估算无理数的大小知识点

合集下载

八年级数学第二章 无理数的估算

八年级数学第二章 无理数的估算

估算一个无理数的大小
1. a 是10的整数部分,b 是5的小数部分,则22b a += .
2. a 是-10的整数部分,b 是-10的小数部分,则a= ;b= .
3. 2-5的整数部分是 ,小数部分是 ;5-2的整数部分是 , 小数部分是 .
4. 若a,b 均为正整数,且a>7,b<37,则a+b 的最小值是 .
解析:举例:
(1)数字2.3的整数部分为2,小数部分为0.3,
即整数部分2+小数部分0.3=原数2.3
(2)数字-2.3的整数部分为-3,小数部分为0.7,
即整数部分(-3)+小数部分0.7=原数(-2.3)
1. 我们要熟记常用平方数,知道与10相邻的平方数是9和16,与5相邻的 平方数是4和9 9<10<16,4<5<9,
∴3<10<4,2<5<3 ∴a=3,b=5-2 ∴22b a +=18-45
2. -4<-10<-3 ∴a=-4,b=(-10)-(-4)=4-10
3. 2<5<3 ∴ 0<5-2<1 ∴2-5的整数部分是0 ,小数部分是2-5 -1<2-5<0 ∴5-2的整数部分是-1,小数部分是3-5
4.a 的最小值为3,b 的最小值为1,a+b 的最小值是3
总结:整数部分+小数部分=原数
整数部分可以是正数,也可以是负数,而小数部分一定是正数。

估算ppt课件

估算ppt课件
解:(1)由勾股定理,得 AC= AB2+BC2= 402+202=20 5. ∵602=3600>2000, ∴AC 的长没有 60 m (2)中间小路 AC 长大约是 45 m
课堂小结
估算的基本方法
估算
比较两个数的大小 估算的实际应用
根据生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离
约为梯子长度的 1,则梯子比较稳定.现在有一个长度为6米的梯子,
3
当梯稳定摆放时,它的顶端能达到5.6米高的墙头吗?
解:设梯子稳定摆放时的高度为xm,此时梯子底
1
端离墙的距离恰为梯子长度的 3 ,根据勾股定理,

x2
1
6
2
62

3
16 3
0.215 0.5
例2:估算 2.536(精确到0.1)
解:整数连同小数点后二位是2.53 1.52=2.25<2.536<1.62=2.56 2.56比2.25更接近于2.53,这说明这数更靠近1.6. (故必在1.55到1.6之间.舍五入可得) 2.536 1.6
例3:估算 0.00356 (精确到0.0001)
即 x2 32 x 32 ,
因为5.62=31.36<32,所以 32 5.6
因此,梯子稳定摆放时,它的顶端能够达到5.6m
高的墙头。
核心知识点二
用估算法比较数的大小
1.比较
5 1与 1 的大小
22
解: ∵ 5 4 2
5 11
5 1 1 22
思路:同分母分数,分子越大,分数值就越大
4.三个数-π,-3,- 3的大小顺序是(B ) A.-3<-π<- 3 B.-π<-3<- 3 C.- 3<-π<-3 D.-3<- 3<-π

