2019-2020年初二第三次月考数学试题及答案
2019年人教版数学八年级上册第三次月考试卷含答案
2019-2020学年度第一学期第三次学情检测八年级数学试卷(本卷总分120分时间100分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.16的算术平方根是() A.±4 B.﹣4 C. 4 D.±82.下列图案不是轴对称图形的是()A. B. C. D.3.若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100°4.下列四组线段中,可以构成直角三角形的是()A. 4,5,6 B. 2,3,4 C.,3,4 D. 1,,35.3184900精确到十万位的近似值为() A. 3.18×106 B. 3.19×106 C. 3.1×106 D. 3.2×1066.若点P(a,a﹣3)在第四象限,则a的取值范围是() A. a<0 B. a>3 C.﹣3<a<0 D. 0<a<37.如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A. AB=DE B.∠B=∠E C. AC=DC D.∠A=∠DA. B. C. D.8.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P关于OB对称,则P1,O,P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形10.在平面直角坐标系XOY中,A点的坐标为(6,3),B点的坐标为(0,5),点M是x轴上的一个动点,则MA+MB的最小值是()A.8 B.10 C.12 D.15二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在相应的位置处)11.计算:364-= .12.写出一个大于1且小于2的无理数.13.已知点P的坐标是(2,3),则点P到x轴的距离是.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,CD=8,则DE的长等于.15.如图所示,在Rt△ABC中,∠A=90°,BD平分∠AB C,交AC于点D,且AB=15,BD=17,则点D 到BC的距离是.(第16题图)(第17题图)(第18题图)16.如图,有一个长方体盒子,长、宽、高分别为6cm、5cm、4cm,有一只小虫要从点A处沿长方体表面爬到点B处,最短的路径长为 cm17.如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE= .18.如图,在一张长为5cm,宽为4cm的长方形纸片上,现要剪下一个腰长为3cm的等腰三角形(要求:等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上),则剪下的等腰三角形的底边的长为 cm.三.解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(本题共2小题,每小题4,共8分)(1()3π(2)已知:16)1(2=+x,求x;AB20.(本题6分)如图,点D 是△ABC 的边AB 上一点,点E 为AC 的中点,过点C 作CF ∥AB 交DE 延长线于点F .求证:AD=CF .21.(本题6分)如图,在∠AOB 内找一点P ,使得点P 到∠AOB 的两边距离相等,且使点P 到点C 的距离最短(尺规作图,请保留作图痕迹).22.(本题6分)如图,点D 在AE 上,BD =CD ,∠BDE =∠CDE .求证:AB =AC .23.(本题8分)如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点. (1)若四边形AEDF 的周长为24,AB=15,求AC 的长; (2)求证:EF 垂直平分AD .ABCDE24.(本题10分)在△ABC中,AB、BC、AC 三边的长分别为,,,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF 长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.25.(本题满分10分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E.(1)若AC=12,BC=9,求AE的长;(2)过点D作DF⊥BC,垂足为F,则△ADE与△DFB是否全等?请说明理由.26.【问题背景】(2分)AB CDEF如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【探索延伸】(3分)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;【结论应用】(4分)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.【能力提高】(3分)如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.八年级数学参考答案1.C2.D3.B4.C5.D6.D7.A8.C9.D 10.B11.-4 12.答案不唯一,如2 13.3 14.5 15.8 16.117 17.136018.23(18)或62(24)或30 19.(1)0 (2)x=3或-5 20.略21.作∠AOB 的平分线,再过点C 作平分线的垂线,垂足即点P 22.略23.(1)AC 长9 (4分)(2)(4分)证明略24.(1)3.5 (2分) (2)图略(3分) 面积为5(2分) (3)102(40)或132(52)或23(18)(每个答案1分,共3分) 25.(1)875(6分) (2)不全等 理由略(4分) 26.(1)BE+DF=EF(2)成立 理由略 (3)210海里 (4)10。
2019-2020学年八年级下学期数学3月月考试卷
2019-2020学年八年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、选择题(12×3) (共18题;共51分)1. (3分)已知-1<x<0,则x、x2、三者的大小关系是()A . x<x2<B . x2>>xC . x2<<xD . x2>x>2. (3分)下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A . 3个B . 2个C . 1个D . 0个3. (2分)(2018·铜仁模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .4. (3分) (2017八上·腾冲期中) 下面四个图形中,线段BE是△ABC的高的图是()A .B .C .D .5. (3分)一元一次不等式组的解集中,整数解的个数是()A . 4B . 5C . 6D . 76. (2分)(2016·湖州) 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A . 8B . 6C . 4D . 27. (2分)已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是()A . y>0B . y<0C . -2<y<0D . y<-28. (2分) (2017八上·哈尔滨月考) 到△ABC的三个顶点距离相等到的点是()A . 三条中线的交点B . 三条角平分线的交点C . 三条高线的交点D . 三条边的垂直平分线的交点9. (3分)若不等式组恰有两个整数解,则实数a的取值范围是()A . a>1B . a<1C . <a≤1D . ﹣1<a≤110. (3分)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A .B .C .D . 811. (3分)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A . P>R>S>QB . Q>S>P>RC . S>P>Q>RD . S>P>R>Q12. (2分)如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB 交DE于点G,BC交AE于点F,且∠DAB=30°,以下三个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG=BG.其中正确的个数为()A . 1B . 2C . 3D . 413. (2分) (2018八下·宁波期中) 用反证法证明:两条直线被第三条直线所截,如果内错角不相等,那么这两条直线不平行已知:如图,直线a,b被直线c所截,∠1,∠2是内错角,且∠1≠∠2求证:a不平行b.证明:假设________,则________(________)又∴ ∠1=∠3∴ ∠1=∠2. 这与已知 ________ 矛盾,∴ ________不成立.∴ ________.14. (2分) (2019八上·江津期末) 如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC=________.15. (4分)(2017·河池) 如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A . BD平分∠ABCB . △BCD的周长等于AB+BCC . AD=BD=BCD . 点D是线段AC的中点16. (4分) (2016七下·桐城期中) 关于x的方程5x﹣2m=﹣4﹣x的解在2与10之间,则m的取值范围是()A . m>8B . m<32C . 8<m<32D . m<8或m>3217. (4分) (2017八下·射阳期末) 如图,在△ABC中,∠ACB=90º,AC>BC ,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG ,连接EF、GM、ND ,设△AEF、△CGM、△BND的面积分别为S1、S2、S3 ,则下列结论正确的是()A . S1=S2=S3B . S1=S2<S3C . S1=S3<S2D . S2=S3<S118. (4分) (2017九上·五莲期末) 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A . 6B . 8C . 10D . 12二、解答题 (共7题;共36分)19. (5分)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。
