电力系统不对称短路故障
5(C-8)不对称故障分析 - 电力系统 湖南大学

(b) 短路电压:短路两相V相等,为非短路相的1/2 且相位相反。 特别:
Zff(2) =Zff(1) then Vfa =Vf[0] & Vfb =Vfc = 1 Vf[0] 2
9
8-1 简单不对称短路的分析
三、两相接地短路: (1) 边界条件:
Vfa Vfb
Vfb Vfc I fa=0 Ifb I fc
I fa (1) I fa (2) I fa (0) 1 I fa 3
I fa(2)
I fa(0)
Zff(1) + V f [0 ]
V f a (1 )
Zff(2)
V fa (2 )
Zff(0)
Vfa(0)
-
I fa(1) I fa(2) I fa(0)
= Zff(1) + (Zff(2) + Zff(0) ) Zff(1) + Z(1) Δ 4
3 Vf[0]
3 Vf[0]
8-1 简单不对称短路的分析
一、单相接地短路: (5) 故障(短路)口的各相电压
Vfb = a 2Vfa(1) + aVfa(2) + Vfa(0) = -j 23 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) 2 3 Vfc = aVfa(1) + a Vfa(2) + Vfa(0) = -j 2 - 2Z ff(2) + Z ff(0) - j 3Z ff(0) I fa(1) Vfa = 0
Ifc = aIfa(1) + a 2Ifa(2) + Ifa(0) = a Zff(2) + a 2Zff(0)
电力系统的不对称(故障)分析的对称分量法

(*)
式 Ub Uc Z f Ib 可变换为
(a2Ua1 aUa2 Ua0 ) (aUa1 a2Ua2 Ua0 ) Z f (a2Ia1 aIa2 Ia0 )
将(#)式代入:(a2 a)Ua1 (a2 a)Ua2 Z f (a2 a)Ia1
a3 1
其中
1 T a 2
a
1 1 a 1 a 2 1
为对称分量变换矩阵
IP
IIba
Ic
为相电流向量
IS
Ia1 Ia 2
Ia0
为对称分量电流向量
对前式求逆,得 IS T 1IP ,其中
1 a a 2
电力系统的不对称(故障)分析的 对称分量法
在电力系统故障中,不对称故障发生的概率比三相对称故 障发生的概率大得多。例如某电力系统220kV线路故障中:
单相接地短路占91%; 两相短路占0.9%; 两相接地短路占5.9%; 三相短路占1.8%; 单相断线占0.4%。 基本分析方法:对称分量法
一、对称分量法
Ia1 Ia 0Ia 2
Uc 2
Ub 2
Ia
Uc 2
UC1
Uc 0 Uc
Ua Ua 2 Ua0
Ub 2 Ub1
Ub Ub0
2. 两相短路
短路点的电压电流(边 界条件):
Ia 0 Ib Ic
Ub Uc Z f Ib
a
k
b
c
Ua Ub Uc Ia 0
3X kk0 ]Ia1
Uc aUa1 a2Ua2 Ua0 j[(a a2 ) X kk2 (a 1) X kk0 ]Ia1
电力系统不对称故障分析与计算及其程序设计