初一数学下册知识点《估算无理数的大小》150题和解析

初一数学下册知识点《估算无理数的大小》150题和解析

初一数学下册知识点《估算无理数的大小》150题和解析初一数学下册知识点《估算无理数的大小》150题及解析副标题一、选择题(本大题共77小题,共231.0分)1.估计√7+1的值().A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】【分析】此题主要考查了估算无理数大小,正确得出√7的取值范围是解题关键.直接利用已知无理数得出√7的取值范围,进而得出答案.【解答】解:∵2<√7<3,∴3<√7+1<4,∴√7+1在3和4之间.故选C.2.若√3<a<√10,则下列结论中正确的是()A. 1<a<3B. 1<a<4C. 2<a<3D. 2<a<4【答案】B【解析】【分析】首先估算√3和√10的大小,再做选择.本题主要考查了估算无理数的大小,首先估算√3和√10的大小是解答此题的关键.【解答】解:∵1<√3<2,3<√10<4,又∵√3<a<√10,∴1.732<a<3.162,各选项中,只有B,1<a<4符合题意;故选B.3.估计√19的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】解:∵√16<√19<√25,∴√19的值在4和5之间.故选:C.直接利用二次根式的性质得出√19的取值范围.此题主要考查了估算无理数大小,正确把握最接近√19的有理数是解题关键.4.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】此题主要考查了估算无理数的大小,正确得出√10的取值范围是解题关键.首先得出√10的取值范围,进而得出答案.【解答】解:∵3<√10<4,∴4<√10+1<5.故选B.5.估计√13+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】【分析】本题考查了估算无理数的大小,能估算出√13的范围是解此题的关键.先估算出√13的范围,即可得出答案.【解答】解:∵3<√13<4,∴4<√13+1<5,即√13+1在4和5之间.故选C.6.估计√6+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】解:∵2=√4<√6<√9=3,∴3<√6+1<4,故选:B.利用”夹逼法“得出√6的范围,继而也可得出√6+1的范围.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.7.估计5√6−√24的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】C【解析】解:5√6−√24=5√6−2√6=3√6=√54,∵7<√54<8,∴5√6−√24的值应在7和8之间,故选:C.先合并后,再根据无理数的估计解答即可.本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.估计√38的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选:C.初一数学下册知识点《估算无理数的大小》150题和解析利用二次根式的性质,得出√36<√38<√49,进而得出答案.此题主要考查了估计无理数的大小,得出√36<√38<√49是解题关键.9.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】解:∵3<√10<4,∴4<√10+1<5,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<√10<4是解题关键,又利用了不等式的性质.10.已知整数m满足m<√38<m+1,则m的值为()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查了无理数的大小问题,从√38的整数大小范围出发,然后确定m的大小.【解答】解:由题意∵√62<√38<√72∴当m=6时,则m+1=7适合.故选C.11.下列选项中的整数,与√17最接近的是()A. 3B. 4C. 5D. 6【答案】B【解析】解:∵16<17<20.25,∴4<√17<4.5,∴与√17最接近的是4.故选:B.依据被开方数越大对应的算术平方根越大进行解答即可.本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.12.估计√11的值在()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】解:∵9<11<16,∴√9<√11<√16,∴3<√11<4.故选:C.由于9<11<16,于是√9<√11<√16,从而有3<√11<4.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.如图,表示√7的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【答案】A【解析】解:∵6.25<7<9,∴2.5<√7<3,则表示√7的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出√7的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.14.面积为2的正方形的边长在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】【分析】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.面积为2的正方形边长是2的算术平方根,再利用夹逼法求得√2的取值范围即可.【解答】解:面积为2的正方形边长是√2,∵1<2<4,∴1<√2<2故选:B.15.若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A. 16,17B. 17,18C. 18,19D. 19,20【答案】B【解析】【分析】本题主要考查了无理数大小的估计.注意利用数的平方大小比较是解此题的方法.【解答】解:∵周长为x公分,∴边长为x公分,4)2=20,∴(x4∴x2=20,16∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选B.初一数学下册知识点《估算无理数的大小》150题和解析16.与√37最接近的整数是()A. 5B. 6C. 7D. 8【答案】B【解析】解:∵36<37<49,∴√36<√37<√49,即6<√37<7,∵37与36最接近,∴与√37最接近的是6.故选:B.由题意可知36与37最接近,即√36与√37最接近,从而得出答案.此题主要考查了无理数的估算能力,关键是整数与√37最接近,所以√36=6最接近.17.下列无理数中,与4最接近的是()A. √11B. √13C. √17D. √19【答案】C【解析】解:∵√16=4,∴与4最接近的是:√17.故选:C.直接利用估算无理数的大小方法得出最接近4的无理数.此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.18.估计2+√7的值A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间【答案】C【解析】解:∵2<√7<3,∴4<2+√7<5,∴2+√7的值在4和5之间,故选:C.直接得出2<√7<3,进而得出2+√7的取值范围.此题主要考查了估算无理数的大小,正确得出√7的范围是解题关键.19.估算√27−2的值()A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间【答案】C【解析】解:∵5<√27<6,∴3<√27−2<4.故选:C.首先估计√27的整数部分,然后即可判断√27−2的近似值.本题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.判断2√11−1之值介于下列哪两个整数之间?()A. 3,4B. 4,5C. 5,6D. 6,7【答案】C【解析】解:∵2√11=√44,且√36<√44<√49,即6<2√11<7,∴5<2√11−1<6,故选:C.由√36<2√11<√49即6<2√11<7,由不等式性质可得2√11−1的范围可得答案.本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键.21.如图,已知数轴上的点A、B、C、D分别表示数−2、1、2、3,则表示数3−√5的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<√5<3,∴0<3−√5<1,故表示数3−√5的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3−√5<1,进而得出答案.此题主要考查了估算无理数的大小,得出√5的取值范围是解题关键.22.与无理数√31最接近的整数是()A. 4B. 5C. 6D. 7【答案】C【解析】解:∵√25<√31<√36,∴√31最接近的整数是√36,√36=6,故选:C.根据无理数的意义和二次根式的性质得出√25<√31<√36,即可求出答案.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道√31在5和6之间,题目比较典型.23.若3+√5的小数部分为a,3−√5的小数部分为b,则a+b的值为()A. 0B. 1C. −1D. 2【答案】B【解析】【分析】本题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.运用有理数逼近无理数,求无理数的近似值求解.【解答】解:∵2<√5<3,∴5<3+√5<6,0<3−√5<1∴a=3+√5−5=√5−2.b=3−√5,∴a+b=√5−2+3−√5=1,故选B.24.估计√41−2的值()A. 在4和5之间B. 在3和4之间C. 在2和3之间D. 在1和2之间【答案】A【解析】【分析】本题考查了估算无理数的大小的应用,关键是确定√41的范围.求出√41的范围,都减去2即可得出答案.【解答】解:∵36<41<49,∴√36<√41<√49,初一数学下册知识点《估算无理数的大小》150题和解析∴6<√41<7,∴4<√41−2<5,故选A.25.实数√2的值在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】解:∵1<√2<2,∴实数√2的值在:1和2之间.故选:B.直接利用估算无理数大小,正确得出√2接近的有理数,进而得出答案.此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.26.估算√19的值是在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】本题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.找出比较接近√19的有理数,即√16与√25,从而确定它的取值范围.【解答】解:∵√16<√19<√25,∴4<√19<5.故选B.27.估计√40的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√40<√49,即6<√40<7,故选:C.根据√40,可以估算出位于哪两个整数之间,从而可以解答本题.本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.28.式子√13+1的整数部分是a,小数部分是b,则a−b的值是()A. √13−7B. 1−√13C. 5−√13D. 7−√13【答案】D【解析】【分析】此题考查无理数的估算和代数式的值,注意找出最接近的整数范围是解决本题的关键.因为3<√13<4,所以4<√13+1<5,由此求得整数部分与小数部分,代入a−b 即可即可得到结果.【解答】解:∵3<√13<4,∴4<√13+1<5,∴a=4,b=√13+1−4,∴a−b=4−(√13−3)=7−√13.故选D.29.一个正方形的面积是15,估计它的边长在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵一个正方形的面积是15,∴其边长=√15.∵9<15<16,∴3<√15<4.故选C.先求出正方形的边长,再估算出其大小即可.本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解答此题的关键.30.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】【分析】此题考查了估算无理数的大小,代数式的值,平方根,正确得出a,b的值是解题关键,根据4<√17<5,得到1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解,即可得到答案.【解答】解:∵4<√17<5,∴1<√17−3<2,∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4,故选D.31.估计√7+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】【分析】本题考查了估算无理数的大小,能估算出√7的范围是解此题的关键.解答此题先求出√7的范围,然后再加1可得√7+1的范围.【解答】解:∵2<√7<3,∴3<√7+1<4,即√7+1在3和4之间,故选B.32.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】解:∵4<√17<5,∴1<√17−3<2,初一数学下册知识点《估算无理数的大小》150题和解析∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4.故选D.根据4<√17<5,利用不等式的性质可得1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解.此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.33.√43在两个连续整数a和b之间,a<√43<b,那么a+b的值是()A. 11B. 13C. 14D. 15【答案】B【解析】解:∵6<√43<7,∴a=6,b=7,∴a+b=6+7=13.故选:B.首先用“夹逼法”确定a、b的值,进而可得a+b的值.此题主要考查了估算无理数的大小,关键是正确确定a、b的值.34.实数√28界于哪两个相邻的整数之间()A. 3和4B. 5和6C. 7和8D. 9和10【答案】B【解析】解:∵5<√28<6,∴√28在5和6之间.故选:B.先估算出√28的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√28的范围是解此题的关键.35.实数√3的值在()A. 0与1之间B. 1与2之间C. 2与3之间D. 3与4之间【答案】B【解析】解:∵1<√3<√4,∴实数√3的值在1与2之间.故选:B.直接利用无理数最接近的有理数进而答案.此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.36.下列说法:①−1是1的平方根;②√10在两个连续整数a和b之间,那么a+b=7;③所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;④无理数就是开放开不尽的数;正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】此题考查了估算无理数的大小、实数与数轴、实数,熟知有关定义和性质是本题的关键.根据估算无理数的大小、实数与数轴、无理数的定义和特点分别对每一项进行分析,即可得出答案.【解答】解:①−1是1的平方根是正确的;②√10在两个连续整数a和b之间,那么a+b=3+4=7是正确的;③所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,题目中的说法是错误的;④无理数就是无限不循环的小数,题目中说法是错误的.故选B.37.估计√6+1的值在()A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间【答案】B【解析】解:∵2<√6<3,∴3<√6+1<4,故选:B.首先确定√6在整数2和3之间,然后可得√6+1的值在3到4之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.38.估计√16+√20的运算结果应在()A. 6与7之间B. 7与8之间C. 8与9之间D. 9与10之间【答案】C【解析】解:∵√16+√20=4+√20,而4<√20<5,∴原式运算的结果在8到9之间;故选C.首先计算出√16,再估算出√20即可得结果.本题考查了无理数的近似值问题,关键是利用“夹逼法”是估算的一般方法,也是常用方法.39.若a<1−√7<b,且a、b是两个连续整数,则a+b的值是()A. −1B. −2C. −3D. −4【答案】C【解析】解:∵2<√7<3,∴−2>−√7>−3,∴−1>1−√7>−2,∴a=−2,b=−1,∴a+b=−3,故选C.先求出√7的范围,再求出1−√7的范围,求出a、b的值,代入求出即可.本题考查了估算无理数的大小,能求出1−√7的范围是解此题的关键.40.设a=√13−1,a在两个相邻整数之间,则这两个整数是()A. 0和1B. 1和2C. 2和3D. 3和4【答案】C【解析】解:∵9<13<16,∴3<√13<4,即2<a=√13−1<3,则这两整数是2和3,故选C估算√13大小,即可得到结果.此题考查了估算无理数的大小,估算出√13大小是解本题的关键.41.估计√21的值()A. 1到2之间B. 2到3之间C. 3和4之间D. 4和5之间初一数学下册知识点《估算无理数的大小》150题和解析11 / 45第11页,共45页【答案】D【解析】解:∵√16<√21<√25, ∴4<√21<5,即√21在4到5之间, 故选:D .根据√16<√21<√25得出4<√21<5,即可得出答案.本题考查了估算无理数的大小的应用,关键是能求出√21的范围.42. 估计√76的值在哪两个整数之间( )A. 75和77B. 6和7C. 7和8D. 8和9【答案】D【解析】解:∵√64<√76<√81, ∴8<√76<9,∴√76在两个相邻整数8和9之间. 故选:D .先对√76进行估算,再确定√76是在哪两个相邻的整数之间.此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43. 定义:对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[−1.2}=−2.对数字65进行如下运算:①[√65]=8:②[√8]=2:③[√2]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过( )次运算后的结果为1. A. 3 B. 4 C. 5 D. 6 【答案】A【解析】解:255→第一次[√255]=15→第二次[√15]=3→第三次[√3]=1, 则数字255经过3次运算后的结果为1. 故选:A .根据[x]表示不超过x 的最大整数计算,可得答案.本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.44. 黄金分割数√5−12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算√5−1的值( ) A. 在1.1和1.2之间 B. 在1.2和1.3之间 C. 在1.3和1.4之间 D. 在1.4和1.5之间【答案】B【解析】解:∵√5≈2.236, ∴√5−1≈1.236, 故选:B .根据√5≈2.236,可得答案.本题考查了估算无理数的大小,利用√5≈2.236是解题关键.45. 8的负的平方根介于( )A. −5与−4之间B. −4与−3之间C. −3与−2之间D. −2与−1之间【答案】C第12页,共45页【解析】解:∵4<8<9, ∴2<√8<3.∴−2>−√8>−3. 故选:C .先求得√8的范围,然后再求得−√8的范围即可.本题主要考查的是估算无理数的大小,利用夹逼法求得√8的大致范围是解题的关键.46. 通过估算,估计√193+1的值应在( )A. 2~3之间B. 3~4之间C. 4~5之间D. 5~6之间【答案】B【解析】解:∵8<19<27,∴√83<√193<√273,即2<√193<3,∴3<√193+1<4, 故选:B .根据8<19<27得出:2<√193<3,进而可得答案.本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.47. 估计√13的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵9<13<16, ∴3<√13<4,则√13的值在3和4之间, 故选:C .估算得出√13的范围即可.此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.48. 如图,数轴上A ,B ,C ,D 四点中,与−√3对应的点距离最近的是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键. 先估算出−√3的范围,结合数轴可得答案. 【解答】解:∵√1<√3<√4,即1<√3<2, ∴−2<−√3<−1,∴由数轴知,与−√3对应的点距离最近的是点B . 故选B .49. 下列各数中,介于正整数6和7之间的数是( )A. √41B. √52C. √26D. √383初一数学下册知识点《估算无理数的大小》150题和解析13 / 45第13页,共45页【答案】A【解析】解:∵36<41<49, ∴6<√41<7,故A 正确. ∵52>49,∴√52>7,故B 错误. ∵36>26,∴6>√26,故C 错误. ∵27<38<64,∴3<√383<4,故D 错误. 故选:A .依据被开方数越大对应的算术平方根(立方根)越大进行求解即可. 本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.50. 若n −1<√45<n ,则整数n =( )A. 5B. 6C. 7D. 8【答案】C【解析】解:∵6<√45<7, ∴n =7, 故选:C .先估算出√45的范围,再得出选项即可.本题考查了估算无理数的大小,能估算出√45的范围是解此题的关键.51. 在数轴上有一块墨迹,被覆盖住的无理数可能是( )A. √17B. √11C. √5D. −√3【答案】B【解析】【分析】此题主要考查了估算无理数的大小,数轴的有关知识,应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解. 【解答】解:由图可知:被覆盖的数在3和4之间; ∴被墨迹覆盖的无理数有可能是√11. 故选B .52. 对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[√3]=1,[−2.5]=−3.现对82进行如下操作: 82→第1次[√82]=9→第2次[93]=3→第3次[√3]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A. 1B. 2C. 3D. 4【答案】C【解析】解:121→第1次[12111]=11→第2次[√11]=3→第3次[√3]=1,∴对121只需进行3次操作后变为1,故选:C .[x]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.53.估计√10的值在哪两个整数之间()A. 9和10B. 7和8C. 5和6D. 3和4【答案】D【解析】解:∵3<√10<4,∴√10在3和4之间.故选D.先估算出√10的范围,即可得出选项.本题考查了估算无理数的大小的应用,能估算出√10的范围是解此题的关键.54.与1+√5最接近的整数是()A. 1B. 2C. 3D. 4【答案】C【解析】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<√5<2.3.∴3.2<1+√5<3.3.∴与1+√5最接近的整数是3.故选:C.先依据被开方数越大对应的算术平方根也越大估算出√5的大小,然后即可做出判断.本题主要考查的是估算无理数的大小,利用夹逼法估算出√5的大小是解题的关键.55.在数轴上标注了四段范围,如图,表示√8的点落在()A. 段①B. 段②C. 段③D. 段④【答案】C【解析】【分析】根据数的平方,即可解答.本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴2.8<√8<2.9,∴√8的点落在段③,故选:C.56.如图,数轴上点N表示的数可能是()A. √10B. √5C. √3D. √2【答案】A【解析】解:∵√10≈3.16,√5≈2.24,√3≈1.73,√2≈1.41,根据点N在数轴上的位置,知:3<N<4,∴四个选项中只有3<3.16<4,即3<√10<4.故选:A.第14页,共45页初一数学下册知识点《估算无理数的大小》150题和解析先对四个选项中的无理数进行估算,再根据N点的位置即可求解.本题考查了同学们估算无理数大小的能力,及能够根据点在数轴的位置确定数的大小.57.数轴上表示√21−1的点A的位置应该在()A. 2与3之间B. 3与4之间C. 4与5之间D. 7与8之间【答案】B【解析】【分析】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度一般.先估算无理数√21的大小,然后求解即可.【解答】解:∵4=√16<√21<5=√25,∴3<√21−1<4,故数轴上表示√21−1的点A的位置应在3与4之间.故选:B.58.估计√6的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】A【解析】解:∵√4<√6<√9,∴2<√6<3,故选:A.根据估算无理数的大小,即可解答.本题考查了估算无理数的大小,解决本题的关键是估算无理数的大小.59.如图,已知数轴上的点A、B、C、D分别表示数−2、−1、1、2,则表示1−√7的点P应落在线段()A. AB上B. OB上C. OC上D. CD上【答案】A【解析】解:∵2<√7<3,∴−2<1−√7<−1,∴表示1−√7的点P应落在线段AB上.故选:A.直接根据题意得出−2<1−√7<−1进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.60.a与b是两个连续整数,若a<√7<b,则a,b分别是()A. 6,8B. 3,2C. 2,3D. 3,4【答案】C【解析】解:∵4<7<9,∴2<√7<3,∵a<√7<b,且a与b是两个连续整数,∴a=2,b=3.故选C.根据4<7<9,结合a<√7<b,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<√7<3.15/ 45第15页,共45页61.估计√7+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】解:∵2<√7<3,∴3<√7+1<4,故选:B.直接利用2<√7<3,进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.62.若m<√14<n,且m、n为连续正整数,则n2−m2的值为()A. 5B. 7C. 9D. 11【答案】B【解析】解:∵m<√14<n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选:B.根据题意确定出m与n的值,代入原式计算即可求出值.此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即B=a−A;理解概念是解题的关键.63.估计√30的值在两个整数()A. 3与4之间B. 5与6之间C. 6与7之间D. 3与10之间【答案】B【解析】解:∵√25<√30<√36,∴5<√30<6,∴√30的值在5与6之间.故选:B.直接利用估算无理数的方法得出接近无理数的整数进而得出答案.此题主要考查了估算无理数的大小,正确掌握无理数的估算方法是解题关键.64.3+√10的结果在下列哪两个整数之间().A. 6和7B. 5和6C. 4和5D. 3和4【答案】A【解析】解:∵3<√10<4,∴6<3+√10<7,故选:A.直接利用3<√10<4,进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.65.关于“√19”,下列说法不正确的是()A. 它是一个无理数B. 它可以用数轴上的一个点来表示C. 它可以表示面积为19的正方形的边长D. 若为整数),则n=5【答案】D第16页,共45页初一数学下册知识点《估算无理数的大小》150题和解析17 / 45第17页,共45页【解析】【分析】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法. 分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可. 【解答】解:A .√19是一个无理数,说法正确,故选项A 不合题意;B .√19可以用数轴上的一个点来表示,说法正确,故选项B 不合题意;C .它可以表示面积为19的正方形的边长,说法正确,故选项C 不合题意;D .4<√19<5,n =4,故选项D 符合题意. 故选D .66. 如图,数轴上点P 表示的数可能是( ) A. √2 B. √3C. √5D. √73【答案】C【解析】解:从数轴可知:P 点表示数在2和3之间,A 、1<√2<2,故本选项不符合题意;B 、1<√3<2,故本选项不符合题意;C 、2<√3<3,故本选项符合题意;D 、1<√73<2,故本选项不符合题意; 故选C .从数轴可知P 点表示数在2和3之间,先估算出每个无理数的范围,即可得出答案. 本题考查了估算无理数的大小,能估算出每个无理数的范围是解此题的关键.67. 估计√5在( )A. 0~1之间B. 1~2之间C. 2~3之间D. 3~4之间【答案】C【解析】解:∵√4<√5<√9, 即:2<√5<3, ∴√5在2到3之间. 故选:C .根据二次根式的性质得出√4<√5<√9,即:2<√5<3,可得答案.本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道√5在√4和√9之间.68. 若√13的整数部分是a ,小数部分是b ,则式子3(a +b)−ab 的值是( )A. −9B. 9C. 19D. 3√13 【答案】B【解析】解:∵√9<√13<√16, ∴3<√13<4,∴a =3,b =√13−3,∴3(a +b)−ab =3×(3+√13−3)−3×(√13−3)=3√13−3√13+9=9. 故选:B .先进行估算√13的范围,确定a ,b 的值,再代入代数式即可解答. 本题考查了估算无理数的大小,解决本题的关键是估算√13的范围.69. 关于“√10”,下列说法不正确的是( )A. 它是数轴上唯一一个距离原点√10个单位长度的点表示的数B. 它是一个无理数C. 若a<√10<a+1,则整数a的值为3D. 它可以表示面积为10的正方形的边长【答案】A【解析】解:数轴上距离原点√10个单位长度的点表示的数是±√10,故A错误,符合题目要求√10它是一个无理数,故B正确,不符合题目要求∵9<10<16,∴3<√10<4,故整数a的值为3,故C正确,不故符合题目要求√10它可以表示面积为10的正方形的边长,故D正确,不符合题目要求.故选:A.依据绝对值的定义、无理数的概念,依据夹逼法估算无理数大小的方法、依据算术平方根的定义进行判断即可.本题主要考查的是估算无理数的大小,实数与数轴,熟练掌握相关知识是解题的关键.70.若a<√5<b,且a、b是两个连续整数,则a+b的值是()A. 2B. 3C. 4D. 5【答案】D【解析】解:∵4<5<9,∴2<√5<3,由a<√5<b,且a、b是两个连续的整数,得到a=2,b=3,则a+b=5,故选:D.由被开方数5的范围确定出√5的范围,进而求出a与b的值,代入原式计算即可得到结果.71.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=√6,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.72.有下列说法:①实数与数轴上的点一一对应;②2−√7的相反数是√7−2;③在1和3之间的无理数有且只有√2,√3,√5,√7这4个;④2+3x−4x2是三次三项式;第18页,共45页。

