热分析(DSC)解析PPT课件
热分析ppt幻灯片课件(2024)
2024/1/28
26
化学反应动力学研究
01
反应速率常数测定
通过热分析技术,可以测定化学 反应的速率常数,了解反应在不 同温度下的速率变化。
02
反应活化能计算
03
反应机理研究
利用热分析数据,可以计算化学 反应的活化能,揭示反应发生的 难易程度。
结合热分析结果,可以推测化学 反应的可能机理,为深入理解反 应过程提供依据。
2024/1/28
拟合函数选择
根据数据特点选择合适的拟合函数,如多项式、指数、对数等。
拟合参数求解
利用最小二乘法等数学方法求解拟合参数,使拟合曲线与实际数据 最佳匹配。
拟合优度评估
通过计算相关系数、残差平方和等指标评估拟合效果。
19
结果解析与讨论
峰归属与物质鉴定
根据峰位、峰形等信息推断物质种类及结构 。
28
07
热分析在其他领域的 应用
2024/1/28
29
地质学领域应用
矿物鉴定
通过热分析技术可以鉴定矿物的种类和成分,为地质学研究提供重 要依据。
岩石学研究
利用热分析技术对岩石进行加热和冷却过程中的物理和化学变化研 究,有助于了解岩石的形成和演化过程。
地球化学研究
热分析技术可用于研究地球内部物质的热性质和热反应,揭示地球内 部物质循环和能量传递的机制。
2024/1/28
30
生物学领域应用
2024/1/28
生物大分子研究
通过热分析技术可以研究生物大分子(如蛋白质、核酸等)的热稳 定性和热变性行为,了解生物大分子的结构和功能关系。
生物组织研究
利用热分析技术对生物组织进行加热过程中的物理和化学变化研究 ,有助于了解生物组织的结构和功能特性。
5_热分析(DSC)解读
25
50
100
150
T/℃
PS相对分子质量对Tg的影响
Mn 111000 10400 5400 3630
2740 1530 650
Tg/°C 100 83 70 53
43 43 -25
PS相对分子质量与Tg的关系
120 80
Tg/
40 0 -40 0 20000 40000 60000 80000 100000 120000
1、差示扫描量热法(DSC, Differential scanning calorimeter )
样品
功率差 参比物
程序控温
温度
W=f(T)
差热分析法( DTA, differential thermal analyzer )
样品
温度差 参比物
程序控温
温度
T=f(T)
DSC、DTA的比较
一般是结晶相与非结晶相共存
结晶形态复杂
5. 3 聚合物结晶中的应用
对Tm的影响 结晶形态对Tm的影响 平衡熔点的确定 结晶度 结晶动力学 液晶晶型及转变热 冷结晶
典型结晶性聚合物DSC曲线
放热
dH/dT
Tg
Tm
T/oC
横坐标:T或t
纵坐标dH/dt:热流率,表示单位时间内试样热焓的变化(cal/s或J/s)
热分析的历史
DSC
TG
DTA
TMA
复合分析
印刷
现代热分析技术仪器组成
程序控温系统 测量系统 显示系统 气氛控制系统 操作控制系统 数据处理系统
与其它技术的联用性
热分析只能给出试样的重量变化及吸热或放 热情况;
解释曲线常常是困难的,特别是对多组分试 样作的热分析曲线尤其困难; 最现实的办法就是把热分析与其它仪器串接 或间歇联用,对逸出气体和固体残留物进行 连续的或间断的,在线的或离线的分析,从 而推断出反应机理。
DSC热分析实验课件
DSC热分析实验材料二第四组 b91507044 孙启元一.原理示差扫描热量分析仪DSC(Differential Scanning Calorimetry),在仪器中两个试料容器有自己得加热系统及测温系统来侦测待测物即标准物得温度、DSC得原理位一在空温得程序下,测量样品得转移温度,并测量在转移过程中所发生得热流变化与时间及温度得函数关系。