电力系统不对称故障分析与计算及其程序设计电力系统是现代社会不可或缺的组成部分。
在电力系统中,不对称故障是一种严重的故障,其影响可以导致电力系统的瘫痪。
因此,不对称故障分析与计算非常重要,是电力系统维护的基础工作之一。
本文将重点讨论电力系统不对称故障分析与计算及其程序设计。
1. 不对称故障的概念不对称故障是指在电力系统中,一侧电源与另一侧负载不对称导致的故障。
不对称故障通常包括短路故障和开路故障两种情况。
短路故障是指两个相之间或者相与地之间的短路,导致电路异常加热、设备损坏、电压降低等问题。
开路故障是指电路中出现的缺失和断路,导致电流无法正常流动,使电力系统无法正常运行。
2. 不对称故障分析与计算在出现不对称故障时,需要进行分析和计算。
基本的不对称故障分析和计算包括以下内容:(1)不对称故障电流的计算。
不对称故障电流是指出现不对称故障时电路中的电流。
不同类型的故障电流计算方法不同,需要根据具体情况进行计算。
不对称故障电流的计算非常关键,可以为后续的故障处理提供依据。
(2)故障影响分析。
不对称故障会对电力系统产生不同程度的影响,包括电压降低、设备故障、负荷损失等。
需要进行故障影响分析,为后续处理提供依据。
(3)电力系统稳态分析。
在不对称故障发生时,需要进行电力系统的稳态分析,分析电力系统受故障干扰后的运行情况,为后续处理提供可靠的指导。
3. 不对称故障计算程序设计对于电力系统不对称故障计算,可以设计相应的计算程序,以提高计算效率和准确性。
根据不同的故障情况和计算需求,可以设计不同的计算程序。
一般而言,不对称故障计算程序应包括以下部分:(1)输入信息。
输入信息主要包括电路图、电力系统参数、故障类型等。
输入信息的准确性对计算结果具有重要的影响。
(2)故障电流计算。
根据输入的电路图和电力系统参数,计算不对称故障电流。
不对称故障电流是不对称故障计算的基础。
(3)故障影响分析。
根据不对称故障电流,计算电力系统电压降低、设备故障等影响,预测故障对电力系统的影响程度。
电力系统不对称短路的分析与计算

本章内容
1 不对称短路的特征 2 对称分量法 3 不对称短路的计算原理 4 各元件的正序、负序、零序参数(阻抗、
导纳) 5 各种不对称短路的短路电流和短路电压的
计算方法
第27页/共116页3 不对称路的计算原理在任意某系统某点f 发生不对称短路时
特征:短路点元件参数不对称 (三相阻抗不等) 运行参量不对称
第43页/共116页
4.2 变压器的序参数及等值电路
注意:变压器的电阻一般较小,因此在短路 计算时常予忽略不计!
(1)正序电抗X(1)
定义:变压器通过正序电流时的电抗
Xm:值很大, 忽略不计。
正序单相等值电路
第44页/共116页
(2)负序电抗X(2)
定义:变压器通过负序电流时的电抗
由于:三相变压器为静止元件,改变相序并不改变各绕 组相互之间的互感和自身的漏感。
转子d轴,一会掠过转子q 轴,使励磁绕组和d轴阻尼 绕组中的磁链总要变动;
第40页/共116页
4)根据磁链守恒原则,励磁 绕组和阻尼绕组均要产生 感应电流,将负序磁链挤 出,使之通过漏磁路构成通 路;这与对称三相突然短路 时暂态过程开始的情况相似;
5)负序磁链通过d轴磁路时,负序电抗相当于 ; 负序磁链通过q轴磁路时,负序电抗相当于 ; 介于二者之间时,通常取二者的平均值:
负序电压波形图
AC B
相序:
A—>C—>B:1200
第11页/共116页
三相负序电压向量
理解:正序和负序时相对而言的!
若为发电机
如:取XX’绕组为A相,则必 取YY’绕组为B相,ZZ ’绕组 为C相,则转子逆时针旋转时 产生的电压、电流的相序为 A—>B—>C:1200 则:此时,若转子反转,产 生的电压和电流的相序为: A—>C—>B:1200
电力系统不对称故障的分析计算

电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。
然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。
因此,对电力系统不对称故障进行分析和计算是非常重要的。
本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。
2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。
其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。
不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。
2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。
正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。
3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。
3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。
这些参数将用于后续的计算。
3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。
常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。
3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。
通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。
3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。
3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。
通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。
4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。
不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。
不对称短路故障分析与计算(电力系统课程设计)

