,小刘从家出发以3km/h的速度沿A路线匀速步行前往攀岩回家.已知A路线比B路线的路程多1km,且小刘从家出发起到回到家止总计用时3.5小时.(1)求B路线路程是多少千米?(2)10月20日,小刘与小王相约去攀岩公园观赛.小刘以5km/h的速度沿B路线匀速步行前往,小王比小刘晚出发6分钟,以3km/h的速度匀速步行前往,结果两人同时到达,求小王去攀岩公园行走的路程是多少千米?8.小明离家去市中心的体育馆看球赛,进场时发现门票忘在家中,此时离比赛开始还有45分钟,于是他立即步行(匀速)回家取票.在家取票用时2分钟,取到票后,他急忙骑自行车(匀速)赶往体育馆,终于在比赛开始前3分钟赶到体育馆门口,已知小明步行的速度是80米/分,骑自行车的速度是步行速度的3倍.你知道小明家离体育馆多远吗?9.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B 期间速度变为原来的一半,之后立刻恢复原速,当点P到终点C时停止运动:点P出发同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到运动的时间为t 秒,问:(1)3t 秒时,点P 在“折线数轴”上所对应的数是______;点P 到点Q 的距离是______个单位长度:(2)动点Q 从点C 运动至A 点需要______秒;(3)当t 为______时,P Q 、两点在数轴上相距的长度为3个单位?(4)如果动点P O 、两点在数轴上相距的长度与Q B 、两点在数轴上相距的长度相等,直接写出求出t 的值______.10.陈老师用电动车从学校门口送两位同学甲和乙到图书馆参加书法比赛,图书馆距离学校10千米,此时离比赛开始只剩1小时,甲和乙的步行速度均为5千米/时,用电动车一次只能送一个人,电动车的速度是20千米/时,(1)若陈老师先把甲送到图书馆,再回头接乙,乙一直在学校门口等老师来接,那么陈老师把两位同学都送到图书馆一共用______小时;(2)为了能尽快到达图书馆,甲乙两人商定,由甲先乘坐老师的电动车去,乙先步行,同时出发,陈老师将甲送达图书馆,立刻回头接乙,甲乙都能在比赛前到达图书馆吗? (3)为了使两位同学都能在比赛前到达图书馆,请你帮他们设计一种方案,使得两人都到达图书馆所用的时间最少,并计算出最短时间.13.某学校七年级学生组织步行到郊外旅行,701班学生组成前队,速度为每小时4千米, 702班同学组成后队,速度为每小时6千米,前队出发1小时后,后队才出发,同时,后队派出一名联络员骑自行车在两队之间不断地来回进行联络,骑车的速度是每小时12千米(队伍长度忽略不计).(1)后队出发后多长时间可以追上前队?(2)后队刚好追上前队时,联络员共骑行了多少千米?(3)联络员出发到他第一次追上前队的过程中,何时联络员离前队的距离与他离后队的距离相等?14.M N 、两地相距600km ,甲、乙两车分别从M N 、两地出发,沿一条公路匀速相向而行,甲与乙的速度分别为100km /h 和20km /h ,甲从M 地出发,到达N 地立刻调头返回M 地,并在M 地停留等待乙车抵达,乙从N 地出发前往M 地,和甲车会合.(1)求两车第一次相遇的时间(用一元一次方程解答);(2)直接写出甲车出发多长时间,两车相距20km .15.在全民健身运动中,骑自行车越来越受到市民青睐,从A地到B地有一条自行车骑行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.(1)小明和小军相约在上午8时同时从各自出发地出发,匀速前行,到上午10时,他们还相距30km,到中午12时,两人又相距30km.求A、B两地间的自行车道的距离.(2)因骑自行车的市民越来越多,政府决定重新改建一条自行车道,改建的自行车道比A、B两地的距离多30km,某工程队由于采用了更加先进的修路技术和修路机器,每天可以比原计划的改建里程多20%,结果完成此项修路工程比原计划少用了5天.若每天付给工程队的施工费用为4万元,则完成工程后,一共付给工程队的费用是多少?参考答案:1.(1)甲追上乙需要10秒(2)甲追上乙需要13秒(3)甲可以在终点前追上乙2.(1)60千米/时,120千米/时(2)1或103小时3.(1)若两车同时相向出发,4小时后相遇(2)若两车同时相向出发,出发后3小时或5小时两车相距560km(3)两车同时同向出发,和谐号动车在前复兴号高铁在后,28小时后两车相遇4.(1)外环公路的总长和市区公路长的比为6:5(2)市区公路的长为10km5.(1)经过2小时两人相遇.(2)127或167小时后两人相距10千米.6.(1)1(2)10;50(3)乙出发后经过0.5小时就追上甲7.(1)2(2)9 108.小明家离体育馆2400米. 9.(1)6 ;23;(2)27;(3)11或13秒;。
一元一次方程应用题-行程问题
03 相遇与追及问题
相遇问题建模与求解
• 相遇问题的基本等量关系:甲走的路程+乙走的路程=甲 乙相距的总路程。
相遇问题建模与求解
相遇问题的建模步骤
根据题意,列出一元 一次方程。
设未知数,一般为时 间或速度。
相遇问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。
相遇问题的常见类型
相遇问题建模与求解
实例分析
01
例1
02
运动员在400米的环形跑道上练 习跑步,他每分钟跑160米,问 他5分钟后跑了多少圈?
