二元一次方程组习题讲课讲稿
二元一次方程的讲课稿
课题:二元一次方程一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念.难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880.2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.做一做:(1)根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .(2)课本P80练习2. 判定哪些式子是二元一次方程方程.合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.并提出注意二元一次方程解的书写方法.试一试:检验下列各组数是不是方程2x=y+1的解:①4,3,xy=⎧⎨=⎩②2.5,4,xy=⎧⎨=⎩③6,13.xy=-⎧⎨=-⎩②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.3.合作学习:给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?出示例题:已知二元一次方程 x+2y=8.(1)用关于y的代数式表示x;(2)用关于x的代数式表示y;(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)4.课堂练习:(1)已知:5xm-2yn=4是二元一次方程,则m+n= ;(2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;(3) 已知2,1xy=⎧⎨=⎩是关于x,y的方程2x+ay=5的一个解,则a= .5.你能解决吗?小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.6.课堂小结:(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);(2)二元一次方程解的不定性和相关性;(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.7.布置作业:(1)教材P82; (2)作业本.教学设计意图:依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.。
湘教版七下数学1.2二元一次方程组的解法(课时4)习题课说课稿
湘教版七下数学1.2二元一次方程组的解法(课时4)习题课说课稿一. 教材分析湘教版七下数学1.2二元一次方程组的解法(课时4)习题课说课稿,主要针对二元一次方程组的解法进行讲解。
本节课的内容是在学生掌握了二元一次方程组的基本概念和性质的基础上进行学习的,通过本节课的学习,使学生掌握二元一次方程组的解法,并能够运用解法解决实际问题。
二. 学情分析在进入本节课的学习之前,学生已经掌握了二元一次方程组的基本概念和性质,具备了一定的数学基础。
但是,对于二元一次方程组的解法,学生可能还存在一定的困惑和困难,需要通过本节课的学习来解决。
三. 说教学目标1.知识与技能目标:学生能够理解二元一次方程组的解法的概念,掌握二元一次方程组的解法,并能够运用解法解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生解决问题的能力和合作精神。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 说教学重难点1.教学重点:二元一次方程组的解法。
2.教学难点:如何运用解法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。
2.教学手段:利用多媒体课件、教学卡片、黑板等。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对二元一次方程组的解法的思考,激发学生的学习兴趣。
2.知识讲解:讲解二元一次方程组的解法的概念和步骤,通过示例使学生理解解法的含义。
3.实践操作:学生分组进行实践操作,运用解法解决实际问题,教师巡回指导。
4.总结提升:学生分组讨论,总结解法的运用规律,教师进行点评和讲解。
5.巩固练习:学生进行练习,教师进行解答和指导。
6.课堂小结:学生总结本节课的学习内容,教师进行点评和补充。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以采用流程图、树状图等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的学习态度、学习过程、学习效果等方面进行。
七年级数学二元一次方程组(学生讲义)
第一章 二元一次方程组【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 ⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y=ax+b (或x=ay+b )的形式;③代入:将y=ax+b (或x=ay+b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;④求x (或y ):解这个一元一次方程,求出x (或y )的值;⑤求y (或x ):把x (或y )的值代入y=ax+b (或x=ay+b )中,求出y (或x )的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。
二元一次方程组辅导班讲义全
乐杰数理化教师辅导讲义基础知识:1.二元一次方程含有个未知数,并且所含未知数的项的次数都是的方程叫作二元一次方程。
2.二元一次方程的一个解适合一个二元一次方程的一组未知数的值,叫作这个二元一次方程的一个解。
温馨提示:二元一次方程的的解有无数个,但在限定条件的情况下,它的解会变成有限个或一个.如求方程x+y=2的正整数解只有一个,即 .3.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的,叫作这个二元一次方程组的解。
