稳定同位素示踪技术全解共40页
稳定同位素示踪技术在生态学中的应用
稳定同位素示踪技术在生态学中的应用生态学是关于生物和环境互动关系的科学,它研究的核心问题之一是物质循环的过程和机制。
而稳定同位素示踪技术(Stable Isotope Tracing Technology)则是生态学中的一个重要工具,它通过对生物体内稳定同位素的监测和分析,揭示了生态系统中不同生物群体之间和物质之间的相互作用与循环过程,为我们深入了解生物和环境互动关系提供了有力支撑。
本文将从稳定同位素示踪的原理、示踪技术的种类以及它们在生态学中的应用等方面进行探讨。
一、稳定同位素示踪的原理稳定同位素示踪技术利用天然界中稳定同位素的相对丰度差异,来揭示各种生物或化学物质在环境中的循环和转化过程。
通俗地讲,自然界中存在着多种同种元素的同位素,其中相对丰度较高的同位素数量比较多,而相对丰度较低的同位素数量相对较少。
因为不同的同位素性质各异,所以它们在物质的各种过程中表现出不同的稳定性和反应活性。
比如水分子中氢原子的同位素就有稳定的氢-1、氘-2和氚-3,其中氢-1相对丰度最高,氚-3相对丰度最低。
同样,空气中的二氧化碳分子中碳原子也有稳定的碳-12、碳-13和碳-14,其中碳-12相对丰度最高,碳-14相对丰度最低。
这种差异可以利用质谱仪等仪器对稳定同位素进行检测和分析,从而揭示物质在生命体内和生态系统中的各种过程和转化。
二、示踪技术的种类稳定同位素示踪技术是一类复杂的实验手段,它可以应用于各种生物或化学物质的追踪和定量分析。
在生态学中,常用的示踪技术主要包括以下几种。
1. 激光荧光同位素比值仪激光荧光同位素比值仪是最常用的稳定同位素比值分析仪器,它通过激光诱导荧光技术,将样品中的稳定同位素分子转化为高能态激发态分子,利用荧光发射光谱测量不同同位素所发射的光谱波长,从而计算出它们的相对丰度比值。
2. 气相色谱质谱仪气相色谱质谱仪是目前最灵敏、最精确的稳定同位素示踪仪器,它能够检测不同同位素分子的相对丰度比值,常用于确定各种生物分子、尤其是蛋白质和氨基酸等化合物的同位素组成,以及微生物群体和植被的碳、氮同位素参量等方面的研究。
稳定同位素示踪技术在生物研究中的应用
稳定同位素示踪技术在生物研究中的应用稳定同位素示踪技术是一种在生物研究中被广泛应用的技术。
该技术利用稳定同位素元素代替常规放射性标记物,对生物体内某些化合物的代谢过程进行追踪,使得研究者能够更加深入地了解代谢途径、物质交流等重要生理生化过程。
本文将深入介绍稳定同位素示踪技术在生物研究中的应用。
一、稳定同位素示踪技术的概述稳定同位素示踪技术是利用稳定同位素的不同比例来进行生物代谢途径的分析和追踪。
目前,应用较为广泛的稳定同位素元素有碳、氮、氧和氢等。
采用此技术进行示踪时,实验者会在待研究的有机化合物中添加含有少量稳定同位素的同类元素,如氢、碳等,而无机化合物如氮气、空气等也是可以进行示踪的。
这样,这些有机化合物的代谢途径就能通过对其中稳定同位素元素的比例变化进行分析了。
二、稳定同位素示踪技术在蛋白质代谢研究中的应用在蛋白质代谢研究中,稳定同位素示踪技术可以用于分析蛋白质的代谢途径、分解途径等,从而对人体蛋白质分解、合成等生理过程有更深入的了解。
方法是在人体内稳定同位素标记若干种氨基酸,然后将人体细胞或器官内的蛋白质加以分离、鉴定和定量,根据稳定同位素元素的比例进行蛋白质代谢分析,可得知蛋白质的分解率、新陈代谢规律、利用率等。
三、稳定同位素示踪技术在糖代谢研究中的应用稳定同位素示踪技术在糖代谢研究中的应用也非常广泛。
例如,在胰岛素抵抗症研究领域中,研究者可以使用稳定同位素标记葡萄糖,以了解胰岛素抵抗是否与糖的代谢方式有关。
同时,采用该技术可以追踪葡萄糖分解的途径,以及对糖与脂肪等其他代谢途径的影响程度等。
四、稳定同位素示踪技术在营养研究中的应用稳定同位素示踪技术在营养研究中也得到了广泛的应用。