解
设运动员5分钟后跑了$x$圈,则 他跑的总路程为$400x$米。根 据速度和时间的关系,他5分钟 跑的路程是$160 times 5 = 800$米。因此,可以建立方程 $400x = 800$,解得$x = 2$。 所以,运动员5分钟后跑了2圈。
追及问题的建模步骤 设未知数,一般为时间或速度。
根据题意,列出一元一次方程。
追及问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。 追及问题的常见类型
追及问题建模与求解
同时同地出发的追及问题
两人或两车同时同地出发,一人或一车速度快,经过一段时间追上另一人或车。
同时异地出发的追及问题
两人或两车同时从两地出发,一人或一车速度快,经过一段时间在途中追上另 一人或车。
相遇与追及综合应用
• 相遇与追及的综合应用问题通常涉及到多个对象、多个时间段 和多种运动方式。解决这类问题的关键在于正确识别各个对象 之间的相对运动关系,并根据这些关系建立数学模型。
相遇与追及综合应用
建模步骤
1
2
分析题意,确定各个对象的初始状态和运动方式。
北师大版七年级数学上册第五章一元一次方程应用题行程问题专题讲解
一元一次方程应用题行程问题专题讲解行程问题中最核心的数量关系就是:路程=速度×时间,当然由于所处的背景会发生变化,所以公式在不同情况下会进行延伸性的发展,那么在做这类题的时间首先要根据题目来确定是何种类型,数量关系具体如何表示的。
今天针对行程问题来进行分类讲解:题型一:相向而行(相遇问题)例1:A、B 两站相距300 千米,一列快车从A 站开出,行驶速度是每小时60 千米,一列慢车从B 站开出,行驶速度是每小时40 千米,快车先开15 分钟,两车相向而行,快车开出几小时后两车相遇?训练1.小李和小刚家距离900 米,两人同时从家出发相向行,小李每分走60 米,小刚每分走90 米,几分钟后两人相遇?2.小明和小刚家距离900 米,两人同时从家出发相向行,5 分钟后两人相遇,小刚每分走80 米,小明每分走多少米?3.王强和赵文从相距2280 米的两地出发相向而行,王强每分行60 米,赵文每分行 80 米,王强出发3 分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360 千米的两地出发相向而行,甲车先出发,每小时行60 千米,1 小时后乙车出发,每小时行40 千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8.AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?题型二:同向而行(追及问题)例2:A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?训练1.姐姐步行速度是75米分,妹妹步行速度是45米/分。
完整版)一元一次方程应用行程问题
完整版)一元一次方程应用行程问题行程问题是数学中常见的应用问题之一,其中最基本的关系是路程等于速度乘以时间,速度等于路程除以时间,时间等于路程除以速度。
在相遇问题中,甲、乙相向而行时,它们的路程之和等于总路程。
在追及问题中,当甲、乙同向不同地时,追者的路程等于前者的路程加上两地间的距离。
当甲、乙同向同地不同时,追者的路程等于前者的路程。
在环形跑道问题中,当甲、乙在环形跑道上同时同地同向出发时,快的必须多跑一圈才能追上慢的;当它们同时同地反向出发时,它们相遇时的总路程为环形跑道一圈的长度。
在飞行(航行)问题中,顺风(顺水)速度等于无风(静水)速度加上风速(水速),逆风(逆水)速度等于无风(静水)速度减去风速(水速),因此顺风(水)速度减去逆风(水)速度等于2倍的风(水)速。
在车辆(车身长度不可忽略)过桥问题中,车辆通过桥梁(或隧道等)时,它的行驶路程等于桥梁(隧道)长度加上车身长度。
在超车(会车)问题中,超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差;会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和。
在解决行程问题时,可以画出行程图来更直观、更容易理解问题的分析过程。
此外,列表分析也是解决行程问题的一种重要方法。
典型例题中的相遇问题包括甲、乙相向而行的情况。
例如,甲、乙两站相距600km,慢车每小时行40km,快车每小时行60km。
经过x小时后,慢车行了40x km,快车行了60x km,两车共行了100x km。
如果两车同时开出,x小时后相遇,可得方程40x+60x=600,解得x=6.如果两车相向而行,快车先行50km,在慢车开出y小时后两车相遇,可得方程40(y+50)+60y=600,解得y=2.如果两车相向而行,慢车先开50分钟,在快车开出t小时后两车相遇,可得方程40(t-50/60)+60t=600,解得t=2.5.另一个例题是甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米。
专题07 一元一次方程实际应用的六种考法-2023年初中数学7年级上册同步压轴题(学生版)