在设定得温度(或降温)过程中,仪器得控温系统将两者于测试得过程中一直保持相同得温度,由于标准不并不会有反应,当待测物发生吸热(放热)反应时,待测物一侧得测温器会侦测出因吸热(放热)反应时造成此处得温度较标准物侧得温度低(高),因此,待测物端得加热系统会叫标准物侧得加热系统额外得多输入(减少)一些热量(以电流或电压得变化),以增加(减少)待测物得温度,如此可以保持两者得温度一致。
而在测试得过程为保持两者温度相同,其所需在待测物端得额外增加或减少热量就就是待测物在测试过程中由于反应所造成得实际热量变化。
因此DSC可以用做反应或相变化等得定性及定量得实验。
DSC得用途广泛,举凡各种物质得反应或相变化具有吸热或放热反应,其皆可侦测得知其反应得起始温度。
可分析得反应如金属材料得合金熔炼后得析出过程、矿物得脱水反应、有机得热聚合及硬化反应、陶瓷材料得相变化、玻璃材料得再结晶等。
至于相平衡图得制作方法,一般分为热分析法、热膨胀测定法、金相法、X—ray绕射法、电阻法等。
通常要配合多种方法方可做出图来。
热分析法:合金系统若有相变态发生,由与潜热得释放,使得冷却曲线斜率改变,可依此测得相变态温度。
当金属在熔融状态时,任何与其接触得东西,都可能成为合金得污染来源、选择坩埚时必须使其具有不溶性,并且不会与合金发生反应,因其与合金发生反应往往就是实验失败得原因。
一般来讲,我们往往会在其表面涂上一层惰性材料以避免发生反应。
二.材料与设备材料:铅、锡、铅锡合金设备:DSC三.实验方法仪器操作:1.将试片秤重,放在cell中压成碟型(sample cell)。
差示扫描量热法DSC测试方法PPT演示课件
典型的DSC曲线
•7
1.试样与参比物 试样:除气体外,固态,液态样品都可测定。 装样:尽量使样品薄而匀地平铺与坩埚底部,以 减少试样与器皿间的热阻。 坩埚:高聚物一般使用铝坩埚,使用温度低于 500℃, 参比物:必须具有热惰性,热容量和导热率应和 样品匹配。一般为Al2O3,样品量少时可放一空坩 埚。
Relief
Heat
Tg
Flow Start up
Transient
Ordering Process
Tm
Cold
DH
Crystallization
Curing
Degradation
Temperature
•13
五、数据处理及实验报告要求
Tg= Tc= Tm= ΔH= fc= ΔH/ ΔH* ΔH*---完全结晶的熔融热
•10
(3)气氛: 氛围气体:一般使用惰性气体,如N2,Ar,He等 主要是防止加热时样品的氧化, 减少挥发物对仪器的腐蚀. 必要时也可以压缩空气为气氛, 测定样品的氧化反应。
氛围气体不同时 DSC曲线不同
•11
四、 DSC在高聚物研究中的应用
•12
Polymer Transitions
Stress
实验目的和要求
• 了解DSC的基本原理及其应用范围 • 掌握测定聚合物熔点及其热效应的方法 • 学会DSC曲线的数据处理
•1
一、DSC的定义
差示扫描量热法(DSC): 在程序控制温度条件下,测量输入给样品与参比物的功
率差与温度关系的一种热分析方法。
差示扫描量热仪
( Differential Scanning Calorimeter, DSC)
上海CDR-34P型
热分析谱图综合解析(精品课件)
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
TGA Kinetics - Heating Rate vs. Temperature
1000/T (K-1)
1.6 1.4
1.92
1.94
1.96 1.98 2.00 2.02
1000/T (K-1)
2.04
2.06
Kissinger法和Ozawa法求反应活化能的线性回归图
表观动力学参数计算结果EK 52.46 kJ/mol,E0 57.05 kJ/mol,反应级数 0.991。
Heat Flow(W/g)
d dH 1
dt dt H
