人教版九年级上册数学第22章测试题附答案

合集下载

人教版九年级上册数学第22章测试题(附答案)

人教版九年级上册数学第22章测试题(附答案)

人教版九年级上册数学第22章测试题(附答案)一、单选题(共12题;共24分)1.抛物线y=(x﹣1)2+2的顶点是()A. (1,﹣2)B. (1,2)C. (﹣1,2)D. (﹣1,﹣2)2.把抛物线y=﹣x2向右平移2个单位,则平移后所得抛物线的解析式为()A. y=﹣x2+2B. y=﹣(x+2)2C. y=﹣x2﹣2D. y=﹣(x﹣2)23.如图,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(-1,5)、B (9,3),请你根据图象写出使y1≥y2成立的x的取值范围( )A. -1≤x≤9B. -1≤x<9C. -1<x≤9D. x≤-1或x≥94.把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b,c的值分别是( )A. b=2,c=-2B. b=-2,c=-2C. b=-6,c=-6D. b=-6,c=65.将抛物线y=x2向左平移两个单位,再向上平移一个单位,可得到抛物线()A. y=(x-2) 2+1B. y=(x-2) 2-1C. y=(x+2) 2+1D. y=(x+2) 2-16.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A. y=(x-2)2B. y=(x-2)2+6C. y=x2+6D. y=x27.抛物线y=-3(x+1)2-2经过平移得到抛物线y=-3x2,平移方法是()A. 向左平移1个单位,再向下平移2个单位B. 向右平移1个单位,再向下平移2个单位C. 向左平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向上平移2个单位8.二次函数y=ax2+bx+c(a≠0)是偶函数,则实数b等于()A. 1B. 0C. -1D. 29.如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x <﹣1或x>2.其中正确的有()A. 4个B. 3个C. 2个D. 1个10.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,0)B. (-3,-6)C. (-3,-5)D. (-3,-1)11.下列各式中,y是x的二次函数的是( )A. B. C. D.12.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有A. 1个B. 2个C. 3个D. 4个二、填空题(共7题;共16分)13.已知是y关于x的二次函数,那么m的值为________。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

人教版九年级数学上册《第22章二次函数实际应用》测试题(附答案)

人教版九年级数学上册《第22章二次函数实际应用》测试题(附答案)

人教版九年级数学上册《第22章二次函数实际应用》测试题(附答案)学校:___________班级:___________姓名:___________考号:___________主题分类:主题一:拱桥问题主题二:折叠立体图形问题主题三:围墙问题主题四:投球问题主题五:销售利润问题主题一:拱桥问题1. 三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时单个小孔的水面宽度为4米若大孔水面宽度为20米,则单个小孔的水面宽度为( )3米 2米 13 D.7米主题二:折叠立体图形问题2. 在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点()()3,0,1,0A B -两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时连接BP 交AC 于点D .如图1.当PD DB的值最大时求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时请直接写出此时点M 的坐标.主题三:围墙问题3. 如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.4. 蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR 若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.主题四:投球问题5. 一次足球训练中,小明从球门正前方8m 的A 处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时球达到最高点,此时球离地面3m .已知球门高OB 为2.44m ,现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处? 6. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.7. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.8. 乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm),乒乓球运行的水平距离记为x(单位:cm).测得如下数据:水平距离x/cm0105090130170230竖直高度y/cm28.7533454945330(1)在平面直角坐标系xOy中,描出表格中各组数值所对应的点(),x y,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时与球台之间的距离是__________cm,当乒乓球落在对面球台上时到起始点的水平距离是__________cm;①求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA的取值范围,以利于有针对性的训练.如图①.乒乓球台长OB 为274cm,球网高CD为15.25cm.现在已经计算出乒乓球恰好过网的击球离度OA的值约为1.27cm.请你计算出乒乓球恰好落在对面球台边缘点B处时击球高度OA的值(乒乓球大小忽略不计).专题五:销售利润问题9.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.10. 在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润. 11. 某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …填空:(1)m 与x 的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.12. 渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克根据市场调查发现,批发价定为48元/千克时每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时工厂每天的利润为多少元?(2)当降价多少元时工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元? 13. 某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次 A 型水杯(个) B 型水杯(个) 总费用(元)一100 200 8000 二 200 300 13000(1)求A 、B 两种型号的水杯进价各是多少元?A B A B A B 100kg A 2kg B 4kg x x w w x a a(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?14.红星公司销售一种成本为40元/件的产品若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.参考答案1.【答案】B【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=3 2设大孔所在抛物线解析式为y=ax2+3 2∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=-350∴大孔所在抛物线解析式为y=-350x 2+32,设点A(b,0),则设顶点为A 的小孔所在抛物线的解析式为y=m(x﹣b)2 ∵EF=14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m(x﹣b)2 ∴x 1615m 2615m -615m -615m-925 ∴顶点为A 的小孔所在抛物线的解析式为y=-925(x﹣b)2 ∵大孔水面宽度为20米,∴当x=-10时y=-92,∴-92=-925(x﹣b)2,∴x 15222=-522+b 5225222(米),故选:B. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 2.【答案】(1)223y x x =--+;(2)点P 的坐标为315,24⎛⎫- ⎪⎝⎭;PD DB 的最大值为916;(3)点M 的坐标为:()32,2--- ()32,2-+ 【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)过点P 作PQ x ∥轴,交AC 于点Q ,求出直线AC 的解析式为3y x ,设点P 的坐标为()2,23t t t --+,则点()222,23Q t t t t ----+得出2223PQ t t t t t =---=--根据PQ x ∥轴得出PD PQ BD AB =根据21394216PD t BD ⎛⎫=-++ ⎪⎝⎭,求出点P 的坐标和最大值即可; (3)证明MPC PCM ∠=∠得出PM CM =,设(),3M m m +,()2,23P m m m --+得出()2222332CM m m m =++-=,()()()222222223333PM m m m m m m m =--+--=--=+根据22PM CM =得出()22223m m m =+,求出0m =或32m =--或32m =-+根据当0m =时点P 、M 、C 、M '四点重合,不存在PCM △舍去,求出点M 的坐标为()32,2--- ()32,2-+.【详解】(1)解:把()()3,0,1,0A B -,()0,3C 代入2y ax bx c =++得:93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:123a b c =-⎧⎪=-⎨⎪=⎩①抛物线的解析式为223y x x =--+.(2)解:过点P 作PQ x ∥轴,交AC 于点Q ,如图所示:设直线AC 的解析式为y kx b =+,把()30A -,,()0,3C 代入得: 303k b b -+=⎧⎨=⎩解得:13k b =⎧⎨=⎩①直线AC 的解析式为3y x设点P 的坐标为()2,23t t t --+,则点()222,23Q t t t t ----+ ①点P 在直线AC 上方的抛物线上①2223PQ t t t t t =---=--①PQ x ∥轴①~PQD BAD①PD PQ BD AB= ①()134AB =--=①234PD t t BD --=()2134t t =-+ 21394216t ⎛⎫=-++ ⎪⎝⎭ ①当32t =-时PD BD有最大值916 此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭. (3)解:根据折叠可知PM PM '= CM CM '= PCM PCM '∠=∠ ①PM x ⊥轴①PM CM '∥①MPC PCM '∠=∠①MPC PCM ∠=∠①PM CM =设(),3M m m + ()2,23P m m m --+ ()2222332CM m m m =++-=()()()222222223333PM m m m m m m m =--+--=--=+ ①PM CM =①22PM CM =①()22223m m m =+整理得:()22320m m ⎡⎤+-=⎣⎦ ①20m =或()2320m +-=解得:0m =或32m =--或32m =-+①当0m =时点P 、M 、C 、M '四点重合,不存在PCM △ ①0m ≠①点M 的坐标为()32,2--- ()32,2-+.【点睛】本题主要考查了求抛物线的解析式,二次函数的综合应用,平行线分线段成比例定理,等腰三角形的判定,平行线的性质,两点间距离公式,解题的关键是数形结合,作出辅助线或画出图形. 3.【答案】(1)见解析;(2),见解析. 【分析】(1)由题意易得AM =2ME,故可直接得证;(2)由(1)及题意得2AB +GH +3BC =100,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2即可得出函数关系式.【详解】解:(1)证明:∵矩形MEFN 与矩形EBCF 面积相等,∴ME =BE ,AM =GH . ∵四块矩形花圃的面积相等,即S 矩形AMDND =2S 矩形MEFN ,∴AM =2ME ,∴AE =3BE ; (2)∵篱笆总长为100m ,∴2AB +GH +3BC =100,即,∴ 设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,则 ∵,∴解得 ∴. 【点睛】本题主要考查二次函数的实际应用,关键是根据题意得到线段的等量关系,然后列出函数关系式即可.4.【答案】(1)2144y x =-+;(2)0.5m ;(3)97m 12【分析】(1)根据顶点坐标,设函数解析式为24y ax =+,求出A 点坐标,待定系数法求出函数解析式即可;(2)求出 3.75y =时对应的自变量的值,得到FN 的长,再减去两个正方形的边长即可得解;(3)求出直线AC 的解析式,进而设出过点K 的光线解析式为34y x m =-+,利用光线与抛物线相切,求出2610040053⎛⎫=-+<< ⎪⎝⎭y x x x 1231002AB AB BC ++=6405AB BC =-266404055y BC AB x x x x ⎛⎫=⋅=-=-+ ⎪⎝⎭6405AB BC =-402035EB x =->1003x <2610040053⎛⎫=-+<< ⎪⎝⎭y x x xm 的值,进而求出K 点坐标,即可得出BK 的长.