知识点估算无理数的大小

知识点估算无理数的大小

解答题1.写出所有适合下列条件的数:(1)大于小于的所有整数;(2)绝对值小于的所有整数.考点:估算无理数的大小。

分析:( 1)由于 16< 17<25,9< 11< 16.由此得到﹣ 5<<﹣4,3<<4.所以只需写出在﹣ 5 和 4 之间的整数即可;(2)由于 16< 18<25,所以 4<<5.只需写出绝对值小于 5 的所有整数即可.解答:解:( 1)∵ 16< 17< 25,9< 11< 16,∴﹣ 5<<﹣4,3<<4,∴大于小于的所有整数:﹣4,± 3,± 2,± 10,;(2)∵ 16< 18< 25,∴4<<5,∴绝对值小于的所有整数:± 4,± 3,± 2,± 10,.点评:此题主要考查了无理数的估算能力,能够对一个无理数正确估算出其大小在哪两个整数之间,同时理解整数、绝对值的概念.2.( 1)如图 1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm 的正方形纸板沿对角线剪开,拼成如图 2 所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.考点:估算无理数的大小;平方根。

分析:( 1)根据正方形的面积公式即可求得纸板的边长;(2)由于大正方形是由两个小正方形所拼成的,易求得大正方形的面积为18,边长为;因此大正方形的边长不是整数,然后估算出的大小,从而求出与相邻的两个整数.解答:解:( 1)边长 =cm;( 2 分)(2)大的正方形的面积=32+32=18;( 3 分)边长 =,∴边长不是整数,(4分)∵(5 分)∴4≤.(6 分)点评:本题主要考查了正方形的面积公式以及估算无理数的大小.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.3.设的小数部分为a,的倒数为b,求 b﹣ a2的值.考点:估算无理数的大小。

估算无理数的大小

估算无理数的大小

估算——夹逼法
例.估算 7 的近似值(精确到0.01)
解:∵ 22 4,32 9 ∴2 7 3 ∵ 2.62 6.76,2.72 7.29 ∴ 2.6 7 2.7 ∵ 2.642 6.9696,2.652 7.0225 ∴ 2.64 7 2.65 ∵ 2.6452 6.996025,2.6462 7.001316 ∴ 2.645 7 2.646
解:∵ 23 8 ,33 27 8 10 27