ΔH代表整个固化反应的放热量,dH/dt为热流速率,dα/dt为固化反应 速率。
(3)反应速率方程可用下式表示,其中α为固化反应程度,f(α)为α的 函数,其形式由固化机理决定,k (T)为反应速率常数,形式由
Arrhenius方程决定。
d d k(T ) f ()
ln
AR Ek
Ek RTP
式中,β ——升温速率,K/min; Tp——峰顶温度,K; A——Arrhenius指前因子,1/s; Ek——表观活化能,J/mol; R——理想气体常数,8.314 J·mol-1·K-1; f(α)——转化率α(或称作固化度)的函数。
Kissinger方法是利用微分法对热分析曲线进行动力
dsc基本原理及应用图文
热性质
通过DSC可以研究材料的热性 质,如熔化、结晶、玻璃化、 化学反应等等,可以确定材料 的热稳定性、热分解过程、热 效应等。
热行为
DSC还可以研究材料的热行为, 如热膨胀、热收缩、热失重等, 可以获得材料的热物理性质。
DSC基本原理
DSC测量的基本原理是比较样品和参比体升温或降温时的温度和吸热或放热量的差异,获得材料的热性 质和热行为。
样品盒
加入少量样品
参比体盒
加入相同重量的参比体
加热曲线
用恒定速率升温或降温
输出信号
获取温度差和热量差
DSC操作流程
实施DSC需要掌握以下操作流程。
1
准备样品
确定试验目的,选取适当的样品,制
设置实验条件
2
备样品盒,精确称量。
设定加热曲线、升降温速率、环境气
氛、参比体等参数。
3
加热测量
按设定条件进行加热测量,获取输出
数据处理
4
信号。
利用计算机软件对输出信号进行峰面 积积分、基线修正、峰的识别和分析
处理。
DSC结果解读
通过峰的位置、形状、大小等参数可以解读DSC结果。
热分解温度
物质分解的最小温
DSC的应用领域
DSC广泛应用于材料研究和质量控制的领域。
半导体
研究半导体材料的热稳定性、 热降解、热膨胀等性质。
食品
测量食品的糖化反应、脂质 氧化、变性、降解等行为。
制药
测量药物的热分解、热降解、 配方中药物的溶解度、相容 性等。
建筑材料
研究建筑材料的热膨胀、热 稳定性、热变形等性质。
DSC与其他测试方法的比较
和其他热分析测试方法相比,DSC有其独特的特点和优势。
热分析技术(最新版)PPT课件
特点
设备简单、操作方便、试样用量少; 但精度较低、分辨率差。
应用
研究物质的物理变化(晶型转变、熔 融、升华和吸附等)和化学变化(脱 水、分解、氧化和还原等)。
差示扫描量热法
原理
在程序控制温度下,测量输入到 物质和参比物的功率差与温度的
关系。
应用
测定多种热力学和动力学参数, 如比热容、反应热、转变热等; 研究高分子材料的结晶、熔融和
流体中由于温度差异引起的密度变 化而产生的宏观运动,是热量传递 的一种重要方式。
热辐射
物体通过电磁波的形式发射和吸收 能量,其辐射强度与物体温度、表 面性质等因素有关。
热分析中的物理量与单位
温度
热力学系统的一个物理属性,表示物体冷 热的程度,常用单位有摄氏度、华氏度、
开尔文等。
热容
物体在温度变化时所吸收或放出的热量与 其温度变化量之比,常用单位有焦耳/摄氏
环境科学领域应用
大气污染物分析
利用热分析技术可以对大气中的 污染物进行分析和鉴定,揭示大 气污染物的来源和危害。
土壤污染物分析
通过热分析技术可以分析土壤中 的污染物,评价土壤的污染程度 和生态风险。
环境样品热性质研究
利用热分析技术可以研究环境样 品的热性质,如热稳定性、热分 解温度等,为环境科学研究和环 境保护提供技术支持。
热机械分析法
原理
01
在程序控制温度下,测量物质在非振动载荷下的形变与温度的
关系。
应用
02
研究材料的热膨胀系数、玻璃化转变温度、流动温度等;评估
材料的尺寸稳定性、内应力和热震稳定性等。
特点
03
能直接测量材料的形变,反映材料的机械性能随温度的变化;
热分析谱图综合解析(汇总).ppt
d dH 1