【详解】(1)解:①抛物线AED 的顶点()0,4E 设抛物线的解析式为24y ax =+①四边形ABCD 为矩形,OE 为BC 的中垂线 ①4m AD BC == 2m OB = ①3m AB =①点()2,3A -,代入24y ax =+,得:344a =+①14a =-①抛物线的解析式为2144y x =-+;(2)①四边形LFGT ,四边形SMNR 均为正方形0.75m FL NR == ①0.75m MG FN FL NR ====延长LF 交BC 于点H ,延长RN 交BC 于点J ,则四边形FHJN ,四边形ABFH 均为矩形①3m,FH AB FN HJ === ① 3.75m HL HF FL =+=①2144y x =-+,当 3.75y =时213.7544x =-+解得:1x =±①()1,0H - ()1,0J ①2m FN HJ ==①0.5m GM FN FG MN =--=; (3)①4m BC =,OE 垂直平分BC ①2m OB OC == ①()()2,0,2,0B C -设直线AC 的解析式为y kx b =+ 则:2023k b k b +=⎧⎨-+=⎩解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩①3342y x =-+①太阳光为平行光设过点K 平行于AC 的光线的解析式为34y x m =-+ 由题意,得:34y x m =-+与抛物线相切联立214434y x y x m ⎧=-+⎪⎪⎨⎪=-+⎪⎩,整理得:234160x x m -+-=则:()()2344160m ∆=---=解得:7316m =; ①373416y x =-+,当0y =时7312x =①73,012K ⎛⎫ ⎪⎝⎭①()2,0B - ①73972m 1212BK =+=. 【点睛】本题考查二次函数的实际应用.读懂题意,正确的求出二次函数解析式,利用数形结合的思想,进行求解,是解题的关键. 5.【答案】(1)()212312y x =--+,球不能射进球门;(2)当时他应该带球向正后方移动1米射门 【分析】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A 点坐标求出a 的值即可得到函数表达式,再把0x =代入函数解析式,求出函数值,与球门高度比较即可得到结论; (2)根据二次函数平移的规律,设出平移后的解析式,然后将点()0,2.25代入即可求解. 【详解】(1)解:由题意得:抛物线的顶点坐标为()2,3 设抛物线解析式为()223y a x =-+ 把点()8,0A 代入,得3630a +=12①抛物线的函数表达式为()212312y x =--+ 当0x =时82.443y => ①球不能射进球门;(2)设小明带球向正后方移动m 米,则移动后的抛物线为()212312y x m =---+ 把点()0,2.25代入得()212.252312m =---+ 解得15m =-(舍去),21m =①当时他应该带球向正后方移动1米射门.【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键.6.【答案】(1)1C 的最高点坐标为()32,,19a =-和1c =;(2)符合条件的n 的整数值为4和5 【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【详解】(1)解:①抛物线21:(3)2C y a x =-+①1C 的最高点坐标为()32,①点(6,1)A 在抛物线21:(3)2C y a x =-+上①21(63)2a =-+解得:19a =-①抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;(2)解:①到点A 水平距离不超过1m 的范围内可以接到沙包①点A 的坐标范围为()()5171,,当经过()51,时211551188n=-⨯+⨯++ 解得175n =; 当经过()71,时211771188n=-⨯+⨯++7①174157n ≤≤ ①符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.7.【答案】(1)()0,2.8P 0.4a =-;(2)选择吊球,使球的落地点到C 点的距离更近【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=即可求得落地点到O 点的距离,即可判断谁更近.【详解】(1)解:在一次函数0.4 2.8y x =-+ 令0x =时 2.8y = ①()0,2.8P将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=解得:0.4a =-; (2)①3m OA = 2m CA = ①5m OC =选择扣球,则令0y =,即:0.4 2.80x -+=解得:7x = 即:落地点距离点O 距离为7m ①落地点到C 点的距离为752m -=选择吊球,则令0y =,即:()20.41 3.20x --+=解得:221x =±+(负值舍去) 即:落地点距离点O 距离为()221m +①落地点到C 点的距离为()()5221422m --=- ①4222-<①选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.8.【答案】(1)见解析;(2)①49 230;①()20.00259049y x =--+;(3)乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为64.39cm【分析】(1)根据描点法画出函数图象即可求解;(2)①根据二次函数图象的对称性求得对称轴以及顶点根据表格数据,可得当0y =时230=x ; ①待定系数法求解析式即可求解;(3)根据题意,设平移后的抛物线的解析式为()20.0025904928.75y x h =--++-根据题意当274x =时0y =,代入进行计算即可求解.【详解】(1)解:如图所示(2)①观察表格数据,可知当50x =和130x =时函数值相等,则对称轴为直线90x =,顶点坐标为()90,49又抛物线开口向下,可得最高点时与球台之间的距离是49cm 当0y =时230=x①乒乓球落在对面球台上时到起始点的水平距离是230cm ; 故答案为:49;230.①设抛物线解析式为()29049y a x =-+,将()230,0代入得()202309049a =-+解得:0.0025a =-①抛物线解析式为()20.00259049y x =--+;(3)①当28.75OA =时抛物线的解析式为()20.00259049y x =--+设乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为h ,则平移距离为28.75h -()cm ①平移后的抛物线的解析式为()20.0025904928.75y x h =--++-依题意,当274x =时0y =即()20.0025274904928.750h --++-= 解得:64.39h =.答:乒乓球恰好落在对面球台边缘点B 处时击球高度OA 的值为64.39cm .【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键. 9.【答案】1264【分析】根据题意,总利润=A 快餐的总利润+B 快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.【详解】解:设A 种快餐的总利润为1W ,B 种快餐的总利润为2W ,两种快餐的总利润为W ,设A 快餐的份数为x 份,则B 种快餐的份数为()120x -份. 据题意:2140112122032222x x W x x x x -⎛⎫⎛⎫=-⨯=-+⨯=-+ ⎪ ⎪⎝⎭⎝⎭()()22801201=812072240022x W x x x --⎡⎤+-=-+-⎢⎥⎣⎦∴()22121042400=521264W W W x x x =+=-+---+∵10-< ∴当52x =的时候,W 取到最大值1264,故最大利润为1264元故答案为:1264【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.10.【答案】(1)每盒产品的成本为30元.(2);(3)当时每天的最大利润为16000元;当时每天的最大利润为元.【分析】(1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可. 【详解】解:(1)设原料单价为元,则原料单价为元. 依题意,得.解得,,.经检验,是原方程的根. 210140033000=-+-w x x 70a ≥6070a <<()210140033000a a -+-B m A 1.5m A B 100kg 210140033000=-+-w x x B m A 1.5m 9009001001.5m m-=3m = 1.5 4.5m =3m =∴每盒产品的成本为:(元).答:每盒产品的成本为30元.(2);(3)∵抛物线的对称轴为=70,开口向下∴当时a =70时有最大利润,此时w=16000,即每天的最大利润为16000元; 当时每天的最大利润为元.【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.11.【答案】(1)2144m x =-+;(2)第16天销售利润最大,最大为1568元;(3)02n <≤ 【分析】(1)设m kx b =+,将()1142,,()3138,代入,利用待定系数法即可求解; (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式,利用二次函数和一次函数的性质即可求解;(3)写出在前20天中,每天扣除捐赠后的日销售利润表达式根据二次函数的性质可得对称轴16220n +≤,求解即可.【详解】解:(1)设m kx b =+,将()1142,,()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩解得2144k b =-⎧⎨=⎩,∴2144m x =-+; (2)当120x ≤≤时销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+ 当16x =时销售利润最大为1568元;当2040x <≤时销售利润20302160W my m x =-=-+当21x =时销售利润最大为1530元;综上所述,第16天销售利润最大,最大为1568元; (3)在前20天中,每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-∵120x ≤≤时'W 随x 的增大而增大,∴对称轴16220n +≤解得02n <≤.【点睛】本题考查二次函数与一次函数的实际应用,掌握二次函数与一次函数的性质是解题的关键. 12.【答案】(1)2504009000W x x =-++,9600;(2)降价4元,最大利润为9800元;(3)43 【分析】(1)若降价x 元,则每天销量可增加50x 千克根据利润公式求解并整理即可得到解析式,然后代入2x =求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令9750W =可解出对应的x 的值,然后根据“让利于民”的原则选择合适的x 的值即可.4.5243930⨯+⨯+=()()305001060w x x =---⎡⎤⎣⎦210140033000x x =-+-210140033000=-+-w x x w 70a ≥6070a <<()210140033000a a -+-【详解】(1)若降价x 元,则每天销量可增加50x 千克∴()()500504830W x x =+--,整理得:2504009000W x x =-++ 当2x =时2502400290009600W =-⨯+⨯+=,∴每天的利润为9600元; (2)()225040090005049800W x x x =-++=--+ ∵500-<,∴当4x =时W 取得最大值,最大值为9800 ∴降价4元,利润最大,最大利润为9800元;(3)令9750W =,得:()297505049800x =--+解得:15=x 23x = ∵要让利于民,∴5x =,48543-=(元)∴定价为43元.【点睛】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.13.【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W .【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元 根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩解得:2030x y =⎧⎨=⎩∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w 根据题意可得:()()4430205w z z =--+化简得:2550280w z z =-++,当()505225b z a =-=-=⨯-时255505280405max w =-⨯+⨯+= ∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元. (3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①②将①代入②可得:()100002010930mW b m -=-+⨯化简得:()()106300043000W b m b m =--+=-+ 使得A ,B 两种杯子全部售出后,捐款后所得利润不变 则40b -=,得4b =,当4b =时3000W =∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用. 14.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时月销售利润最大,最大利润是90万元;(3)4.【分析】(1)分4050x ≤≤和50x >两种情况根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y >求出x 的取值范围;(2)在(1)的基础上根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为Q 万元,先根据捐款当月的月销售单价、月销售最大利润可得5070x <≤,再根据“月利润=(月销售单价-成本价a -)⨯月销售量”建立函数关系式,然后利用二次函数的性质即可得.【详解】解:(1)由题意,当4050x ≤≤时5y = 当50x >时50.1(50)0.110y x x =--=-+0y ≥,0.1100x ∴-+≥解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)设该产品的月销售利润为w 万元 ①当4050x ≤≤时5(40)5200w x x =-=-第 21 页 共 21页 由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大则当50x =时w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时2(40)(0.110)0.1(70)90w x x x =--+=--+由二次函数的性质可知,当70x =时w 取得最大值,最大值为90因为9050>所以当月销售单价是70元/件时月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元) 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元由题意得:,整理得: ,在内,随的增大而增大 则当时取得最大值,最大值为因此有解得.【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键. (40)(0.110)Q x a x =---+221400.1()390240a a Q x a +=--+-+140702a +>∴5070x <≤Q x 70x =Q (7040)(0.17010)903a a ---⨯+=-90378a -=4a =。