4.二元一次方程组的解法有: 和 .⑴代入法:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
规律点拨一般来说,用代入法解二元一次方程组的步骤如下:①求表示式:从方程组中选一个系数比较简单的方程(最好是系数为1),将此方程中一个未知数,例如 y 用含x的代数式表示出来,如写成y=ax+b的形式;②代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解一元一次方程:求出x的值;④回代得解:将求出的x的值代入y=ax+b中,求出y的值。
⑵加减法:通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫作加减消元法,简称加减法。
规律点拨用加减法解二元一次方程组的步骤如下:①变换系数:即把一个方程或两个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;② 加减消元:即把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程; ③ 解这个一元一次方程,求出一个未知数的值;④ 回代得解:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)收集整理的消元法解二元一次方程组讲课稿(精选6篇),欢迎阅读与收藏。
1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的连续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,接着学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
经过类比,让学生从中充分体味二元一次方程组,明白并掌握解二元一次方程组的基本概念,为往后函数等知识的学习打下基础。
2.教学目标知识目标:经过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会推断一组未知数的值是否为二元一次方程及方程组的解。
会在实际咨询题中列二元一次方程组。
情感目标:使学生经过交流、合作、讨论猎取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际日子中二元一次方程组的应用。
现代教学理论以为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为动身点。
依照这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采纳启示式、讨论式以及说练结合的教学办法,以咨询题的提出、咨询题的解决为主线,始终在学生知识的“最近进展区”设置咨询题,倡导学生主动参与教学实践活动,以独立考虑和相互交流的形式,在教师的指导下发觉、分析和解决咨询题,在引导分析时,给学生留出脚够的考虑时刻和空间,让学生去联想、探究,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采纳多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
“咨询题”是数学教学的心脏,活动是数学教学中的灵魂。
因此我在学生思维最近进展区内设置并提出一系列咨询题,经过数学活动,引导学生:自主性学习,合作式学习,探索式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定进展。
第八章 二元一次方程组 精讲课 第一课时
第八章二元一次方程组 精讲课 第一课时知识点一:二元一次方程组的定义1.二元一次方程的定义:方程中含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程2二元一次方程组的定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程像这样的方程组叫做二元一次方程组例题下列方程组中是二元一次方程组的事(D ) A XY=1 C 2X+Z=0X+Y=2 +Y=3 3X-Y=51 +3Y =7随堂练习方程组:①2Y X +1=XX+Y=XY 2X+Y=7 X+Z=0② ③ ④ ①--④中二元一次方程组有(B )X-Y=2 X-Z=7 Y=X+1A 1个B 2个C 3个D 4个知识点二. 二元一次方程(组)的解1、二元一次方程的解:一般的,使二元一次方程两边的值相等的两个未知数M 值,叫做二元一次方程的解2、二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解例题二元一次方程组 X+Y=5的解为(C )2X-Y=4A X=1B X=2C X=3D X=4Y=4 Y=3 Y=2 Y=1随堂练习在下列三对数①X=2 Y=2 ②X=23 Y=-9 ③X=4 Y=-4中 3X+Y=8①③是方程3X+Y=8的解 ②③是方程2X-Y=12的解 方程组 的解是③2X-Y=12知识点三 消元----解二元一次方程组消元思想:1、二元一次方程组中有两个未知数,如果消去其中一个未知数那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这样将未知数的个数由多化少,逐一解决的思想叫做消元思想。
2、代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元进而求得这个二元一次方程组的解,这种方法叫做消元法,简称代入法。
3、加减消元法:当二元一次方程组的两个方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法简称加减法。
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
《二元一次方程组》数学教学PPT课件(7篇)
练习 已知下列各方程:
其中二元一次方程的个数是( A )
A. 1
B. 2
C. 3
D. 4
鸡兔同笼 《孙子算经》是我国古代较为普及的算书,许多问题浅显有 趣.其中下卷第31题“鸡兔同笼”问题流传尤为广泛,飘洋过 海传到了日本等国.