2 3 10 3

3 10
∴ 的整3 1数0 部2 分是2,小
数部分是
所以 7 2.65 (精确到0.01)
总结:同课本P42估算 2的取值范围
估算算术平方根的取值范围
解:∵ 42 19 52 ∴ 取值范围
例1. 3 10的整数部分是________,小数部分是______ .
估算——夹逼法
估算能力也是一种重要的数学运算能力,特别是对算 术平方根的估算。
结论:被开方数越大,对应的算术平方根也越大.
通常取与被开方数最近的两个完全平方数的算术 平方根相比较.例如:估算 10 的大小,可以取和 10最近的两个完全平方数9和16.因为9<10<16,所 以 9 10 16,即 3 10 4。

估算(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

估算(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题2.10估算(知识梳理与考点分类讲解)【知识点1】估算对于带根号的无理数的近似值的估算,可以通过平方运算或立方运算采用“夹逼法”(即两边无限逼近的方法)逐级夹逼,先确定整数部分,再确定十分位、百分位等小数部分注意“精确到”与“误差小于”的区别:如精确到1,是四舍五入到个位,答案唯一;误差小于1,即答案与原数相差不超过1都符合题意,答案不唯一。

一般情况下,误差小于1就是估算到个位,误差小于10就是估算到十位。

【知识点2】用估算比较实数的大小1、用估算的方法比较两个数的大小,若其中有一个是无理数,一般先采用分析的方法,估算出无理数的大致取值范围,再作具体的比较。

2、比较两个数大小的常用结论(1)0;a b a b >≥⇔>(2)33;a b a b >⇔>(3)220;b a b a <<>当时,【考点一】估算算术平方根的取值范围【例1】下列计算结果正确吗?说说你的理由.(189559.5≈;(2312345231≈.【答案】(1)错,理由见分析;(2)错,理由见分析.【分析】(1)根据算术平方根定义求出9.52的值,再比较即可;(2)根据立方根的定义求出2313的值,再比较即可.解:(1)∵9.52=90.25,又∵90.25和8955不接近,8955不正确;(2)∵2313=12326391,又∵12326391和12345不接近,312345不正确.【点拨】本题考查了对算术平方根和立方根定义的应用,能理解算术平方根和立方根的定义是解此题的关键.【举一反三】【变式1】若一个正方形的面积是20,则它的边长最接近的整数是()A .4B .5C .6D .7【答案】A【分析】通过算数平方根的算法,计算出正方形边长,再根据估算得出结果.解: 正方形的面积是20,∴,162020.25<< ,故4 4.5<<4.故选A .【点拨】本题考查了求算数平方根、以及估算算数平方根,其中准确算出算数平方根是关键.【变式2】已知a ,b 为两个相连的整数,满足11a b <<,则a b +的立方根为.【答案】3【分析】根据夹逼法求出a ,b ,算出a b +,即可得到答案.<∴21111311+<<+,∵a ,b 为两个相连的整数,∴13a =,14b =,3=,故答案为3.【点拨】本题考查二次根数的估算及立方根的定义,解题的关键是用夹逼法求出a ,b .【考点二】利用估算比较无理数的大小【例2】阅读下列材料:<<,即12<<,11.请根据材料提示,进行解答:______,小数部分是______.(2)的小数部分为mn ,求2m n +-(3)已知:10a b =+,其中a 是整数,且01b <<,请直接写出a ,b 的值.【答案】(1)33;(2)0;(3)15a =,5b【分析】(1<<34<<,可知结果;(2)参考材料,求出m 、n 进行计算即可;(3(1<<,即34<<,33(2)∵23<,∴2m =.∵45<<,∴4n =,∴2440m n +-=+-=.(3)∵56<,∴151016<+,∴15a =,5b .【点拨】本题主要考查的是实数的应用,理解材料并灵活运用是解题的关键.【举一反三】【变式1】秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为12,下列估算正确的是()A .205<<B .2152<<C .12<D 1>【答案】C【分析】用夹逼法估算无理数即可得出答案.解:4<5<9,∴23,∴1-1<2,∴121,故选:C .【点拨】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.【变式2】2最接近的自然数是.【答案】2<<得到34<<,进而得到122<<,因为14更接近16,所以2最接近的自然数是2.<<34<<,∴122<<,∵14接近16,更靠近4,2最接近的自然数是2.故答案为:2.【点拨】本题考查无理数的估算,找到无理数相邻的两个整数是解题的关键.【考点三】无理数的整数部分和小数部分相关计算【例3】已知2a +4的立方根是2,3a +b -1的算术平方根是3c .(1)分别求出a ,b ,c 的值;(2)求a +b 的平方根.【答案】(1)2a =,4b =,3c =;(2)【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,即可求出a 、b 、c 的值;(2)求出a +b 的值,再求其平方根即可.解:(1)∵24a +的立方根是2,31a b +-的算术平方根是3,∴32242313a ab ⎧+=⎨+-=⎩解得:24 ab=⎧⎨=⎩.∵c34<,∴3c.(2)∵a=2,b=4∴a+b=6,∴a+b的平方根是.【点拨】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、代数式求值、求一个数的平方根等知识点.熟练掌握各知识点是解答本题的关键.【举一反三】【变式1】若2020a,2021b,则a+b的值为()A.2021B.2020C.4041D.1【答案】D2020与2021a,b的值,即可求解.解:∵91316<<,∴34<,∴202020242023<<,202020172016<-,∴3a=-,4b=∴341a b+=+-.故选:D.【点拨】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分和小数部分.【变式2】a,小数部分是b,则2a b-=.【答案】24a、b的值,把a、b的值代入求出即可.解:89<,8a∴=,8b,2288)24a b∴-=⨯-=-故答案为:24,得出a,b的值.。

6.3.5估算无理数的大小

6.3.5估算无理数的大小
3
估算——夹逼法
例.估算
7 的近似值(精确到0.01)
解:∵ ∴ 2 7 3 ∵ 2.62 6.76,2.7 2 7.29 ∴ 2.6 7 2.7 2 2 2 . 64 6 . 9696 , 2 . 65 7.0225 ∵ ∴ 2.64 7 2.65 2 ,2.6462 7.001316 ∵ 2.645 6.996025 ∴ 2.645 7 2.646 所以 7 2.65 (精确到0.01)
估算——夹逼法
估算能力也是一种重要的数学运算能力,特别是对算 术平方根的估算。
结论:被开方数越大,对应的算术平方根也越大.
通常取与被开方数最近的两个完全平方数的算术 平方根相比较.例如:估算 10 的大小,可以取和 10最近的两个完全平方数9和16.因为9<10<16,所 以 9 10 16 ,即 3 10 4。
2 2 4,32 9
总结:同课本P42估算 2 的取值范围
估算算术平方根的取值范围
解:∵ 4 2 19 52 ∴ 42 19 ∴ 4 19 5
Hale Waihona Puke 52答案为:C估算立方根的取值范围
例1. 3 10 的整数部分是________,小数部分是______ . 解:∵ 2 8 , 33 27 且 8 10 27 ∴ 2 3 10 3 ∴ 3 10 的整数部分是2,小 数部分是 3 10 2

无理数的估算方法

无理数的估算方法

无理数的估算方法
无理数的估算方法主要有以下几种:
1. 分数逼近法:无理数可以用一系列有理数逼近。

通过将无理数表示为一个分数的形式,可以逐步逼近其真实值。

例如,可以将π表示为连分数的形式,然后截取这个连分数的前几项得到一个有理数近似值。

2. 几何方法:通过几何图形的性质来估算无理数。

例如,可以画一个正方形,然后在正方形中作一个边长为1的等边三角形,再运用勾股定理可以得到√3的一个近似值。

3. 数列逼近法:通过某种特定的数列逐步逼近无理数。

例如,可以使用牛顿法逼近平方根。

假设要求解x²= a的一个正根,可以取一个初始的近似值x0,然后通过迭代的方式计算x1 = (x0 + a/x0)/2,以此类推,不断迭代得到越来越精确的近似值。

4. 近似公式:针对某些特定的无理数,可以使用近似公式来估算其值。

例如,可以使用马青公式来计算π的近似值。

需要注意的是,这些方法只能给出无理数的有限位数的近似值,无法得到其完全的精确值。

《估算》实数PPT优质课件

《估算》实数PPT优质课件
(2)你能估算 3 900 的大小吗?(结果精确到1)
知1-讲
估算的一般步骤: (1)估计整数部分是几位数; (2)确定最高位上的数字; (3)确定下一位上的数字; (4)依此类推,直到确定出个位上的数字,或者按
要求精确到小数点后的某一位.
(来自《点拨》)
知1-讲
例1 估算 3 的近似值.(精确到0.01)
2.比较大小的两个数中如果有含根号的数,常 常有如下比较方法: (1)先找个中间值,再比较; (2)先把两数平方或立方,再比较.
(来自《点拨》)
知2-讲
例3 比较下列各组数的大小:
(1) 12与4; (2) 3 1 与 1 ; (3) 401 5 与3.75.
22
4
导引:(1)题可用平方法比较大小;(2)题可用作差法比较
所以15 m和16 m都满足要求.
800 <16,
π
(来自《点拨》)
总结
知2-讲
运用方程思想求出长方形的宽是 解决本题的关键.
(来自《点拨》)
知2-练
1 (中考·常州)已知a= 2 ,b= 3 ,c= 5 ,
2
3
5
则下列大小关系正确的是( A )
A.a>b>c
B.c>b>a
C.b>a>c
D.a>c>b
第二章 实数
2.4 估 算
-.
1 课堂讲解 2 课时流程
用估算确定无理数的大小 用估算比较无理数的大小
逐点 导讲练
课堂 小结
作业 提升
某地开辟了一块长方形的荒地,新建一个环保 主题公园.已知这块荒地的长是宽的2倍,它的面 积为 400 000 m2. (1)公园的宽大约是多少?它有1 000m吗? (2)如果要求结果精确到10m,它的宽大约是多