人教版九年级数学上册 第22章 《二次函数》检测题 (含答案)

人教版九年级数学上册 第22章 《二次函数》检测题 (含答案)

《二次函数》检测题一.选择题1.已知二次函数y=a(x﹣h)2+k,其图象过点A(0,2),B(6,2),则h的值是()A.6 B.5 C.4 D.3),B(1,y2),C(,y3)三2.若二次函数y=x2﹣6x+9的图象,经过A(﹣1,y点,y1,y2,y3大小关系正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2 3.如果将抛物线y=x2+2向下平移1个单位,向右平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2+3 D.y=(x+1)2﹣3 4.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m25.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3 B.2、﹣3、0 C.2、3、0 D.2、0、36.若二次函数y=x2+3x+a﹣1的图象经过原点,则a的值为()A.0 B.1 C.﹣1 D.1或﹣17.二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,则下列结论一定正确的是()A.m=k B.m>k C.m≥k D.m<k8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a、b、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟10.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④11.抛物线y=2x2﹣x﹣1与y轴的交点坐标为.12.抛物线y=﹣2(x+1)2﹣3开口,对称轴是,顶点坐标是,如果y随x的増大而减小,那么x的取值范围是.13.点P1(﹣1,y1),P2(4,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.(用“<”连接)14.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于.15.已知二次函数y=ax2﹣ax﹣x﹣t(t为实数)的对称轴是直线x=1,函数图象的顶点在x轴上,则t=;把抛物线k1:y=mx2﹣mx﹣x(m是一常数,且m<0)向上平移一个单位得到新的抛物线k2,则k2落在x轴上方的部分对应的x的取值范围是.16.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.17.在平面直角坐标系xOy中,直线y=2x+2与x轴,y轴分别交于点A,B,抛物线y =ax2+bx﹣3a经过点A,将点B向右平移4个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.18.用长为36米的篱笆围成一个矩形养鸡场,设围成矩形一边长为x米,面积为y平方米.(1)求y关于x函数解析式;(2)当x为何值时,围成的养鸡场面积为45平方米?19.已知二次函数y=(1)把函数表达式配方成y=a(x﹣h)2+k的形式为.(2)函数图象的开口方向向,顶点坐标为,对称轴为直线,函数图象与x轴的交点坐标为,与y轴的交点坐标为.(3)函数y=的图象可由抛物线y=﹣向平移个单位长度,再向平移个单位长度得到;(4)根据图象,写出y>0时,x的取值范围是.(5)当y随x的增大而增大时,x的取值范围是.20.某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,这种彩电每台降价100x(x为整数且0<x<9)元,每天可以多销售出3x台.(1)降价后每台彩电的利润是元,每天销售彩电台,设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式.(2)为了使顾客得到实惠,每台彩电的销售价定为多少时,销售该品牌彩电每天获得的利润最大,最大利润是多少?21.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标:若不存在,请说明理由;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标.22.已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点.(1)求抛物线解析式;(2)抛物线与y轴交于点C,在抛物线上存在点P,使S△BAP=S△CAP,求P点坐标;(3)已知直线l:y=2x﹣1,将抛物线沿y=2x﹣1方向平移,平移过程中与l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在一点P,使∠EPF=90°,求m的范围.23.已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(1,0)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当0≤x≤4时,抛物线的最高点为M,最低点为N,点M 的纵坐标为6,求点M和点N的坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x2≥3且a<0时,均有y1≥y2,求t的取值范围.24.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)直线MN上存在一点P,当△PBC是以∠BPC为直角等腰三角形时,求此时点D 的坐标;(3)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.参考答案一.选择题1.解:由解析式可知抛物线的对称轴为直线x=h,∵点A(0,2),B(6,2),它们的纵坐标相同,∴对称轴为直线x==3∴h=3.故选:D.2.解:∵二次函数y=x2﹣6x+9=(x﹣3)2,∴对称轴为直线x=3,3﹣(﹣1)=4,3﹣1=2,4+﹣3=1+,∵4>1+>2,∴y1>y3>y2.故选:B.3.解:抛物线y=x2+2向下平移1个单位后的解析式为:y=x2+2﹣1=x2+1.再向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2+1.故选:A.4.解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S=15××(20﹣15)=37.5最小∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.5.解:二次函数y=2x2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3,故选:A.6.解:把(0,0)代入y=x2+3x+a﹣1得a﹣1=0,解得a=1,所以a的值为1.故选:B.7.解:∵二次函数y=a2x2+bx+c(a≠0),∴a2>0,∴该函数开口向上,函数有最小值,∵二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,∴m≥k,故选:C.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:,解得:,即p=﹣0.2t2+1.5t﹣2,当t=﹣=3.75时,p取得最大值,故选:B.10.解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y==1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>;或第三象限内,当x<0时,x2+bx+c>;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.二.填空题(共6小题)11.解:把x=0代入抛物线y=2x2﹣x﹣1得:y=﹣1,∴抛物线y=2x2﹣x﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.解:抛物线y=﹣2(x+1)2﹣3的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,﹣3),当x>﹣1时,y随x的增大而减小,故答案为:向下,x=﹣1,(﹣1,﹣3),x>﹣1.13.解:∵y=﹣x2+2x+c=﹣(x﹣1)2+1+c,∴图象的开口向下,对称轴是直线x=1,A(﹣1,y)关于对称轴的对称点为(3,y1),1∵3<4<5,∴y3<y2<y1,故答案为y3<y2<y1.14.解:根据题意AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即62=x2+(3x)2,解得x=故答案为cm.15.解:对称轴是直线x=1=,解得:a=1,△=(﹣a﹣1)2+4at=0,解得:t=﹣1,故答案为:﹣1;k的表达式为:y=mx2﹣mx﹣x﹣1,2△=(﹣m﹣1)2+4m=(m﹣1)2,函数与x轴的交点坐标为:(,0)和(1,0),故k2落在x轴上方的部分对应的x的取值范围:<x<1,故答案为:<x<1.16.解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x ﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,故m<1,不符合题意;故答案为:②三.解答题(共8小题)17.解:(1)与y轴交点:令x=0代入直线y=2x+2得y=2,∴B(0,2),∵点B向右平移4个单位长度,得到点C,∴C(4,2);(2)与x轴交点:令y=0代入直线y=2x+2得x=﹣1,∴A(﹣1,0),将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=4代入抛物线得y=5a,∴5a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.18.解:(1)由题意可得,y=x•=x(18﹣x)=﹣x2+18x,即y关于x的函数关系式是:y=﹣x2+18x(0<x<18);(2)令y=45,则45=﹣x2+18x,解得x1=3,x2=15.即当x为3米或15米时,围成的养鸡场面积为45平方米.19.解:(1)y==﹣(x+1)2+2;故答案为:y=﹣(x+1)2+2;(2)﹣0,故函数图象的开口方向向下,顶点坐标为(﹣1,2),对称轴为直线x =﹣1,y=,令x=0,则y=,令y=0,则x=1或﹣3,故:函数图象与x轴的交点坐标为(1,0)或(﹣3,0),与y轴的交点坐标为(0,),故答案为:下,(﹣1,2),x=1,(1,0)或(﹣3,0),(0,);(3)函数y=的图象可由抛物线y=﹣向上平移2个单位,向左平移1个单位得到,故答案为:上,2,左,1;(4)根据图象,写出y>0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(5)函数的对称轴为:x=﹣1,故当y随x的增大而增大时,x的取值范围是x<﹣1,故答案为:x<﹣1.20.解:(1)由题意得:每台彩电的利润是(3900﹣100x﹣3000)元,即(900﹣100x)元,每天销售(6+3x)台,则y=(900﹣100x)(6+3x)=﹣300x2+2100x+5400故答案为:(900﹣100x),(6+3x);y与x之间的函数关系式为:y=﹣300x2+2100x+5400.(2)y=﹣300x2+2100x+5400.=﹣300(x﹣3.5)2+9075当x=3或x=4时,y最大值=9000.当x=3时,彩电销售单价为3600元,每天销售15台,营业额为3600×15=54000元,当x=4时,彩电销售单价为3500元,每天销售18台,营业额为3500×18=63000元,∴为了使顾客得到实惠,每台彩电的销售价定为3500元时,销售该品牌彩电每天获得的利润最大,最大利润是9000元.21.解:(1)物线y=ax2+2x+c与y轴交于点A(0,6),则c=6,将点B(6,0)代入函数表达式得:0=36a+12+6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,∴函数的对称轴为:x=2,顶点坐标为(2,8);(2)设点P(m,n),n=﹣m2+2m+6,点N(s,0),①当AB是平行四边形的一条边时,点A向右、向下均平移6个单位得到B,同理点N右、向下均平移6个单位得到M,故:s+6=m,0﹣6=n,解得:m=2±2,故点M的坐标为(2﹣2,﹣6)或(2+2,﹣6);②当AB是平行四边形的对角线时,则AB的中点即为MN的中点,则s+m=6,n+0=6,解得:m=4,故点M的坐标为(4,6),综上,点M的坐标为(2﹣2,﹣6)或(2+2,﹣6)或(4,6).(3)如下图,过点P作PG∥y轴交AB于点G,作PH⊥AB交于点H,∵OA=OB=6,则∠OAB=∠OBA=45°,∵PG∥y轴,则∠PGH=∠OAB=45°,直线AB的表达式为:y=﹣x+6,设点P(x,﹣x2+2x+6),则G(x,﹣x+6),d=PH=PG=(﹣x2+2x+6+x﹣6)=(﹣x2+3x),当x=3时,d取得最大值,此时点P(3,).22.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)①当点P在第一象限时,如下图左图:过点C作AP的平行线,过点B作AP的平行线交y轴于点H,当GH=CG时,即点G是CH的中点时,则S△BAP=S△CAP,设点P(m,﹣m2+2m+3),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线PA的表达式为:y=(3﹣m)x+(3﹣m),则点G(0,3﹣m),.同理BH的表达式为:y=(3﹣m)x﹣9(3﹣m),则点H(0,9m﹣27),点G是CH的中点,则2(3﹣m)=3+9m﹣27,解得:m=,故点P(,);②当点P在第四象限时,如上图右侧图,S=S△CAP,则点B、C到直线AP的距离相等,△BAP则CB∥AP即满足条件,同理可得:直线BC的表达式为:y=﹣x+3,同理可得:直线AP的表达式为:y=﹣x﹣1…②,联立①②并解得:x=4,故点P(4,﹣5),③当点P在二、三象限时,点B、C到直线AP的距离不相等,故点P不存在;综上,点P的坐标为:(,)或(4,﹣5);(3)当以EF为直径的⊙R与x轴相切时,直线x上存在点P即切点,使∠EPF=90°,当⊙R与x轴相交时,在x轴上存在点P(即交点),使∠EPF=90°,当⊙R与x轴相离时,不存在点P.如下图,⊙R与x轴相切时,切点为P,设:点E、F的坐标分别为:(x1,y1)、(x2,y2),当平移后的抛物线顶点横坐标为m时,则抛物线向右平移了m﹣1个单位,相应纵坐标向上平移了2(m﹣1)个单位,则平移后抛物线的表达式为:y=﹣(x﹣m+1)2+2m ﹣2,将上式与y=2x﹣1联立并整理得:x2﹣(2m﹣4)x+m2﹣2=0,则x1+x2=2m﹣4,x1x2=m2﹣2,则y1+y2=2(x1+x2)﹣2,则点R(m﹣2,2m﹣5),则(x1﹣x2)2=(x1+x2)2+4x1x2=24﹣16m,PR=EF,即:EF2=4PR2,EF2=(x﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5×(24﹣16m)=4PR2=4(2m﹣5)12,化简得:4m2=5,解得:m=±,故m的范围是:m≥或m≤﹣.23.解:(1)∵该二次函数图象的对称轴为:x=﹣=1又∵抛物线经过点P(1,0),∴抛物线的顶点坐标为(1,0).(2)∵该抛物线开口向上,对称轴为x=1,∴当0≤x≤4时,点M的纵坐标为6,∴抛物线的最高点M的坐标为(4,6),∴将(4,6)代入y=ax2﹣2ax﹣2得:6=a×16﹣2a×4﹣2解得:a=1∴y=x2﹣2x﹣2∴最低点N在x=1时取得∴N(1,﹣3)∴点M和点N的坐标分别为(4,6)和(1,﹣3).(3)当a<0时,该抛物线开口向下,对称轴为x=1,∵点A(x1,y1)、B(x2,y2)为抛物线上的两点,t≤x≤t+1,当x2≥3时,均有y1≥y2,1∴解得:﹣1≤t≤2∴t的取值范围是﹣1≤t≤2.24.解:(1)函数的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+2;(2)过点M作x轴的平行线交y轴于点E,过点B作y轴的平行线交EM的延长线于点F,∵∠BMF+∠MBF=90°,∠MBF+∠CME=90°,∴∠CME=∠MBF,MB=MC,∠MFB=∠CEM=90°,∴△MFB≌△CEM(AAS),∴ME=t﹣1=BF=OE,EC=MB=5﹣t,CO=CE﹣OE=5﹣t﹣(t﹣1)=2,解得:t=2,则OM=2﹣1=1,当x=1时,y=﹣x2+x+2=3,故点D(1,3);(3)如图2,∠ACO+∠CAO=90°,∠AQC+∠OAC=90°,∴∠ACO=∠CQA,同理∠CQ′A=∠ACO,则A、C、Q、Q′四点公圆,且圆心R在x轴上,连接QR、RC,设圆的半径为r,则在△COR中,AO=1,OR=r﹣1,CO=2,MO=﹣1=,则(r﹣1)2+4=r2,解得:r=3,在△AQM中,MR=3﹣=,QM==,故点Q的坐标为:(,)或(,﹣).。