专题07 一元一次方程实际应用的六种考法1. 数字问题例.(1)把100拆分成2个数的和,使得第一个数加3,第二个数减3,得到的结果相等.则拆分成的这两个数分别是和;(2)把100拆分成2个数的和,使得第一个数乘2.第二个数除以2,得到的结果相等.则拆分成的这两个数分别是和;(3)把100拆分成4个数的和,使得第一个数加5,第二个数减5,第三个数乘5,第4个数除以5,得到的的结果都相等,问拆分成的这四个数分别是多少.【变式训练1】将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?【变式训练2】如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x,用含x的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?【变式训练3】将连续的偶数0,2,4,6,8,…排成如图所示的数表.(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x,用代数式表示十字形框内五个数之和为______;(2)若将十字形框上下左右移动,可框住另外五个数,这五个数还有上述规律吗?直接写出答案,不需要证明;(3)十字形框能否框到五个数,使这五个数之和等于2400呢?若能,请写出这五个数,若不能,请说明理由.2.配套问题例.列方程解应用题某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒,再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条,每条灌装生产线每小时装350瓶,每条装箱生产线每小时装450瓶.某日,生产前车间内已有未装箱的瓶装啤酒5200瓶,8:00开始,车间内的生产线全部投入生产.(1)若当日到10:00时,该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x条,当日到10:00时,灌装生产线共装多少瓶啤酒(用含x的代数式表示)?该车间内灌装生产线有多少条?(2)若该日车间工作8小时,灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?【变式训练1】小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A种方法剪裁的有x张白板纸.(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?【变式训练2】某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)【变式训练3】某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?3. 销售利润问题例.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?【变式训练1】“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.【变式训练2】某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为300元.(1)A、B两种产品的销售单价分别是多少元?(2)今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高2a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2%3a.求a的值.【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【变式训练4】武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?4. 工程问题例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程,由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米,经过5天施工后,两个小队共完成施工路段135米.(1)求甲、乙两个小队平均每天各施工多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲队平均每天能比原来多施工1米,乙队平均每天能比原来多施工2米,甲、乙同时按此施工,能够比原来提前多少天完成道路改造任务?【变式训练1】某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程,该工程预算国拨总投资为24亿元,分土建、路面、设施三个建设项目,路面投资占土建投资的45,设施投资比土建投资少40%、由于物价的上涨,工程建设实际总投资随之增长,路面投资的增长率是土建投资增长率的2.5倍,设施投资的增长率达到路面投资增长率的2倍,(1)三个项目的预算投资分别是多少亿元?(2)由于合理施工,使公路提前半年通车,每月可通行车辆100万辆,每辆车的平均收益为40元.这样,可将提前半年通车收益的70%用于该工程建设的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与土建投资的增长率相同,该工程的实际总投资是多少亿元?5. 行程问题例.