dt dt H
ΔH代表整个固化反应的放热量,dH/dt为热流速率,dα/dt为固化反应 速率。
(3)反应速率方程可用下式表示,其中α为固化反应程度,f(α)为α的 函数,其形式由固化机理决定,k (T)为反应速率常数,形式由
Arrhenius方程决定。
d d k(T ) f ()
Stability
100
0.5% 1.0
2.5%%
Conversion
95
5%
size: 60mg
90
atm.: N 2
10%
Weight (%)
10°C
85
5°C 2.0°C
1.0°C
20%
80
200 250 300 350 400 450 500 Temperature (°C)
c
13
TGA Kinetics - Heating Rate vs. Temperature
1000/T (K-1)
1.6 1.4
1.92
1.94
1.96 1.98 2.00 2.02
1000/T (K-1)
2.04
2.06
Kissinger法和Ozawa法求反应活化能的线性回归图
表观动力学参数计算结果EK 52.46 kJ/mol,E0 57.05 kJ/mol,反应级数 0.991。
c
9
Heat Flow(W/g)
等温DSC曲线
0.2
d
0.0 c
b
-0.2
a
-0.4
a - 195 oC b - 200 oC c - 205 oC d - 210 oC
-0.6 0
20
最新DSC曲线解析讲解教学讲义ppt课件
2
热分析
国际热分析协会(ICTA)热分析定义: 在程序控制温度下,测量物质的物理性质与温度关
系的一种技术。
5
6
仪器简要说明 Pyris 1 DSC是功率补偿差示扫描量热仪。
DSC按程序升温,经历样品材料的各种转变如熔 化、玻璃化转变、固态转变或结晶,研究样品的 吸热和放热反应。
u 测量样品的熔解热,测试值除以参比值得到高分子的结晶度信息。 u %结晶度 = Hm / Href
32
结晶度的表征
u 两种不同结晶度的高密度聚乙烯DSC曲线,明显地看到吸热峰的不 同。熔融点基本一样,但是峰面积相差很大。
u 可以通过DSC有效的表征高分子结晶度的变化。
增塑剂的影响
33
u 增塑剂会极大的改变高分子的性能,因此有必要研究增塑剂对高分 子玻璃态转化温度Tg和熔融温度Tm的影响。
12
dQ/dt = dQ/dT dT/dt Q :热量 t :时间 T :温度 dQ/dt: 纵坐标信号,mW; dT/dt :程序温度变化速率,C/min;
纵坐标信号的大小与升温速度成正比
13
功率补偿型 DSC的优点
Sample
Platinum Alloy PRT Sensor
Platinum Resistance Heater
16
Multiple Scans of Indium, Showing Precision
复合型DSC
17
热功率补偿感应器由铂精密温度测量电路板、 微加热器和互相贴近的梳型感应器构成,样品和参 比端左右对称。精密温度测量电路板和微加热器均 涂有很薄的绝缘层,以保持样品皿与感应器之间的 电绝缘性,并最大程度地降低热阻。
热分析技术PPT课件
峰顶温度Tp:吸、 放热峰的峰形顶 部的温度,该点 瞬间
d(ΔT)/dt=0;
峰宽—— B′D′;
峰高—— CF;
峰面积——BCDB; 外推起始点(出峰点)一峰前沿最大斜率点与
基线延长线的交点(G),对应温度最为接近 热力学平衡温度。
3、DTA数据的记录方式
理想
实际
K[Al3(OH)6](SO4)2 热重曲线
• 结晶硫酸铜的热分析
实验条件为试样质量为10.8mg,升温 速率为10℃/min,采用静态空气,在
mo=10.8mg。曲线bc为第一台
铝坩埚中进行
阶,质量损失率为:
曲线de 为第二台阶,质量损失 率为:
曲线fg为第三台阶,质量损失率:
推导出CuSO4·5H2O 的脱水方程如下:
4、影响TG曲线的主要因素