2019-2020年八年级(上)第三次月考数学试卷(解析版).docx
2019-2020 年八年级(上)第三次月考数学试卷(解析版)一、选择题(本题有10 小题,每小题 3 分,共 30 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.一个三角形的两边长分别为3cm 和 7cm,则此三角形的第三边的长可能是()A. 3cm B. 4cm C. 7cm D. 11cm3.等腰三角形的一个角是40°,则它的顶角是()A.40° B .70° C.100°D.40°或 100°4.如图,工人师傅为了固定长方形的木架,通常加两根木条,使其不变形,这种做法的根据是()A.三角形的内角和为180°B.两点之间线段最短C.三角形的稳定性D.直角三角形两锐角互余5.如图,在方格纸中,以AB为一边作△ ABP,使之与△ ABC全等,从P1, P2,P3,P4四个点中找出符合条件的点P,则点 P 有()A.1 个B.2个C.3 个D.4 个6.如图,在△ABC中, AC=4cm,线段AB 的垂直平分线交AC于点N,△ BCN的周长是7cm,则 BC的长为()A. 1cm B. 2cm C. 3cm D. 4cm7.如图,小敏做了一个角平分仪ABCD,其中 AB=AD,BC=DC.将仪器上的点 A 与∠ PRQ的顶点 R 重合,调整AB和 AD,使它们分别落在角的两边上,过点∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△∠QAE=∠ PAE.则说明这两个三角形全等的依据是()A,C 画一条射线 AE, AE就是 ABC≌△ ADC,这样就有A. SAS B. ASA C. AAS D. SSS8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB=CB,小明在探究筝形的性质时,得到如下结论:①AC⊥BD;② AO=CO= AC;③△CBD,其中正确的结论有()AD=CD,ABD≌△A.①② B .①③ C.②③ D.①②③9.如图,在△ ABC中, AB=AC,D、E 是△ ABC内的两点, AD平分∠ BAC,∠ EBC=∠E=60°.若BE=6cm, DE=2cm,则 BC的长为()A. 4cm B. 6cm C. 8cm D. 12cm10.如,直l 1与 l 2相交,且角60°,点 P 在角的内部,小明用下面的方法作P 的称点:先以 l 1称作点 P 关于 l 1的称点 P1,再以 l 2称作 P1关于 l 2的称点P2,然后再以 l 1称作 P2关于 l 1的称点 P3,以 l 2称作 P3关于 l 2的称点 P4,⋯,如此,得到一系列的点P1, P2,⋯, P n,若 P n与 P 重合,n 的可以是()A. 2016 B . 2015 C . 2014 D . 2012二、填空(本有 6 小,每小 4 分,共 24 分)11.如2012 年敦奥运会念的案,其形状近似看作正七形,一个内角度(不取近似)12.如,点 E,F 在 BC上,AB=DC,∠ B=∠ C.要使得∠ A=∠ D.可以添加的条件是(写一个即可).13.如,△ ABC是等三角形,AD是 BC上的高,且AD=6,E AC上的一个点,DE的最小.14.数学活动课上,同学们围绕作图问题:“如图,已知直线 l 和 l 规作直线PQ,使 PQ⊥ l 于点 Q.”其中一位同学作出了如图所示的图形.外一点 P,用直尺和圆你认为他的作法的理由有.15.如图,点 D 在 AC上,点 E 在 AB 上,且 AB=AC, BC=BD, AD=DE=BE,则∠ A=.16.如图所示,在△ABC中, BC=6, E、F 分别是AB、 AC的中点,动点P 在射线EF 上, BP交 CE 于D,∠ CBP的平分线交CE于Q,当 CQ= CE时, EP+BP=.三、解答题(本题有7 小题,第17~ 19 题每题 8 分,第 20、 21、 22 每题 10 分,第 23 题12 分,共 66 分)17.如图,在△ABC中,∠ C=60°,∠ A=40°.(1)用尺规作图作 AB 的垂直平分线,交 AC于点 D,交 AB于点 E(保留作图痕迹,不要求写作法和证明);(2)求证: BD平分∠ CBA.18.如图,在△ABC中,点 D,E 分别在边AC, AB上, BD与 CE交于点 O,给出下列三个条件:①∠ EBO=∠ DCO;② BE=CD;③ OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择( 1)中的一种情形,写出证明过程.19.在平面直角坐标系中,直线l 过点 M( 3, 0),且平行于y 轴.(1)如果△ ABC三个顶点的坐标分别是A(﹣ 2, 0), B(﹣ 1, 0), C(﹣ 1, 2),△ ABC 关于 y 轴的对称图形是△ A B C ,△ A B C 关于直线l 的对称图形是△ A B C ,写出△ A B C 的1 1 1 1 1 12 2 2 2 22三个顶点的坐标;(2)如果点P 的坐标是(﹣a,0),其中a> 0,点P 关于y 轴的对称点是P1,点P1关于直线l的对称点是P ,求2PP 的长.220.如图 1,在△ ABC中,∠ A=36°, AB=AC,∠ ABC的平分线BE 交 AC于 E.(1)求证: AE=BC;(2)如图 2,过点 E 作 EF∥ BC交 AB于 F,将△ AEF绕点 A 逆时针旋转角α(0°<α<144°)得到△ AE′F′,连结CE′、 BF′,求证: CE′=BF′.21.如图,点 P、 Q分别是边长为 4cm的等边△ ABC边 AB、 BC上的动点,点 P 从顶点 A,点Q从顶点 B 同时出发,且它们的速度都为 1cm/s .(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)请求出何时△ PBQ是直角三角形?DCF,连接AF, BE.22.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和(1)请判断:AF 与BE的数量关系是,位置关系是;ADE和 DCF,(2)如图2,若将条件“两个等边三角形ADE和 DCF”变为“两个等腰三角形且 EA=ED=FD=FC”,第( 1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形 ADE和 DCF为一般三角形,且 AE=DF, ED=FC,第( 1)问中的结论都能成立吗?请直接写出你的判断.23.已知 Rt△ ABC中, AC=BC,∠ C=90°, D为 AB边的中点,∠ EDF=90°,如图①∠EDF的两边分别交 AC、 CB(或它们的延长线)于E、F.当∠ EDF的边 DE⊥AC于 E时, S△DEF,S△CEF,S△ABC满足 S△DEF+S△CEF= S△ABC;(1)如图②,当∠ EDF的边 DE和 AC不垂直时,请证明上述结论仍然成立;(2)如图③,当∠ EDF的边 DE与 AC的延长线交于点 E 的情况下,上述结论是否成立?若成立,请给予证明;若不成立, S△,S△,S△,又有怎样的数量关系?请写出你的猜想,DEF CEF ABC不需证明.2015-2016 学年浙江省台州市书生中学八年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(本题有10 小题,每小题 3 分,共 30 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解: A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选: B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.一个三角形的两边长分别为3cm 和 7cm,则此三角形的第三边的长可能是()A. 3cm B. 4cm C. 7cm D. 11cm【考点】三角形三边关系.【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣ 3< x<7+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣ 3< x< 7+3,解得: 4< x< 10,故答案为: C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3.等腰三角形的一个角是A.40° B .70° C.100°40°,则它的顶角是(D.40°或 100°)【考点】等腰三角形的性质.【专题】分类讨论.【分析】分这个角为顶角和底角,结合三角形内角和定理可求得答案.【解答】解:当40°角为顶角时,则顶角为40°,当 40°角为底角时,则两个底角和为 80°,求得顶角为 180°﹣ 80°=100°,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.4.如图,工人师傅为了固定长方形的木架,通常加两根木条,使其不变形,这种做法的根据是()A.三角形的内角和为180°B.两点之间线段最短C.三角形的稳定性D.直角三角形两锐角互余【考点】三角形的稳定性.【分析】根据三角形的稳定性进行解答即可.【解答】解:工人师傅为了固定长方形的木架,使其不变形这种做法的根据是三角形的稳定性,故选: C【点评】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.5.如图,在方格纸中,以AB为一边作△ ABP,使之与△ ABC全等,从P1, P2,P3,P4四个点中找出符合条件的点P,则点 P 有()A.1 个B.2个C.3 个D.4 个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P 的位置即可.【解答】解:要使△ABP与△ ABC全等,点 P 到 AB的距离应该等于点C 到AB的距离,即3个单位长度,故点P 的位置可以是P1, P3, P4三个,故选 C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P 的位置.6.