课程设计报告书
题目:不对称短路故障分析与计算
专 业:电气工程及其自动化
班 级:YYYYYYY班
学 号:YYYYYYYYY
学生姓名:YYY
指导教师:YYY老师
20XX年X月X日
电力系统分析课程设计
题目:不对称短路故障分析与计算(手算或计算机算)
一、原始资料
T4
T3
T2
T1
1、发电机参数已经给定。
4
短路点正序标幺值为:
短路点负序标幺值为:
短路点零序标幺值为:
不对称短路的短路电流正序分量标幺值:
短路电流的标幺值:
短路电流的幅值:
短路冲击电流幅值:
短路点非故障相对地电压:
5 结果分析
5.1
电力系统产生短路的主要原因是供电系统中的绝缘被破坏。在绝大多数情况下,电力系统的绝缘的破坏是由于未及时发现和消除设备中的缺陷和维护不当所成的。例如过电压、直接雷击、绝缘材料的老化、绝缘配合不当和机械损坏等,运行人员错误操作,如带负荷断开隔离开关或检修后未撤接地线就合断路器等;设备长期过负荷,使绝缘加速老化或破坏;小电流系统中一相接地,未能及时消除故障;在含有损坏绝缘的气体或固体物质地区。此外在电力系统中的某些事故也可能直接导致短路,如电杆倒塌、导线断线等也会造成短路。
短路对电力系统的正常运行和电气设备有很大的危害,引起的后果是破坏性的,具体表现在:(1)短路点的电弧有可能烧坏电气设备,同时很大的短路电流通过设备会使发热增加,当短路持续时间较长时,可能使设备过热而损坏;(2)很大的短路电流通过导体时,要引起导体间很大的机械应力,有可能使设备变形或遭到不同程度的破坏。(3)短路时,系统电压大幅度下降,对用户工作影响很大(4)发生接地短路时,会产生不平衡电流及磁通,将在领近的平行线路内感应出很大的电动势。(5)短路发生后,有可能使并列运行发电机组失去同步,破坏系统的稳定,使电力系统瓦解,引起大片地区的停电。
不对称短路的分析和计算

武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
电力系统发生不对称短路故障分析

摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
电力系统不对称故障的分析

短路处各相电压电流为:
I
fb
a2
X ff (2) aX ff (0) X ff (2) X ff (0)
I
fa (1)
I
fc
a
X ff (2) a2 X ff (0) X ff (2) X ff (0)
I
fa (1)
X ff (0) X ff (2)
(四)两相经阻抗短路
1.方法一:
故障点边界条件:
I ka 0, I kb I kc
U kb U kc I kb Z f
转换为对称分量:
I ka0 0, I ka1 I ka 2
U ka1ຫໍສະໝຸດ U ka 2 I ka1 Z f
U fa U fa1 U fa2 U fa0 0
I
fb
I
fa0 a2
I
fa1 a I
fa 2
I fc I fa0 a I fa1 a2 I fa2
(a2
a)
I
fa1
(a2
a)
I
fa 2
0 I fa0 (a2 a) I fa1
I fa(0)
3I fa(1)
I fb I fc 0
U fa 0
U fb a2U fa(1) aU fa(2) U fa(0)
电力系统不对称故障的分析计算

第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
影响电力系统安全稳定运行的“元凶”——不对称短路故障分析

1.问题:如何理解电网中的短路概念及出现的各类故障?回答:所谓短路是指电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接时而流过非常大的电流。
其电流值远大于额定电流,并取决于短路点距电源的电气距离。
短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。
通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。
值得注意的是,除中性点外,相与相或相与地之间都是绝缘的。
图2 电力系统短路的分类电力系统短路可以分为三相短路、单相接地短路、两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
根据电力系统运行经验表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
图3 故障的分类电网中的故障可以分成两大类:简单故障和复杂故障。
复杂故障一般是指由两种或者两种以上的简单故障组合而成,简单故障又分为对称故障和不对称故障;而不对称故障又可以分为短路故障(横向故障)和断路故障(纵向故障)。
在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
2.问题:产生短路的原因有哪些?回答:产生短路的原因有很多,主要有如下几个方面:(1)元件损坏。
例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路。
(2)气象条件恶化。
例如雷电造成的闪络放电或者避雷针动作,架空线路由于大风或者导线覆冰引起电杆倒塌等。
(3)违规操作。
例如运行人员带负荷拉刀闸。
(4)其他原因。
例如挖沟损伤电缆。
3.问题:短路可能造成的危害有哪些?回答:短路电流所产生的电动力能形成很大的破坏力,如果导体和它的支架不够坚固,可能遭到难以修复的破坏,短路时由于很大的短路电流流经网络阻抗,必将使网络产生很大的电压损失。
另外,短路类型如果是金属性短路,短路点电压为零,短路点以上各处的电压也要相应降低很多,一旦电压低于额定电压太多的时候就会使供电受到严重影响或者被迫中断,若在发电厂附近发生短路,还可能使全电力系统运行解列,引起严重后果。
7.4 简单不对称短路故障分析