知识点035估算无理数的大小(填空)分析

知识点035估算无理数的大小(填空)分析

填空题:1.(2011•芜湖)已知a、b为两个连续的整数,且,则a+b=11.考点:估算无理数的大小。

分析:根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.解答:解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.点评:此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.2.(2011•无锡)写出一个大于1且小于2的无理数.考点:估算无理数的大小。

专题:开放型。

分析:由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.解答:解:大于1且小于2的无理数是,答案不唯一.点评:此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.3.(2011•六盘水)一个正方形的面积是20,通过估算,它的边长在整数4与5之间.考点:估算无理数的大小;算术平方根。

分析:本题需要先按要求找到4与5相乘,得出正方形的面积是20,即可求出答案.解答:解:∵正方形的面积是20,∴它的边长在整数:在4与5之间.故答案为:4,5.点评:本题主要考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.4.(2011•抚顺)若两个连续的整数a、b满足a<<b,则的值为.考点:估算无理数的大小。

分析:<<,由此可确定a和b的值,进而可得出的值.解答:解:∵3=<<=4,∴a=3,b=4,即=.故答案为:.点评:本题考查无理数的估算,注意夹逼法的运用.5.(2011•崇文区)与最接近的整数是4.考点:估算无理数的大小;二次根式的性质与化简。

专题:推理填空题。

分析:根据无理数的意义和二次根式的性质得出<<,即可求出答案.解答:解:∵<<,∴最接近的整数是,=4,故答案为:4.点评:本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在4和5之间,题目比较典型.6.(2010•呼和浩特)已知a、b为两个连续整数,且a<<b,则a+b=5.考点:估算无理数的大小。

第三章 实数 考点5 估算无理数的大小(解析版)

第三章 实数 考点5 估算无理数的大小(解析版)

第三章实数(解析板)5、估算无理数的大小知识点梳理估算无理数的大小估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值同步练习一.选择题(共10小题)1.若k<<k+1(k是整数),则k=()A.6B.7C.8D.9【考点】估算无理数的大小.【分析】根据=9,=10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.2.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选:B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.3.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4【考点】估算无理数的大小.【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.4.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.5.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.6.与最接近的整数是()A.5B.6C.7D.8【考点】实数;估算无理数的大小.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.7.已知a为整数,且,则a等于()A.1B.2C.3D.4【考点】估算无理数的大小.【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.8.下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【考点】估算无理数的大小.【分析】解法一:由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.解法二:计算3.5的平方与13作比较,再得10﹣<6.5,可作判断.【解答】解:解法一:∵9<13<16,∴3<<4,∵3.62=12.96,3.72=13.69,∴3.6<<3.7,∴﹣3.7<﹣<﹣3.6,∴10﹣3.7<10﹣<10﹣3.6,∴6.3<10﹣<6.4,∴与10﹣最接近的是6.解法二:∵3<<4,∴6<10﹣<7,∵3.52=12.25,且12.25<13,∴>3.5,∴10﹣<6.5,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.9.估计a=×﹣1的值应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】先求出×=,因为5<<6,所以×﹣1在4到5之间.【解答】解:a=×﹣1=﹣1,∵5<<6,∴在5到6之间,∴﹣1在4到5之间,故选:C.【点评】本题考查了二次根式的乘法,估算无理数的大小等,比较简单,理解二次根式的意义是解题的关键.10.如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上【考点】实数与数轴;估算无理数的大小.【分析】根据2<<3,得到﹣1<2﹣<0,根据数轴与实数的关系解答.【解答】解:2<<3,∴﹣1<2﹣<0,∴表示数2﹣的点P应落在线段BO上,故选:B.【点评】本题考查的是无理数的估算、实数与数轴,正确估算无理数的大小是解题的关键.二.填空题(共14小题)11.若5+的小数部分是a,5﹣的小数部分是b,则ab+5b=2.【考点】估算无理数的大小.【分析】由于2<<3,所以7<5+<8,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵2<<3,∴2+5<5+<3+5,﹣2>﹣>﹣3,∴7<5+<8,5﹣2>5﹣>5﹣3,∴2<5﹣<3∴a=﹣2,b=3﹣;将a、b的值,代入可得ab+5b=2.故答案为:2.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.12.已知a,b为两个连续整数,且a<<b,则a+b=7.【考点】估算无理数的大小.【分析】根据被开方数越大对应的算术平方根越大求得a、b的值,然后利用加法法则计算即可.【解答】解:∵9<11<16,∴3<<4.∵a,b为两个连续整数,且a<<b,∴a=3,b=4.∴a+b=3+4=7.故答案为:7.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.13.已知m是的整数部分,n是的小数部分,则m2﹣n=12﹣.【考点】估算无理数的大小.【分析】由于3<<4,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵3<<4,∴m=3;又∵3<<4,∴n=﹣3;则m2﹣n=9﹣+3=12﹣.故答案为:12﹣.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.14.已知:m、n为两个连续的整数,且m<<n,则m+n=7.【考点】估算无理数的大小.【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【考点】估算无理数的大小.【分析】先求出(﹣1)的范围,再根据范围求出即可.【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.16.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.17.规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[﹣2.56]=﹣3,[﹣]=﹣2.按这个规定,[﹣﹣1]=﹣5.【考点】估算无理数的大小.【分析】先求出的范围,求出﹣1的范围,即可得出答案.【解答】解:∵,∴,∴,∴[﹣﹣1]=﹣5.故答案为:﹣5.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求的范围.18.设m=,那么m+的整数部分是2.【考点】估算无理数的大小.【分析】根据2<<3,可得答案.【解答】解:m+===.∵2<<2.5,∴12<6<15,∴2<m+=<3,故答案为:2.【点评】本题考查了估算无理数的大小,利用算术平方根越大被开方数越大得出2<<3是解题关键.19.已知的小数部分是a,的整数部分是b,则a+b=.【考点】估算无理数的大小.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.20.已知,则的值约为0.048.【考点】估算无理数的大小.【分析】由于当被开方数两位两位地移,它的算术平方根相应的向相同方向就一位一位地移,由此即可求解.【解答】解:把0.0023向右移动4位,即可得到23,显然只需对4.80向左移动2位得到0.048.故答案为:0.048.【点评】此题主要考查了算术平方根的性质和无理数的估算,关键是利用了被开方数与其算术平方根之间位数的移动关系.21.若x<﹣1<y且x,y是两个连续的整数,则x+y的值是3.【考点】估算无理数的大小.【分析】估算得出的范围,进而求出x与y的值,即可求出所求.【解答】解:∵4<6<9,∴2<<3,即1<﹣1<2,∴x=1,y=2,则x+y=1+2=3,故答案为:3【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.22.已知a,b为两个连续整数,且,则a+b=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.【点评】此题考查无理数的估算,利用平方估算出根号下的数值的取值,进一步得出无理数的取值范围,是解决这一类问题的常用方法.23.若的整数部分是a,小数部分是b,则2a﹣b=24﹣.【考点】估算无理数的大小.【分析】首先确定的范围,即可推出ab的值,把ab的值代入求出即可.【解答】解:∵8<<9,∴a=8,b=﹣8,∴2a﹣b=2×8﹣(﹣8)=24﹣.故答案为:24﹣.【点评】考查了估算无理数的大小,解此题的关键是确定的范围.8<<9,得出a,b的值.24.的整数部分是a,小数部分是b,则a﹣b=2﹣.【考点】估算无理数的大小.【分析】根据无理数大小可得出a,b的值,进而得出答案.【解答】解:∵的整数部分是a,小数部分是b,∴a=1,b=﹣1,则a﹣b=1﹣(﹣1)=2﹣.故答案为:2﹣.【点评】此题主要考查了估计无理数,得出a,b的值是解题关键.三.解答题(共7小题)25.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c 的平方根.【考点】平方根;算术平方根;立方根;估算无理数的大小.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴3a﹣b+c=16,3a﹣b+c的平方根是±4.【点评】此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.26.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=2;=5.(2)若,写出满足题意的x的整数值1,2,3.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,3次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255.【考点】估算无理数的大小;实数的运算.【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵22=4,52=25,62=36,∴5<<6,∴=[2]=2,[]=5,故答案为:2,5;(2)∵12=1,22=4,且,∴x=1,2,3,故答案为:1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为:3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.27.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值【考点】估算无理数的大小.【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4.(2)∵9﹣小数部分是m,9+小数部分是n,∴m=9﹣﹣4=5﹣,n=9+﹣13=﹣4,∵(x+1)2=m+n=5﹣+﹣4=1,∴x+1=±1,解得x1=﹣2,x2=0.故满足条件的x的值为x1=﹣2,x2=0.故答案为:4,﹣4.【点评】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】估算无理数的大小.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵1<3<4,∴1<<2,∴11<10+<12,∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=10+﹣11=﹣1,∴x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数是﹣12+;【点评】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.29.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.【考点】估算无理数的大小.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c 的值;(2)将a、b、c的值代入代数式求出值后,进一步求得平方根即可.【解答】解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3.(2)将a=5,b=2,c=3代入得:3a﹣b+c=16,∴3a﹣b+c的平方根是±4.【点评】此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是4,小数部分是﹣4.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值(3)已知:100+=x+y,其中x是整数,且0<y<1,求x++24﹣y的平方根.【考点】平方根;估算无理数的大小.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整数,且0<y<1,∴x=110,y=100+﹣110=﹣10,∴x++24﹣y=110++24﹣+10=144,x++24﹣y的平方根是±12..【点评】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.31.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.【考点】平方根;估算无理数的大小.【分析】根据平方根、立方根、算术平方根,即可解答.【解答】解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.【点评】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义。

估算无理数的大小

估算无理数的大小
估算——夹逼法
估算能力也是一种重要的数学运算能力,特别是对算 术平方根的估算。
结论:被开方数越大,对应的算术平方根也越大.
通常取与被开方数最近的两个完全平方数的算术 平方根相比较.例如:估算 10 的大小,可以取和 10最近的两个完全平方数9和16.因为9<10<16,所 以 9 10 16 ,即 3 104。
估算——夹逼法
例.估算 7 的近似值(精确到0.01)
解:∵ 224,329 ∴ 2 7 3 ∵ 2.626.7,6 2.727.29 ∴ 2.6 72.7 ∵ 2.62 46.96,2 9 .66257.0225 ∴ 2.64 72.65 ∵ 2.642 56.996,20 .62425 67.001316 ∴ 2.645 72.646
解:∵ 23 8 , 33 27 且 81027 ∴ 23103
∴ 3 10 的整数部分0.01)
总结:同课本P42估算 2 的取值范围
估算算术平方根的取值范围
解:∵ 421952 ∴ 42 19 52
∴ 4 195 答案为:C
对应练习
对应练习
对应练习
对应练习
估算立方根的取值范围
例1. 3 10 的整数部分是________,小数部分是______ .