任何一种分析测量技术都必须考虑到测定结 果的准确可靠性和重复性。为了要得到准确性和复 现性好的热重测定曲线,就必须对能影响其测定结 果的各种因素仔细分析。
① 升温速度: ② 试样周围气氛:C02、空气中或N2气氛 ③ 坩埚和支架的影响: ④ 试样因素:试样量、粒度大小 ⑤ 走纸速度:
据。 ⑩ 标明试样重量和试样稀释程度。 ⑪ 标明所用仪器的型号、商品名称及热电偶的几何
形状、材料和位置。 ⑫ 纵坐标刻度用测定温度下每度的偏移表示,吸热
峰指向下方,放热峰指向上方。
2023/9/13
4、DTA曲线的影响因素
① 升温速率不同,得到的峰的形状会有些差异,升温速率不 稳,则会造成基线偏移、弯曲、甚至造成假峰。
(Differential Scanning Calorimetry)
3、 热分析应用范围
第二章热分析方法DSCppt课件
S
R
1
23
4 5
6
图3-3 热流型DSC示意图 1.鏮铜盘;2.热电偶结点;3.镍铬板; 4.镍铝丝;5.镍铬丝;6.加热块
S
iS
R。 Rb
R
iR
R
Rg
Rg
图3-4 热流型DSC等效回路示意图
三.影响因素[2,3]
差示扫描量热法的影响因素与差热分析基本上相类 似,由于它用于定量测定,因此实验因素的影响显 得更为重要,其主要的影响因素大致有下列几方面: 实验条件 程序升温速率和所通气体的性质。气体 性质涉及气体的氧化还原性、惰性、热导性和气体 处于静态还是动态。 试样特性 试样用量、粒度、装填情况、试样的稀 释和试样的热历史条件等。 参比物特性 参比物用量、参比物的热历史条件。 为了从DSC曲线获得正确而可靠的定量数据,掌握 和了解这些影响因素是十分必要的。
161.33
372.68
2.试样特性的影响 (1)试样用量 试样用量是一个不可忽视的因素。通常用量不宜 过多,因为过多会使试样内部传热慢、温度递度 大,导致峰形扩大和分辨力下降。 例如试样用量对NH4NO3的相变温度和相变热焓 的影响。研究表明,随着试样用量的增大, NH4NO3的相变峰温和相变热焓稍有升高,见表 3-6。
表3-6 试样用量对NH4NO3相变温度和热焓的影响
试样用量 相变 mg
峰温 Tm( K)
标准 偏差
2
328.517 0.2166
5
Ⅳ-Ⅲ 328.946 0.3736
8
329.069 0.5040
2
40-Ⅰ 405.092 0.6532
8
405.028 0.5765
相变热焓 kJ/mol
热分析法PPT课件
04
热分析法在材料科学中的应用
材料热稳定性的研究
热重分析(TGA)
通过测量材料在升温过程中的质 量变化,研究其热分解、氧化等 反应,评估材料的热稳定性。
差热分析(DTA)
记录材料在升温或降温过程中的 热量变化,分析材料的热效应, 判断其热稳定性。
要点二
原理
物质在加热过程中会伴随质量的变化 ,这种变化是由于物质的分解、挥发 、升华等物理或化学过程引起的。通 过测量物质质量随温度的变化,可以 得到物质的热稳定性、热分解温度、 热分解过程等信息。
要点三
应用
热重分析广泛应用于无机物、有机物 及聚合物的热分解研究,以及固体物 质的成分分析等领域。
差热分析
热机械分析(
TMA)
测量材料在温度变化过程中的形 变和应力,研究材料的热膨胀、 收缩等性能,评估其热稳定性。
材料相变过程的探究
差示扫描量热法(DSC)
测量材料在升温或降温过程中的热量变化,研究材料的熔融、结 晶、固化等相变过程。
热光分析
通过观察材料在加热过程中的光学性质变化,研究材料的相变过程 和机理。
生物医学
用于研究生物组织的热性质、生物大分子的 热稳定性以及药物的热分析。
环境科学
用于研究环境污染物的热性质、热分解以及 环境样品的热分析。
热分析法的发展历程
早期阶段
热分析法的起源可以追溯到18世纪,当时人们开始使用天平测量物质在加热过程中的质 量变化。
发展阶段