人教版 九年级数学上册 第22章复习测试题带答案

人教版 九年级数学上册 第22章复习测试题带答案

人教版 九年级数学上册 第22章复习测试题带答案22.1 二次函数的图象和性质一、选择题1. 对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( ) A. 对称轴是直线x =1,最小值是2 B. 对称轴是直线x =1,最大值是2 C. 对称轴是直线x =-1,最小值是2 D. 对称轴是直线x =-1,最大值是22. 二次函数y =x 2-2x +4化为y =a (x -h )2+k 的形式,下列正确的是( ) A. y =(x -1)2+2 B. y =(x -1)2+3 C. y =(x -2)2+2 D. y =(x -2)2+43. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( ) A. 1 B. 2 C. 3 D. 44. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A. 34或1 B. 14或1 C. 34或12 D. 14或345. (2019•雅安)在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+37. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )8. 已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c +2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个9. (2019•泸州)已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是 A .2a < B .1a >- C .12a -<≤D .12a -≤<10. 如图,△ABC是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )二、填空题11.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.12. 如图为二次函数y =ax 2+bx +c 的图象,在下列说法中:①ac<0;②方程ax 2+bx +c =0的根是x 1=-1,x 2=3;③a +b +c>0;④当x>1时,y 随着x 的增大而增大.正确的说法有________.(请写出所有正确说法的序号)13. (2019•襄阳)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为__________s .14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.16. 已知点(x1,-7)和点(x2,-7)(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是________.17. 如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为____________.三、解答题18. 如图,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;(2)设抛物线与x轴的另一交点为B,在抛物线上存在一点P,使△ABP的面积为10,请直接写出点P的坐标.19. 2018·南京已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?20. 已知二次函数y=ax2-2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP∶PD=2∶3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.21. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.22. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△PAB的面积的最大值,并求出此时点P的坐标.人教版九年级22.1 二次函数的图象和性质培优训练-答案一、选择题1. 【答案】B 【解析】由二次函数y =-(x -1)2+2可知,对称轴为直线x =1排除C ,D ,函数开口向下,有最大值,最大值为当x =1时y =2,故排除A 选B .2. 【答案】B 【解析】将二次函数的一般式经过配方转化成顶点式,可以加上一次项系数的一半的平方来凑完全平方式.y =x 2-2x +4=x 2-2x +1+3=(x -1)2+3.3. 【答案】C 【解析】∵图象开口向下,∴a <0,∵对称轴在y 轴右侧,∴a ,b 异号,∴b >0,故①错误;∵图象与y 轴交于x 轴上方,∴c >0,故②正确;当x =-1时,a -b +c <0,则a +c <b ,故③正确;图象与x 轴有两个交点,则b 2-4ac >0,故④正确.4. 【答案】A 【解析】由二次函数过点(-1,0)可得a +b =2,把x =1代入y =ax 2-bx -2得y =a -b -2,即a -b =2+y.由a +b =2和a -b =2+y 得a =2+12y ,由题意得a >0,b >0,所以2+12y >0,解得y >-4,又由顶点在第四象限,可得y =-3或-2或-1.当y =-3时,可得a =12,b =32,则ab =34;当y =-2时,可得a =1,b =1,则ab =1;当y =-1时,可得a =32,b =12,则ab =34,综上ab 的值为34或1.5. 【答案】C【解析】二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+, 故选项D 的说法正确, 故选C .6. 【答案】C7. 【答案】C【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.8. 【答案】D 【解析】 序号 逐项分析 正误① ∵b >a >0,∴对称轴-b2a <0,即对称轴在y 轴左侧√ ② ∵抛物线y =ax 2+bx +c 与x 轴最多有一个交点,且抛物线开口向上,∴y =ax 2+bx +c ≥0,∴方程ax 2+bx +c +2=0即ax 2+bx +c =-2无实数根√③ 由②得y =ax 2+bx +c ≥0,∴当x =-1时,a -b +c ≥0 √④∵当x =-2时,y =4a -2b +c ≥0,∴a +b +c ≥3b -3a ,a +b +c ≥3(b -a ),∵b >a ,∴a +b +cb -a≥3 √9. 【答案】D【解析】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+, ∵抛物线与x 轴没有公共点,∴22(2)4(36)0a a a ∆=---+<,解得2a <, ∵抛物线的对称轴为直线22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小, ∴1a ≥-,∴实数a 的取值范围是12a -≤<, 故选D .10. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.二、填空题11. 【答案】下 y 轴 (0,0) 减小 增大12. 【答案】①②④【解析】由于二次函数开口向上,且与y 轴的交点在负半轴上,∴a >0,c <0,∴ac <0,即①正确;又由于二次函数与x 轴交点的横坐标为-1,3.∴方程ax 2+bx +c =0的根是x 1=-1,x 2=3即②正确;当x =1时,二次函数上的点在第四象限,即a +b +c <0即③错误;由于(-1,0),(3,0)两点关于二次函数的对称轴为轴对称,∴此二次函数的对称轴方程为:x =1,因为二次函数开口向上,所以当x >1时y 随x 的增大而增大,即④正确. 故①②④正确.13. 【答案】4【解析】依题意,令0h =得: ∴20205t t =-, 得:(205)0t t -=, 解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s , 故答案为:4.14. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).16. 【答案】0 [解析]依题意可知已知两点关于y 轴对称,∴x 1与x 2互为相反数,即x 1+x 2=0.当x =0时,y =a·02=0.17. 【答案】x<1或x>3 【解析】∵直线y =x +m 和抛物线y =x 2+bx +c 都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x 2+bx +c >x +m 的解集为x <1或x >3.三、解答题18. 【答案】解:(1)∵二次函数y =x 2+bx +c 的图象过点A(1,0),C(0,-3),∴⎩⎨⎧1+b +c =0,c =-3,解得⎩⎨⎧b =2,c =-3.∴此二次函数的解析式为y =x 2+2x -3. (2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴B(-3,0),∴AB =4. 设点P 的坐标为(m ,n). ∵△ABP 的面积为10, ∴12AB·|n|=10,解得n =±5. 当n =5时,m 2+2m -3=5,解得m =-4或m =2,∴P(-4,5)或P(2,5); 当n =-5时,m 2+2m -3=-5,此方程无解.故点P 的坐标为(-4,5)或(2,5).19. 【答案】解:(1)证明:当y =0时,2(x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根. 综上,不论m 为何值,该函数的图象与x 轴总有公共点. (2)当x =0时,y =2(x -1)(x -m -3)=2m +6, ∴该函数的图象与y 轴交点的纵坐标为2m +6,∴当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方.20. 【答案】解:(1)y =ax 2-2ax +c=a(x 2-2x)+c =a(x -1)2+c -a ∴P 点坐标为(1,c -a).(2分)如图,过点C 作CE ⊥PQ ,垂足为E ,延长CE 交BD 于点F ,则CF ⊥BD. ∵P(1,c -a), ∴CE =OQ =1. ∵PQ ∥BD ,∴△CEP ∽△CFD , ∴CP CD =CE CF .又∵CP ∶PD =2∶3, ∴CE CF =CP CD =22+3=25,∴CF =2.5,(4分) ∴OB =CF =2.5,∴BQ =OB -OQ =1.5, ∴AQ =BQ =1.5,∴OA =AQ -OQ =1.5-1=0.5, ∴A(-0.5,0),B(2.5,0).(5分)(2)∵tan ∠PDB =54,∴CFDF=5 4,∴DF=45CF=45×2.5=2,(6分)∵△CFD∽△CEP,∴PEDF=CE CF,∴PE=DF·CECF=2×12.5=0.8.∵P(1,c-a),C(0,c),∴PE=PQ-OC=c-(c-a)=a,∴a=0.8,(8分)∴y=0.8x2-1.6x+c.把A(-0.5,0)代入得:0.8×(-0.5)2-1.6×(-0.5)+c=0,解得c=-1.(9分)∴这个二次函数的关系式为:y=0.8x2-1.6x-1.(10分)21. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分) 22. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).22.2 二次函数与一元一次方程一、选择题(本大题共10道小题)1. 抛物线y =-x 2+4x -4与坐标轴的交点个数为( ) A .0B .1C .2D .32. 根据下列表格中的数值,判断方程ax 2+bx +c =0(a ,b 为常数)根的情况是( )A.B .有两个相等的实数根 C .只有一个实数根 D .无实数根3. 已知二次函数y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0的解是( )A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-24. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s5. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A.-1<x<3 B.x<-1或x>3C.-1≤x≤3 D.x≤-1或x≥36. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<27. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=18. 根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0)的一个根x的取值范围是()A.1.23<x<1.24 B.1.24<x<1.25C.1.25<x<1.26 D.1<x<1.239. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-1210. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3 B .-254<m<2 C .-2<m <3D .-6<m <-2二、填空题(本大题共7道小题)11. 飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y =60t -32t 2,在飞机着陆滑行中,最后2 s 滑行的距离是________m.12. 如图,已知抛物线y =x 2+2x -3与x 轴的两个交点分别是A ,B (点A 在点B的左侧).(1)点A 的坐标为__________,点B 的坐标为________; (2)利用函数图象,求得当y <5时x 的取值范围为________.13. 已知二次函数y=kx2-6x-9的图象与x轴有两个不同的交点,则k的取值范围为____________.14. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.16. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b>0;②a-b +c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x <-1或x>3时,y>0.上述结论中正确的是________.(填上所有正确结论的序号)17. 已知实数x,y满足x2+3x+y-3=0,则x+y的最大值为________.三、解答题(本大题共4道小题)18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19. 已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个公共点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20. 某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2-2|x|=0有________个实数根;②方程x2-2|x|=2有________个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是________.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).