例如,在评估人体营养状况时,可以采用该技术鉴定稳定同位素比例,以了解身体内某些元素(如碳、氮、氢、钙等)的含量和分配情况,从而进一步进行营养调节和改善。
另外,该技术还可以用于评估食物中营养成分的吸收率、器官的代谢率等,从而更好地帮助人们制定个性化饮食方案。
稳定性同位素示踪法
700℃ CuO 、 CaO 使 用 前 用 700℃ 高 温 12烘 干 除 去 CO2 , H2O , 并 在 122 压力下制成棒状 , 备光谱 18Kg/cm 18Kg/cm 压力下制成棒状, 分析
通电予热仪器10分钟,打开光电倍增管高压 通电予热仪器10分钟,打开光电倍增管高压 10分钟
大气中的氮气
大气中的氧气
氮的同位素表
射线种类 β+ β+ ββ半衰期 0.011S 9.96m 7.1S 4.15S 99.635 0.365 自然丰度
同位素
12N
13N
14N
15N
16N
17N
1978年国际纯化学和化学联合会 年国际纯化学和化学联合会IUPAC的命名 年国际纯化学和化学联合会 的命名 法: 1. 结构式 15[N]HCl 结构式: 物质不存在) 物质不存在
4.“Y”型管及内部反应抽气须彻底 , 型管及内部反应抽气须彻底, Y 型管及内部反应抽气须彻底 防其它气体干扰。 防其它气体干扰。
以下在光谱仪上进行, 以下在光谱仪上进行 , 可用液体样 品也可用干样品
(2).杜马法(Dumas) (2).杜马法(Dumas) 杜马法
—光谱分析中常用法 光谱分析中常用法
峰高。 峰高。
求得平均峰高,计算15N丰度。 求得平均峰高, 丰度。 平均峰高
15N实验结果计算 七.
14、15的质量比28、29、30的小10倍 的质量比28 的小10 14、15的质量比28、29、30的小10倍 不参加运算
15N丰度小于5%: 当 丰度小于5
质量为28离子流强度/质量为29 28离子流强度 R = 质量为28离子流强度/质量为29 子流强度
放电管装入燃烧室固定架上 放电管装入燃烧室固定架上。 装入燃烧室固定架上。
稳定同位素示踪技术在材料研究中的应用
稳定同位素示踪技术在材料研究中的应用稳定同位素示踪技术是一种利用自然界中稳定同位素的比例变化来探究各种过程和事件的科学方法。
该技术不仅可以应用于地质、化学、生态学等领域的研究,还广泛应用于材料科学中。
下面,我们将重点探究稳定同位素示踪技术在材料研究中的应用。
一、什么是稳定同位素示踪技术?稳定同位素示踪技术是利用同位素不同比例与化学或生物过程的关系来研究自然界的各种物质转换和物质间的交换。
在示踪过程中,稳定同位素不会发生放射性衰变,因此不会给实验人员和环境带来任何危害,具有广泛的应用前景。
在稳定同位素示踪技术中,常用的同位素包括碳、氮、硫、氢、氧等元素。
通过测量这些元素的同位素组成,可以研究从原材料到成品的各种过程,以及各种材料之间的交换和混合过程。
例如,利用稳定同位素示踪技术可以研究材料的加工过程、材料在环境中的迁移和转化等。
二、稳定同位素技术在材料研究中的应用2.1 稳定同位素技术在纺织品研究中的应用稳定同位素技术可以应用于纺织品材料的研究中。
例如,利用氢、氧同位素追溯淘洗和染色过程中所使用的水源,可以确定纺织品的制作时期和地点;利用筒子米同位素示踪技术可以检测出一些非法添加剂,如工业染料、增艳剂等。
2.2 稳定同位素技术在金属材料研究中的应用稳定同位素技术还可以应用于金属材料的研究中。
例如,利用碳、氧同位素示踪技术可以研究金属锈蚀形成的过程;利用氧同位素示踪技术可以追踪钢铁生产过程中氧的来源和加工过程。
2.3 稳定同位素技术在复合材料研究中的应用稳定同位素技术也能够应用于复合材料的研究中。
例如,利用碳同位素示踪技术可以研究复合材料中各种树脂和纤维的来源,以及树脂和纤维的混合比例;利用硫同位素示踪技术可以检测出复合材料中的硫化物。
2.4 稳定同位素技术在建筑材料研究中的应用稳定同位素技术还可以应用于建筑材料的研究中。