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
鸡兔同笼 “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? ”解:设鸡有x只,兔有y只,根据题意,得
一场得1分.如果某队为了争取较好名次,想在全部10场比赛中
得16分,那么这个队胜负场数应分别是多少? 解:设胜x场,负(10-x)场,根据题意得: 2x+(10-x)=16
2x+10-x=16 2x-x=16-10 x=6
10-6=4 答:这个队胜6场,负4场.
思考
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负 一场得1分.如果某队为了争取较好名次,想在全部10场比赛中 得16分,那么这个队胜负场数应分别是多少?
二元一次方程的解
再来看前面例子中的方程x+y=10,符合问题的实际意义的 x
、y 的值有哪些?
x 0 1 2 3 4 5 … 10 y 10 9 8 7 6 5 … 0
使二元一次方程左右两边相等的未知数
一般地,一个二元一次方程 有无数个解.如果对未知数 的取值附加某些限制条件, 则可能有有限个解.
例题 下列哪些是二元一次方程组?如果不是为什么?
3x-2y=9 y+5x=0
x=2 x+y=1
x-3y+9z=8 y+3z=5
有三个未知数
xy+y=5 x-y=4
二元一次方程组应用题大全讲课讲稿
二元一次方程组应用题大全知识点:二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)相似题:鸡兔同笼问题(1)1、野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只。
2、已知板凳和木马共有33个,腿共有101条。
板凳和木马各有多少个?(注:板凳4条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。
其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元。
问成人票与学生票各售出多少张?分析:两个相等关系:①;②。
4、某校买了甲、乙两种型号的彩电共7台,花去人民币15900元。
已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题(2)1、某校150名学生参加数学考试,平均每人55分,其中及格的学生人均77分,不及格的学生人均47分。
及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100人,大人一餐吃4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人?分配问题(1)1、某单位召开会议,安排参加会议人员住宿,若每间宿舍住12人,便有34人没有住处;若每间住14人便多处4间宿舍没人住。
求参加会议的人数和宿舍数。
分析:两个相等关系:①;②。
2、将若干只鸡放入若干个笼子中,若每个笼子放4只,则有1只鸡无笼可放;若每个笼子放5只鸡,则有1笼无鸡可放,试问有多少只鸡,多少个笼子?3、用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4周,则绳子还多3尺;若绳子绕水泥柱5周,则绳子还少2尺,求绳子及水泥柱一周的长度。
二元一次方程组专题讲义
二元一次方程组专题知识讲义一、二元一次方程的定义及通解1、二元一次方程的特解2、二元一次方程的通解(整数解)3、二元一次方程和一次函数的关系4、二元一次方程组5、二元一次方程组的解的情况判定6、二元一次方程组的解法示例二、例练及应用练习1、已知方程组ax+by=-16 x=8 x=8 Cx+20y=-224 的解为 y=-10,小明解题时,把c抄错了因此得到的解是 y=-13 则a2+b2+c2=__________2、关于x、y的方程组x+ay+1=0bx-2y+1=0有无数组解,则a、b的值为_________3、已知m是整数,方程组4x-3y=66x+ my=20有整数解,求m的值4、已知二元一次方程组2x+y=7X+2y=8,则x-y=________,x+y=_________5、若关于x,y的方程组ax+3y=92x-y=1无解,则a的范围为__________6、 m为正整数,已知二元一次方程组mx+2y=103x-2y=0,有正整数解,则m2=_______7、若对任意有理数a,b关于x,y的二元一次方程(a-b)x-(a+b)y=a+b有一组公共解,则公共解为__________8、若1/x +2/y +3/z=5, 3/x +2/y +1/z=7,则1/x +1/y +1/z=______9、方程︱x-2y-3︱+︱x+y+1︱=1的整数解得个数为________10.有铅笔、练习本、圆珠笔三种学习用品。