如图,在△ABC中, AC=4cm,线段AB 的垂直平分线交AC于点N,△ BCN的周长是7cm,则 BC的长为()A. 1cm B. 2cm C. 3cm D. 4cm【考点】线段垂直平分线的性质.【分析】首先根据MN是线段 AB的垂直平分线,可得AN=BN,然后根据△ BCN的周长是7cm,以及 AN+NC=AC,求出 BC的长为多少即可.【解答】解:∵MN是线段 AB的垂直平分线,∴AN=BN,∵△ BCN的周长是7cm,∴BN+NC+BC=7( cm),∴AN+NC+BC=7( cm),∵AN+NC=AC,∴AC+BC=7( cm),又∵ AC=4cm,∴BC=7﹣ 4=3( cm).故选: C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.7.如图,小敏做了一个角平分仪ABCD,其中 AB=AD,BC=DC.将仪器上的点 A 与∠ PRQ的顶点R 重合,调整AB和AD,使它们分别落在角的两边上,过点A,C 画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠ PAE.则说明这两个三角形全等的依据是()A. SAS B. ASA C. AAS D. SSS【考点】全等三角形的应用.【分析】在△ ADC和△ ABC中,由于 AC为公共边, AB=AD,BC=DC,利用 SSS定理可判定△ADC ≌△ ABC,进而得到∠ DAC=∠BAC,即∠ QAE=∠ PAE.【解答】解:在△ ADC和△ ABC 中,,∴△ ADC≌△ ABC( SSS),∴∠ DAC=∠BAC,即∠ QAE=∠PAE.故选: D.【点评】本题考查了全等三角形的应用;这种设计,用 SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:①AC⊥BD;② AO=CO= AC;③△ABD≌△CBD,其中正确的结论有()A.①② B .①③ C.②③ D.①②③【考点】全等三角形的判定与性质.【分析】先证明△ABD与△ CBD全等,再证明△AOD与△ COD全等即可判断.【解答】解:在△ABD与△ CBD中,,∴△ ABD≌△ CBD( SSS),故③正确;∴∠ ADB=∠CDB,在△ AOD与△ COD中,,∴△ AOD≌△ COD( SAS),∴∠ AOD=∠COD=90°, AO=OC,∴AC⊥ DB,故①②正确.故选: D.【点评】此题考查了全等三角形的判定和性质,关键是根据SSS证明△ABD与△ CBD全等和利用 SAS证明△ AOD与△ COD全等.9.如图,在△ ABC中, AB=AC,D、E 是△ ABC内的两点, AD平分∠ BAC,∠ EBC=∠E=60°.若BE=6cm, DE=2cm,则 BC的长为()A. 4cm B. 6cm C. 8cm D. 12cm【考点】等边三角形的判定与性质;等腰三角形的性质.【分析】作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△ EFD为等边三角形,从而得出 BN的长,进而求出答案.【解答】解:延长 ED交 BC于 M,延长 AD交 BC于 N,∵AB=AC, AD平分∠ BAC,∴AN⊥ BC,BN=CN,∵∠EBC=∠E=60°,∴△ BEM为等边三角形,∴△ EFD为等边三角形,∵B E=6cm,DE=2cm,∴DM=4cm,∵△ BEM为等边三角形,∴∠ EMB=60°,∵AN⊥ BC,∴∠ DNM=90°,∴∠ NDM=30°,∴NM=2cm,∴B N=4cm,∴B C=2BN=8cm.故 B.MN的是解决【点】此主要考了等腰三角形的性和等三角形的性,能求出的关.10.如,直l 1与l 2相交,且角60°,点P 在角的内部,小明用下面的方法作P 的称点:先以l 1称作点P 关于l 1的称点P1,再以l 2称作P1关于l 2的称点P2,然后再以l 1称作P2关于l 1的称点P3,以 l 2 称作P3关于l 2的称点P4,⋯,如此,得到一系列的点P1, P2,⋯,P n,若P n与P 重合,n 的可以是()A. 2016 B . 2015 C . 2014 D . 2012【考点】称的性.【】律型.【分析】根据意画出形而得出每称 6 次回到 P 点,而得出符合意的答案.【解答】解:如所示:P1, P2,⋯, P n,每称 6 次回到 P 点,∵2016 ÷ 6=336,∴P n与 P 重合,n 的可以是: 2016.故: A.【点评】此题主要考查了轴对称,根据题意得出点的变化规律是解题关键.二、填空题(本题有 6 小题,每小题 4 分,共 24 分)11.如图为2012 年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为度(不取近似值)【考点】多边形内角与外角.【分析】根据正多边形的定义可得:正多边形的每一个内角都相等,则每一个外角也都相等,首先由多边形外角和为 360°可以计算出正七边形的每一个外角度数,再用 180°﹣一个外角的度数 =一个内角的度数.【解答】解:正七边形的每一个外角度数为:360°÷7=()°则内角度数是: 180°﹣()° =()°,故答案为:.【点评】此题主要考查了正多边形的内角与外角,关键是掌握正多边形的每一个内角都相等.12.如图,点 E,F 在 BC边上, AB=DC,∠ B=∠ C.要使得∠ A=∠ D.则可以添加的条件是∠AFE=∠ DEF或 BF=CE或 BE=CF(答案不唯一)(写一个即可).【考点】全等三角形的判定与性质.【专题】开放型.【分析】根据全等三角形的判定定理:SAS或 AAS证明三角形全等,再根据全等三角形的对应角相等即可解答.【解答】解:在△ABF和△ DCE中,,∴△ ABF≌△ DCE( AAS),∴∠ A=∠ D.还可以补充: BF=CE或 BE=CF.故答案为:∠ AFE=∠DEF或 BF=CE或 BE=CF,答案不唯一解决本题的关键是熟记全等三角形【点评】本题考查了全等三角形的性质定理和判定定理,的判定定理.13.如图,△ ABC是等边三角形, AD是 BC边上的高,且 AD=6,E 为边 AC上的一个动点,则DE的最小值为 3 .【考点】等边三角形的性质;垂线段最短.【分析】过 D 作 DE⊥ AC,则垂线段 DE的长度即为DE的最小值,根据等边三角形的性质得到∠ BAC=60°,∠ DAE=BAC=30°,根据直角三角形的性质即可得到结论.【解答】解:过 D 作 DE⊥ AC,则垂线段DE的长度即为DE的最小值,∵△ ABC是等边三角形,∴∠ BAC=60°,∵AD是 BC边上的高,∴∠ DAE=BAC=30°,∵∠ AED=90°,∴D E= AD=3.故答案为: 3.【点评】本题考查了等边三角形的性质,含 30°角的直角三角形的性质,知道垂线段的性质是解题的关键.14.数学活动课上,同学们围绕作图问题:“如图,已知直线l 和 l 外一点 P,用直尺和圆规作直线PQ,使 PQ⊥ l 于点 Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【考点】作图—基本作图.【专题】作图题.【分析】把过一点作已知直线的垂线转化为作已知线段的垂直平分线.【解答】解:他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.故答案为到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点评】本题考查了基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.15.如图,点 D 在 AC上,点 E 在 AB 上,且 AB=AC, BC=BD, AD=DE=BE,则∠ A= 45°.【考点】等腰三角形的性质;三角形内角和定理.【分析】设∠ EAD=x,则可利用等腰三角形的两底角相等和三角形的一个外角等于与它不相邻的两内角的和来∠A,∠ C,∠ ABC.最后利用三角形的内角和求出x,就可得到∠A.【解答】解:设∠EBD=x∵DE=BE∴∠ AED=2x又∵ AD=DE∴∠ A=2x∴∠ BDC=x+2x=3x而 BC=BD,则∠ C=3x∵AB=AC∴∠ ABC=3x∴3x+3x+ 2x=180°∴∠ A=2x=45°.故填 45°.【点评】本题考查了等腰三角形的性质和三角形的内角和定理;算问题,这是一种非常重要的方法,要熟练掌握.学会运用代数法解决几何计16.如图所示,在△ ABC中, BC=6, E、F 分别是 AB、 AC的中点,动点交 CE于 D,∠ CBP的平分线交 CE于 Q,当 CQ= CE时, EP+BP= 12P 在射线.EF 上, BP【考点】相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.【专题】压轴题.【分析】延长 BQ交射线 EF 于 M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠ CBM,再根据角平分线的定义可得∠PBM=∠ CBM,从而得到∠M=∠ PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ= CE求出EQ=2CQ,然后根据△ MEQ和△ BCQ相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BQ交射线 EF 于 M,∵E、 F 分别是 AB、 AC的中点,∴EF∥ BC,∴∠ M=∠ CBM,∵BQ是∠ CBP的平分线,∴∠ PBM=∠CBM,∴∠ M=∠ PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ= CE,∴EQ=2CQ,由 EF∥ BC得,△ MEQ∽△ BCQ,∴==2,∴EM=2BC=2×6=12,即 EP+BP=12.故答案为: 12.BQ 【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.三、解答题(本题有 7 小题,第 17~ 19 题每题 8 分,第 20、 21、 22 每题 10 分,第 23 题 12 分,共 66 分)17.如图,在△ABC中,∠ C=60°,∠ A=40°.(1)用尺规作图作 AB 的垂直平分线,交 AC于点 D,交 AB于点 E(保留作图痕迹,不要求写作法和证明);(2)求证: BD平分∠ CBA.【考点】作图—基本作图;线段垂直平分线的性质.【专题】作图题.