例如,利用氧同位素示踪技术可以研究建筑材料的源头和性质;利用碳同位素示踪技术可以研究建筑材料的年龄以及保存状况。
[讲解]同位素示踪法
[讲解]同位素示踪法同位素示踪法同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1 研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
2 研究分泌蛋白的合成和运输用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网?高尔基体?细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
3 研究细胞的结构和功能用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
4 探究光合作用中元素的转移利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。
他们用氧的同位素18O 分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。
稳定同位素示踪技术
表1:试验所得数据
试样 测定项目 15N丰度(%)
地上部分 3.597
15N原子百分超(%) N%(全氮百分含量)
质量(g)
3.227 4.57 1.16
N的数量(mg/盆) 53.0
根系
3.547 3.177 1.31 0.74
9.7
土壤
0.454 0.084 0.19 1000 1900
(一)植物中来自肥料及土壤氮的百分数
=110 (公斤氮/公顷)
“A”值可用于评价土壤肥力状况,定量地 评定同土壤有效养分水平密切相关的因素。
(三) 肥料氮素利用率
肥料氮素利用率
NDFF% × 植物全氮量(kg/公顷)
=
施氮量(kg/公顷)
肥料氮素利用率% (地上部)
= 64.5% × 53mg/盆 100mg/盆
= 34.19%
肥料氮素利用率% (根系)
一般用硫酸钾、硫酸铜和硒粉组成的混合催化剂, 三者的质量比为 100:10:1。
2. 将铵转化成氨气
在高真空气化装置中,用碱性次溴酸钠将铵氧化 而产生氮气,其反应式:
2NH4+ + 3NaBrO
N2↑+ 5H2O + 3NaBr
四 、质谱法测定15N丰度
(一)质谱仪器的工作原理
利用电磁学原理,使带电粒子按照质荷比 进行分离,从而测定其质量的分析仪器。
进行的示踪试验。
局限性:
1. 标记化合物偏高; 2. 样品制备复杂; 3. 所需的仪器如质谱仪比较昂贵。
第二节 稳定同位素15N的测定方法
同位素
12N 13N 14N 15N 16N 17N 18N
氮元素的同位素
射线种类 半衰期 自然丰度 (原子%)
稳定同位素示踪技术全解
(二) “A”值
“A”的概念是假定土壤中的某一营养物 质(如氮)有两个来源,一个是 土壤中固有 的营养物质(土壤氮)即“A”,另一为已知
数量的施入土壤的营养物质(肥料氮),而
用作物对两个来源的氮吸收几率相等。也即:
“A ” 值 NDFS% = 施肥量(公斤氮/公顷) NDFF%
NDFS% “A”值 = × 施肥量(公斤氮/公顷) NDFF%
局限性:
1. 标记化合物偏高;
2. 样品制备复杂;
3. 所需的仪器如质谱仪比较昂贵。
第二节 稳定同位素15N的测定方法
氮元素的同位素
同位素
12N
射线种类
半衰期
自然丰度 (原子%)
13N
14N 15N 16N 17N 18N
β+ β+
0.011s 9.96min 99.635 0.365
β β β
积累在豆株各部位的N素随着籽实的膨大
而进行再分配,从夹伸长期到籽实肥大 期,叶柄的N素最先开始运转。