7.4 简单不对称短路故障分析在中性点接地的电力系统中,简单不对称短路故障有单相接地短路、两相短路以及两相接地短路。
无论是哪一种短路,利用对称分量法分析时,都可以制订出正、负、零序网络,并经化简后从简化序网列写出各序网络故障点的电压平衡方程式,如式(7-11)。
如果略去正常分量只计故障分量,并忽略各元件电阻,可将式(7-11)改写为(7-45)式中,即是短路发生前故障点的电压。
要求解出上式中的三个电流序分量和三个电压序分量,应根据不对称短路的边界条件补充三个方程式。
由于短路类型不同,短路点的边界条件不同,补充的方程亦不同。
下面对三种不对称短路分别进行讨论。
7.4.1 单相接地短路设在中性点接地的电力系统中相接地短路,如图7-29,由图可列出短路点的边界条件图7-29 单相接地短路示意图(7-46)将上述边界条件转化为正、负、零序分量表示由有即(7-47)由有联立求解式(7-45)和式(7-47),即可解出、、和、、,但这种解析法较繁,工程中不适用。
若按照边界条件,将正、负、零序网串联,如图7-30所示,也可求出单相接地短路时短路点电流和电压的各序分量。
这种由三个序网按不同的边界条件组合成的网络称复合序网。
在复合序网中,同时满足了序网方程和边界条件,因此复合序网中的电流和电压各序分量就是要求解的未知量。
图7-30 单相接地短路复合序网从复合序网中直接可得(7-48)则短路点的故障相电流为(7-49)在近似计算中,一般有,从式(4-129)看出,当,则单相接地短路电流大于同一地点的三相短路电流,反之则单相接地短路电流小于三相短路电流。
从序网方程式(7-45)可求出短路点电压的各序分量、、,然后利用对称分量法的合成算式即可求得短路点非故障相电压代入和,则(7-50)同理可得(7-51)从式(7-50)和式(7-51)看出:当,非故障相电压较正常运行时低,极限情况时,当,则、,故障后非故障相电压不变。
当,非故障相电压较正常运行时高,极限情况时,,相当于中性点不接地系统发生单相接地短路时,中性点电位升高至相电压,而非故障相电压升高为线电压的情况。
电力系统不对称故障的分析-PPT

a1
.
Uc
.
.
aU a1 a 2 U a2
.
U a1
jX 2
. I a1
短路点得电流、电压相量图
Ua
IC
Ia2 Ia1 0
Ub Uc Ua
电压向量图
Ib
电流向量图
三、两相短路接地
Ua Ub Uc
a b c
Ia
Ib
Ic
jX f
➢短路点得边界条件为
U
b U c
Ia 0 j(Ib
.
Ib
.
I a0 a2
.
I a1 a
.
I a2
(a2
X 2 aX 0 X2 X0
)
.
I
a1
.
Ic.Leabharlann I a0.a I a1
a2
.
I a2
(a
X 2
a2 X0
. ) I a1
X2 X0
.
.
.
.
.
U a U a0 U a1 U a2 3U a1 j3
X 2 X 0
.
I a1
X 2 X 0
X 0 X1
E1
1.5
X 0 X1
2
X 0 X1
j
3 2
E1
Uc
j [(a
a2 ) X1
(a 1) X 0 ]
E12 j (2 X1
X0 )
(a
a2) 2
(a 1)
X 0 X1
X 0 X1
E1
1.5
X 0 X1
2 X0 X1
j
3 2
E1
➢非故障相电压得绝对值为
电力系统不对称故障的分析