【分析】( 1)分别以 A、 B 两点为圆心,以大于AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线的性质和三角形的内角和证明即可.【解答】解:( 1)如图 1 所示:(2)连接 BD,如图 2 所示:∵∠ C=60°,∠ A=40°,∴∠ CBA=80°,∵DE是 AB的垂直平分线,∴∠ A=∠DBA=40°,∴∠ DBA= ∠ CBA,∴BD平分∠ CBA.【点评】本题考查了线段的垂直平分线的性质及三角形的内角和及基本作图,解题的关键是了解垂直平分线上的点到线段两端点的距离相等.18.如图,在△ABC中,点 D,E 分别在边AC, AB上, BD与 CE交于点 O,给出下列三个条件:①∠ EBO=∠ DCO;② BE=CD;③ OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择( 1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】( 1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ ABC=∠ ACB,即可证明△ ABC是等腰三角形.【解答】解:( 1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠ OBC=∠OCB,∵∠ EBO=∠DCO,又∵∠ ABC=∠ EBO+∠OBC,∠ ACB=∠ DCO+∠ OCB,∴∠ ABC=∠ACB,∴△ ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ ACB.19.在平面直角坐标系中,直线l 过点 M( 3, 0),且平行于y 轴.(1)如果△ ABC三个顶点的坐标分别是A(﹣ 2, 0), B(﹣ 1, 0), C(﹣ 1, 2),△ ABC 关于 y 轴的对称图形是△ A B C ,△ A B C 关于直线l 的对称图形是△ A B C ,写出△ A B C 的1 1 1 1 1 12 2 2 2 22三个顶点的坐标;(2)如果点 P 的坐标是(﹣ a,0),其中 a> 0,点 P 关于 y 轴的对称点是P1,点 P1关于直线 l 的对称点是P ,求 PP 的长.22【考点】坐标与图形变化- 对称.【专题】几何图形问题.【分析】( 1)根据关于y 轴对称点的坐标特点是横坐标互为相反数,纵坐标相同可以得到△A1B1C1各点坐标,又关于直线l 的对称图形点的坐标特点是纵坐标相同,横坐标之和等于3 的二倍,由此求出△A2B2C1的三个顶点的坐标;(2)P 与 P1关于 y 轴对称,利用关于y 轴对称点的特点:纵坐标不变,横坐标变为相反数,求出 P1的坐标,再由直线l 的方程为直线x=3,利用对称的性质求出P2的坐标,即可PP2的长.【解答】解:( 1)△ A2B2 C2的三个顶点的坐标分别是A2( 4,0), B2( 5,0), C2( 5,2);(2)如图 1,当 0<a≤ 3 时,∵ P 与 P1关于 y 轴对称, P(﹣ a, 0),∴P1( a, 0),又∵ P1与 P2关于 l :直线 x=3 对称,设 P2(x, 0),可得:=3 ,即 x=6﹣a,∴P2( 6﹣ a, 0),则 PP2=6﹣ a﹣(﹣ a) =6﹣ a+a=6.如图 2,当 a> 3 时,∵P 与 P1关于 y 轴对称, P(﹣ a, 0),∴P1( a, 0),又∵ P1与 P2关于 l :直线 x=3 对称,设 P2(x, 0),可得:=3 ,即 x=6﹣a,∴P2( 6﹣ a, 0),则 PP2=6﹣ a﹣(﹣ a) =6﹣ a+a=6.【点评】本题考查学生“轴对称”与坐标的相关知识的试题,尤其是第(2)小题设置的问题既具有一定的开放性又重点考查了分类的数学思想,使试题的考查有较高的效度.20.如图 1,在△ ABC中,∠ A=36°, AB=AC,∠ ABC的平分线BE 交 AC于 E.(1)求证: AE=BC;(2)如图 2,过点 E 作 EF∥ BC交 AB于 F,将△ AEF绕点 A 逆时针旋转角α(0°<α<144°)得到△ AE′F′,连结CE′、 BF′,求证: CE′=BF′.【考点】旋转的性质;全等三角形的判定与性质.【分析】( 1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠ E′AC =∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ ABC=∠C=72°,又∵ BE平分∠ ABC,∴∠ ABE=∠CBE=36°,∴∠ BEC=180°﹣∠ C﹣∠ CBE=72°,∴∠ ABE=∠A,∠ BEC=∠ C,∴A E=BE, BE=BC,∴A E=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠ E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△ BAF′中,∴△ CAE′≌△ BAF′( SAS),∴CE′=BF′.根据【点评】此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,数形结合熟练掌握相关定理是解题关键.21.如图,点 P、 Q分别是边长为 4cm的等边△ ABC边 AB、 BC上的动点,点 P 从顶点 A,点Q从顶点 B 同时出发,且它们的速度都为 1cm/s .(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)请求出何时△ PBQ是直角三角形?【考点】等边三角形的性质;全等三角形的判定与性质.【专题】探究型.【分析】( 1)先根据全等三角形的判定定理得出△ABQ≌△ CAP,由全等三角形的性质可知∠BAQ=∠ ACP,故∠CMQ=∠ ACP+∠ CAM=∠ BAQ+∠CAM=∠BAC=60°,故可得出结论;(2)设时间为 t 秒,则 AP=BQ=tcm,PB=( 4﹣ t )cm,当∠ PQB=90°时,因为∠ B=60°,所以 PB=2BQ,即 4﹣ t=2t故可得出t 的值,当∠ BPQ=90°时,同理可得BQ=2BP,即 t=2 ( 4﹣t),由此两种情况即可得出结论.【解答】解:( 1)不变,∠CMQ=60°.∵△ ABC是等边三角形,∴等边三角形中,AB=AC,∠ B=∠CAP=60°又∵点 P 从顶点 A,点 Q从顶点 B 同时出发,且它们的速度都为1cm/s .∴AP=BQ,∴△ ABQ≌△ CAP( SAS),∴∠ BAQ=∠ACP,∴∠ CMQ=∠ACP+∠ CAM=∠ BAQ+∠ CAM=∠BAC=60°;(2)设时间为 t 秒,则 AP=BQ=tcm, PB=( 4﹣ t ) cm,当∠ PQB=90°时,∵∠ B=60°,∴PB=2BQ,即 4﹣ t=2t , t=,当∠ BPQ=90°时,∵∠ B=60°,∴BQ=2BP,得 t=2 (4﹣ t ), t=,∴当第秒或第秒时,△ PBQ为直角三角形.【点评】本题考查的是等边三角形的性质及全等三角形的判定定理、直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键.22.如图 1,在正方形ABCD的外侧,作两个等边三角形ADE和 DCF,连接 AF, BE.(1)请判断: AF 与 BE的数量关系是相等,位置关系是互相垂直;(2)如图 2,若将条件“两个等边三角形ADE和 DCF”变为“两个等腰三角形ADE和 DCF,且 EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形 ADE和 DCF为一般三角形,且 AE=DF, ED=FC,第( 1)问中的结论都能成立吗?请直接写出你的判断.【考点】四边形综合题.【专题】压轴题.【分析】( 1)易证△ ADE≌△ DCF,即可证明AF与 BE的数量关系是:AF=BE,位置关系是:AF⊥ BE.(2)证明△ ADE≌△ DCF,然后证明△ ABE≌△ ADF即可证得 BE=AF,然后根据三角形内角和定理证明∠ AMB=90°,从而求证;(3)与( 2)的解法完全相同.【解答】解:(1) AF与 BE的数量关系是:AF=BE,位置关系是:AF⊥ BE.答案是:相等,互相垂直;(2)结论仍然成立.理由是:∵正方形ABCD中, AB=AD=CD,∴在△ ADE和△ DCF中,,∴△ ADE≌△ DCF,∴∠ DAE=∠CDF,又∵正方形ABCD中,∠ BAD=∠ADC=90°,∴∠ BAE=∠ADF,∴在△ ABE和△ ADF中,,∴△ ABE≌△ ADF,∴BE=AF,∠ ABM=∠ DAF,又∵∠ DAF+∠BAM=90°,∴∠ ABM+∠BAM=90°,∴在△ ABM中,∠ AMB=180°﹣(∠ABM+∠ BAM)=90°,∴BE⊥ AF;(3)第( 1)问中的结论都能成立.理由是:∵正方形 ABCD中, AB=AD=CD,∴在△ ADE和△ DCF中,,∴△ ADE≌△ DCF,∴∠ DAE=∠CDF,又∵正方形ABCD中,∠ BAD=∠ADC=90°,∴∠ BAE=∠ADF,∴在△ ABE和△ ADF中,,∴△ ABE≌△ ADF,∴BE=AF,∠ ABM=∠ DAF,又∵∠ DAF+∠BAM=90°,∴∠ ABM+∠BAM=90°,∴在△ ABM中,∠ AMB=180°﹣(∠ABM+∠ BAM)=90°,∴BE⊥ AF.【点评】本题考查了正方形和等边三角形的性质以及全等三角形的判定与性质,证明∠ BAE=∠ADF是解题的关键.23.( 2015 秋 ? 台州校级月考)已知Rt△ ABC中, AC=BC,∠ C=90°, D 为 AB边的中点,∠EDF=90°,如图①∠ EDF的两边分别交AC、 CB(或它们的延长线)于E、 F.当∠ EDF的边DE⊥ AC于 E 时, S△,S△,S△满足S△+S△= S△;DEF CEF ABC DEF CEF ABC(1)如图②,当∠ EDF的边 DE和 AC不垂直时,请证明上述结论仍然成立;(2)如图③,当∠ EDF的边 DE与 AC的延长线交于点 E 的情况下,上述结论是否成立?若成立,请给予证明;若不成立, S△,S△,S△,又有怎样的数量关系?请写出你的猜想,DEF CEF ABC不需证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】( 1)先证明△ CDE≌△ BDF,即可得出结论;(2)不成立;同(1)得:△ DEC≌△ DBF,得出 S△=S 五边形=S△+S△=S△+ S△.DEF DBFEC CFE DBC CFE ABC 【解答】解:(1)连接 CD;如图 2 所示:∵AC=BC,∠ ACB=90°, D 为 AB中点,∴∠ B=45°,∠ DCE= ∠ACB=45°, CD⊥ AB, CD= AB=BD,∴∠ DCE=∠B,∠ CDB=90°,∵∠ EDF=90°,∴∠ 1=∠ 2,在△ CDE和△ BDF中,,∴△ CDE≌△ BDF( ASA),∴S△+S△=S△+S△= S△;DEF CEF ADE BDF ABC(2)不成立;;理由如下:连接CD,如图 3 所示:同( 1)得:△DEC≌△ DBF,∠ DCE=∠DBF=135°∴S△=S 五边形,DEF DBFEC=S△+S△,CFE DBC=S△+ S△,CFE ABC∴S△﹣S△= S△.DEF CFE ABC∴S△、S△、S△的关系是:S△﹣S△= S△.DEF CEF ABC DEF CEF ABC【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.。