Kunio 等应用13C标记13CO2 及15NO2的 双标记技术研究水稻植株从顶叶到根对C和 N的吸收及转移规律。结果表明:C和N从 叶到根的运转中,13C从喂饲叶运转到其它 器官需1天;15N通过喂饲叶片在几小时内迅 速运转。15N进入成熟根后再运转至新根及 鞘中,大量15N从叶运输到根后,最后累积 于新根中。
15N原子% 15N + 14N
15N
× 100
= 自然物质中某元素的同位素丰度称为自
然丰度或天然丰度。
原子百分超
某一同位素丰度与自然丰度之差称为同
位素的原子百分超。
将15N浓缩到自然丰度的10倍,其原子 百分超是多少? 3.65% - 0.365% = 3.285% 在实际测定中,应该采用对照组生物样 品的自然丰度。
稳定同位素示踪技术在环境科学中的应用
稳定同位素示踪技术在环境科学中的应用环境问题的严重性日益突出,并且在近年来得到了越来越大的关注。
稳定同位素示踪技术是环境科学中的一项重要工具,它可以广泛应用于气候变化、水文地质、生物地球化学、土壤科学等领域。
本文将详细介绍稳定同位素示踪技术的基本原理,以及在环境科学中的实际应用情况。
一、稳定同位素示踪技术的基本原理同位素是指原子核中质子数相同但中子数不同的同一种元素,同位素分为放射性同位素和稳定同位素两种。
稳定同位素示踪技术是利用同位素间微量差异的原理,通过测量同一物质中不同同位素在天然界中的含量比值,再通过某些化学反应、生理过程等使其中某个同位素相对含量发生变化,从而研究不同过程的动力学、来源、去向等问题。
其中最常用的是碳、氢、氧、氮、硫、铅等稳定同位素。
在这里以碳稳定同位素为例,斯文森效应表明,植物利用大气中的二氧化碳进行光合作用,叶片中的13C/12C比值与大气中14C/12C比值成正比。
而稳定同位素是不会衰变的,各种有机物质中的13C/12C比值与植物组织中14C/12C比值的变化趋势相同。
利用合适的仪器可以测定13C/12C比值,从而推算出组织中的14C/12C比值,进而测定出样品中的时间。
二、1.气候变化稳定同位素示踪技术可以从古代天然记录中获取气候变化信息。
如冰川、珊瑚、岩石等中存在各种稳定同位素,它们的含量比例与当时气候改变的速度和程度相关。
利用这些天然记录,可以重建出过去几百年、几千年的气候变化历史。
2.水文地质水资源是人类赖以生存的重要资源,稳定同位素示踪技术可以对其来源、流动和变化等方面进行研究。
比如,利用氢氧稳定同位素探测水的来源以及水的混合程度,可以对地下水资源进行管理和保护。
同时,水体中的氢氧稳定同位素含量与气候因素有关,通过测量水中13C /12C比值、18 O /16 O 比值可以推算出水的蒸发过程、前缘的来源。
3.生物地球化学稳定同位素示踪技术在生物地球化学领域的应用特别广泛,可以应用于研究植物光合作用、碳循环、营养循环以及能量传递等方面。
地质流体稳定同位素示踪_OK
第四节、分馏系数
由δ定义得:δA=(RA/Rst-1) ×1000, 即RA= (10-3δA +1) ×Rst, 同理RB= (10-3δB+1)× Rst 代入α定义式
αA-B= RA/ RB= (10-3δA +1)/ (10-3δB+1)……………(1)
或=(δA +103)/( δB +103)……………………………..(2) 公式(1)两边取自然对数 ㏑ αA-B=㏑ (10-3δA +1) -㏑ (10-3δB +1),右边泰勒展开 得㏑ αA-B≈ 10-3δA -10-3δB ≈ 10-3(δA -δB ) 或 103 ㏑ αA-B≈ δA -δB ……………………………..(3) 或 : △ ≈ 103 ㏑ αA-B, ( 富集系数△= δA -δB )
11
2、稳定同位素
地球化学示踪(流体和物质) 地质温度计
12
13
D
0 -20 -40
+
Jiaojia
+ Dazhuangzi * Linglong
Sansandao
Lingnan
-60
-80
-100
-15
-10
L MW
270! 350! 270!
350!