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为(km)s )与甲行驶的时间为(h)t 之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的横线上.①甲到达终点_________.②甲乙两人相遇_________.③乙到达终点_________.(2)AB 两地之间的路程为_________千米;(3)求甲、乙各自的速度;(4)如果乙到达A 地后立刻原路原速返回到B 地,在甲到达B 地的过程中,甲出发_________小时,甲乙相距100千米.【变式训练1】为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.【变式训练2】随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择,某市有出租车、滴滴快车等网约车,收费标准见下图.(1)若乘坐这两种网约车的里程数都是9公里,则发现乘坐出租车最节省钱,求乘坐出租车费用为多少元?(2)若从甲地到乙地,乘坐滴滴快车比出租车多用15元,求甲、乙两地间的里程数.【变式训练3】A、B两地相距480km,C地在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地岀发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间;(3)若轿车到达B地后,立刻以120km/h的速度原路返回,再次经过C地,两次经过C地的时间间隔为2.2h,求C地距离A地路程.6. 方案问题例.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你如何购买门票才能最省钱?【变式训练1】2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A :买一件运动速干衣送一双运动棉袜;方案B :运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x 双(30x >).(1)若该户外俱乐部按方案A 购买,需付款_______元(用含x 的代数式表示);若该户外俱乐部按方案B 购买,需付款_______元(用含x 的代数式表示).(2)若x =40,通过计算说明此时按哪种方案购买较为合算:(3)当购买运动棉袜多少双时两种方案付款相同.【变式训练2】某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a + 小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b + 小时.(1)当1a b ==时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A 、B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?【变式训练3】某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?课后作业1.[教材改编]改编华师版七年级下册数学教材第19页的部分内容.问题3课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要__________天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?[拓展]在问题3中,如果两人合作完成后共得报酬450元,工作量相同部分的报酬,师徒按3:2分配,余下的工作量所得报酬分配给该部分完成者,请直接写出师徒各得的报酬.2.为打造“安全、环保、生态”的某河流公园,某市设立若干河流排污治理点(每处需安装相同长度的排污治理管道),一天甲队3名工人去完成5个治理点管道铺设,但还有60米管道未来得及完成,乙队4名工人完成5个治理点后,仍多铺设了40米管道,每名甲队工人比乙队工人每天多铺设20米管道.(1)求每个排污治理点需铺设的管道长度;(2)已知每位甲队工人每天需支付费用500元,每名乙队工人每天需支付400元,该市共设立50个排污治理点,另有5880米的同样的污水排放管道也需要安装.现有甲队3名工人,乙队4名工人来安装管道,方案一:全部由甲队安装;方案二:全部由乙队安装;(不到一天按一天算).若要使总费用最少,应选择哪种方案?请通过计算说明.3.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?4.某次篮球联赛积分榜如下表所示:(1)通过观察积分表,填空:胜一场得分,负一场得分.(2)雄鹰队也参加了本次篮球联赛,获得积分25分,问雄鹰队的胜、负场次情况.(3)联赛中还有一个队伍,队长电话向当地组织者汇报,说队伍在比赛中获得胜场和负场的积分一样多,请你通过数学计算判断该队长是否说谎.x x≥名学生组成的旅游团,准备到某地旅游,甲,乙两家旅行社的服务质量相5.假期,某校4位教师和()1同,且报价都是每人200元.经过协商,甲旅行社表示若4位游客全额收费,则给予其余游客七折优惠;乙旅行社表示若游客5人以上(含5人)可给予每位游客八折优惠.