无理数的大小比较和排序

无理数的大小比较和排序

无理数的大小比较和排序在数学中,无理数是指不能表示为有限小数的实数。

它们与有理数相对,后者可以表示为两个整数之比。

无理数占据了实数线上绝大部分,如 $\pi$、$\sqrt{2}$、$\sqrt{3}$ 等。

由于无理数的特殊性质,它们的大小比较和排序相对困难。

本文将探讨无理数的大小关系及排序方式。

一、大小关系大小关系是指判断两个实数大小的关系,一般可通过比较它们的差值来确定,然而对于无理数,常规判断方式是无法使用的。

例如,$\sqrt{2}$ 与 $\pi$ 两个数谁大谁小?这就需要使用一些特殊的技巧。

1. 估值法估值法是指使用有理数逼近无理数,这样就可以将无理数转化为有理数进行比较。

例如,将 $\sqrt{2}$ 逼近到小数点后第二位,则 $\sqrt{2}\approx1.41$,将 $\pi$ 逼近到同样的位数,得到$\pi\approx3.14$。

于是我们可以比较两个有理数的大小,得出$\pi>\sqrt{2}$。

估值法的优势在于易于理解,但它十分依赖于逼近的精度,如果逼近不够准确,比较的结果也不准确。

2. 平方比较法平方比较法比较适用于那些有一个数是某个整数的平方的情况。

由于 $\sqrt{k^2+n}$ 与 $k$ 相等,对于两个无理数 $x=\sqrt{a}$,$y=\sqrt{b}$,如果 $a-b$ 是某个整数 $k$ 的平方,则有:$$ x>y \Longleftrightarrow a-b=k^2 $$这时,无需估算就能判断它们的大小关系。

例如,比较$\sqrt{2}$ 与 $\sqrt{3}$,它们的差值为 $1$,是 $1$ 的平方,所以$\sqrt{2}<\sqrt{3}$。

平方比较法有一个明显的局限性,即 $a-b$ 必须是某个整数$k$ 的平方,这种情况并不常见。

3. 函数比较法函数比较法使用初等函数来确定两个无理数的大小关系,例如,对于两个正的无理数 $a$ 和 $b$,有以下结论:$$ \ln a < \ln b \Longleftrightarrow a<b $$$$ a^x < b^x \Longleftrightarrow a<b \quad\text{和}\quad x>0 $$$$ a^x > b^x \Longleftrightarrow a>b \quad\text{和}\quad x<0 $$函数比较法优势在于适用范围广,但对于一些不好表达的无理数,比如 $\pi$,也无法得出精确的结果。

估算无理数的大小

估算无理数的大小

估算无理数的大小在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。

一般情况下从1到达20 整数的平方都应牢记。

例:估算船的取值范围。

解:因为1 v 3 v 4,所以EI v U v H 即:1 Vv 2如果想估算的更精确一些比如说想精确到0.1 .可以这样考虑:因为17的平方是289 , 18的平方是324,所以1.7的平方是2.89 , 1.8的平方是3.24 .因为2.89 v 3 v 3.24 , 所以济v直v丽,所以1.7 v v 1.8。

如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。

一、直接法直接利用数的大小来进行比较。

①、同是正数:例:心与3的比较根据无理数和有理数的联系,被开数大的那个就大。

因为3=宀>、「,所以3> '②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。

③、一正一负:正数大于一切负数。

二、隐含条件法:根据二次根式定义,挖掘隐含条件。

例:比较莎石与后巨的大小。

因为Ja_2成立所以a-2 M 0即a M 2所以1-a三-1所以】仝0, J门三-1以 Ja — 2 > 計' —a三、同次根式下比较被开方数法: 例:比较4氏与5止大小因为4运=J16x5 = 俪.5A /4 = A /25 x 4 = ^/100L所以 ,即 4<5^4四、作差法: 若 a-b>0,则 a>b 例:比较3-d 与宀-2的大小 因为3・'=5-2 -=3-品 y/~6 +2亦V =2 5所以:5-2曲>0 即 3- \ 乂>、' -2五、作商法:a>0,b>0,若'>1,则 a>b 石+1 需+2 例:比较*「与J 」' 的大小 蕩+1 侖+2 因为宀'「+ 石+ ] 祐+ 3_亦十2 需+ 2= ----- X六、找中间量法要证明a>b,可找中间量c ,转证 a>c,c>bVio+3 2厉 + 2例:比较E 2与+U I '的大小所以: 石+1 7^+2需+ 2 V 而+ —V10+3 2馆 + 2因为\W+2>1,1> 2-^ + 3A/To+3 2 腐+ 2所以烦+ 2 >2^5 + 3七、平方法:a>0,b>0,若a2>b 2则a>b。

估算无理数大小的方法

估算无理数大小的方法

估算无理数大小的方法
一。

估算无理数大小可是数学里挺重要的一招。

这就好比咱在黑暗里找路,得有个大致的方向。

1.1 先来说说啥是无理数。

像圆周率π、根号 2 这些没法写成两个整数之比的数,就是无理数。

1.2 为啥要估算它们大小呢?比如说,您要盖房子,得知道材料够不够,这时候就得大概知道无理数的大小。

二。

那咋估算呢?有几个法子。

2.1 找临近的整数。

比如说根号 5,因为 2 的平方是 4,3 的平方是 9,所以根号 5 就在 2 和 3 之间。

2.2 利用平方。

还拿根号 5 举例,咱可以算算 2.2 的平方,2.3 的平方,慢慢逼近,就能更准确地估算。

2.3 跟常见的无理数比较。

像知道根号 2 约等于 1.414,那要是有个无理数比根号 2 大,那肯定比 1.414 大。

三。

估算的时候得注意些事儿。

3.1 别马虎,一步算错,后面全错,那可就“差之毫厘,谬以千里”啦。

3.2 多练,熟能生巧嘛,练得多了,估算起来就又快又准。

学会估算无理数大小,就像手里多了把利器,解决数学问题的时候,那叫一个得心应手!。

知识卡片-估算无理数的大小

知识卡片-估算无理数的大小

估算无理数的大小
能量储备
在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范
围需要记住一些常用数的平方.一般情况下从1到达20整数的平方都应牢记.
通关宝典
★ 基础方法点
方法点1:求无理数整数部分的方法
要确定无理数m 的整数部分,先要找到m 位于哪两个连续整数之间,方法是:找出m 在哪两个连续的完全平方数之间,再求这两个完全平方数的算术平方根,其中较小的算术平方根就是m 的整数部分,而小数部分则可以表示成m 减去整数部分的形式.
例:已知a 是 8的整数部分,b 是10的整数部分,求(-a )3
+(b -a )2
的值. 分析:用估算的方法可以确定8和10分别位于哪两个相邻的整数之间,从而可以确定a 与b 的值,然后代入计算.
解:因为4<8<9,9<10<16, 所以2<8<3,3<10<4.
又因为a 是 8的整数部分,b 是10的整数部分, 所以a =2,b =3.
所以(-a )3+(b -a )2=(-2)3
+(3-2)2
=-8+1=-7.
方法点2:估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值
蓄势待发 考前攻略
中考常以估算无理数整数部分或者小数部分的形式考查,难度较小.
完胜关卡。

知识点035 估算无理数的大小(选择)

知识点035  估算无理数的大小(选择)

选择题:1.(2011•遵义)若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.6考点:估算无理数的大小。

分析:本题需先根据已知条件分别求出a、b的最小值,即可求出a+b的最小值.解答:解:a、b均为正整数,且,∴a的最小值是3,b的最小值是:1,则a+b的最小值4.故选B.点评:本题主要考查了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是本题的关键.2.(2011•资阳)如图,在数轴上表示实数的点可能是()A.点M B.点N C.点P D.点Q考点:估算无理数的大小;实数与数轴。

专题:应用题。

分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解答:解:∵12.25<14<16,∴3.5<<4,∴在数轴上表示实数的点可能是点P.故选C.点评:本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.3.(2011•徐州)估计的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间考点:估算无理数的大小。

专题:计算题。

分析:先确定的平方的范围,进而估算的值的范围.解答:解:9<=11<16,故3<<4;故选B.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题,属于基础题.4.(2011•天津)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间考点:估算无理数的大小。

专题:计算题。

分析:根据特殊有理数找出最接近的完全平方数,从而求出即可.解答:解:∵<<,∴3<<4,故选:C.点评:此题主要考查了估计无理数的大小,根据已知得出最接近的完全平方数是解决问题的关键.5.(2011•台湾)如图数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在下列哪一线段上()A.OA B.AB C.BC D.CD考点:估算无理数的大小;实数与数轴。