电力系统不对称故障的分析电力系统不对称故障是指在三相电力系统中,其中一相发生了损坏或故障,导致系统中三相电压、电流、功率等参数不再保持对称。
不对称故障会导致电力系统运行不稳定,甚至造成设备损坏和系统瘫痪。
因此,对电力系统不对称故障的分析非常重要。
首先,对电力系统不对称故障进行分析需要进行故障现象的测量和记录。
可以通过测量故障相电压和电流、功率因素等参数来了解故障的具体情况。
同时,还可以记录故障发生时的系统状态和操作情况,为后续的故障分析提供依据。
其次,根据故障现象的测量和记录,初步判断故障的类型。
电力系统不对称故障可以分为单相短路故障、单相接地故障和线路不平衡故障等。
通过分析故障相电压和电流的变化规律,可以初步判断故障的类型。
然后,根据故障类型,进行故障点的定位。
故障点的定位可以通过测量故障传播速度和故障电流的方向来实现。
根据故障点位置的确定,可以进行局部化抢修和恢复供电,减少故障对系统的影响。
最后,进行故障原因分析。
故障原因分析是解决电力系统不对称故障的关键步骤,可以通过多种方法来实现。
例如,可以通过现场勘查、设备检测和故障模拟等方法来找出故障的具体原因。
同时,还可以利用故障记录仪、故障模拟软件等辅助工具,对故障进行仿真和分析。
在进行故障原因分析时,还需要考虑故障的影响范围、时间和条件等因素。
通过对故障原因的准确分析,可以采取相应的措施来防止和排除类似故障的再次发生。
综上所述,电力系统不对称故障的分析是一个复杂而重要的过程,需要对故障现象进行测量和记录,初步判断故障类型,进行故障点的定位,并最终进行故障原因分析。
通过准确的故障分析,可以及时恢复系统运行,确保电力系统的稳定和安全。
不对称短路特点总结

不对称短路特点总结不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
本文将总结不对称短路的特点,包括故障类型、故障电流、电压变化以及保护装置动作等方面。
一、故障类型不对称短路通常包括单相接地短路、两相短路和两相接地短路。
其中,单相接地短路是最常见的类型,其特点是只有一相线路对地绝缘被破坏,导致电流通过接地体形成回路。
两相短路和两相接地短路则分别指两相线路之间或两相线路对地绝缘被破坏,导致电流通过线路形成回路。
二、故障电流不对称短路时,由于三相电压不平衡,故障电流的大小和方向也不对称。
对于单相接地短路,故障电流为接地相电流;对于两相短路和两相接地短路,故障电流为两相电流之和。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
三、电压变化不对称短路时,三相电压会出现不平衡现象。
对于单相接地短路,接地相电压为零,其他两相电压升高;对于两相短路和两相接地短路,故障相电压降低,其他两相电压升高。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
四、保护装置动作在不对称短路时,保护装置会根据不同的故障类型和电压变化情况做出相应的动作。
例如,在单相接地短路时,零序保护装置会动作切除故障线路;在两相短路和两相接地短路时,负序保护装置会动作切除故障线路。
此外,为了确保系统的稳定运行,保护装置还会根据实际情况进行相应的调整和优化。
不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
为了确保系统的稳定运行和设备的安全运行,需要加强对不对称短路的监测和分析工作,及时发现和处理故障。
同时,还需要加强对保护装置的维护和调试工作,确保其正常工作和动作的准确性。
第12章 电力系统的不对称故障(一)

基本假设:(电磁暂态过程) 同步发电机的转速保持不变;发电机间的相对功角不 变;异步电动机的转差率不变。
系统所有元件都用其次暂态参数代表,相当于稳态电 流计算。
周期电流起始值计算的模型
一、发电机:
1、有阻尼发电机模型
2、无阻尼发电机模型
jxd
jxd
E 0
E 0
二、网络:
1、忽略线路对地电容
从而得: U a (1) Z (1) I a (1) U a ( 2) Z ( 2) I a ( 2) U Z I a (0) ( 0) a ( 0)
各序分量解耦、独立。
结论:
(1)对于三相对称电路,各序分量是独立的,可以 分序求解。三相不对称时不行。
(2)因此,对称分量法只用于①线性;②三相对称 元件组成系统的不对称故障分析。 (3)若电路参数三相不对称则不能用,可直接求解 三相方程。
2、变压器对地的励磁支路 3、高压线路r<<x,可不计 4、缆线、低压线路r较大,近似用
jz
三、负荷:
1、不考虑远方负荷影响,认为开路 2、计算机计算时可用恒定阻抗表示
3、短路点附近有大容量电动机时,则计及其 影响
短路点电流的计算
一、短路前:
Z
Uf 0
二、短路起始时
1、经Zf短路
Z
Uf 0
c c1 c2 c0
引入算子: e
j1200
1 3 j 2 2
2 1 0
1 1 1 2 1 定义: 对称分量变换矩阵 T 2 1
1 2 1 1 2 T 1 其逆阵: 3 1 1 1
Zm
Ia
电力系统不对称故障