人教版九年级数学22.2 二次函数与一元一次方程同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] 当x=0时,y=-x2+4x-4=-4,则抛物线与y轴的交点坐标为(0,-4);当y=0时,-x2+4x-4=0,解得x1=x2=2,则抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选 C.2. 【答案】A【解析】当x=2时,方程ax2+bx+c=0,因此方程有一个实数根为2.当x 由-1增大到0时,ax 2+bx +c 的值由-3增大到2,因此可以推断当x 在-1与0之间取某一值时,必有ax 2+bx +c =0,说明方程ax 2+bx +c =0必有一个根在-1与0之间.3. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.4. 【答案】A5. 【答案】C6. 【答案】A[解析] 抛物线的对称轴是直线x =-2a2a =-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.7. 【答案】C【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a +2a+c =0,即3a +c =0.当x =3时,将(3,0)代入方程也得到3a +c =0成立,当x =-3时,将(-3,0)代入方程也得到15a +c =0(与3a +c =0不相符),∴方程的两个根为x 1=-1,x 2=3.8. 【答案】B9. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y =12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.10. 【答案】D【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.二、填空题(本大题共7道小题)11. 【答案】6 【解析】 当y 取得最大值时,飞机停下来, 则y =60t -32t 2=-32(t -20)2+600,此时t =20,飞机着陆后滑行600米停下来, 因此t 的取值范围是0≤t ≤20. 当t =18时,y =594, 所以600-594=6(米). 故答案是:6.12. 【答案】(1)(-3,0)(1,0) (2)-4<x <2【解析】(1)当x2+2x-3=0时,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(2)当y=5时,x2+2x-3=5,x2+2x-8=0,解得x1=-4,x2=2.由函数图象可得,当-4<x<2时,y<5.13. 【答案】k>-1且k≠014. 【答案】15[解析] 当x=0时,y=-5,∴点A的坐标为(0,-5);当y=0时,x2-4x-5=0,解得x1=-1,x2=5,不妨设点B在点C的左侧,∴点B的坐标为(-1,0),点C的坐标为(5,0),则BC=6,∴△ABC的面积为12×6×5=15.15. 【答案】x1=-2,x2=1[解析] 方程ax2=bx+c的解即抛物线y=ax2与直线y=bx+c交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax2=bx+c的解是x1=-2,x2=1.16. 【答案】②③④[解析] 由图可知,抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(3,0),∴b=-2a,抛物线与x轴的另一个交点坐标为(-1,0).①∵a>0,∴b<0,∴①错误;②当x=-1时,y=0,∴a-b+c=0,∴②正确;③一元二次方程ax2+bx+c+1=0的解是函数y=ax2+bx+c的图象与直线y=-1的交点的横坐标,由图象可知函数y=ax2+bx+c的图象与直线y=-1有两个不同的交点,∴一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根,∴③正确;④由图象可知,y>0时,x<-1或x>3,∴④正确.17. 【答案】4[解析] x+y=-x2-2x+3=-(x+1)2+4,∴当x=-1时,x+y有最大值,最大值是4.三、解答题(本大题共4道小题)18. 【答案】解:(1)∵二次函数y =x 2+mx +n 的图象经过点P (-3,1),对称轴是直线x =-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎨⎧m =2,n =-2. (2)由(1)知二次函数的解析式为y =x 2+2x -2.∵a =1>0,∴抛物线的开口向上,∴当x ≤-1时,y 随x 的增大而减小.19. 【答案】解:(1)∵二次函数的图象与x 轴有两个公共点,∴Δ=b 2-4ac =22+4m >0,∴m >-1.(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m ,∴m =3,∴二次函数的解析式为y =-x 2+2x +3.令x =0,则y =3,∴B(0,3).设直线AB 的解析式为y =kx +b ,∴⎩⎨⎧3k +b =0,b =3,解得⎩⎨⎧k =-1,b =3,∴直线AB 的解析式为y =-x +3.∵抛物线y =-x 2+2x +3的对称轴为直线x =1,∴把x =1代入y =-x +3,得y =2,∴P(1,2).(3)根据函数图象可知:使一次函数值大于二次函数值的x 的取值范围是x <0或x >3.20. 【答案】解:(1)m =0.(2分)(2)如解图所示:(4分)(3)①函数图象有两个最低点,坐标分别是(-1,-1)以及(1,-1).②函数图象是轴对称图形,对称轴是直线x=0(y轴).(6分)③从图象信息直接看出:当x<-1或0<x<1时,函数值随自变量的增大而减小;当-1<x<0或x>1时,函数值随自变量的增大而增大.④在x<-2或x>2时,函数值大于0,在-2<x<0或0<x<2时,函数值小于0等.(答案不唯一,合理即可)(4)①3,3;②2; ③-1<a<0.(10分)【解法提示】①观察图象可知函数图象与x轴有3个交点,∴方程x2-2|x|=0有3个不相等的实数根;②把抛物线y=x2-2|x|向下平移2个单位,得抛物线y=x2-2||x-2,则抛物线y=x2-2|x|-2与x轴只有2个交点,∴方程x2-2|x|-2=0有2个不相等的实数根;③把抛物线y=x2-2|x|向上平移0<h<1时,抛物线与x轴有4个交点,∴抛物线解析式y=x2-2|x|-a中,0<-a<1,∴-1<a<0.21. 【答案】解:(1)答案不唯一,如在直角坐标系中画出抛物线y=x2-1和直线y=2x,其交点的横坐标就是方程的解.(2)在图中画出直线y=x+2,与函数y=x3的图象交于点B,得点B的横坐标x≈1.5,∴方程的解为x≈1.5.22.3【实际问题与二次函数】一.选择题1.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣6(t﹣2)2+7,则小球距离地面的最大高度是()A.2米B.5米C.6米D.7米2.正方形的边长为3,如果边长增加x,那么面积增加y,则y与x之间的函数表达式是()A.y=3x B.y=(3+x)2C.y=9+6x D.y=x2+6x3.对于二次函数y=﹣(x﹣2)2﹣3,下列说法中正确的是()A.当x=﹣2时,y的最大值是﹣3B.当x=2时,y的最小值是﹣3C.当x=2时,y的最大值是﹣3D.当x=﹣2时,y的最小值是﹣34.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y 与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x2D.y=50(1+x)2 5.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2B.最小值﹣3C.最大值2D.最大值﹣36.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()A.﹣1B.0C.1D.27.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()A.a>b B.a<b C.a=b D.不能确定8.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y=﹣(t﹣3)2+2,则t的取值最大值范围是()A.t=0B.0≤t≤3C.t≥3D.以上都不对9.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值2,则a、b的大小比较为()A.a>b B.a<b C.a=b D.不能确定10.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x 二.填空题11.已知x2﹣3x+y﹣5=0,则y﹣x的最大值为.12.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.13.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.14.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量y(万件)与x之间的关系应表示为.15.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.三.解答题16.龙眼是同安的特产,远销国内外.现有一个龙眼销售点在经销时发现:如果每箱龙眼盈利10元,每天可售出50箱.若每箱龙眼涨价1元,日销售量将减少2箱.若该销售点单纯从经济角度考虑,每箱龙眼应涨价多少元才能获利最高?17.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=﹣0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?(2)某同学思考10分钟后提出概念,他的接受能力是多少?18.某超市销售一种水果,进价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种水果的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围.(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?19.用长12m的一根铁丝围成长方形.(1)如果长方形的面积为5m2,那么此时长方形的较长的边是多少?(2)能否围成面积是10m2的长方形?为什么?(3)能围成的长方形的最大面积是多少?20.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?参考答案一.选择题1.解:∵h=﹣6(t﹣2)2+7,∴a=﹣6<0,∴抛物线的开口向下,函数由最大值,∴t=2时,h最大=7.故选:D.2.解:∵新正方形的边长为x+3,原正方形的边长为3,∴新正方形的面积为(x+3)2,原正方形的面积为9,∴y=(x+3)2﹣9=x2+6x,故选:D.3.解:对于二次函数y=﹣(x﹣2)2﹣3,由于﹣1<0,所以,当x=2时,y取得最大值,最大值为﹣3,故选:C.4.解:二年后的价格是为:50×(1﹣x)×(1﹣x)=50(1﹣x)2,则函数解析式是:y=50(1﹣x)2.故选:A.5.解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值是﹣3.故选:D.6.解:∵y=x2﹣2x+m,∴==n,即m﹣1=n,∴m﹣n=1.故选:C.7.解:∵y=a(x﹣1)2+b有最大值,∴抛物线开口向下a<0,b=,∴a<b.故选:B.8.解:∵y=﹣x2+6x﹣7=﹣(x﹣3)2+2,当t≤3≤t+2时,即1≤t≤3时,函数为增函数,y max=f(3)=2,与y max=﹣(t﹣3)2+2矛盾.当3≥t+2时,即t≤1时,y max=f(t+2)=﹣(t﹣1)2+2,与y max=﹣(t﹣3)2+2矛盾.当3≤t,即t≥3时,y max=f(t)=﹣(t﹣3)2+2与题设相等,故t的取值范围t≥3,故选:C.9.解:∵二次函数y=a(x﹣1)2+b(a≠0)有最大值2,∴a<0,b=2,则a、b的大小比较为:a<b.故选:B.10.解:∵长方形一边的长度为x米,周长为20米,∴长方形的另外一边的长度为(10﹣x)米,则长方形的面积y=x(10﹣x)=﹣x2+10x,故选:C.二.填空题11.解:∵x2﹣3x+y﹣5=0,∴y=﹣x2+3x+5,∴y﹣x=﹣x2+2x+5=﹣(x﹣1)2+6,∴y﹣x的最大值为6,故答案为6.12.解:根据题意:y=﹣0.2x2+1.5x﹣2,当x=﹣=3.75时,y取得最大值,则最佳加工时间为3.75min.故答案为:3.75.13.解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣2x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8,∵墙长为15m,∴16﹣2x≤15,∴0.5≤x<8,∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.14.解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.15.解:设P(x,x2﹣x﹣4),四边形OAPB周长=2PA+2OA=﹣2(x2﹣x﹣4)+2x=﹣2x2+4x+8=﹣2(x﹣1)2+10,当x=1时,四边形OAPB周长有最大值,最大值为10.故答案为10.三.解答题16.解:设每箱龙眼应涨价x元,总利润为y,根据题意可得:y=(10+x)(50﹣2x)=﹣2x2+30x+500=﹣2(x﹣)2+612.5,答:每箱龙眼应涨价元才能获利最高.17.解:(1)∵y=﹣0.1(x2﹣26x+169)+16.9+43=﹣0.1(x﹣13)2+59.9∴对称轴是:直线x=13即当(0≤x≤13)提出概念至(13分)之间,学生的接受能力逐步增强;(2)当x=10时,y=﹣0.1×102+2.6×10+43=59.18.解:(1)根据题意知y=60+5x,(0≤x≤32,且x为偶数);(2)设每月销售水果的利润为w,则w=(72﹣x﹣40)(5x+60)﹣500=﹣5x2+100x+1420=﹣5(x﹣10)2+1920,当x=10时,w取得最大值,最大值为1920元,答:当售价为62元时,每月销售水果的利润最大,最大利润是1920元.19.解:设长方形的宽为xm,则长为(12﹣2x)m,即为(6﹣x)m,则6﹣x≥x,得0<x≤3,(1)根据题意,得x(6﹣x)=5,即x2﹣6x+5=0,x1=5,x2=1(舍去),∴此时长方形较长的边为5m.(2)当面积为10m2时,x(6﹣x)=10,即x2﹣6x+10=0,此时b2﹣4ac=36﹣40=﹣4<0,故此方程无实数根.所以这样的长方形不存在.(3)设围成的长方形面积为k,则有x(6﹣x)=k.即x2﹣6x+k=0,要使该方程有解,必须(﹣6)2﹣4k≥0,即k≤9,∴最大的k只能是9,即最大的面积为9m2,此时x=3m,6﹣x=3m,这时所围成的图形是正方形.20.解:(1)甲地当年的年销售额为(﹣x+14)•x=(﹣x2+14x)万元;w=(﹣x2+14x)﹣(x2+5x+90)=﹣x2+9x﹣90.甲=﹣×202+9×20﹣90=30,当x=20时,w甲所以在甲地生成并销售20吨时利润为30万元;(2)在乙地区生产并销售时,年利润:w=﹣x2+15x﹣(x2+5x+90)乙=﹣x2+10x﹣90=﹣(x﹣25)2+35.∴当x=25时,w有最大值35万元,乙∴在乙地当年的最大年利润应为35万元.。