(1)若有10名学生参加旅游团,这个旅游团选择甲旅行社的总费用是_____________元,选择乙旅行社的总费用是_____________元,选择_____________旅行社更省钱.(2)根据学生人数,该旅游团选择哪一家旅行社支付的旅游总费用较少?6.材料一:对于任意一个四位正整数t,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之差的绝对值的3倍,则称这个四位数t 为“好运数”.例如:7632t =,因为72363+=-,所以7632是“好运数”.材料二:将一个四位正整数m 的百位数字和十位数字交换位置后,得到一个新的四位数m ',规定:F (m )=m ﹣m ',例如:F (2146)=2146﹣2416=﹣270.(1)判断7302,1345是否为“好运数”,并说明理由;(2)“好运数”n 的千位上的数字是十位上的数字的2倍,个位上的数字是1,求()F n 的最大值.7.如图,A 、B 两地相距90千米,从A 到B 的地形依次为:50千米平直公路,20千米上坡公路,20千米平直公路.甲从A 地开汽车前往B 地,乙从B 地骑摩托车前往A 地,汽车上坡的速度为100千米/小时,平直公路的速度为120千米/小时;摩托车下坡的速度为80千米/小时,平直公路的速度为60千米/小时;甲、乙两人同时出发.(1)求甲从A 到B 地所需要的时间.(2)求乙从B 到C 地所需要的时间.(3)求两人出发后经过多少时间相遇?8.如图是某月的月历.(1)带阴影的方框中的9个数的和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图1的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框的大小,将方框移动几个位置试一试,你能得出什么结论?请说明其中的理由.(4)这个结论对于任何一个月的月历都成立吗?(5)如图2,如果带阴影的方框里的数是4个,请直接写出你发现的结论.。
2021年七上数学期中复习-一元一次方程的实际应用-行程问题
2021年七上数学期中复习-一元一次方程的实际应用-行程问题一元一次方程的实际应用-行程问题专训单选题:1、(2021玉州.七上期末) 小明骑自行车到学校上学,若每小时骑15千米,可早到10分钟,若每小时骑13千米,则迟到5分钟,设他家到学校的路程为x千米,下列方程正确的是()A .B .C .D .2、(2019江北.七上期末) 甲、乙两人从同一个地点出发,沿着同一条线路进行赛跑练习,甲每秒跑7米,乙每秒跑米,甲让乙先跑5米,设x秒后甲可以追上乙,则下面列出的方程不正确的是A .B .C .D .3、(2019西湖.七上期末) 某人以每小时5千米的速度从家步行到单位上班,下班时以每小时4千米的速度按原路返回,结果发现下班路上所花的时间比上班路上所花的时间多10分钟,如果设上班路上所花的时间为小时,则下列根据题意所列方程正确的是()A .B .C .D .4、(2019萧山.七上期末) A,B两地相距720km,甲车从A地出发前往B地,行驶120km 后,乙车从B地驶往A地,3h后两车相遇,若乙车速度是甲车速度的倍,设甲车的速度为则可列方程()A .B .C .D .5、(2019大东.七上期末) 小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得()A . 4+3x=25B . 12+x=25C . 3(4+x)=25D . 3(4﹣x)=256、(2019如皋.七上期末) 一船在静水中的速度为,水流速度为,从甲码头顺流航行到乙码头,再返回甲码头共用若设甲、乙两码头的距离为xkm,则下列方程正确的是A .B .C .D .7、(2017保山.七上期末) 轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A . +3= ﹣3B . ﹣3= +3C . +3=D . ﹣3=8、(2020甘州.七上期末) 早晨上学时,每小时走5千米,中午放学沿原路回家是,每小时走4千米,结果回家所用的时间比上学所用的时间多10分钟,问李聪家到学校有多远?设李聪与学校相距千米,那么列出的方程应是()A .B .C .D .9、(2020黄冈.七上期末) 某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走米,一列火车以每小时千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过秒,如果队伍长米,那么火车长()A . 1500米B . 1575米C . 2000米D . 2075米10、(2020宜兴.七上月试) 一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A . 7.5秒B . 6秒C . 5秒D . 4秒填空题:11、(2021绍兴.七上月试) 一列匀速行驶的高铁列车在行进途中经过一个长1200米的隧道,已知列车从进入隧道到离开隧道共需8秒时间.出隧道后与另一列长度和速度都相同的列车相遇,从相遇到离开仅用了2秒,则该列车的长度为________米.12、(2019嵊州.