对称分量中分解和合成的相量关系
Fa2 Fa1
Fc1
Fb1
(a)
Fb2
(b)
Fa0
Fa2
Fa
Fa1
Fc2
Fa0 Fb0 Fc0
(c)
Fc1
Fc2
Fc
Fb1 Fc0
Fb2
Fb
(d)
Fb0
注意:
➢ a b c T 1 2 0 是一对一的线性变换。独立总变 量数不变。
➢ 这样的转换并非纯数学的,各序电流、电压 是客观存在的,可以测出。
U a
a
Zs
Ia
U b
Zm
b
Zm
Zs
U c
Ib
Zm
c
Zs
Ic
从变换上来看:
U UbaZZm a
Zm Zb
Uc Zm
Zm
U a b c Z a b c Ia b c
Zm Zm
IIba
Zc Ic
将三相电压降和三相电流变换成对称分量 :
U 1 2 0 T 1 U a b c T 1 Z a b c T I 1 2 0 Z 1 2 0 I 1 2 0
Y0 /Y/ 开 开 Y0/Y0/ 开 合
x(0) xI xII//xIII
xI xIII xIxII/I/x(II )
3、自耦变压器
自耦变压器的中性点一般都直接接地,或者 经过阻抗接地。如果有第三个绕组,则通常
都采用 接线。
(1)中性点直接接地的 Y0 / Y0 和 Y0 / Y0 / 自耦变压器
Y0 / Y0 接线
1
R1jX1
•
U0
R2jX2 RmojXmo
两侧绕组中都可以有零序电流流过。即等值 电路中的两个端点都可以与外电路相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I m sin( ) I Pm sin( ) C
C iaP0 I m sin( ) I Pm sin( )
i I Pm sin(t ) [Im sin( ) I Pm sin( )]et /Ta
• 网络的简化
• 常用的网络简化主要有分裂电势源和分裂 短路点。
Zs
Z m
Z sc
0
0
Z Z
s
m
0 Z1 0 0 00Z 20
0
0
Z s
2Z m
0
0 Z0
V120 Zsc I120
Va1 Va2
Z 1 Ia1 Z 2 Ia2
Va0
Z 0 Ia0
结论:在三相参数对称的线性电路中,各序对称分量具有独 立性,因此,可以对正序、负序、零序分量分别进行计算。
➢ 对称分量法 ➢ 对称分量法在不对称故障分析计算中的应用 ➢ 电力系统元件序参数及系统的序网图 ➢ 简单不对称故障的分析计算
对称分量法
正序分量
负序分量
零序分量
合成
一、对称分量法
• 正序分量:三相量大小相等,互差1200,且与系 统正常运行相序相同。
• 负序分量:三相量大小相等,互差1200,且与系 统正常运行相序相反。
Fa 0
Fc
Fc1
Fc 2
Fc0
aFa1
a 2Fa2
Fa 0
• 三序量用三相量表示
1 1 1 T a2 a 1
a a2 1
Fa1 Fa2
Fa0
1 3
1 1 1
a a2 1
a2 a
FFba
1
Fc
F120 T -1Fabc
Fabc TF120
二、序阻抗的概念
• 静止的三相电路元件序阻抗
通常
三、短路容量
短路容量也称为短路功率,它等于短路电流有效 值与短路处的正常工作电压(一般用平均额定电 压)的乘积,即
SD 3VavI ''
用标幺值表示时
SD
3Vav I '' 3VB IB
I '' IB
It
短路容量主要用来校验开关的切断能力。
第三节不对称故障的分析计算
• 电力系统正常运行时,可以认为是三相对称的,即认 为各元件三相参数是相同的、三相电路中各点的三相 电压和电流是对称的,且具有正弦波形和正常相序。
• 异步电机的次暂态参数简化相量图。由图 可计算它的次暂态电势为
•
近似地用标量形式表示为