若铅笔3支,练习本7支,圆珠笔支共需6.3元;若购铅笔4支,练习本10支,圆珠笔1支,共需8.4元,现购买铅笔、圆珠笔、练习本各1本,共需多少元?11、某人准备装修一套新宅,若甲、乙两个装修公司合作需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的工程由乙公司来做,还需9周才能完成,需工钱4.8万元;若只选一个公司单独完成,从节约开支的角度考虑,选甲公司还是选已公司?请说明理由。
七年级下册数学《8.1二元一次方程组》说课稿
七年级下册数学《 8.1 二元一次方程组》讲课稿一、内容剖析1.1 学习任务剖析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的中心观点。
它既是一元一次方程的持续,又是三元一次方程组的基础。
1.2 学生状况剖析:就方程而言,初一学生已有一元一次方程的相关知识。
因此本节课将指引学生自己发现新的方程并试试经过类比“发现”相关新观点,使学生逐渐成立方程的知识系统。
但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义拥有必定的难度。
二、学习目标设计知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的观点。
能鉴别那些是二元一次方程(组),并能正确的写出他们的解能力目标:经过试试命名新方程、试试“发明”相关观点,培养学生知识移的能力,并从初一开始养成成立知识系统的习惯。
经过学生自己设计问题,充足发挥其主体性,培育创新意识。
感情目标:体验数学发现中的快乐,激发学生自主学习的乐趣。
要点二元一次方程 ( 组) 及二元一次方程 ( 组) 的解的观点。
难点理解、判断二元一次方程 ( 组) 的解 , 并能用正确的形式表达二元一次方程(组)的解。
三、讲堂构造设计着手实验,指引学生发现问题(课题)、试试命名和定义练习反应联合实验,指引学生设计问题并发现方程组练习反应指引学生在小结稳固中更好的理解观点分层练习,指引学生踊跃探究回归实验,学生完美自己的设计四、教课媒体设计充足利用 PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机联合,各取其长。
五、教课过程设计5.1 着手实验,指引学生发现问题(课题)、试试命名和定义。
实验情境:请学生将手中 40 厘米长的绳索绷成一个长方形。
(课前结已打好,所占长度忽视不计)互相沟通:学生互相沟通所绷成的长方形能否完好同样,有何异同之处。
(异:各自的长和宽不一样;同:周长都是 40 厘米。
二元一次方程讲课逐字稿
二元一次方程讲课逐字稿好的,以下是关于二元一次方程的讲课逐字稿。
各位同学,大家好。
今天我们来学习二元一次方程。
二元一次方程是初中数学的重要内容,也是高中数学的基础。
下面我们从二元一次方程的定义、解法、应用三个方面来展开学习。
一、二元一次方程的定义首先,我们来看二元一次方程的定义。
二元一次方程是指含有两个未知数,且未知数的次数都是1的整式方程。
例如:x + y = 52x - 3y = 6这两个方程都含有两个未知数x和y,且x和y的次数都是1,所以它们都是二元一次方程。
二、二元一次方程的解法接下来,我们来学习二元一次方程的解法。
常用的解法有代入法和加减法。
1. 代入法:先从一个方程中用一个未知数表示另一个未知数,然后将这个表达式代入另一个方程,从而得到一个一元一次方程,解出这个一元一次方程后,再代入原方程求出另一个未知数。
2. 加减法:将两个方程相加或相减,消去一个未知数,得到一个一元一次方程,解出这个一元一次方程后,再代入原方程求出另一个未知数。
下面我们来看一个例题:x + y = 72x - y = 1我们可以用加减法来解这个方程组。
将第一个方程乘以2,然后与第二个方程相加,得到:3x = 15x = 5将x=5代入第一个方程,得到:5 + y = 7y = 2所以这个方程组的解为x=5,y=2。
三、二元一次方程的应用最后,我们来看二元一次方程的应用。
二元一次方程可以解决很多实际问题,例如:1. 行程问题:已知速度和时间,求路程。
2. 工程问题:已知工作效率和工作时间,求工作总量。
3. 几何问题:已知线段长度和角度,求其他线段长度或角度。
同学们可以在生活中多观察,发现可以用二元一次方程解决的问题,提高自己的数学应用能力。
本节课我们学习了二元一次方程的定义、解法和应用。
希望大家能够掌握二元一次方程的相关知识,提高自己的数学素养。
今天的课就上到这里,同学们再见。
二元一次方程组讲课稿
二元一次方程组说课稿本节课是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》,下面我将从以下几个环节对本节的教学设计进行说明,一、教材分析,二、教学目标,三、教学重难点,四、教法学法,五、教学过程,六、板书设计。
教材分析教材的地位与作用:《二元一次方程组》是人教版《数学》七年级下册第八章第一节的内容,本节内容的核心是对二元一次方程组及其相关概念的理解。