MW
-5
0
5
10
18O
14
三、 地质流体的同位素示踪意义 ——本课程重点
13C/12C
34S/32S
缩写符号
SMOW SMOW PDB
PDB
CDT
标准样
标准平均大洋水 标准平均大洋水
美国南卡罗林纳州白晋 系皮狄组的美洲似箭石 美国南卡罗林纳州白晋 系皮狄组的美洲似箭石 美国亚历桑那州卡扬迪 阿布洛铁陨石中的陨硫 铁
生态系统生态学研究中的稳定同位素标记技术
生态系统生态学研究中的稳定同位素标记
技术
稳定同位素标记技术(Stable Isotope Labeling Techniques,SILT)是一种用于研究生态系统生态学的技术。
它将特定的
稳定同位素(例如氢、氧、碳、氮等)添加到生态系统的元素中,使其能够以不同的比例存在,以提供关于生态系统运作的信息。
这种技术可以被用来研究生态系统中的元素流,研究元素在系统中如何传递,以及研究元素如何分配到不同的生物群落。
稳定同位素标记技术可以帮助研究人员分析生态系统中的元素流动,从而更好地理解元素在生态系统中的分布规律。
例如,研究人员可以通过稳定同位素标记技术来研究特定的物种如何从整个生态系统中获取元素,以及如何分配这些元素到不同的生物群落。
此外,稳定同位素标记技术还可以用来研究物种之间的相互作用,以及物种如何在环境变化的情况下进行适应性变异。
研究人员可以通过追踪元素在系统中的流动来研究物种之间的竞争关系,以及物种如何在环境变化的情况下进行适应性变异。
稳定同位素标记技术在生态系统生态学研究中发挥着重要作用,它可以帮助研究人员更加深入地理解生态系统的演变和运作,更加准确地预测生态系统的未来变化。
稳定同位素标记
技术可以帮助我们更好地维持和保护我们的生态系统,从而为我们的未来提供更多的机会。
稳定同位素定量法-概述说明以及解释
稳定同位素定量法-概述说明以及解释1.引言1.1 概述稳定同位素定量法是一种用于确定样品中同位素含量的分析方法。
同位素是原子核中具有相同原子序数但不同质量数的同一元素。
稳定同位素是指那些具有相对稳定较长时间的半衰期的同位素。
在稳定同位素定量法中,我们使用仪器对样品中特定元素的稳定同位素进行测量,并根据同位素比值来计算样品中的同位素含量。
这种方法的基本原理是,不同同位素在化学和物理性质上可能会有微小差异,这些差异可以通过测量同位素的质量比来确定。
稳定同位素定量法在很多领域得到了广泛的应用。
首先,它在地质学和行星科学领域中被用来研究地球和行星的演化过程。
通过分析样品中同位素的含量,可以揭示出地质事件和生物过程对地球和行星的影响。
此外,稳定同位素定量法还被应用于环境科学、生态学和生物学研究中,用来跟踪生物体的生活历程和食物链。
总而言之,稳定同位素定量法是一种重要的分析技术,它能够帮助我们了解自然界中元素的循环和变化过程。
通过准确测量样品中的同位素含量,我们可以揭示出许多与地球科学、环境科学和生物学相关的重要信息。
未来,随着技术的不断发展,稳定同位素定量法将会在更多领域发挥关键作用,为人们更好地了解自然界提供有力支持。
1.2 文章结构文章结构部分的内容介绍了本文的组织结构和每个部分的主要内容。
主要包括以下几个方面:1. 引言:在引言部分,我们将对稳定同位素定量法的相关背景和意义进行概述,介绍其在科学研究和实际应用中的重要性。
2. 正文:正文是文章的主体部分,我们将从两个方面探讨稳定同位素定量法。
首先,我们将详细介绍稳定同位素定量法的原理,从同位素分馏原理、稳定同位素质谱仪器技术等方面进行阐述。
其次,我们将探讨稳定同位素定量法的应用领域,包括环境科学、食品安全、地质学等各个领域。
3. 结论:在结论部分,我们将对本文进行总结,概括文章的主要观点和结论。
同时,我们将对稳定同位素定量法的未来发展进行展望,探讨其在科学研究和实际应用中的潜力和前景。
稳定同位素示踪技术在生态环境研究中的应用
稳定同位素示踪技术在生态环境研究中的应用稳定同位素示踪技术是一种用稳定同位素所标记的物质来追踪物质在生物体系中的流向和转化的技术。
这项技术具有高精度、高可靠性的特点,已被广泛应用于生态环境研究中。
本文将介绍其应用与优势。
一、稳定同位素示踪技术的基本原理稳定同位素示踪技术利用不同同位素相对丰度的差异来追踪物质在生态系统中的流向和转化。
稳定同位素是指质子数不变、中子数不同的同种元素。
在自然界中,同种元素的不同同位素存在着一定的相对丰度,其比值可以通过质谱等仪器测定。
通过分析生态系统中物质的同位素比值的变化,可以揭示其在生态系统中的流动规律、生物、化学转化过程等信息。
二、稳定同位素示踪技术在生态环境研究中的应用1. 碳同位素示踪技术碳是生物体系中最常见的元素,也是地球上最常见的元素之一。