人教版2019-2020学年八年级数学3月月考试卷 及答案
2020年3月份月考八年级数 学 试 题一、选择题(共8小题,每小题3分,共24分)。
1.使代数式有意义的x 的取值范围是( ) A .x ≥0B .x ≠C .x 取一切实数D .x ≥0且x ≠2.下列各式成立的是 ( )2)2(.2=-A 5)5(.2-=-B x x C =2. 6)6(.2±=-D3.下列二次根式中,最简二次根式是( ) A .8 B .19C .2aD . 23a + 4下列各式计算正确的是 ( ) A .63-23=4 B .53+52=105 C .42÷22=22 D .43×22=86 5. 一直角三角形两边分别为5和12,则第三边为( ) A 、13 B 、119 C 、13或119 D 、76.已知2-11的整数部分是a ,小数部分是b ,则b a -11的值是( ) A.5 B.-5 C.3 D.-37.小刚准备测量河水的深度,他把一根竹竿插到岸边 1.2m 远的河底,竹竿高出水面0.4m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )A.1.65mB.1.5mC.1.55mD.1.6m 8.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为S 1,S 2,S 3,若S 1+S 2+S 3=18,则正方形EFGH 的面积为( ) A.92B .5C .6D .9 二、填空题(本大题共8个小题,每小题3分,共24分)9. 已知032=++-b a ,那么2015)(b a ++1的值为____________。
10、当x=37+时,代数式x ²-6x-2的值是________。
2019-2020年八年级下学期第三次月考数学试卷
2019-2020年八年级下学期第三次月考数学试卷一、选择题(每题3分,共18分)1.下列方程中,一元二次方程是 ( ▲ ) A .1122=+xx B .bx ax +2=2 C .()()121=+-x x D .052322=--y xy x 2.如果把5xx y+中的x 与y 都扩大为原来的10倍,那么这个代数式的值( ▲ ) A .不变 B .扩大为原来的5倍 C .扩大为原来的10倍 D .缩小为原来的1103.下列计算正确的是( ▲ )A .532=+B .632=⨯C .248=D .224=-4.下列结论错误的是( ▲ )A.直径是圆中最大的弦B.长度相等的两条弧是等弧C.半径相等的两个半圆是等弧D.面积相等的两个圆是等圆5.若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ ) A .矩形 B .菱形 C .对角线互相垂直的四边形 D .对角线相等的四边形 6.如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数(0)ky k x=≠在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴 于点F ,交y 轴于点G (0,-2),则点F 的坐标是( ▲ ) A.5(,0)4 B.7(,0)4 C.9(,0)4 D.11(,0)4二、填空题(每题3分,共30分)7.函数y =1-x 的自变量x 的取值范围为 ▲ .8.等腰三角形的两边长分别为5和9,则第三边长为 ▲ 9.若a 、b 为实数,且满足│a,则a+b 的值为 ▲ . 10.若关于x 的分式方程233x mx x -=--有增根,则m 的值为 ▲ . 11.若关于x 的一元二次方程kx 2+4x+k 2-k=0有一个根为0,则k 的值为__▲____12.如图,在⊙O 中,弧AC=弧BD ,∠1=30°,则∠2=__▲___ 13. 若一元二次方程x 2﹣2x-3=0的两个根为x 1、x 2;则x 1+x 2= ▲14.如图,菱形ABCD 的周长为16cm ,BC 的垂直平分线EF 经过点A ,则对角线BD 长为 ▲ cm.OGF EDCBA第12题 第14题15.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 ▲ . 16.如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE=BF 时,∠AOE 的大小是 ▲三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤) 17.(本题满分12分)化简或计算:(1)111---a a a (2)21821+-18.(本题满分10分) 解方程:(1)32121---=-xxx . (2) x 2+2x -3=0(配方法)19.(本题满分8分)先化简再求值:其中a 是方程x 2﹣x=6的根20. (本题满分10分)已知,方程4x 2-(k+2)x +k-3=0.(1)求证:不论k 取何值时,方程总有两个不相等实数根; (2)若方程有一根为-1,求方程的另一根及k 的值.21.(本题满分8分)为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A 、B 、C 、D 四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:所抽取学生的比赛成绩情况统计表根据图表的信息,回答下列问题: (1)本次抽查的学生共有 名;(2)表中x 和m 所表示的数分别为:=x ,=m ,并在图中补全条形统计图; (3)若该校共有2500名学生,请你估计此次汉字听写比赛有多少名学生成绩达到B 级(含B 级)以上?22.(本题满分10分)如图所示:残缺的圆形轮片上,弦AB 的垂直平分线CD 交圆形轮片于点C ,垂足为D ,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O 的位置并将圆形轮片所在的圆补全;(要求:保留所有的作图痕迹,不写作法)(2)若弦AB=16,CD=4,求圆形轮片所在圆半径R .23.(本题满分10分)如图,在□ABCD 中,点E 、F 分别是AD 、BC 的中点,分别连接BE 、DF 、BD .(1)求证:△AEB ≌△CFD ;(2)若四边形EBFD 是菱形,求∠ABD 的度数.所抽取学生的比赛成绩条形统计图A B C D类别人数 ACDF E(第23题图)24. (本题满分10分)某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,(1)若商场平均每天要盈利1200(225.(本题满分12分)如图,反比例函数1ky x=y 2=ax+b 的图像交于A(3,4)、B(—6,n)。
人教版2019-2020学年度第二学期八年级第三次月考数学试卷
人教版2019-2020学年度第二学期八年级第三次月考数学试卷 考试时间:100分钟;满分120分 题号 一 二 三 总分 得分评卷人得分 一、单选题(共30分)1.(本题3分)下列运算中,错误的是( )A .236⨯=B .1222= C .223252+= D .2(3)3-=-2.(本题3分)下列二次根式中,是最简二次根式的是( )A .14B .18C .27D .52 3.(本题3分)下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .1, 2,3D .2,3,5 4.(本题3分)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .3 5.(本题3分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A.9.6cm B.10cm C.20cm D.12cm 6.(本题3分)如图,在△ABC中,M为BC的中点,AN⊥BD于点N,AB=AD=10,AC=16,则MN等于()A.2 B.2.5 C.3 D.3.57.(本题3分)一次函数y=3x﹣2的图象上有两点A(﹣1,y1),B(﹣2,y2),则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.不能确定8.(本题3分)将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A.4 B.﹣4 C.2 D.﹣29.(本题3分)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.185C.165D.12510.(本题3分)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2017=( )A2015B2016C2017D2018评卷人得分二、填空题(共32分)11.(本题4分)5x 有意义,则x的取值范围为___________.12.(本题4分)计算:()()201820192525-+= ______________13.(本题4分)已知n 是正整数,117n 是整数,则n 的最小值为_______. 14.(本题4分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,若AC =6,BD =8,则菱形ABCD 的周长是_____.15.(本题4分)一根蜡烛长18cm ,点燃后每小时燃烧6cm ,燃烧剩下的长度y ()cm 与燃烧的时间x (小时)之间的函数关系式是_______.16.