它是继一元一次方程之后出现的,为后面学习二元一次方程组的解法打下基础,在教材中占据承上启下的地位。
教学目标作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探索、合作创新的意识,使他们会学,因此根据新课标的要求,教材的特点及学生实际情况我制定了如下目标:知识目标:了解二元一次方程的概念,会判断一组数是不是二元一次方程。
能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型,通过自由思考与小组合作交流,培养学生的探讨能力。
情感目标:培养学生的发现意识和探索能力,使其具有强烈的好奇心和求知欲,认识知识的独立性。
教学重难点本节课的重点是通过与一元一次方程的类比来认识二元一次方程,通过相比较,讨论掌握二元一次方程的定义。
本节课的难点是引导学生运用“实际问题—数学问题的建模意识来理解二元一次方程的定义,使学生能达到本节设定的教学目标、我再从教法和学法上谈谈。
教法学法在教法方面、结合课程标准的相关理念及七年级学生思维特征针对本节课的特点在教学中我主要采用了讲授式教学、合作式教学、探索式教学、自主式教学等教学方法,在教学过程中特别注意创设思维情境坚持以学生为主体、教师为主导的方针,在学法指导上、教给学生科学的学习方法、培养良好的学习习惯是最终目的。
在本节课的教学中要帮助学生学会运用观察、猜想、合作、交流、抽象概括、总结归纳等方法来解决问题,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法。
《二元一次方程组的解法》数学教学PPT课件(3篇)
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
二元一次方程组讲义
二元一次方程组讲义二元一次方程组讲义题型一:二元一次方程(组)的概念①二元一次方程是一个含有两个未知数的方程,且未知数项的次数都是1.需要满足四个条件:1、方程是整式方程;2、只含有两个未知数;3、未知数的项最高次数都是一次;4、含有未知数的项的系数不为0.②二元一次方程组是含有两个未知数的两个一次方程所组成的一组方程。
需要满足三个条件:1、每个方程都是一次方程;2、方程组具有两个未知数;3、每个方程均为整式方程。
在方程组中,相同字母必须代表同一数量,否则不能将两个方程合在一起,组成方程组。
①二元一次方程:例1、下列方程中,只有3x+6=2x,xy=3,y-xy=4,10x-2y=0,x+y/4=2,2x+3xy=5是二元一次方程。
例2、方程ax-4y=x-1是二元一次方程,则a的取值范围为实数。
例3、已知方程mx+(m+2)y=3m-1是关于x,y的二元一次方程,则m的取值范围是实数。
例4、若关于x,y的方程x+y/4-3y/2=1,其中a+b≤3,则a-b=7/4.②二元一次方程组:例1、下列方程组中,二元一次方程组的个数是3:{x+y=1.x^2+y^2=1.xy=1}。
例2、若方程组{x-(c+3)y=0.xy=3}是关于x,y的二元一次方程组,则代数式a+b+c 的值为2.题型二:二元一次方程(组)的解的概念二元一次方程的解是指使方程左右两边相等的一对数值。
需要注意的是:1)每一个解都是一对数值,而不是一个数值;2)一般情况下,一个二元一次方程有无数多组解,但并不是说任意一对数值都是它的解,当对解有限制条件时,二元一次方程的解的个数为有限个。
判断下列数值是否是二元一次方程3x+y=11的解:1) x=3.y=-12) x=3.y=2解答:将数值代入方程3x+y=11中,得:1) 3(3)+(-1)=8,不是方程的解。
2) 3(3)+(2)=11,是方程的解。
下列数值,是二元一次方程t-2s=-8的解的是:t=3.s=2t=2.s=4t=4.s=6t=2.s=1解答:将数值代入方程t-2s=-8中,得:1) 3-2(2)=-1,不是方程的解。
第八章二元一次方程组讲学稿 (1)
8.1 二元一次方程组主备人:张慧珍 审核:初一数学组全体学习目标:1.弄懂二元一次方程、二元一次方程组和它们的解的含义;2.会检验一对数是不是某个二元一次方程组的解;学习过程:问题1:⑴小红到邮局寄挂号信,需要邮资3元8角。
小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?①这个问题中有几个未知数,能列一元一次方程求解吗? ②如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,列出方程为:。
⑵在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。
如果设轿车的速度是a 千米/小时,卡车的速度是b 千米/小时,列出方程为:。
⑶ 已知两个数的和是7,求这两个数?如果设一个数为x ,另一个为y ,那么可列出方程为:。
观察上述两个方程,归纳特点二元一次方程的定义:含有个未知数,并且未知数的指数都是的方程,叫做方程. XY为⎩⎨⎧==b y a x 由此可知,二元一次方程的解是由两个未知数的值组成。