•短路前异步电动机的端电压、电流以及电压和电流间的相角差。
三相短路的暂态过程
图 简单三相电路短路
•短路前电路处于稳态:
e Em sin(t ) i Im sin(t )
Im
Em
( R R)2 2 ( L L)2
tg 1 (L L)
R R
假定t=0时刻发生短路 a相的微分方程式如下:
Ri
L
di dt
Em
sin(t
)
其解就是短路的全电流,它由两部分组成: 周期分量和非周期分量。
周期分量: 短路电流的强制分量, 并记为 iP
iP I Pm sin(t )
I Pm
Em
R 2 (L)2
tg 1 L
R
非周期电流 : 短路电流的自由分量,记为
t
iaP Ce pt Ce Ta
(C为由初始条件决定的积分常数)
p — 特征方程 R pL 0 的根。
pR L
Ta — 非周期分量电流衰减的时间常数
Ta
1 p
L R
积分常数的求解
短路的全电流可表示为:
短路前电流 i iP iaP IPm sin(t ) Cet /Ta i Im sin(t )
VVba
Vc
Z Z Z
aa ab ac
Z ab Z bb Z bc
Z Z Z
ac bc cc
IIba Ic
Vabc ZI abc V120 T 1ZTI120 Z sc I120
Zsc T 1ZT
称为序阻抗矩阵
• 当元件参数完全对称时 zaa zbb zcc zs zab zbc zca zm
• 近似地用标量的形式表示为
• (2)异步电动机。在正常运行情况下,异步电动机的转差率 很小(s一2%~5%),可以近似地当做同步速运行。根据短路 瞬间转子绕组链磁守恒的原则,异步电动机也可以用与转子绕 组的总磁链成正的次暂态电势以及相应的次暂态电抗来代表。 异步电机次暂态电抗的额定标么值为
• Ist——异步电机启动电流的标么值(以额定电流为基准),一般 为4~7,因此可近似地取X‘’=0.2。
• 一、起始次暂态电流(I“)的计算 • 1.确定系统各元件的次暂态参数 • (1)同步发电机。在突然短路瞬间,同步发电机的次暂态电
量保持着短路前瞬间的数值(E’’0=E’’101)。根据图所示简化相 量图,取同步发电机在短路前瞬间的端电压为U101,电流为 I101和功率因数角φ101,利用下式即可计算出次暂态电势值, 即
• 电力系统对称运行方式的破坏主要与故障有关,例如 发生不对称短路或个别地方一相或二相断线等等。
• 电力系统对称运行方式遭到破坏时,三相电压和电流 将不对称,而且波形也发生不同程度的畸变,即除基 波外,还含有一系列谐波分量。在暂态过程中谐波成 分更复杂,而且还会出现非周期分量。
• 我们分析电压和电流的基波(50Hz)分量,并且在暂态 过程的任一瞬间都当作正弦波形看待。采用相量法来 进行分析计算。由于只是个别地方发生不对称短路或 断线,导致系统局部的不对称,而系统其他各元件的 三相阻抗及三相之间互感仍然保持相等,所以一般不 使用直接求解复杂的三相不对称电路的方法,而采用 更简单的对称分量法进行分析计算。
二、短路冲击电流
•指短路电流最大可能的瞬时值,即称冲击电流,用iim
表示。其主要作用是校验电气设备的电动力稳定度。
在实用计算中,冲击电流近似计算为:
iimp Kimp 2I '' 2.55I ''
一般电力系统中,冲击系数主要取决于电路的衰减时
间常数和短路故障的时刻, 取1.8
1<Kimp <2
• 零序分量:三相量大小相等,相位一致。
逆时针旋转1200
Fb1 Fb2
a 2 Fa1 , Fc1 aFa2 , Fc2
aFa1 a 2 Fa2
Fb0 Fc0 Fa0
a e j120
• 三相量用三序量表示
Fa Fb
Fa1 Fb1
Fa 2 Fb2
Fa 0 Fb0
a 2Fa1
aFa 2