(本题4分)在函数y =22+x x中,自变量x 的取值范围是____. 17.(本题4分)已知直线y kx 3=-与直线y x 2=-+相交于x 轴上一点,则k =______. 18.(本题4分)如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.评卷人得分 三、解答题(共58分)19.(本题8分)计算:(1)3520842; (23231233÷20.(本题8分)实数,x y 在数轴上的位置如图所示,化简:2344x y y -+-+21.(本题8分)已知ABC V 中,BC m n(m n 0)=->>,AC 2mn =,AB m n =+. ()1求证:ABC V 是直角三角形;()2当A 30∠=o 时,求m ,n 满足的关系式.22.(本题8分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.∥,AC是BD的垂直平分线.求23.(本题8分)如图,在四边形ABCD中,AB CD证:四边形ABCD是菱形.24.(本题9分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.25.(本题9分)已知,点()2,P m 是第一象限内的点,直线PA 交y 轴于点(),2B O ,交x 轴负半轴于点A .连接OP ,6AOP S ∆=.(1)求BOP ∆的面积;(2)求点A 的坐标和m 的值.答案第1页,总1页 参考答案1.D2.A3.C4.C5.B6.C7.B8.A9.B10.D11.x≥512.2+13.1314.2015.186y x =-,03x ≤≤ 16.x ≥-2且x ≠0 17.1.518.105°19.(1)(2) 20.5x y --21.(1)证明见解析;(2)m =3n . 22.12米.23.见解析.24.证明见解析25.(1)2;(2)(40-,);m=3.。
2019-2020年八年级数学下册第三次月考试题及答案
(考试时间:120分钟,满分:150分) 成绩一.选择题(每题3分,共计18分)1. 下列说法正确的是 ( )A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B .为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C .彩票中奖的机会是1%,买100张一定会中奖.D .泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.2. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( ) A. 4 B. 6 C. 8 D. 103. 在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x 的图像没有公共点,则A. k 1+k 2<0B. k 1+k 2>0C. k 1k 2<0D. k 1k 2>0 4. 下列各式中,是最简二次根式是 ( ) A .8B .70C .99D .1x5. 若13-m 有意义,则m 能取的最小整数值是( ) A .m=0B .m=1C .m=2D .m=36. 如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )A. 1B. 2C. 3D. 4二.填空题(每题3分,共计30分)7. 四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有______________种 8. 若最简二次根式5231-+-+-y x y x y x 与与是同类根式,则x= 。
9. 若m <0,化简nmn2= 。
10. 已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是____________________。
新人教版2019-2020学年八年级下学期3月月考数学试题(含答案)
八年级下学期3月数学测试问卷本试卷共21小题,总分100分。
考试时间60分钟,闭卷考试。
注意事项:1.答题前,考生务必在答卷上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名、座位号。
2.写在试题卷上的答案不予评分。
3.问答题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答卷各题目指定区域内的相应位置上,并请注意题号顺序;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生务必保持答卷的整洁。
考试结束后,将本卷和答卷一并交回。
一、选择题(每小题3分,共24分。
每小题给出的四个选项中,只有一个是符合题意的)1. 若式子x-4在实数范围内有意义,则x的取值范围是()A. x≤-4B. x≥-4C. x≤4D. x≥42. 下列式子中,属于最简二次根式的是()A. 9B. 7C. 20D. 1 33. 下列运算中错误..的是()==3= D.3)3(2=-4.以下列各组数的线段为边,能组成直角三角形的是()A. 3,5,9B. 4,6,8C. 1,D.5、下面正确的命题中,其逆命题不成立的是()A. 同位角相等,两直线平行B. 对顶角相等C. 全等三角形的对应边相等D. 角平分线上的点到这个角的两边的距离相等6. 已知实数x、y|+4|0y=,则x+y的值为()A.2B.-2C. 6D.-67.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD 的长为( ) A. 3 B. 2 C.455D.5第7题图 第8题图8.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.2㎝B.3㎝C.4㎝D.5㎝二、填空题(每小题3分,共18分)9.计算122的结果是__________. 10.若一个直角三角形的三边长分别为3,4,x ,则x =__________. 11.命题“两直线平行,内错角相等”的逆命题是__________. 12.已知2x <,则244x x -+=__________.13.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是__________.第13题图 第14题图14.根据图中的数据及规律,可以求出12AB =__________.三、解答题(7小题,共58分)15. (本小题6分)计算:(1)832a a ⨯÷ (2)()()2362+-ACDBE16. (本小题7分)已知16x -=,求代数式()()21414x x +-++的值.17. (本小题7分)如图,点E 在正方形ABC D 内,满足90AEB ∠=︒,AE =6,BE =8,则阴影部分的面积.18. (本小题8分)如图,正方形网格中的△ABC ,若小方格边长为1。
2019-2020年八年级数学下册第三次月考试卷及答案
2019-2020年八年级数学下册第三次月考试卷及答案一、选择题(每小题3分,共30分)1.不等式>3x -的解集是( )A 3x >B 3x <C 3x >-D 3x <- 2.如果把分式yx x+2中的x 和y 都扩大2倍,那么分式的值( ) A 扩大2倍 B 不变 C 缩小2倍 D 扩大4倍 3. 若反比例函数图像经过点)61(,-,则此函数图像也经过的点是( )A )1,6(B )2,3(C )3,2(D )2,3(-4.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( )A 8,3B 8,6C 4,3D 4,65.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是 ( ) A12012045x x -=+ B 12012045x x -=+ C 12012045x x -=- D 12012045x x -=- 6.如图是反比例函数1k y x=和2k y x =(k 1<k 2)在第一象限的图象,直线AB//y 轴,并分别交两条曲线于A 、B 两点,若S △AOB =4,则 k 2-k 1的值是( )A .1B .2C .4D .87、在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则FDBF的值是( )A.21B.31C.41D.51A BC DF8.如图Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AD =8,DB =2,则CD 的长为( )A .4B .16C ..9、在△ABC 与△A’B’C’中,有下列条件:①''''C B BC B A AB =;⑵''''C B BCC A AC =③∠A =∠A ';④∠C =∠C '。
浙教版2019-2020学年度第二学期八年级第三次月考数学试卷
D. ,故不是最简二次根式;
故选B.
3.A
【解析】
【分析】
根据三角形的中位线定理解答即可.
【详解】
解:∵A、B分别是CD、CE的中点,DE=18m,
∴AB= DE=9m,
故选:A.
【点睛】
本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.
4.C
12.(4分)已知 是整数,则正整数n的最小值为___
13.(4分)计算: =___________.
14.(4分)已知x1,x2是方程x2﹣x﹣3=0的两根,则 =_____.
15.(4分)若一组数据7,3,5, ,2,9的众数为7,则这组数据的中位数是__________.
16.(4分)如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=________度.
7.D
【解析】
【分析】
由于x=4时, -4;x=5时, 6,则在-4和5之间有一个值能使 的值为0,于是可判断方程 的一个解x的范围为4<x<5.
【详解】
解:∵x=4时, -4;x=5时, 6,
∴方程的 一个解x的范围为4<x<5.
故选:D.
【点睛】
本题考查估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.
【分析】
利用平角的定义结合翻折变换的性质得出∠EFC=∠EFH=100°,即可得出答案.