初一数学下册知识点《估算无理数的大小》150题及解析

初一数学下册知识点《估算无理数的大小》150题及解析

初一数学下册知识点《估算无理数的大小》150题及解析副标题一、选择题(本大题共77小题,共231.0分)1.估计的值.A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】【分析】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:,,在3和4之间.故选C.2.若,则下列结论中正确的是A. B. C. D.【答案】B【解析】【分析】首先估算和的大小,再做选择.本题主要考查了估算无理数的大小,首先估算和的大小是解答此题的关键.【解答】解:,,又,,各选项中,只有B,符合题意;故选B.3.估计的值在A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】解:,的值在4和5之间.故选:C.直接利用二次根式的性质得出的取值范围.此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.4.估计的值应在A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.首先得出的取值范围,进而得出答案.【解答】解:,.故选B.5.估计的值在A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】【分析】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.先估算出的范围,即可得出答案.【解答】解:,,即在4和5之间.故选C.6.估计的值在A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】解:,,故选:B.利用”夹逼法“得出的范围,继而也可得出的范围.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.7.估计的值应在A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】C【解析】解:,,的值应在7和8之间,故选:C.先合并后,再根据无理数的估计解答即可.本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.估计的值在A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:,,的值在整数6和7之间.故选:C.利用二次根式的性质,得出,进而得出答案.此题主要考查了估计无理数的大小,得出是解题关键.9.估计的值应在A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】解:,,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.10.已知整数m满足,则m的值为A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查了无理数的大小问题,从的整数大小范围出发,然后确定m的大小.【解答】解:由题意当时,则适合.故选C.11.下列选项中的整数,与最接近的是A. 3B. 4C. 5D. 6【答案】B【解析】解:,,与最接近的是4.故选:B.依据被开方数越大对应的算术平方根越大进行解答即可.本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.12.估计的值在A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】解:,,.故选:C.由于,于是,从而有.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.如图,表示的点在数轴上表示时,所在哪两个字母之间A. C与DB. A与BC. A与CD. B与C【答案】A【解析】解:,,则表示的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.14.面积为2的正方形的边长在A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】【分析】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.面积为2的正方形边长是2的算术平方根,再利用夹逼法求得的取值范围即可.【解答】解:面积为2的正方形边长是,,故选:B.15.若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?A. 16,17B. 17,18C. 18,19D. 19,20【答案】B【解析】【分析】本题主要考查了无理数大小的估计.注意利用数的平方大小比较是解此题的方法.【解答】解:周长为x公分,边长为公分,,,,又,,,即,又为正整数,介于17和18之间,故选B.16.与最接近的整数是A. 5B. 6C. 7D. 8【答案】B【解析】解:,,即,与36最接近,与最接近的是6.故选:B.由题意可知36与37最接近,即与最接近,从而得出答案.此题主要考查了无理数的估算能力,关键是整数与最接近,所以最接近.17.下列无理数中,与4最接近的是A. B. C. D.【答案】C【解析】解:,与4最接近的是:.故选:C.直接利用估算无理数的大小方法得出最接近4的无理数.此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.18.估计的值A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间【答案】C【解析】解:,,的值在4和5之间,故选:C.直接得出,进而得出的取值范围.此题主要考查了估算无理数的大小,正确得出的范围是解题关键.19.估算的值A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间【答案】C【解析】解:,.故选:C.首先估计的整数部分,然后即可判断的近似值.本题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.判断之值介于下列哪两个整数之间?A. 3,4B. 4,5C. 5,6D. 6,7【答案】C【解析】解:,且,即,,故选:C.由即,由不等式性质可得的范围可得答案.本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键.21.如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:,,故表示数的点P应落在线段OB上.故选:B.根据估计无理数的方法得出,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.22.与无理数最接近的整数是A. 4B. 5C. 6D. 7【答案】C【解析】解:,最接近的整数是,,故选:C.根据无理数的意义和二次根式的性质得出,即可求出答案.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.23.若的小数部分为a,的小数部分为b,则的值为A. 0B. 1C.D. 2【答案】B【解析】【分析】本题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.运用有理数逼近无理数,求无理数的近似值求解.【解答】解:,,,,故选B.24.估计的值A. 在4和5之间B. 在3和4之间C. 在2和3之间D. 在1和2之间【答案】A【解析】【分析】本题考查了估算无理数的大小的应用,关键是确定的范围.求出的范围,都减去2即可得出答案.【解答】解:,,,,故选A.25.实数的值在A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】解:,实数的值在:1和2之间.故选:B.直接利用估算无理数大小,正确得出接近的有理数,进而得出答案.此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.26.估算的值是在A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】本题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.找出比较接近的有理数,即与,从而确定它的取值范围.【解答】解:,.故选B.27.估计的值在A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:,即,故选:C.根据,可以估算出位于哪两个整数之间,从而可以解答本题.本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.28.式子的整数部分是a,小数部分是b,则的值是A. B. C. D.【答案】D【解析】【分析】此题考查无理数的估算和代数式的值,注意找出最接近的整数范围是解决本题的关键.因为,所以,由此求得整数部分与小数部分,代入即可即可得到结果.【解答】解:,,,,.故选D.29.一个正方形的面积是15,估计它的边长在A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:一个正方形的面积是15,其边长.,.故选C.先求出正方形的边长,再估算出其大小即可.本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解答此题的关键.30.已知a是的整数部分,b是的小数部分,那么的平方根是A. 4B.C.D.【答案】D【解析】【分析】此题考查了估算无理数的大小,代数式的值,平方根,正确得出a,b的值是解题关键,根据,得到,求出a、b的值,再代入计算,根据平方根的定义求解,即可得到答案.【解答】解:,,,,,的平方根是,故选D.31.估计的值在A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】【分析】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.解答此题先求出的范围,然后再加1可得的范围.【解答】解:,,即在3和4之间,故选B.32.已知a是的整数部分,b是的小数部分,那么的平方根是A. 4B.C.D.【答案】D【解析】解:,,,,,的平方根是.根据,利用不等式的性质可得,求出a、b的值,再代入计算,根据平方根的定义求解.此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.33.在两个连续整数a和b之间,,那么的值是A. 11B. 13C. 14D. 15【答案】B【解析】解:,,,.故选:B.首先用“夹逼法”确定a、b的值,进而可得的值.此题主要考查了估算无理数的大小,关键是正确确定a、b的值.34.实数界于哪两个相邻的整数之间A. 3和4B. 5和6C. 7和8D. 9和10【答案】B【解析】解:,在5和6之间.故选:B.先估算出的范围,即可得出答案.本题考查了估算无理数的大小,能估算出的范围是解此题的关键.35.实数的值在A. 0与1之间B. 1与2之间C. 2与3之间D. 3与4之间【答案】B【解析】解:,实数的值在1与2之间.故选:B.直接利用无理数最接近的有理数进而答案.此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.36.下列说法:是1的平方根;在两个连续整数a和b之间,那么;所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;无理数就是开放开不尽的数;正确的个数为A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】此题考查了估算无理数的大小、实数与数轴、实数,熟知有关定义和性质是本题的关键.根据估算无理数的大小、实数与数轴、无理数的定义和特点分别对每一项进行分析,即可得出答案.【解答】解:是1的平方根是正确的;在两个连续整数a和b之间,那么是正确的;所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,题目中的说法是错误的;无理数就是无限不循环的小数,题目中说法是错误的.37.估计的值在A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间【答案】B【解析】解:,,故选:B.首先确定在整数2和3之间,然后可得的值在3到4之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.38.估计的运算结果应在A. 6与7之间B. 7与8之间C. 8与9之间D. 9与10之间【答案】C【解析】解:,而,原式运算的结果在8到9之间;故选C.首先计算出,再估算出即可得结果.本题考查了无理数的近似值问题,关键是利用“夹逼法”是估算的一般方法,也是常用方法.39.若,且a、b是两个连续整数,则的值是A. B. C. D.【答案】C【解析】解:,,,,,,故选C.先求出的范围,再求出的范围,求出a、b的值,代入求出即可.本题考查了估算无理数的大小,能求出的范围是解此题的关键.40.设,a在两个相邻整数之间,则这两个整数是A. 0和1B. 1和2C. 2和3D. 3和4【答案】C【解析】解:,,即,则这两整数是2和3,故选C估算大小,即可得到结果.此题考查了估算无理数的大小,估算出大小是解本题的关键.41.估计的值A. 1到2之间B. 2到3之间C. 3和4之间D. 4和5之间【答案】D【解析】解:,,即在4到5之间,故选:D.根据得出,即可得出答案.本题考查了估算无理数的大小的应用,关键是能求出的范围.42.估计的值在哪两个整数之间A. 75和77B. 6和7C. 7和8D. 8和9【答案】D【解析】解:,,在两个相邻整数8和9之间.故选:D.先对进行估算,再确定是在哪两个相邻的整数之间.此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43.定义:对任意实数x,表示不超过x的最大整数,如,,对数字65进行如下运算:::,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过次运算后的结果为1.A. 3B. 4C. 5D. 6【答案】A【解析】解:第一次第二次第三次,则数字255经过3次运算后的结果为1.故选:A.根据表示不超过x的最大整数计算,可得答案.本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.44.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算的值A. 在和之间B. 在和之间C. 在和之间D. 在和之间【答案】B【解析】解:,,故选:B.根据,可得答案.本题考查了估算无理数的大小,利用是解题关键.45.8的负的平方根介于A. 与之间B. 与之间C. 与之间D. 与之间【答案】C【解析】解:,..故选:C.先求得的范围,然后再求得的范围即可.本题主要考查的是估算无理数的大小,利用夹逼法求得的大致范围是解题的关键.46.通过估算,估计的值应在A. ~之间B. ~之间C. ~之间D. ~之间【答案】B【解析】解:,,即,,故选:B.根据得出:,进而可得答案.本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.47.估计的值在A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:,,则的值在3和4之间,故选:C.估算得出的范围即可.此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.48.如图,数轴上A,B,C,D四点中,与对应的点距离最近的是A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.先估算出的范围,结合数轴可得答案.【解答】解:,即,,由数轴知,与对应的点距离最近的是点B.故选B.49.下列各数中,介于正整数6和7之间的数是A. B. C. D.【答案】A【解析】解:,,故A正确.,,故B错误.,,故C错误.,,故D错误.故选:A.依据被开方数越大对应的算术平方根立方根越大进行求解即可.本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.50.若,则整数A. 5B. 6C. 7D. 8【答案】C【解析】解:,,故选:C.先估算出的范围,再得出选项即可.本题考查了估算无理数的大小,能估算出的范围是解此题的关键.51.在数轴上有一块墨迹,被覆盖住的无理数可能是A. B. C. D.【答案】B【解析】【分析】此题主要考查了估算无理数的大小,数轴的有关知识,应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:由图可知:被覆盖的数在3和4之间;被墨迹覆盖的无理数有可能是.故选B.52.对于实数x,我们规定表示不大于x的最大整数,如,,现对82进行如下操作:第次第次第次,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为A. 1B. 2C. 3D. 4【答案】C【解析】解:第次第次第次,对121只需进行3次操作后变为1,故选:C.表示不大于x的最大整数,依据题目中提供的操作进行计算即可.本题考查了估算无理数的大小,解决本题的关键是明确表示不大于x的最大整数.53.估计的值在哪两个整数之间A. 9和10B. 7和8C. 5和6D. 3和4【答案】D【解析】解:,在3和4之间.故选D.先估算出的范围,即可得出选项.本题考查了估算无理数的大小的应用,能估算出的范围是解此题的关键.54.与最接近的整数是A. 1B. 2C. 3D. 4【答案】C【解析】解:,,...与最接近的整数是3.故选:C.先依据被开方数越大对应的算术平方根也越大估算出的大小,然后即可做出判断.本题主要考查的是估算无理数的大小,利用夹逼法估算出的大小是解题的关键.55.在数轴上标注了四段范围,如图,表示的点落在A. 段B. 段C. 段D. 段【答案】C【解析】【分析】根据数的平方,即可解答.本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.【解答】解:,,,,,,,的点落在段,故选:C.56.如图,数轴上点N表示的数可能是A. B. C. D.【答案】A【解析】解:,,,,根据点N在数轴上的位置,知:,四个选项中只有,即.故选:A.先对四个选项中的无理数进行估算,再根据N点的位置即可求解.本题考查了同学们估算无理数大小的能力,及能够根据点在数轴的位置确定数的大小.57.数轴上表示的点A的位置应该在A. 2与3之间B. 3与4之间C. 4与5之间D. 7与8之间【解析】【分析】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度一般.先估算无理数的大小,然后求解即可.【解答】解:,,故数轴上表示的点A的位置应在3与4之间.故选:B.58.估计的值在A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】A【解析】解:,,故选:A.根据估算无理数的大小,即可解答.本题考查了估算无理数的大小,解决本题的关键是估算无理数的大小.59.如图,已知数轴上的点A、B、C、D分别表示数、、1、2,则表示的点P应落在线段A. AB上B. OB上C. OC上D. CD上【答案】A【解析】解:,,表示的点P应落在线段AB上.故选:A.直接根据题意得出进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.60.a与b是两个连续整数,若,则a,b分别是A. 6,8B. 3,2C. 2,3D. 3,4【答案】C【解析】解:,,,且a与b是两个连续整数,,.故选C.根据,结合,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出.61.估计的值在A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】解:,,直接利用,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.62.若,且m、n为连续正整数,则的值为A. 5B. 7C. 9D. 11【答案】B【解析】解:,且m、n为连续正整数,,,则原式,故选:B.根据题意确定出m与n的值,代入原式计算即可求出值.此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即;理解概念是解题的关键.63.估计的值在两个整数A. 3与4之间B. 5与6之间C. 6与7之间D. 3与10之间【答案】B【解析】解:,,的值在5与6之间.故选:B.直接利用估算无理数的方法得出接近无理数的整数进而得出答案.此题主要考查了估算无理数的大小,正确掌握无理数的估算方法是解题关键.64.的结果在下列哪两个整数之间.A. 6和7B. 5和6C. 4和5D. 3和4【答案】A【解析】解:,,故选:A.直接利用,进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.65.关于“”,下列说法不正确的是A. 它是一个无理数B. 它可以用数轴上的一个点来表示C. 它可以表示面积为19的正方形的边长D. 若为整数,则【答案】D【解析】【分析】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法.分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可.【解答】解:A.是一个无理数,说法正确,故选项A不合题意;B.可以用数轴上的一个点来表示,说法正确,故选项B不合题意;C.它可以表示面积为19的正方形的边长,说法正确,故选项C不合题意;D.,,故选项D符合题意.故选D.66.如图,数轴上点P表示的数可能是A. B. C. D.【答案】C【解析】解:从数轴可知:P点表示数在2和3之间,A、,故本选项不符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、,故本选项不符合题意;故选C.从数轴可知P点表示数在2和3之间,先估算出每个无理数的范围,即可得出答案.本题考查了估算无理数的大小,能估算出每个无理数的范围是解此题的关键.67.估计在A. ~之间B. ~之间C. ~之间D. ~之间【答案】C【解析】解:,即:,在2到3之间.故选:C.根据二次根式的性质得出,即:,可得答案.本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道在和之间.68.若的整数部分是a,小数部分是b,则式子的值是A. B. 9 C. 19 D.【答案】B【解析】解:,,,,.故选:B.先进行估算的范围,确定a,b的值,再代入代数式即可解答.本题考查了估算无理数的大小,解决本题的关键是估算的范围.69.关于“”,下列说法不正确的是A. 它是数轴上唯一一个距离原点个单位长度的点表示的数B. 它是一个无理数C. 若,则整数a的值为3D. 它可以表示面积为10的正方形的边长【答案】A【解析】解:数轴上距离原点个单位长度的点表示的数是,故A错误,符合题目要求它是一个无理数,故B正确,不符合题目要求,,故整数a的值为3,故C正确,不故符合题目要求它可以表示面积为10的正方形的边长,故D正确,不符合题目要求.故选:A.依据绝对值的定义、无理数的概念,依据夹逼法估算无理数大小的方法、依据算术平方根的定义进行判断即可.本题主要考查的是估算无理数的大小,实数与数轴,熟练掌握相关知识是解题的关键.70.若,且a、b是两个连续整数,则的值是A. 2B. 3C. 4D. 5【答案】D【解析】解:,,由,且a、b是两个连续的整数,得到,,则,故选:D.由被开方数5的范围确定出的范围,进而求出a与b的值,代入原式计算即可得到结果.71.设面积为6的正方形的边长为下列关于a的四种说法:是有理数;是无理数;可以用数轴上的一个点来表示;其中说法正确的有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:面积为3的正方形的边长为a,,故是有理数,错误;是无理数,正确;可以用数轴上的一个点来表示,正确;,正确,则说法正确的是:共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.72.有下列说法:实数与数轴上的点一一对应;的相反数是;在1和3之间的无理数有且只有,,,这4个;是三次三项式;绝对值等于本身的数是正数;其中错误的个数为A. 1B. 2C. 3D. 4【答案】C【解析】解:实数与数轴上的点一一对应,正确;的相反数是,正确;在1和3之间的无理数有无数个,错误;是二次三项式,错误;绝对值等于本身的数是正数和0,错误;故选:C.根据估算无理数的大小、相反数的概念、绝对值的概念、多项式的概念、实数与数轴判断即可.本题考查的是估算无理数的大小、相反数的概念、绝对值的概念、多项式的概念、实数与数轴,掌握相关的概念和性质是解题的关键.73.估计的值在两个整数A. 3与4之间B. 5与6之间C. 6与7之间D. 3与10之间【答案】B【解析】解:,,的值在5与6之间.故选:B.直接利用估算无理数的方法得出接近无理数的整数进而得出答案.此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键.74.估算的值是A. 在0和1平之间B. 在1和2之间C. 在2和3之间D. 在3和4之间【答案】C【解析】解:,,在 2 和 3 之间.故选C直接得出的取值范围进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.75.已知a为实数,若,则下列结论中正确的是A. B. C. D.【答案】D【解析】【分析】本题主要考查了估算无理数的大小,首先估算和的大小是解答此题的关键.首先估算和的大小,再做选择.【解答】解:,,又,,故选D.76.如图,在数轴上,与表示的点最接近的点是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