七上期末) 父亲带着两个儿子向离家33千米的奶奶家出发,父亲有一辆摩托车,速度为25千米小时,如果再载了另一个人,则速度为20千米小时摩托车不允许带两个人,即每车至多载两人每个儿子如果步行速度为5千米小时,为尽快到达奶奶家,出发时,父亲让第二个儿子先步行,将第一个儿子载了一段路程后让其步行前往奶奶家,并立即返回接步行的第二个儿子,结果与第一个儿子同时到达奶奶家,则在路上共计用的时间为________小时.13、(2021松北.七上期末) 轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距________千米.14、(2019法库.七上期末) 一列火车正在匀速行驶,它先用秒的时间通过了一条长米的隧道(即从车头进入入口到车尾离开出口),又用秒的时间通过了一条米的隧道,求这列火车的长度.设火车长度为米,根据题意可列方程________.15、(2019海安.七上期末) 一列火车匀速行驶,经过一条长510m的隧道需要25s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是8s.这列火车的长度为________m.16、(2017宜兴.七上期末) 甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.17、(2016郯城.七上期末) 小明从家里骑自行车到学校,每小时骑15千米,可早到10分钟;每小时骑12千米,就会迟到5分钟.问他家到学校的路程是多少千米?设他家到学校的路程为x千米,则根据题意列出的方程是________.18、(2020海安.七上期中) 一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时。
部编数学七年级上册专题07一元一次方程的应用(12大考点)专题讲练(解析版)含答案
专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。
1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。
3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。
初一数学一元一次方程的应用——行程问题
初一数学一元一次方程的应用——行程问题一元一次方程在我们的日常生活中有着广泛的应用,其中之一便是用来解决行程问题。
行程问题是数学中常见的问题之一,我们可以利用一元一次方程来解决这类问题。
下面就让我们来详细了解一下一元一次方程在行程问题中的应用。
首先,我们来了解一下什么是一元一次方程。
一元一次方程是指只含有一个未知数并且其最高次数为1的方程。
一般的一元一次方程的一般形式为ax + b = c,其中a、b、c为已知数,x为未知数。
解一元一次方程的方法有直接解法、减项相等法和两根性质法等。
在行程问题中,我们通常会用到减项相等法来解决问题。
接下来,让我们通过一个具体的例子来应用一元一次方程解决行程问题。
假设小明骑自行车去学校的路程是20公里,他第一部分路程以每小时10公里的速度骑行,第二部分路程以每小时15公里的速度骑行。
问他花了多少时间到达学校?首先,我们设他骑第一部分路程的时间为x小时,那么根据速度等于路程除以时间的公式,我们可以得到第一部分路程的方程:10x=20。
接着,我们设他骑第二部分路程的时间为y小时,同样根据速度等于路程除以时间的公式,我们可以得到第二部分路程的方程:15y=20。
最后,我们根据他的总时间为x+y,可以得到总时间的方程:x+y=总时间。
现在我们来解这个方程组。
首先代入第一部分路程的方程可以得到x=2,代入第二部分路程的方程可以得到y=4/3。
最后代入总时间的方程可以得到总时间为2+4/3=10/3小时。
通过这个例子,我们可以看到一元一次方程在解决行程问题中的应用。
在这个问题中,我们成功地通过一元一次方程解决了小明骑自行车去学校的时间问题。
除了上面的例子之外,一元一次方程还可以应用在汽车追击问题、飞机风速问题等不同的行程问题中。
通过设置未知数、建立方程组以及解方程的方法,我们可以很方便地解决这些行程问题。
在解决行程问题的过程中,我们需要根据具体的情况来建立合适的方程,这样才能更准确地解决问题。
2020_2021学年七年级数学上册章节同步讲解练习下应用一元一次方程_行程问题pdf新版新人教版
【答案】
解:(1)AB 的长为: 3 2 =5 (2)由题意可得: x 2 3 2 0.5 ;
(3)设动点 M 经过 t 秒恰好追上动点 N,由题意列方程,得:
A.96 里
B.48 里
C.24 里
D.12 里
【答案】B
二、填空题
6.(2020·古田县第十中学初一月考)一环形跑道长 400 米,小明跑步每秒行 5 米,爸爸骑自行车每秒 15 米,两人同时同地反向而行,经过_____秒两人首次相遇. 【答案】20 7.(2019·广东省初一期末)一条船顺流航行,每小时行驶 20 千米;逆流航行,每小时行驶 16 千米若水 的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 【答案】18 8.(2020·广东省初三月考)元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽 马日行一ቤተ መጻሕፍቲ ባይዱ五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马_______天可以追上驽马.