【详解】
解:∵∠EFD=80°,
∴∠EFC=180°-80°=100°
由折叠得:∠EFC=∠EFH=100°
2019—2020新人教版八年级数学上第三次月考试卷和答案
2019—2019—2020新人教版八年级数学上第三次月考试卷和答案(本试卷120分 考试时间100分钟)一、选择题(每小题3分;满分24分)下列各小题均有四个答案;其中只有一个是正确的 1.下列运算中;正确的是( ).A 、(x 2)3=x 5B 、3x 2÷2x=xC 、x 3·x 3=x 6D 、(x+y 2)2=x 2+y42.如图;把矩形纸片ABCD为△EBD ;那么;下列说法错误的是( )A .△EBD 是等腰三角形;EB =ED B .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形3.下列计算正确的是( )A.(-4x)·(2x 2+3x-1)=-8x 3-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a-1)(4a-1)=1-16a 2D.(x-2y)2=x 2-2xy+4y 24.如图所示;在下列条件中;不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C ;∠BAD=∠ABCB .∠BAD=∠ABC ;∠ABD=∠BAC C .BD=AC ;∠BAD=∠ABCD .AD=BC ;BD=AC 5.如果(x +m )与15x ⎛⎫+⎪⎝⎭的乘积中不含x 的一次项;那么m 的值应( ) A.5 B.15 C . —5 D.15- 6.如图;△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ;AE=3cm ;△ADC 的周长为9cm ;则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm7.如图;已知AE 平分∠BAC;BE⊥AE 于E ;ED∥AC;∠BAE=36°;那么∠BED 的度数为( )A.108°B.120°C.126°D.144° 8.如右图;在△ABC 中;点Q ;P 分别是边AC ;BC 上的点;AQ=PQ ;PR⊥AB 于R ;PS⊥AC 于S ;且PR=PS ;下面四个结论:①AP 平分∠BAC ;②AS=AR ;③BP=QP ;④QP∥AB.其中一定正确的是( )A BD(第4题图)D C BA(第7题图)(第6题图)图4NMD C BA A.①②③ B.①③④ C.①②④ D.②③④二、填空题(共7小题;每小题3分;满分21分)9.如图4; 已知AB =AC ; ∠A =40°; AB 的垂直平分线MN 交AC 于点D ;则∠DBC = _______度. 10. 如第10题图:点P 为∠AOB 内一点;分别作出P 点关于OA 、OB 的对称点P 1;P 2;连接P 1P 2交OA 于M ;交OB 于N ;P 1P 2=15;则△PMN 的周长为 .11.已知3=ma ;2=na ;则=+nm a 2 .12.等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分;•则这个等腰三角形的底边长是________.13.如图;在△ABC 中;∠C=90°;AD 平分∠BAC ;BC=10cm ;BD=7cm ;则点D 到AB 的距离是 .14如图.在△ABC 中;∠B=70°;DE 是AC 的垂直平分线;且∠BAD:∠BAC=1:3; 则∠C= .15. 如图;C 为线段AE 上一动点(不与点A ;E 重合);在AE 同侧分别作正△ABC 和正△CDE ;AD 与BE 交于点O ;AD 与BC 交于点P ;BE 与CD 交于点Q ;连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°. 一定成立的结论有____________(把你认为正确的序号都填上). 三、解答题(共8小题;满分75分) 16.计算:(本题满分10分;每题5分) (1)()()222236ab a c ab --÷; (2)(x+2y)(x-2y)-(x+y)2.第14题 1 5题图ABC E DOP QAB D CAEB D CP 2P 1N MO PB A(第10题图)(第13题图)17.(6分)先化简;再求值:(a 2b-2ab 2-b 3)÷b-(a+b )(a-b );其中a=21;b= -1.18. (9分) 如图;(1)画出△ABC 关于Y 轴的对称图形△A 1B 1C 1 (2)请计算△ABC 的面积(3)直接写出△ABC 关于X 轴对称的三角形△A 2B 2C 2的各点坐标。
2019-2020年八年级下学期第三次月考数学试卷
2019-2020年八年级下学期第三次月考数学试卷班级: 考号: 姓名: 得分:一、选择题:(每小题3分,共30分)1、对于一次函数,函数值y 随x 的增大而减小,则k 的取值范围是( ) A 、 B 、 C 、 D 、2、下列二次根式中,是最简二次根式的是……………………………( ) A . B . C . D .3.下列函数中,是正比例函数的是( ) A . B . C . D .4.下列各式中,y 不是x 的函数的是( )A 、B 、C 、D 、5.已知一次函数的图象如图所示,则、的符号是( ) A . , B ., C ., D .,6、如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点, 如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( ) A.BE =DF B.BF =DE C.AE =CFD.∠1=∠27.如图所示,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A.16B.17C.18D.198、下列命题中,真命题的个数是( ) ①对角线互相平分的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形. A.3个B.2个C.1个D.0个9. 根据下列图像判断y 不是x 的函数的是( )10.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( ) A.梯形 B.矩形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.当 时,函数是一次函数.第6题图第5题图y xo y xoy xo yxoD12.直线y=﹣x+1向下平移2个单位,得直线,这两条直线。
13.在四边形ABCD中,已知,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.14.一次函数的图象与轴的交点坐标是,与x轴的交点坐标是。
15.一次函数y=4x-6的图象经过哪些象限,,k= ,b= .16.如图所示,在□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=6,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为 .17.已知函数y=(k+2)x+k 2-4,当k 时,它是正比例函数;当k时,它是一次函数.18.如图所示,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=130°,则∠DAE的度数为 .三、解答题(共66分)19、计算题:(每小题3分,共15分)(1)(2)(3)(4)(5)+-4+2(-1)0;20.(6分)已知:如图,在平行四边形中,对角线相交于点,过点分别交于点求证:.A DE21.求下列函数中自变量x的取值范围(每题3分,共18分)(1)y=3x-l (2)y=2x2+7 (3) (4)y=x-2 (5)(6)22.(8分)如图,在△和△中,与BD交于点.(1)求证:△≌△;(2)过点作∥,过点作∥,与交于点,试判断线段与的数量关系,并证明你的结论.23.(9分)一个容积是10万升的储油罐内储满了汽油,如果每天运出4000升,写出储油罐内剩余油量Q(升)与时间t(天)之间的关系。
2019-2020年八年级第三次月考数学试题
2019-2020年八年级第三次月考数学试题注意事项:1. 本试卷考查范围:八年级数学下期19.4~第20章(华师版)。
2. 本试卷共6页,3大题,满分120分,时间100分钟。
3. 答题前将密封线内的项目填写完整。
一、选择题(每题3分,共18分)1、下列命题是假命题的有 ( ) ①若a 2=b 2,则a=b ;②一个角的余角大于这个角;③若a ,b 是有理数,则b a b a +=+;④如果∠A=∠B ,那∠A 与∠B 是对顶角.A .1个B .2个C .3个D .4个2、已知:∠AOB ,求作射线OC ,使OC 平分∠AOB ,作图的合理顺序是 ( ) ①作射线OC ;②在OA 和OB 上,分别截取OD 、OE ,使OD=OE ;③分别以D 、E为圆心,大于21DE 为半径作弧,在∠AOB 内两弧交于点GA .①②③B .②①③C .②③①D .③②①3、在下列图形中是中心对称图形但不是轴对称图形的是( ) A 、平行四边形 B 、矩形C 、菱形D 、等腰梯形4、点A 、B 、C 、D 在同一平面内,从①AB//CD ②AB=CD ③BC//AD ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )A 、3种B 、4种C 、5种D 、6种5、如图:E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( ) (A )2 (B )21(C (D )23ED C B A R Q P5题图AB C DlDN M D CB A 6、如图所示,把矩形纸片ABCD 对折后再展开,折痕为MN ,再把D 点叠在折痕MN 上,得到Rt ΔAB'E,延长E B'交AB 于F ,则ΔEAF 是()A 、等腰三角形B 、等边三角形C 、等腰直角三角形D 、直角三角形 二、填空(每题3分,共18分)7、平行四边形,一边长为6,一条对角线为8,另一条对角线m 的取值范围是8、如图,已知直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________.(只需填上一个你认为合适的条件)8题图9、如图,Rt ΔABC 中∠C=90º,∠B=15º,AB 的垂直平分线交AB 于点E ,交BC 于D ,若BD=4.2cm 则AC= 。
京改版2019-2020学年度第二学期八年级第三次月考数学试卷