19世纪末至20世纪初,随着热力学和物理化学的发展,热分析法逐渐成为一种重要的分 析方法,出现了多种热分析方法,如差热分析(DTA)、热重分析(TGA)等。
如何快速看懂DSC曲线参考PPT
0.10
0.05
0.00 –120 –110 –100 –90 –80 –70 –60 –50 –40
2021/5/8
Temperature (C)
25
低vinyl (8.5 %wt) 与高vinyl (40.5 %wt) SSBR 完全相容,只 有一个Tg ,但可以从峰加宽与峰位移判断是共混物。
1. heating Tm1, C Hf1, J/g
Tmax. C
2. cooling Tc, C Hc, J/g
3. heating
Tm2, C
Hf2, J/g
162.5
100
230
108.6
101
160.9
95
162.1
102
220
108.7
99
160.5
96
162.5
97
210
108.7
96
161.0
2021/5/8
7
吸热
玻璃化转变
熔融
基线
分解气化
ΔT(℃)
放热 dH/dt(mW)
固固 一级转变
DSC
曲线
Tg
2021/5/8
结晶
Tc
Tm
Td
DTA 曲线
放热行为 (固化,氧化,反应,交联)
8
4.1 玻璃化转变温度的测定
dQ/dt dQ/dt
1/2
Tg 温度
Tg 温度
从DSC曲线上确定Tg的方法
exo 1.0
Hf:吸热峰面积
0.8
0.6
Te:熔融完全温度
0.4
表征结晶的两个参数: 0.2
Tc:放热峰峰值
0.0 100
第10讲_热分析(DTA及DSC)_121207课件
上述物理性质主要包括质量、温度、能量、尺寸、力学、声、 光、热、电等。根据物理性质的不同,建立了相对应的热分 析技术,例如: 热重分析(Thermogravimetry,TG); 差热分析(Differential Thermal Analysis,DTA) 差示扫描量热分析(Differential Scanning Calorimetry,DSC); 热机械分析(Thermomechanical Analysis,TMA) 逸出气体分析(Evolved Gas Analysis,EGA); 热电学分析(Thermoelectrometry); 热光学分析(Thermophotometry)等。
将试样和参比物分别放入坩埚(如下原理图 所示),置于炉中以一定速率进行程序升温, 以Ts、Tr分别表示各自的温度,设试样和参比 物的热容量不随温度而变。
若以ΔT=Ts-Tr 对t作图,所得DTA曲线如 图所示,随着温度的增加,试样产生了热效应 (例如相转变),与参比物间的温差变大,在 DTA曲线中表现为峰、谷。显然,温差越大, 峰、谷也越大,试样发生变化的次数多,峰、 谷的数目也多,所以各种吸热谷和放热峰的个 数、形状和位置与相应的温度可用来定性地鉴 定所研究的物质,而其面积与热量的变化有关。
第10讲 热分析(DTA/DSC)
Thermal Analysis --差热分析
--差示扫描量热 2012.12.07
§10.1 热分析技术的概述
一、热分析的定义
1977年在日本京都召开的国际热分析协会(ICTA,
International Conference on Thermal Analysis)第七次会议所 下的定义:热分析是在程序控制温度下,测量物质的物理性 质与温度之间关系的一类技术。这里所说的“程序控制温度” 一般指线性升温或线性降温,也包括恒温、循环或非线性升 温、降温。这里的“物质”指试样本身和(或)试样的反应产 物,包括中间产物 。
5_热分析(DSC)解析
一般是结晶相与非结晶相共存
结晶形态复杂
5. 3 聚合物结晶中的应用
对Tm的影响 结晶形态对Tm的影响 平衡熔点的确定 结晶度 结晶动力学 液晶晶型及转变热 冷结晶
典型结晶性聚合物DSC曲线
放热
dH/dT
Tg
Tm
T/oC