稳定同位素示踪技术中,以13C、14C为代表的碳同位素被广泛应用于生态系统中的有机物质的碳循环研究。
通过13C标记的有机物质可以推断出在生态系统中的有机物质的生产来源和转化过程,如光合作用中CO2的转化能力、土壤中有机物的来源等。
2. 氮同位素示踪技术氮是生物体系中不可或缺的营养元素,通过稳定同位素示踪技术,可以研究氮在生态系统中的流向和转化过程,如鱼类食物中的氮成分、原生动物对有机物的初始分解、土壤中化学、生物反应过程的变化等。
3. 氢同位素示踪技术氢是水分子的成分之一,在稳定同位素示踪技术中,利用氢同位素分析水的运移情况、水-土壤-植物系统的异质同位素内循环、动物饮水水源等信息。
4. 氧同位素示踪技术在生态系统中,氧同位素示踪技术可用于水的来源及其质量的研究,如大气水湿滞过程中的同位素分布。
三、稳定同位素示踪技术的优势1. 非放射性示踪:与放射性示踪技术相比,稳定同位素示踪技术不会产生放射性废物和辐射污染,对人体和环境无害。
2. 高精度:稳定同位素示踪技术样品处理比较简单,并且稳定性较高,测量精度高。
3. 应用广泛:稳定同位素示踪技术在生态环境研究中可应用于不同类型的生物体系和环境领域。
稳定同位素示踪技术概要
2. 将铵转化成氨气
在高真空气化装置中,用碱性次溴酸钠将铵氧
化而产生氮气,其反应式:
2NH4+ + 3NaBrO N2↑+ 5H2O + 3NaBr
四 、质谱法测定15N丰度
(一)质谱仪器的工作原理
利用电磁学原理,使带电粒子按照质荷
比进行分离,从而测定其质量的分析仪器。
·
M2 R2
R1 加速 V 电压
(二)15N质谱分析的计算公式
1. 质谱峰的选择 氮分子经电离后产生质量不同的离子:
离子种类 [15N15N]+ [15N14N]+ [14N14N]+ [15N]+ 和[15N15N]+ + [15N14N]+ + [14N]+和[14N 14N]++ 质荷比 30 29 28 15 14.5 14
由此可得:
(p + q)2 = p2 + 2pq + q2
其中: p2为质荷比为28的离子数目;
2pq为质荷比为29的离子数目。 也即: R =
p2 2pq p 2q
=
(4)
15N原子%
= = =
15N 14N
+
q
15N
× 100
p+q
1 2R + 1
×100 × 100
(5)
(5)式就是通用的以同位素离子强度
积累在豆株各部位的N素随着籽实的膨大
而进行再分配,从夹伸长期到籽实肥大 期,叶柄的N素最先开始运转。
Kunio 等应用13C标记13CO2 及15NO2的 双标记技术研究水稻植株从顶叶到根对C和 N的吸收及转移规律。结果表明:C和N从 叶到根的运转中,13C从喂饲叶运转到其它 器官需1天;15N通过喂饲叶片在几小时内迅 速运转。15N进入成熟根后再运转至新根及 鞘中,大量15N从叶运输到根后,最后累积 于新根中。
同位素示踪技术基础
辐射权重因子WR
• ------------------------------------------------
• 辐射类型和能量范围
WR
• 光子 所有能量
1
• 电子 所有能量
1
• 中子
能量,〈10 Kev
5
•
10-100 Kev
10
•
100 Kev-2 MeV
20
•
2-20 MeV
10
•
〉20 MeV
5
• 质子(反冲质子除外)能量〉2 MeV
5
• α粒子,裂变碎片,重核
20
• ---------------------------------------------------
第二十九页,课件共44页
举 例:
• A:肺受α照射,吸收剂量D为2mGy • B:肺受α照射,吸收剂量D为1mGy;同时
第二十二页,课件共44页
• 比活度:指在单位质量的某种物质的放射 性活度。常用单位为Bq·mol-1及Bq·g-1
• 放射性浓度:指某种物质单位体积的放射 性活度。常用单位为Bq·ml-1
第二十三页,课件共44页
放射性活度的计算:
• 核素的放射性活度随时间呈指数规律减弱。 放射性活度的计算公式: A=Ao·e-λt=Ao·e-0.693/Tp·t
踪物,核素的种类进行定性。 • 定量测量:通过测量样品的放射性活度,
根据标记物的放射性比活度,求出待测样 品中的含量 • 定位测量:通过放射自显影定位,灵敏度 高,通过mark可同时进行定量。
第三十八页,课件共44页
2.根据射线类型分类:
• α 测 量 :亦称α计数,应用ZnS(Ag)荧光 体 (薄层)组成的闪烁计数器、盖革计数管等电离 室脉冲探测器,液闪,放射自显影。由于α射程 短,标记物辐射自分解严重,样品制备严格,较 少应用α辐射体示踪剂。