想想,二元一次方程的解固定吗? 二元一次方程有个解例1:已知方程3x +2y =10 ⑴ 用关于x 的代数式表示y (分析:只要把方程3x +2y =10看作未知数是y 的一元一次方程,解关于y 的方程);⑵ 求当x =-2,0,3时,对应的y 的值练习一:⑴3x +2y =6,它有______个未知数,且未知数是___次,因此是_____元____次方程. ⑵3x =6是____元____次方程,其解x =_____,有______个解,3x +2y =6,当x =0时,y =_____;当x =2时,y =_____;当y =5时,x =____;当y = 0.5时, x =_____ .⑶把下列方程中的y 用x 表示出来:①y -2x =5② 3x -4y =8问题3:已知两个数的和是7,且其中一个数是另一数2倍多1,求这两个数?如果设一个数为x ,另一个为y ,那么可列出方程为:二元一次方程组的定义:把具有 的两个二元一次方程合在一起,就组成了一个.问题4:有没有这样的两个未知数的值能使两个等式成立?如果有的话,它是什么?二元一次方程组的解的定义:二元一次方程组的两个方程的叫做二元一次方程组的解.练习二.1.下列方程组是不是二元一次方程组( )2.下列各对数值中是二元一次方程⎩⎨⎧-=+=+2222y x y x 的解是( ) A ⎩⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x3. 若方程x 2 m –1 + 5y 3n – 2 = 7是二元一次方程.则m= , n =。
(2021年整理)二元一次方程组 讲义
(完整)二元一次方程组讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二元一次方程组讲义)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二元一次方程组讲义的全部内容。
二元一次方程组§8.1二元一次方程组1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有且只有一个解。
一、填空题1、二元一次方程4x —3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x )-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____.5、方程2x+y=5的正整数解是______.6、若(4x —3)2+|2y+1|=0,则x+2= 。
7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x —y=7C 、20x —4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2—3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101§8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组习题8.1 二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则x的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.仅供学习与交流,如有侵权请联系网站删除谢谢- 2 -11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.仅供学习与交流,如有侵权请联系网站删除谢谢- 3 -20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?仅供学习与交流,如有侵权请联系网站删除谢谢- 4 -仅供学习与交流,如有侵权请联系网站删除 谢谢- 5 - 23.方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?25.二元一次方程组⎩⎨⎧=+=+6||352||x y y x 的解是多少?26. 已知关于x 、y 的方程组⎩⎨⎧=+-=-3175275by ax y x 和⎩⎨⎧=+-=-651y x by ax 的解相同,求ax+by 。