估算无理数的大小知识点
估算的取值范围。

解:因为1<3<4,所以<<,即:1<<2如果想估算的更精确一些,比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.因为2.89<3<3.24,所以<<,所以1.7<<1.8。

如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。

一、直接法直接利用数的大小来进行比较。

①、同是正数:例: 与3的比较根据无理数和有理数的联系,被开数大的那个就大。

因为3=>,所以3>②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。

③、一正一负:正数大于一切负数。

二、隐含条件法:根据二次根式定义,挖掘隐含条件。

例:比较与的大小。

因为成立所以a-2≧0即a≧2所以1-a≦-1所以≧0,≦-1所以>
三、同次根式下比较被开方数法:例:比较4与5大小因为
四、作差法:若a-b>0,则a>b例:比较3-与-2的大小因为3-&#8211;-2=3-&#8211;+2=5-20即3->-2
五、作商法:a>0,b>0,若>1,则a>b例:比较与的大小因为÷=×=六、找中间量法要证明a>b,可找中间量c,转证a>c,c>b例:比较与的大小因为>1,1>所以>
七、平方法:a>0,b>0,若a2>b2,则a>b。

例:比较与的大小()2=5+2+11=16+2()2=6+2+10=16+2所以:八、倒数法:
九、有理化法:可分母有理化,也可分子有理化。

相关文档
最新文档