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。

人教版九年级上册数学第二十二章测试题有答案

人教版九年级上册数学第二十二章测试题有答案

人教版九年级上册数学第二十二章测试卷一、单选题1.把二次函数y=x 2-4x+1化成y=a (x-h )2+k 的形式是( )A .y=(x-2)2+1B .y=(x-2)2-1C .y=(x-2)2-3D .y=(x-2)2+3 2.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 3.将抛物线y=x 2﹣4x ﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )A .y=(x+1)2﹣13B .y=(x ﹣5)2﹣3C .y=(x ﹣5)2﹣13D .y=(x+1)2﹣34.已知二次函数y =a (x -1)2+3,当x <1时,y 随x 的增大而增大,则a 的取值范围是( ) A .a ≥0 B .a ≤0 C .a >0 D .a <05.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =.给出以下结论:①0abc >;②24b ac >;③420a b c ++>;④30a c +>.其中,正确的结论有( )A .1个B .2个C .3个D .4个6.在同一坐标系中,一次函数y=ax+2与二次函数y=x 2+a 的图象可能是( )A .B .C .D . 7.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是()A.0个B.1个C.2个D.3个8.某商品经过连续两次降价,销售单价由原来100 元降到81 元。

人教版九年级数学上册第二十二章达标测试卷含答案

人教版九年级数学上册第二十二章达标测试卷含答案

人教版九年级数学上册第二十二章达标测试卷一、选择题(每题3分,共30分)1.下列关于x 的函数一定为二次函数的是( ) A .y =2x +1B .y =ax 2+bx +cC .y =-5x 2-3D .y =x 3+x +12.把二次函数y =2x 2-8x +3用配方法化成y =a (x -h )2+k 的形式时,应为( ) A .y =2(x -2)2+5 B .y =2(x -2)2-1C .y =2(x -2)2-5D .y =2(x -2)2+73.[2023丽水]一个球从地面竖直向上弹起时的速度为10米/秒,经过t (秒)时球距离地面的高度h (米)适用公式h =10t -5t 2,则球弹起后又回到地面所花的时间t (秒)是( )A .5B .10C .1D .24.抛物线y =2x 2-4x +c 经过三点(-4,y 1),(-2,y 2),⎝ ⎛⎭⎪⎫12,y 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 3>y 1 B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 1>y 3>y 25.已知二次函数y =x 2-4x +2,当-1≤x ≤1时,y 的最小值为( )A .-3B .-2C .-1D .76.在平面直角坐标系中,如果抛物线y =-x 2+2x -1经过平移可以与抛物线y=-x 2互相重合,那么这个平移是( ) A .向上平移1个单位 B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位7.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )8.如图,九(1)班同学准备用8 m 长的围栏,在本班劳动实践基地内围出一块一边靠墙的等腰三角形菜地,他们能围出的最大面积是()A.4 3 m2B.(10 3-10) m2C.8 m2D.(20 2-20) m2(第8题) (第9题) (第10题)9.[2023眉山]如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的一个交点坐标为(1,0),对称轴为直线x=-1,下列四个结论:①abc<0;②4a-2b+c <0;③3a+c=0;④当-3<x<1时,ax2+bx+c<0.其中正确结论的个数为()A.1个B.2个C.3个D.4个10.[2023南通]如图①,在△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A-C-B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图②所示,则a-b的值为()A.54 B.52 C.50 D.48二、填空题(每题3分,共18分)11.[2023哈尔滨]抛物线y=-(x+2)2+6与y轴的交点坐标是________.12.二次函数y=x2-2x+m的图象与x轴只有一个公共点,则m的值为________.13.已知二次函数y=x2-(m+1)x+1,当x>1时,y随x的增大而增大,则m 的取值范围是________.14.如图是某公园一座抛物线形拱桥,按如图所示建立坐标系,得到函数y=-12,在正常水位时水面宽AB=30 m,当水位上升5 m时,则水面宽CD=25x________m.(第14题) (第15题)(第16题) 15.[2023娄底]如图,抛物线y=ax2+bx+c与x轴相交于点A(1,0),B(3,0),与y轴相交于点C,点D在抛物线上,当CD∥x轴时,CD=________.16.[2023成都]在平面直角坐标系中,抛物线y=-14x2+32x+4(0≤x≤8)如图所示,对任意的0≤a<b≤8,称W为a到b时y的值的“极差”(即a≤x≤b时y的最大值与最小值的差),L为a到b时x的值的“极宽”(即b与a的差值),则当L =7时,W的取值范围是________.三、解答题(共72分)17.(6分) 已知函数y=m(m+2)x2+mx+m+1.(1)当m为何值时,此函数是一次函数?(2)当m为何值时,此函数是二次函数?18.(8分)已知抛物线y=-x2+4x+5.(1)用配方法将y=-x2+4x+5化成y=a(x-h)2+k的形式;(2)写出抛物线的开口方向、对称轴和顶点坐标.19.(10分)[2024广州期中]如图,抛物线的顶点为C(1,9),与x轴交于A,B(4,0)两点.(1)求抛物线的解析式;(2)抛物线与y轴交点为D,求S△BCD.20.(10分)[2023兰州]一名运动员在10 m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1 m时达到最高点,当运动员离起跳点A的水平距离为3 m 时离水面的距离为7 m.(1)求y关于x的函数解析式;(2)求运动员从起跳点到入水点的水平距离O B.21.(12分)[2023鞍山]网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1 kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?22.(12分)[2023乐山节选]已知(x1,y1),(x2,y2)是抛物线C1:y=-14x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=-14(x-m)2+1(m>0).当0≤x≤2时,若抛物线C1与抛物线C2有一个交点,求m的取值范围.23.(14分)[2023巴中]如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(-1,0)和B(0,3),其顶点的横坐标为1.(1)求抛物线的解析式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值;(3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.答案一、1.C2.C3.D4.B5.C 【点拨】由题意得二次函数的图象开口向上,且对称轴为直线x=--42×1=2.∴当x<2时,y随x的增大而减小.∵-1≤x≤1,∴当x=1时,二次函数y=x2-4x+2有最小值,最小值为12-4×1+2=-1.6.C【点拨】由y=-x2+2x-1得y=-(x-1)2.∵抛物线y=-(x-1)2的顶点为(1,0),抛物线y=-x2的顶点为(0,0),从(1,0)到(0,0)是向左平移了1个单位,∴抛物线y=-x2+2x-1向左平移1个单位得到抛物线y=-x2.7.C【点拨】先确定一个基础函数图象,再根据这个基础函数图象确定待定系数的取值范围,然后再看求出的待定系数的取值范围是否满足另一个函数图象.8.C【点拨】设等腰三角形菜地的面积为S m2.如图①,当底边靠墙时,过点A作AD⊥BC于点D.∵用8 m长的围栏围出一块一边靠墙的等腰三角形菜地,∴腰长为8÷2=4(m).∴S=12×4×AD=2AD.当AD和腰长相等时,此时为等腰直角三角形,S取得最大值,此时S=8,即等腰三角形菜地的最大面积为8 m2.如图②,当一条腰靠墙时,过点B作BD⊥AC于点D,设AB=AC=x m,则BC=(8-x)m,∴S=AC·BD2<x(8-x)2=-(x-4)2+162≤8.∴当一条腰靠墙时,围出的等腰三角形菜地的最大面积一定小于8 m2.综上可得,能围出的最大面积是8 m2.9.D【点拨】∵二次函数图象开口向上,且与y轴交于y轴负半轴,∴a>0,c<0.∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a>0,∴abc<0,故①正确;∵二次函数的图象与x轴的一个交点坐标为(1,0),对称轴为直线x=-1,∴二次函数的图象与x轴的另一个交点坐标为(-3,0),∴当x=-2时,y<0,∴4a-2b+c<0,故②正确;∵当x=1时,y=0,∴a+b+c=0.∵b=2a,∴a+2a+c=0,即3a+c=0,故③正确;由函数图象易知当-3<x<1时,ax2+bx+c<0,故④正确.10.B【点拨】∵∠C=90°,AC=15,BC=20,∴AB=25.当x=10时,点D 在线段AC上,则AD=10,∴CD=15-10=5.在Rt△CDB中,由勾股定理得BD2=CD2+BC2=52+202=425.设AE=z,则BE=25-z,∴BE2=(25-z)2=z2-50z+625.在Rt△ADE中,由勾股定理得DE2=AD2-AE2=100-z2,在Rt△DEB中,由勾股定理得BD2=DE2+BE2,即425=100-z2+z2-50z+625,解得z=6,∴DE=8,BE=19.∴a=S△BDE=12×19×8=76.当x=25时,点D在线段BC上,则CD=25-15=10,∴BD=20-10=10.设BE=q,则AE=25-q,∴AE2=(25-q)2=625-50q+q2.连接AD,在Rt△CDA中,由勾股定理得AD2=AC2+CD2=152+102=325.在Rt△BDE 中,由勾股定理得DE2=BD2-BE2=100-q2.在Rt△DEA中,由勾股定理得AD2=DE2+AE2,即325=100-q2+625-50q+q2,解得q=8,∴BE=8,DE=6.∴b=S△BDE=12×6×8=24.∴a-b=76-24=52.二、11.(0,2)12.113.m≤1【点拨】∵y=x2-(m+1)x+1,∴抛物线开口向上,对称轴为直线x=--(m+1)2=m+12.∵当x>1时,y随x的增大而增大,∴m+12≤1,解得m≤1.14.2015.4【点拨】∵抛物线y=ax2+bx+c与x轴相交于点A(1,0),B(3,0),∴抛物线的对称轴为直线x=1+32=2.∵当x =0时,y =c ,∴C (0,c).∵CD ∥x 轴,∴C ,D 关于直线x =2对称,∴D (4,c ).∴CD =4-0=4.16.4≤W ≤254【点拨】根据题意得y =-14x 2+32x +4=-14(x -3)2+254,∴抛物线的对称轴为直线x =3,顶点坐标为⎝ ⎛⎭⎪⎫3,254.∵L =7,即b 与a 的差值为7,∴b =a +7.∵0≤a <b ≤8,∴0≤a <a +7≤8.∴0≤a ≤1.∴7≤a +7≤8.∵-14<0,∴当a ≤x ≤3时,y 随x 的增大而增大,当3<x ≤a +7时,y 随x 的增大而减小.∴当x =3时,y 有最大值,最大值为254;当x =a +7时,y 有最小值,最小值为-14(a +4)2+254.∴W =254-[-14(a +4)2+254]=14(a +4)2,则其对称轴为直线a =-4.∴当0≤a ≤1时,W 随a 的增大而增大.∴当a =0时,W 有最小值,最小值为4;当a =1时,W 有最大值,最大值为254.综上所述,4≤W ≤254. 三、17.【解】(1)∵函数y =m (m +2)x 2+mx +m +1是一次函数,∴m (m +2)=0且m ≠0,解得m =-2.(2)∵函数y =m (m +2)x 2+mx +m +1是二次函数, ∴m (m +2)≠0,∴m ≠-2且m ≠0.18.【解】(1)y =-x 2+4x +5=-x 2+4x -4+4+5=-(x -2)2+9.(2)∵y =-(x -2)2+9,∴抛物线开口向下,对称轴为直线x =2,顶点坐标为(2,9).19.【解】(1)∵抛物线的顶点为C(1,9),∴设抛物线的解析式为y =a (x -1)2+9. ∵抛物线与x 轴交于点B (4,0), ∴a (4-1)2+9=0,解得a =-1.∴抛物线的解析式为y =-(x -1)2+9=-x 2+2x +8. (2)过点C 作C E ⊥y 轴于点E ,则四边形O BC E 为梯形. ∵抛物线与y 轴交点为D , ∴易得D(0,8).∴O D =8. ∵B(4,0),C(1,9),∴C E =1,OE =9,O B =4.∴D E =OE -O D =1.∴S △BCD =S 梯形O BC E -S △C E D -S △O BD =12×(1+4) ×9-12×1×1-12×4×8=6.20.【解】(1)由题意得抛物线的对称轴为直线x =1,经过点(0,10),(3,7).设抛物线的解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧-b 2a =1,c =10,9a +3b +c =7,解得⎩⎨⎧a =-1,b =2,c =10,∴y 关于x 的函数解析式为y =-x 2+2x +10.(2)令y =0,则-x 2+2x +10=0,解得x 1=1+11,x 2=1-11(负值舍去),∴运动员从起跳点到入水点的水平距离OB 为(1+11) m .21.【解】(1)设y 与x 的函数解析式为y =kx +b .将点(8,2 200)和点(14,1 600)的坐标代入,得⎩⎨⎧8k +b =2 200,14k +b =1 600,解得⎩⎨⎧k =-100,b =3 000,∴y 与x 的函数解析式为y =-100x +3 000.(2)设销售这种荔枝日获利w 元,根据题意,得w =(x -6-2)(-100x +3 000)=-100x 2+3 800x -24 000=-100(x -19)2+12 100.∴抛物线开口向下,且对称轴为直线x =19.∴当x <19时,y 随x 的增大而增大.∵销售价格不高于18元/kg ,∴当x =18时,w 取得最大值,最大值为12 000,即当每千克荔枝的销售价格定为18元时,销售这种荔枝日获利最大,最大利润为12 000元.22.【解】(1)由题意知y 1=-14x 12+bx 1,y 2=-14x 22+bx 2.∵当x 1+x 2=0 时,总有 y 1=y 2,∴当x 1+x 2=0时,-14x 12+bx 1=-14x 22+bx 2,整理得(x 1-x 2)(x 1+x 2-4 b )=0.∵x 1≠x 2,∴x 1-x 2≠0.∴x 1+x 2-4b =0.∴b =0.(2)由(1)知抛物线C 1的解析式为y =-14x 2,将x =0代入,得y =0,将x =2代入,得y =-1. 如图①,当抛物线 C 2 过点(0,0)时, 将点(0,0)的坐标代入y =-14(x -m )2+1,得-14m 2+1=0,解得m =2或m =-2(舍去).如图②,当抛物线 C 2 过点(2,-1)时, 将点(2,-1)的坐标代入y =-14(x-m )2+1,得-14(2-m )2+1=-1,解得m =2+2 2或m =2-2 2(舍去).综上所述,m 的取值范围为2≤m ≤2+2 2.23.【解】(1)∵抛物线的顶点的横坐标为1,∴抛物线的对称轴为直线x =1.∵抛物线经过点A (-1,0),∴抛物线与x 轴的另一交点坐标为(3,0).将(-1,0),(3,0),(0,3)的坐标分别代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =0,9a +3b +c =0,c =3,解得⎩⎨⎧a =-1,b =2,c =3,∴抛物线的解析式为y =-x 2+2x +3.(2)由题意知0<m <3,易知点M (m ,-m 2+2m +3),点N (m ,0),则MN =-m 2+2m +3,AN =m +1,∴AN +MN =m +1+(-m 2+2m +3)=-m 2+3m +4=-⎝ ⎛⎭⎪⎫m -322+254.∵-1<0,且0<m <3,∴当m =32时,AN +MN 有最大值,最大值为254.(3)能构成.∵y =-x 2+2x +3=-(x -1)2+4,∴该抛物线向左平移1个单位长度后得到的抛物线的解析式为y =-x 2+4.将x =32代入y =-x 2+2x +3,得y =-⎝ ⎛⎭⎪⎫322+2×32+3=154,∴点M 的坐标为⎝ ⎛⎭⎪⎫32,154. 假设存在以A ,P ,Q ,M 为顶点的平行四边形,设点Q 的坐标为(n ,-n 2+4).∵点P 为抛物线y =ax 2+bx +c (a ≠0)的对称轴上一动点,∴点P 的横坐标为1. ①当AM 为对角线时,则对角线AM ,PQ 互相平分,∴-1+322=1+n 2,解得n =-12,∴点Q 的坐标为⎝ ⎛⎭⎪⎫-12,154; ②当AP 为对角线时,则对角线AP ,MQ 互相平分,∴-1+12=32+n 2,解得n =-32,∴点Q 的坐标为⎝ ⎛⎭⎪⎫-32,74; ③当AQ 为对角线时,对角线AQ ,PM 互相平分,∴-1+n 2=1+322,解得n =72,∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,-334. 综上所述,存在以A ,P ,Q ,M 为顶点的平行四边形,点Q 的坐标为⎝ ⎛⎭⎪⎫-12,154或⎝ ⎛⎭⎪⎫-32,74或⎝ ⎛⎭⎪⎫72,-334.。