京改版2019-2020学年度第二学期八年级第三次月考数学试卷考试时间:100分钟;满分120分题号 一 二 三 总分 得分评卷人 得分一、单选题(共30分)1.(本题3分)某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-2.(本题3分)如下图是一次函数y=kx+b 的图象,当y <-2时,x 的取值范围是( )A .x <3B .x >3C .x <-1D .x >-13.(本题3分)如图,在四边形ABCD 中,对角线AC 、BD 交于E ,∠CBD =90°, BC =8,BE =ED =6,AC =20,则四边形ABCD 的面积为( )A .65B .96C .84D .1004.(本题3分)若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 15.(本题3分)内角和为540o 的多边形是( ) A .三角形B .四边形C .五边形D .六边形6.(本题3分)在下列方程中,属于一元二次方程的是( ) A .2125x x x+=- B .232x x -+ C .25320x y -+-= D .216y =7.(本题3分)在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AB=BC C.AB=CD D.AB // CD 8.(本题3分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm 9.(本题3分)若一元二次方程2310x x-+=的两个根分别为,a b,则232a a ab-+-的值为()A.-4 B.-2 C.0 D.110.(本题3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=13S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A.29B.34C.52D.41评卷人得分二、填空题(共32分)11.(本题4分)一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则1211+x x的值为_____.12.(本题4分)如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=_____°.13.(本题4分)小林从P点向西直走12米后向左转,转动的角度为α,再直走12米,又向左转α,如此重复,小林共走了108米后回到点P,则α=____.14.(本题4分)将y =2x ﹣3的图象向上平移2个单位长度得到的直线表达式为_____. 15.(本题4分)某商店今年6月初销售纯净水的数量如下表所示: 日期 1 2 3 4 数量(瓶) 120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.16.(本题4分)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是____________.(补充一个即可)17.(本题4分)如图,正方形ABCD 边长为1,连接AC ,AE 平分CAD ∠,交BC 的延长线于点E ,FA AE ⊥,交CE 于点F ,则EF 的长为______.18.(本题4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价_________元. 评卷人 得分三、解答题(共58分)19.(本题8分)解下列方程.(1)()()220x x x ---=; (2)21x x +=.20.(本题8分)直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2).(1)求直线AB 的表达式;(2)若直线AB 上有一动点C ,且2BOC S V ,求点C 的坐标.21.(本题8分)某书定价8元,如果一次购买10本以上,超过10本的部分打八折,在这个问题中,当购书的数量变化时,付款金额也随之发生了变化.(1)如果购书的数量用x (本)表示,付款金额用y (元)表示,求y 与x 之间的关系式; (2)当购书20本时,付款金额为多少元?22.(本题8分)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?23.(本题8分)浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x 表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题. (1)请写出y 与x 的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?24.(本题9分)如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.25.(本题9分)如图,已知正方形,ABCD P 是对角线AC 上任意一点,PM AD ⊥,PN AB ⊥,垂足分别为点M 和N PE PB ⊥,交AD 于点E .(1)求证:四边形MANP 是正方形; (2)求证:=EM BN .参考答案1.B 2.C 3.B 4.D 5.C 6.D 7.B 8.B 9.B 10.D 11.-2 12.110. 13.40° 14.y =2x ﹣1 15.15016.∠ABC=90°或AC =BD17. 18.419.(1)12x =,21x =;(2)1x =,2x =. 20.(1)22y x =-;(2)点C 的坐标为(2,2)或(-2,-6).21.(1)8(010)6.416(10)x x y x x <≤⎧=⎨+>⎩;(2)144. 22.解:设张红购买甲种礼物x 件,则购买乙礼物x+1件, 根据题意得:1.2x+0.8(x+1)=8.8, 解得:x=4.答:甲种礼物4件,一种礼物5件.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年初二第三次月考数学试题及答案(时间:90分钟满分:100分)一、精心选一选(本题共10小题;每小题2分,共20分)1.下列四个图案中,是轴对称图形的是().A B C D 2.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65°,65°或50°,80°D、50°,503.下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A、2B、3C、4D、54.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4 B.3 C.5 D.25.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1 、y2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较 6.下列运算正确的是 ( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x -3y)=x 2-3y 27.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是( )A .△EBD 是等腰三角形,EB=EDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形 8.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm9 计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 210.若正比例函数的图像经过点(-1,2),则这个图像必经过点EABD( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2) 二、细心填一填(本题共10小题;每小题3分,共60分.) 11.若x 2+kx+9是一个完全平方式,则k= .12.点M (-2,k )在直线y=2x+1上,则点M 到x 轴的距离是 . 13.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式 .14.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是 .15.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3, 则∠C= .16.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为 . 17.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每14题 1 5题图 18题图ABC E DO PQAB D CAEB D C户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水18. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ;② PQ ∥AE ;③ AP=BQ ;④ DE=DP ;⑤ ∠AOB=60°.一定成立的结论有____________(把你认为正确的序号都填上). 19.对于数a ,b ,c ,d ,规定一种运算a b c d =ad -bc ,如12(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=20.已知,3,5==+xy y x 则22y x += 三.用心做一做21.计算(6分,每小题3分) (1)分解因式6xy 2-9x 2y -y 3(2)223(2)()()a b ab b b a b a b --÷-+-22. (8分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A1B1C1(2)请计算△ABC 的面积(3)直接写出△ABC 关于X 轴对称的三角形△A2B2C2的各点坐标。
23/(6分)先化简,再求值:2[()(2)8]2x y y x y x x+-+-÷,其中x =-2 .24.(8分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.25.(6分)如图,四边形ABCD 的对角线AC与BD相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.1 2 3 4ABCDO(第25题)26.(8分)如图,在△ABC 中,∠C = 90°,AB 的垂直平分线交AC 于点D,垂足为E ,若∠A = 30°,CD = 2.(1) 求∠BDC 的度数; (2)求BD 的长.27. (10分)甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A 、B 两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区.若从A 省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B 省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A 省调往甲地x 台,A 、B 两省将捐赠的挖掘机全部调往灾区共耗资y 万元.(1)求出y 与x 之间的函数关系式及自变量x 的取值范围; (2)若要使总耗资不超过15万元,有哪几种调运方案?EDCBA(第26题)(3)怎样设计调运方案能使总耗资最少?最少耗资是多少万元?乙灾区需23台甲灾区需25台B 省捐赠 22台A 省捐赠 26台八年级数学参考答案一.选择题1.A,2.C,3.B,4.C,5.A,6.B,7.B,8.C,9.B 10.D二.填空题11.±6 ,12. 3, 13. y=-x+1, 14.3cm, 15.40°, 16.22/3cm 或6cm,17. 16吨, 18.①.②.③.⑤, 19.22, 20.19 三.解答题 21.① -y(3x-y)2② -2ab22. ① 略②s△ABC=213③ A 2(-3, -2), B 2(-4, 3), C 2(- 1, 1)23 解:原式=421-x 当x =-2时,原式=-524.解:(1)甲先出发,先出发10分钟。
乙先到达终点,先到达5分钟。
……………………2分 (2)甲的速度为:V 甲=(12216=千米/小时)…3分 乙的速度为:V 乙==-601025624(千米/时) ……………………4分(3)当10<X <25分钟时两人均行驶在途中。
设S 甲=kx,因为S 甲=kx 经过(30,6)所以6=30k,故k=51.∴S 甲=51x.设S 乙=k 1x+b,因为S 乙=k 1x+b 经过(10,0),(25,6) 所以 0=10k 1+b k 1=526=25k 1+b b=-4 所以S 乙=52x -4① 当S 甲>S 乙时,即51x >52x -4时甲在乙的前面。
② 当S 甲=S 乙时,即51x=52x -4时甲与乙相遇。
③ 当S 甲<S 乙时,即51x <52x -4时乙在甲的前面。
25..证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .(2)∵△ABC ≌△ADC ∴AB=AD 又∵∠1=∠2∴26.⑴ ∠BDC=60°⑵ BD=427.⑴ y =0.4X +0.3(26-X) +0.5(25-X) +0.2〔23-(26-X) =19.7-0.2X (1≤X ≤25)⑵ 19.7-0.2X ≤15解得:X ≥23.5 ∵ 1≤X ≤25 ∴ 24≤X ≤25{{即有2种方案,方案如下:方案1:A省调运24台到甲灾区,调运2台到乙灾区,B省调运1台到甲灾区,调运21台到乙灾区;方案2:A省调运25台到甲灾区,调运1台到乙灾区,B省调运0台到甲灾区,调运22台到乙灾区;⑶y=19.7-0.2X, y是关于x的一次函数,且y随x的增大而减小,要使耗资最少,则x取最大值25。
即:y最小=19.7-0.2×25=14.7(万元)。