横坐标:T或t
纵坐标dH/dt:热流率,表示单位时间内试样热焓的变化(cal/s或J/s)
主要内容
差热扫描量热 Differential Scanning Calorimeter, DSC 热失重 ThermoGravimetric Analyzer ,TG
动态热机械分析 Dynamic Mechanical Thermal Analysis , DMTA)
三者构成了热分析的三大支柱 占到热分析总应用的75%以上。
5.1 各种转变温度的确定
无定型聚合物玻璃化温度的确定(Tg)
结晶聚合物熔点的确定(Tm) 氧化温度 交联(固化)温度 分解温度 液晶晶型转变温度 结晶温度
三种硫磺样品熔点(Tm)比较
美国
Tm
日本
中国
未处理样 品
处理后不 溶硫样品
125.8
128
125
125.5
129
118.5
5.1.1 PS相对分子质量对Tg的影响
Mn
5.2 共混物研究
相容性判断
共混物相容性判断
TgA TgB
TgAB
完全相容
T′gA
T′gB
T′gB
部分相容
T′gA
完全不相容
5. 3 聚合物结晶
聚合物结晶的特点
聚合物特殊的结构使聚合物的结晶状态与其他 材料(如金属)有明显区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态热机械分析
Dynamic Mechanical Thermal Analysis , DMTA)
三者构成了热分析的三大支柱
占202到0年9热月28日分析总应用的75%以上。
6
1、差示扫描量热法(DSC, Differential scanning calorimeter )
样品 参比物
功率差
程序控温
2020年9月28日
32
5.3.4 测定聚合物平衡熔点( Tm。)
在不同温度下进行结晶的材料的熔点 ( Tm )不同;结晶温度( Tc)越高, Tm越高; 同一种聚合物,制备方法不同,结晶状 态就不同, Tm不同。
DSC是通过测定试样与参比物所吸收的
功率差来代表试样的热焓变化。
横坐标: T或t
纵坐标: 功率或热焓
2020年9月28日
12
4.影响DSC实验结果的因素
升(降)温速率
试样用量
试样粒度 气氛
2020年9月28日
13
升(降)温速率
越大 灵敏度越大 峰越大; 越大 热滞后越严重 峰温越高。 常用 =10oC/min(测Tg则 = 20 oC/min)
DTA DSC TG DTG
(微分热重分析)
TMA (热机械分析) DMA(动态机械分析) EGA (逸出气分析)
2
热分析装置的利用领域
•食品 •生物体・液晶 •油脂・肥皂 •洗涤剂
•医药品
熱分析の木 •香料・化妆品 •有机、无机药品 •触媒
•火药
•电子材料
•木材・纸
•建材
•公害
•工业废弃物
規格
•橡胶 •高分子・塑料 •纤维 •油墨・顔料・染料・塗料 •粘着剂
热分析定义
物质的物理性质 一类技术
在程序控制温度下 测量
P=f(T)
P---物理性质 T---温度
:
把温度看作时间的函数 T=g(t)
因此: 2020年9月28日
P=f(T或t)
1
ICTA关于热分析方法的分类
加热 物质 冷却
2020年9月28日
热量变化 重量变化 长度变化 粘弹性变化 气体发生 热传导 热光、电、磁学
越小 分辨率越高
2020年9月28日
14
不同降温速率下的DSC曲线
降温速率(oC/min)
2.5 oC 5 oC 10 oC 20 oC
2020年9月28日
15
试样用量m
同升温速率的影响规律相同。
常用m<10mg(1~6mg)
2020年9月28日
16
试样粒度
粒度越大 热阻越大 特征温度及熔融热 焓越低。
典型结晶性聚合物DSC曲线
放热
dH/dT
Tg
Tm
T/oC
横坐标:T或t
纵坐20标20年dH9月/d28t:日 热流率,表示单位时间内试样热焓的变化(cal/s或3J0/s)