人教版九年级上册数学第22章测试题(附答案)

人教版九年级上册数学第22章测试题(附答案)

人教版九年级上册数学第22章测试题(附答案)一、单选题(共12题;共24分)1.抛物线y=(x﹣1)2+2的顶点是()A. (1,﹣2)B. (1,2)C. (﹣1,2)D. (﹣1,﹣2)2.把抛物线y=﹣x2向右平移2个单位,则平移后所得抛物线的解析式为()A. y=﹣x2+2B. y=﹣(x+2)2C. y=﹣x2﹣2D. y=﹣(x﹣2)23.如图,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(-1,5)、B (9,3),请你根据图象写出使y1≥y2成立的x的取值范围( )A. -1≤x≤9B. -1≤x<9C. -1<x≤9D. x≤-1或x≥94.把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b,c的值分别是( )A. b=2,c=-2B. b=-2,c=-2C. b=-6,c=-6D. b=-6,c=65.将抛物线y=x2向左平移两个单位,再向上平移一个单位,可得到抛物线()A. y=(x-2) 2+1B. y=(x-2) 2-1C. y=(x+2) 2+1D. y=(x+2) 2-16.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A. y=(x-2)2B. y=(x-2)2+6C. y=x2+6D. y=x27.抛物线y=-3(x+1)2-2经过平移得到抛物线y=-3x2,平移方法是()A. 向左平移1个单位,再向下平移2个单位B. 向右平移1个单位,再向下平移2个单位C. 向左平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向上平移2个单位8.二次函数y=ax2+bx+c(a≠0)是偶函数,则实数b等于()A. 1B. 0C. -1D. 29.如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x <﹣1或x>2.其中正确的有()A. 4个B. 3个C. 2个D. 1个10.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,0)B. (-3,-6)C. (-3,-5)D. (-3,-1)11.下列各式中,y是x的二次函数的是( )A. B. C. D.12.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有A. 1个B. 2个C. 3个D. 4个二、填空题(共7题;共16分)13.已知是y关于x的二次函数,那么m的值为________。

人教版九年级上册数学第二十二章测试卷及答案

人教版九年级上册数学第二十二章测试卷及答案

人教版九年级上册数学第二十二章测试题一、单选题1.将二次函数y=x2-4x+2化为顶点式,正确的是()A.2y(x2)3=-+y(x2)2=--B.2C.2y(x2)2=-+=+-D.2y(x2)22.将函数y=2(x+1)2﹣3的图象向上平移2个单位,再向左平移1个单位,可得到的抛物线的解析式为()A.y=2(x﹣1)2﹣5 B.y=2x2﹣1C.y=2(x+2)2﹣5 D.y=2(x+2)2﹣13.函数y=(m﹣5)x2+x是二次函数的条件为()A.m为常数,且m≠0B.m为常数,且m≠5C.m为常数,且m=0 D.m可以为任何数4.抛物线y=(x+2)(x﹣4)的对称轴是()A.直线x=﹣1 B.y轴C.直线x=1 D.直线x=25.一元二次方程x2+bx+c=0有一个根为x=3,则二次函数y=2x2﹣bx﹣c的图象必过点()A.(﹣3,0)B.(3,0)C.(﹣3,27)D.(3,27)6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ab>0;②a+3b+9c>0;③4a+b=0;④当y=﹣2时,x的值只能为0;⑤3b﹣c<0,其中正确的个数是()A.1个B.2个C.3个D.4个7.已知原点是抛物线y=(m+1)x2的最低点,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣28.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x+c的图象上的三点,则y1,y2,y3的大小关系是()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 29.在平面直角坐标系中,抛物线与直线均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x <2时,y 2>y 1;②y 2随x 的增大而增大的取值范围是x <2;③使得y 2大于4的x 值不存在; ④若y 2=2,则x=2或x=1. 其中正确的有( ) A .1个B .2个C .3个D .4个10.如图,已知抛物线y=x 2+px+q 的对称轴为直线x=﹣2,过其顶点M 的一条直线y=kx+b 与该抛物线的另一个交点为N (﹣1,﹣1).若要在y 轴上找一点P ,使得PM+PN 最小,则点P 的坐标为( ).A .(0,﹣2)B .(0,﹣43)C .(0,﹣53)D .(0,﹣54)11.在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是( )A .B .C .D .12.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(2,0),其对称轴是直线x=﹣1,直线y=3恰好经过顶点.有下列判断:①当x<﹣2时,y随x增大而减小;②ac<0;③a﹣b+c<0;④方程ax2+bx+c=0的两个根是x1=2,x2=﹣4;⑤当m≤3时,方程ax2+bx+c=m 有实数根.其中正确的是()A.①②③B.①②④C.②④⑤D.②③④二、填空题13.抛物线y=12(x+2)2-2的顶点是_____.14.已知抛物线y=x2−2x+2-a与x轴有两个不同的交点,则直线y=ax+a不经过第________________ 象限。

人教版 九年级数学上册 第22章练习题(含答案)

人教版 九年级数学上册 第22章练习题(含答案)

