历年中考数学易错题汇编-二次函数练习题及详细答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数真题与模拟题分类汇编(难题易错题)

1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.

(1)求抛物线的解析式;

(2)求点P在运动的过程中线段PD长度的最大值;

(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.

【答案】(1)y=x2﹣4x+3;(2)9

4

;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣

3).

【解析】

试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;

(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;

(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;

(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.

试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),

930

10

b c

b c

++=

++=

,解得

4

3

b

c

=-

=

,∴抛物线解析式为y=x2﹣4x+3;

(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣

(x﹣3

2

)2+

9

4

.∵a=﹣1<0,∴当x=

3

2

时,线段PD的长度有最大值

9

4

(3)①∠APD 是直角时,点P 与点B 重合,此时,点P (1,0),②∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A (3,0),∴点P 为在抛物线顶点时,∠PAD =45°+45°=90°,此时,点P (2,﹣1).

综上所述:点P (1,0)或(2,﹣1)时,△APD 能构成直角三角形;

(4)由抛物线的对称性,对称轴垂直平分AB ,∴MA =MB ,由三角形的三边关系,|MA ﹣MC |<BC ,∴当M 、B 、C 三点共线时,|MA ﹣MC |最大,为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),则03k b b +=⎧⎨

=⎩,解得:3

3

k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣

3x +3.∵抛物线y =x 2﹣4x +3的对称轴为直线x =2,∴当x =2时,y =﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M (2,﹣3),使|MA ﹣MC |最大.

点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD 的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M 的位置是解题的关键.

2.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:

(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;

(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?

【答案】(1)y=60-10

x

;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房

间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】

试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;

(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;

(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10

x

),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:

y =60﹣

10

x (2)p =(200+x )(60﹣

10x )=﹣

2

110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10

x ) =﹣2

110

x +42x +10800 =﹣

1

10

(x ﹣210)2+15210 当x =210时,w 有最大值.

此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.

点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.

3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;

(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,

0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

【答案】(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)2

1

4

y x x =-++;(Ⅲ)3b = 【解析】 【分析】

(Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;

(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式; (Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值. 【详解】

解:(Ⅰ)把点(-1,0)和(3,0)代入函数2

y x bx c =-++,

相关文档
最新文档