5. 3.1 结晶对Tm的影响
2020年9月28日
31
PE结晶形态对Tm的影响
伸直链
从熔体缓慢冷却得到的球晶 Tm
从熔体快速冷却得到的球晶 从溶液生长得到的单晶
由于分子链是无规线团的长链状态,所以不太
容易使分子非常规则的排列,形成非常规整的 结构。
一般是结晶相与非结晶相共存
结晶形态复杂
2020年9月28日
28
5. 3 聚合物结晶中的应用
对Tm的影响 结晶形态对Tm的影响 平衡熔点的确定 结晶度 结晶动力学 液晶晶型及转变热 冷结晶
2020年9月28日
29
样品尽可能均匀;
粒度越细越好;
大块样品研磨成细粉
2020年9月28日
17
气氛
为避免氧化的发生,一般采用惰性气体
如N2、Ar、He等
2020年9月28日
18
5. DSC在高聚物中的应用
2020年9月28日
19
5.1 各种转变温度的确定
无定型聚合物玻璃化温度的确定(Tg) 结晶聚合物熔点的确定(Tm) 氧化温度
100
15022ຫໍສະໝຸດ PS相对分子质量对Tg的影响
Mn 111000
Tg/°C
100
10400
83
5400
70
3630
53
2740
43
1530
43
650
2020年9月28日
-25 23
PS相对分子质量与Tg的关系
120
80
Tg/
40
0
-40 0
2020年9月28日
20000
40000
60000
Mn
80000 100000 120000
热分析的历史
•玻璃 •金属 •陶瓷・粘土・矿物 •水泥
DSC
TG
2020年9月28日
DTA
TMA
复合分析
3
印刷
现代热分析技术仪器组成
程序控温系统 测量系统 显示系统 气氛控制系统 操作控制系统 数据处理系统
2020年9月28日
4
与其它技术的联用性
热分析只能给出试样的重量变化及吸热或放 热情况;
解释曲线常常是困难的,特别是对多组分试 样作的热分析曲线尤其困难;
温度
W=f(T)
2020年9月28日
7
差热分析法( DTA, differential thermal analyzer )
样品 参比物
温度差
程序控温
温度
T=f(T)
2020年9月28日
8
DSC、DTA的比较
方法
热焓
温度范围 炉子
DSC
能定量 窄
小
温度平衡 易达平衡
DTA
不能定量 宽
大
不易达平
衡
24
5.2 共混物研究
相容性判断
2020年9月28日
25
共混物相容性判断
TgA
TgB
TgAB
完全相容
T′gA T′gA
2020年9月28日
T′gB
部分相容
T′gB
完全不相容
26
5. 3 聚合物结晶
2020年9月28日
27
聚合物结晶的特点
聚合物特殊的结构使聚合物的结晶状态与其他 材料(如金属)有明显区别。
2020年9月28日
9
DSC主要特点
使用温度范围宽(-175 ℃ ~725 ℃ ) 分辨能力高 灵敏度高
2020年9月28日
10
2. DSC的仪器结构
样品支持器示意图
2020年9月28日
11
3. 功率补偿型DSC测量原理 ——零位平衡原理
通过补偿一定的功率而使样品池和参比 池的T=Tr-Ts0;
最现实的办法就是把热分析与其它仪器串接 或间歇联用,对逸出气体和固体残留物进行 连续的或间断的,在线的或离线的分析,从 而推断出反应机理。
2020年9月28日
5
主要内容
差热扫描量热 Differential Scanning Calorimeter, DSC
热失重 ThermoGravimetric Analyzer ,TG
交联(固化)温度 分解温度
液晶晶型转变温度
结晶温度
2020年9月28日
20
三种硫磺样品熔点(Tm)比较
美国
日本
中国
Tm
未处理样
125.8
128
125
品
处理后不
125.5
129
118.5
溶硫样品
2020年9月28日
21
5.1.1 PS相对分子质量对Tg的影响
dH/dt
2020年9月28日
25
50
T/℃