27. 某公园的门票价格规定如下表:某校八年级两个班共104人去游公园,其中一个班人数不到50人,另一个班人数有50多人,经估算若两班都以班为单位分别购票,一共应付款1240元;若两班联合起来购票,则可以节省多少钱?每个班各有多少28.从甲地到乙地,需先走下坡路,后走平路,某人骑自行车先以每小时20千米的速度走下坡路,又以每小时15千米的速度通过平路,则到达乙地共用1小时6分钟,他回来时先以每小时12千米的速度通过平路,又以每小时8千米的速度走上坡路,回到甲地用了1小时30分,则甲、乙两地相距多少千米?仅供学习与交流,如有侵权请联系网站删除谢谢- 6 -29. 某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品8折销售,超市B全场购满100元返购物券30元(不足100元不返券,购物券全场通用)但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.仅供学习与交流,如有侵权请联系网站删除谢谢- 7 -2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.B 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题仅供学习与交流,如有侵权请联系网站删除谢谢- 8 -仅供学习与交流,如有侵权请联系网站删除 谢谢- 9 -17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x -2ax=a+2有相同的解,∴3×(-3)-2a ×4=a+2,∴a=-119. 18.解:∵(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,∴a -2≠0,b+1≠0,•∴a ≠2,b ≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0. (•若系数为0,则该项就是0)19.解:由题意可知x=y ,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k -1)y=3中得k+k -1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12. 当x=1,y=-12时,x -y=1+12=32; 当x=-1,y=-12时,x -y=-1+12=-12. 解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都等于0,从而得到│x │-1=0,2y+1=0.21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3. 22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩. (2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x +=⎧⎨-=⎩. 23.解:满足,不一定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x -y=8,• ∴方程组的解一定满足其中的任一个方程,但方程2x -y=8的解有无数组,仅供学习与交流,如有侵权请联系网站删除 谢谢- 10 - 如x=10,y=12,不满足方程组2528x y x y +=⎧⎨-=⎩. 24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.25.本题是含绝对值的方程组。
可以先把|x|作为一个整体来解,解得:⎩⎨⎧==13||y x 所以二元一次方程组⎩⎨⎧=+=+6||352||x y y x 的解是⎩⎨⎧==13y x 或⎩⎨⎧=-=13y x 26. 因为x 、y 的两个方程组同解。
因此可得这四个方程同解。
将不含字母的方程联立得:⎩⎨⎧=+-=-65275y x y x ,解这个方程组得⎩⎨⎧==11y x 。
将其余两个方程联立得:⎩⎨⎧=+-=-31751by ax by ax 。
再将⎩⎨⎧==11y x 代入得⎩⎨⎧=+-=-31751b a b a ,解这个方程组得⎩⎨⎧==32b a 。
因此ax+by =2+3=5。
27. 解:设一个班有x 人,另一个班有y 人x y x y +=+=⎧⎨⎩10413111240解得x y ==⎧⎨⎩4856 联合购票花费:104×9=936(元)节省费用:1240-936=304(元)28. 解法一:设平路长x 千米,坡路长为y 千米,根据题意得x y x y 1520111012832+=+=⎧⎨⎪⎪⎩⎪⎪解得x y ==⎧⎨⎩152 则x +y =17千米解法二:设去时走平路用x 小时,回来走平路用y 小时,根据题意得 1512201110832x y x y =-=-⎧⎨⎪⎩⎪()()解得x y ==⎧⎨⎪⎩⎪154 两地间的距离为:1151102015217⨯+⨯=+=千米 29. 解:(1)设书包的单价为x 元,随身听的单价为y 元,根据题意得x y y x +==-⎧⎨⎩45248解得x y ==⎧⎨⎩92360 (2)在超市A 购买随身听与书包各一件需花费现金:452×80%=361.6元因为361.6<400,所以可以选择超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券加上2元现金购买书包,总计共花费现金360+2=362元,因为362<400,所以也可以在超市B购买,又因为362>361.6,所以在超市A购买更省钱.。