【答案】20 9.(2020·吉林省中考真题)我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的 马每天走 240 里,跑得慢的马每天走 150 里.慢马先走 12 天,快马几天可以追上慢马?设快马 x 天可以追 上慢马,根据题意,可列方程为______. 【答案】(240-150)x=150×12 10.(2020·耒阳市冠湘中学初一月考)如图所示,甲、乙两人沿着边长为 10m 的正方形,按 A→B→C→D →A…的方向行走,甲从 A 点以 5m/分钟的速度,乙从 B 点以 8m/分钟的速度行走,两人同时出发,当甲、 乙第 20 次相遇时,它们在_______边上。
2021年七上数学同步练习-方程与不等式_一元一次方程的实际应用-行程问题-综合题专训及答案
(3) 如图,PO=1,点P在AB的上方,且∠POB=60°,点P绕着点O以30度/秒的速度在圆周上逆时针旋转一周停止
,同时点Q沿线段AB自点A向点B运动,若P、Q两点能相遇,求点Q的运动速度.
12、
(2020东台.七上期末) 如图,射线 上有三点 、 、 ,满足
,
,
,点 从
点 出发,沿 方向以
的速度匀速运动,点 从点 出发在线段 上向点 匀速运动,两点同时出发,当
(1) 已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长. (2) 已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发 ,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒. ①若点P点Q同时出发,且当点P与点Q重合时,求t的值.
;小康练习跑步,平均每分钟
跑
,两人同时同地出发.
(1) 若两人反向出发,经过多少时间首次相遇?
(2) 若两人同向出发,经过多少时间首次相遇?
14、
(2020绍兴.七上期中) 如图,数轴的单位长度为1.
(1) 如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________; (2) 当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此 时点M所表示的数;若不存在,说明理由; (3) 在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个 单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少? 15、 (2020东胜.七上期中) 一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速 度是3千米/时,求: (1) 汽艇在静水中的速度; (2) A、B两地之间的距离.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年七年级数学上册尖子生同步培优题典【浙教版】
专题5.6一元一次方程的应用(2)行程问题
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2019秋•赣榆区期末)A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()
A.2.5B.2或10C.2.5或3D.3
2.(2019秋•平顶山期末)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()
A.4小时B.4.5小时
C.5小时D.4小时或5小时
3.(2019春•浦东新区期中)甲、乙两人从同一地点出发,如果甲先出发3小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是()
A.甲和乙所用的时间相等B.乙比甲多走3小时
C.甲和乙所走的路程相等D.乙走的路程比甲多
4.(2019秋•姑苏区期末)甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点()A.7.5米B.10米C.12米D.12.5米
5.(2020春•溧水区期末)某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()
A.180m B.200m C.240m D.250m
6.(2020•海门市二模)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安.同几何日相逢?
译文:甲从长安出发,5日到齐国.乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发.问
甲经过多少日与乙相逢?设甲经过x日与乙相逢,可列方程.()
A.7
x+2+
5
x
=1B.
7
x+2
−
5
x
=1C.
x+2
7
=
x
5
D.
x+2
7
+
x
5
=1
7.(2020•娄星区一模)《九章算术》是中国传统数学的重要著作,其中有一道题,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”意思是:走路快的人走100步时,走路慢的人只能走60步;若走路慢的人先走100步,则走路快的人要走多少步才能追上对方?运用所学的知识可求得走路快的人追上走路慢的人需要走的步数是()
A.250步B.200步C.150步D.100步
8.(2019秋•正定县期末)长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()
A.200s B.205s C.210s D.215s
9.(2019秋•富锦市期末)某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()
A.14B.15C.16D.17
10.(2019秋•大兴区期末)已知下列四个应用题:
①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现
甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?
②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几
小时后两人相遇后又相距20km?
③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km
后,乙再出发,问乙出发后几小时两人相遇?
④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几
小时后两人相距60km?
其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()
A.①②③④B.①③④C.②③④D.①②
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2019秋•庐阳区期末)甲、乙两站相距80公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车后面追赶慢车,快车与慢车相距30公里时快车行驶的时间为.。