人教版九年级数学上册第22章练习题(含答案)22.1 二次函数的图象和性质一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练-答案一、选择题 1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x-h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t , ∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)22.2 二次函数与一元二次方程一.选择题1.对于抛物线y =ax 2+2ax ,当x =1时,y >0,则这条抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知抛物线y =ax 2+1过点(﹣2,0),则方程a (x ﹣2)2+1=0的根是( ) A .x 1=0,x 2=4 B .x 1=﹣2,x 2=6C .x 1=﹣4,x 2=0D .x 1=,x 2=3.已知二次函数y =ax 2+bx +c 中x 和y 的值如下表( )x 0.10 0.11 0.12 0.13 0.14 y﹣5.6﹣3.1﹣1.50.91.8则ax 2+bx +c =0的一个根的范围是( ) A .0.10<x <0.11 B .0.11<x <0.12 C .0.12<x <0.13D .0.13<x <0.144.二次函数y=ax2+bx+c的x,y的对应值如下表:x…﹣1012…y…﹣1m1n…下列关于该函数性质的判断①该二次函数有最大值;②当x>0时,函数y随x的增大而减小;③不等式y<﹣1的解集是﹣1<x<2;④关于x的一元二次方程ax2+bx+c=0的两个实数根分别位于﹣1<x<和<x<2之间.其中正确结论的个数有()A.1个B.2个C.3个D.4个5.一条抛物线与x轴相交于A、B两点(点A在点B的左侧),若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.﹣3 B.﹣1 C.1 D.36.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.只有一个交点,且它位于y轴的右侧B.只有一个交点,且它位于y轴的左侧C.有两个交点,且它们位于y轴的两侧D.有两个交点,且它们位于y轴的右侧7.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点:则下列判断中正确的是()①图象的对称轴是过点(1,0)且平行于y轴的直线②当x>1时,y随x的增大而减小③一元二次方程ax2+bx+c=0的两个根是﹣1和3④当﹣1<x<3时,y<0A.①②B.①②④C.①②③D.④8.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或9.对于每个自然数n,抛物线与x轴交于A n、B n两点,以|A n B n|表示该两点间的距离,则|A1B1|+|A2B2|+…+|A2011B2011|的值为()A.B.C.D.10.已知点A(x1,y1)和B(x2,y2)均在二次函数y=ax2﹣6ax+9a﹣4的图象上,且|x1﹣3|<|x2﹣3|,则下列说法错误的是()A.直线x=3是该二次函数图象的对称轴B.当a<0时,该二次函数有最大值﹣4C.该二次函数图象与坐标轴一定有一个或三个交点D.当a>0时,y1<y2二.填空题11.抛物线y=(m﹣1)x2+4x+1与x轴有公共点,则实数m的取值范围是.12.若二次函数y=x2﹣(m﹣1)x的图象经过点(3,0),则关于x的一元二次方程x2﹣(m﹣1)x=0的根为.13.若抛物线y=ax2+bx+c与x轴的交点为(4,0)与(2,0),则抛物线的对称轴为直线x=.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为.三.解答题16.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1与x轴交于点A,B.(1)若AB=2,求该抛物线的顶点坐标;(2)过点(0,1)作与x轴平行的直线,交抛物线于点M,N.当MN≥2时,结合函数图象,求m的取值范围.17.已知抛物线y=x2﹣4x+3(1)求这条抛物线与x轴的交点的坐标;(2)当y>0时,直接写出x的取值范围;(3)当﹣1<x<3时,直接写出y的取值范围.18.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.19.已知抛物线y=ax2+bx+c经过A(2,0),对称轴是直线x=1,且关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)设(m,y1),(m+2,y2)是抛物线y=ax2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.20.如图,抛物线y=x2+bx+c与直线y=x+3交于A、B两点,点A在y轴上,抛物线交x轴于C、D两点,已知C(﹣3,0)(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,请求出点M的坐标及这个最大值.参考答案一.选择题1.C.2.A.3.C.4.B.5.A.6.D.7.C.8.A.9.D.10.C.二.填空题11.m≤5且m≠1.12.0或3.13.3.14.﹣3<x<1.15..三.解答题16.(1)抛物线y=mx2﹣2mx+m﹣1的对称轴为直线x=﹣=1.∵点A、B关于直线x=1对称,AB=2,∴抛物线与x轴交于点A(0,0)、B(2,0),将(0,0)代入y=mx2﹣2mx+m﹣1中,得m﹣1=0,即m=1,∴该抛物线解析式为y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标是(1,﹣1);(2)抛物线y=mx2﹣2mx+m﹣1与x轴有两个交点,∴△>0即(﹣2m)2﹣4m(m﹣1)>0,解得:m>0,∴该抛物线开口向上,当MN≥2时,则有m﹣1≤1,解得m≤2,所以,可得0<m≤2.17.(1)y=x2﹣4x+3,令y=0,则x=1或3,故抛物线与x轴的交点的坐标为:(1,0)或(3,0);(2)y>0时,x>3或x<1;(3)当x=﹣1时,y=8,函数顶点坐标为:(2,﹣1),故当﹣1<x<3时,y的取值范围为:﹣1≤y<8.18.(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.19.(1)将点A的坐标代入抛物线表达式得:0=4a+2b+c①,函数的对称轴为x=1=﹣,即b=﹣2a②,关于x的方程ax2+bx+c=x有两个相等的实数根,则△=(b﹣1)2﹣4ac=0③,联立①②③并解得:,故抛物线的表达式为y=﹣x2+x;(2)(m,y1),(m+2,y2)是抛物线y=ax2+bx+c上的两点,则y2﹣y1=﹣(m+2)2+(m+2)+m2﹣m=﹣2m,故当m≥0时,y2﹣y1≤0;当m<0时,y2﹣y1>0.20.(Ⅰ)当x=0时,y=x+3=3,则A(0,3),把A(0,3),C(﹣3,0)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+x+3;(Ⅱ)抛物线的对称轴为直线x=﹣=﹣,∵C点和D点关于直线x=﹣对称,∴MC=MD,∵|MB﹣MC|≤BC(当B、C、M共线时,取等号),∴|MB﹣MC|的最大值为BC的长,解方程组,解得,则B(﹣4,1),∴BC==,设直线BC的解析式为y=kx+t,把B(﹣4,1),C(﹣3,0)代入得,解得,∴直线BC的解析式为y=﹣x﹣3,当x=﹣时,y=﹣x﹣3=﹣,则此时M点的坐标为(﹣,﹣),∴点M的坐标为(﹣,﹣)时,|MB﹣MD|的值最大,最大值为.22.3 实际问题与二次函数1. 某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2. 某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米3. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个4. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm25. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm26. 如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m7. 用长为12 m 的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE ,AE ⊥AB ,BC ⊥AB ,垂足分别为A ,B ,∠C =∠D =∠E .设CD =DE =x m ,五边形ABCDE 的面积为S m 2,则S 的最大值为( )A .12 3B .12C .24 3D .没有最大值8. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m9. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.15 10. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.13. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题16. 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-124时,①求h的值,②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为12 5m的Q处时,乙扣球成功,求a的值.17. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元/件,每天销售量会减少1件.设销售单价增加x元/件,每天售出y 件.(1)请写出y与x之间的函数解析式(不用写x的取值范围);(2)当x为多少时,超市每天销售这种玩具可获得利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?18. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?19. 凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?20. 如图,用一块长为50 cm,宽为30 cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角各截去一个相同的小正方形,设小正方形的边长为x cm.(1)盒子底面的长AB=________ cm,宽BC=________ cm.(用含x的代数式表示)(2)若做成的盒子的底面积为300 cm2,求该盒子的容积.(3)该盒子的侧面积S(cm2)是否存在最大值?若存在,求出此时x的值及S的最大值;若不存在,说明理由.人教版 九年级数学 22.3 实际问题与二次函数针对训练 -答案一、选择题 1. 【答案】B2. 【答案】A [解析] y =-(x 2-4x +4)+4=-(x -2)2+4,∴水喷出的最大高度是4米.3. 【答案】B [解析] 设利润为y 元,涨价x 元,则有y =(100+x -90)(500-10x)=-10(x -20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】A[解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.5. 【答案】C [解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm , ∴S四边形PABQ=S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.6. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10. 故选D.7. 【答案】A[解析] 连接EC ,过点D 作DF ⊥EC ,垂足为F .∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°,∴∠DCB =∠CDE =∠DEA =120°.∵DE=CD,∴∠DEC=∠DCE=30°,∴∠CEA=∠ECB=90°,∴四边形EABC为矩形.∵DE=x m,∴AE=(6-x)m,DF=12x m,EC=3x m,∴S=12·3x·12x+(6-x)·3x=-3 34x2+6 3x(0<x<6),故当x=4时,S最大=123.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.9. 【答案】C[解析] 如图,设BE=CF=x cm,则EF=(80-2x)cm.∵△EFM和△CFN都是等腰直角三角形,∴MF=22EF=(40 2-2x)cm,FN=2CF=2x cm,∴包装盒的侧面积=4MF·FN=4·2x(40 2-2x)=-8(x-20)2+3200,故当x=20时,包装盒的侧面积最大.10. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确. 由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题11. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y =-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.12. 【答案】150 [解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.13. 【答案】225214. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题16. 【答案】【思维教练】(1)将点P 坐标代入解析式求出h 的值,当抛物线到达球网位置的时候,对比抛物线与球网的高度判断是否能过网;(2)球能过网说明抛物线过点(0,1)和点(7,125),代入抛物线解析式求解即可.解:(1)①把(0,1)代入y =-124(x -4)2+h ,得h =53.(2分)②把x=5代入y=124(x-4)2+53,得y=-124(5-4)2+53=1.625.∵1.625>1.55.∴此球能过网;(4分)(2)把(0,1),(7,125)代入y=a(x-4)2+h,得⎩⎪⎨⎪⎧16a+h=1,9a+h=125,解得⎩⎪⎨⎪⎧a=-15,h=215.∴a=-15.(8分)17. 【答案】解:(1)根据题意,得y=-12x+50.(2)根据题意,得(40+x)(-12x+50)=2250,解得x1=50,x2=10.∵每件利润不能超过60元,∴x=50不合题意,舍去,∴x=10.答:当x为10时,超市每天销售这种玩具可获得利润2250元.(3)根据题意,得w=(40+x)(-12x+50)=-12x2+30x+2000=-12(x-30)2+2450.∵a=-12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w最大=2400.答:当x为20时w最大,最大值是2400.18. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,(2分)解得x>22,(3分)又∵x是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1100,(6分)∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;(8分)当x>100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025.(9分)∴当x =175时,y 2的最大值是5025, ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分)19. 【答案】解:(1)设一次至少买x 只计算器,才能以最低售价购买,则每只降价为:0.1(x -10)元,由题意得, 20-0.1(x -10)=16, 解得x =50.答:一次至少购买50只计算器,才能以最低售价购买.(2分) 【一题多解】设一次购买x 只计算器,才能以最低售价购买,则每只降低为:0.1(x -10)元,由题意得,20-0.1(x -10)≤16,解得x ≤50, ∴最大整数x =50.答:一次至少购买50只计算器,才能以最低售价购买. (2)由题意得,当10<x ≤50时,y =[20-12-0.1(x -10)]x , 即y =-0.1x 2+9x(3分)当x >50时,则每只计算器都按16元销售. ∴y =16x -12x =4x ,综上可得y =⎩⎨⎧-0.1x 2+9x (10<x ≤50)4x (x >50).(5分)(3)由y =-0.1x 2+9x 得,其图象的对称轴为x =-b2a =-92×(-0.1)=45,∵a =-0.1<0,当x >45时,y 随x 的增大而减小,(6分) 又∵50>46>45,∴当x =46时的函数值大于x =50时的函数值, 即卖46只赚的钱反而比卖50只赚的钱多.(8分)由二次函数的性质知,当x =45时,y 最大值=-0.1×452+9×45=202.5, 这时售价为20-0.1×(45-10)=16.5(元).答:店家一次应卖45只,这时的售价是16.5元.(10分)20. 【答案】解:(1)(50-2x) (30-2x)(2)依题意,得(50-2x)(30-2x)=300, 整理,得x 2-40x +300=0,解得x 1=10,x 2=30(不符合题意,舍去). 当x =10时,盒子的容积=300×10=3000(cm 3).(3)存在.盒子的侧面积S =2x(50-2x)+2x(30-2x)=100x -4x 2+60x -4x 2=-8x 2+160x =-8(x 2-20x)=-8[(x -10)2-100]=-8(x -10)2+800,∴当x=10时,S有最大值,最大值为800.。

人教版数学九年级上册第22章测试题附答案

人教版数学九年级上册第22章测试题附答案

人教版数学九年级上册第22章二次函数测试题(时间:120分钟分值:100分)一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列五个结论中:①a+b+c<0;②a﹣b+c>0;③2a﹣b<0;④abc<0;⑤4a+2b+c>0,错误的个数有()A.1个 B.2个 C.3个 D.4个3.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点的坐标为(,1),下列结论:①c>0;②b2﹣4ac>0;③a+b=0;④4ac﹣b2>4a,其中错误的是()A.①B.②C.③D.④4.如图,已知二次函数的图象与x轴的两个交点分别为(﹣1,0),(3,0),对于下列结论:①2a+b=0;②abc<0;③a+b+c>0;④当x>1时,y随x的增大而减小;其中正确的有()A.1个 B.2个 C.3个 D.4个5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.6.(3分)若y=mx2+nx﹣p(其中m,n,p是常数)为二次函数,则()A.m,n,p均不为0B.m≠0,且n≠0C.m≠0D.m≠0,或p≠07.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.8.(3分)下列抛物线的顶点坐标为(0,1)的是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2 9.(3分)二次函数y=﹣x2+2x的图象可能是()。

人教版九年级数学上册 第二十二章综合测试卷含答案

人教版九年级数学上册 第二十二章综合测试卷含答案

人教版九年级数学上册 第二十二章综合测试卷01一、选择题(30分)1.抛物线2311y x =-+()的顶点坐标是( ) A .(1,1) B .(1-,1) C .(1-,1-)D .(1,1-)2.已知二次函数2y ax bx c =++的x ,y 的部分对应值如下表:则该二次函数图象的对称轴为( ) A .y 轴B .直线52x = C.直线2x =D .直线32x =3.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( ) A .2(4)7y x =-+ B .2(4)25y x =-- C .2(4)7y x =++ D .2(4)25y x =+-4.将抛物线216212y x x =-+向左平移2个单位长度后,得到的新抛物线的解析式为( ) A .21(8)52y x =-+B .21(4)52y x =-+C .21(8)32y x =-+D .21(4)32y x =-+5.对于二次函数()()213y x x =+-,下列说法正确的是( ) A 图象开口向下B .当1x >时,y 随x 的增大而减小C .当1x <时,y 随x 的增大而减小D .图象的对称轴是直线1x =-6.已知二次函数23y x x m =-+(m 为常数)的图象与x 轴的一个交点为()1,0,则关于x 的一元二次方程230x x m -+=的两实数根是( )A .11x =,21x =-B .11x =,22x =C .11x =,20x =D .11x =,23x =7.小刚在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离是( )A .3.5 mB .4 mC .4.5 mD .4.6 m8.如图是二次函数2y a bx c =++图象的一部分,且过点3,0A (),二次函数图象的对称轴是直线1x =,下列结论正确的是( ) A .24b ac <B .0ac >C .20a b -=D .0a b c -+=9.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在14x -<<的范围内有解,则t 的取值范围是( ) A .1t -≥B .13t -≤<C .18t -≤<D .38t <<10.如图,已知二次函数2(3)(1)3y x x =+-的图象与x 轴交于点A ,B ,与y 轴交于点C ,顶点为D ,则ABC △与ABD △的面积之比是( )A .2:3B .3:4C .4:5D .7:8二、填空题(24分)11.某学习小组为了探究函数2y x bx =+的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上的一些点的坐标,表格中的m =__________.12.若y 关于x 的函数2(2)(21)y a x a x a =---+的图象与坐标轴有两个交点,则a 可取的值为 __________.(写出一个即可)13.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是__________.14.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()24A -,,()11B ,,则方程2ax bx c =+的解是_________.15.其种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(2030x ≤≤,且x 为整数)出善,可英出30x -()件。

人教版九年级上册数学第二十二章测试题(附答案)

人教版九年级上册数学第二十二章测试题(附答案)

人教版九年级上册数学第二十二章测试题(附答案)、单选题(共12题;共24分)1 .抛物线y=3(x+1)2+1的顶点所在象限是( )A.第一象限B.第二象限C.第三象限,D.第四象限2 .在平面直角坐标系中,将二次函数 y=2x 2的图象向上平移2个单位,所得图象的解析式为( )A. y=2x 2-2B. y=22x+2C. y=2x-2) 2D. y=2(x+2) 2223二次函数y=ax 2+bx+c (aw 。

和正比例函数 y= $x 的图象如图所示,则方程 ax 2+ (b —亍)x+c=0 (aw°的两根之和(A.小于0। B.等于0C.大于0D.不能确定4 .若将抛物线y=x 2向右平移2个单位,再向上平移 3个单位,则所得抛物线的表达式为( )A. y= (x+2) 2+31B. y= (x-2) 2+31 1C. y= (x+2) 2- 3D. y= (x- 2) 2-35 .把二次函数y=3x 2的图象向左平移2个单位,再向上平移 1个单位,所得到的图象对应的二次函数表达 式是()A. y=3(x-2)2+1B. y=3(x+22-1C. y=3(x-2〃D. y=3(x+22+16 .将抛物线y=6x 2先向左平移2个单位,再向上平移3个单位后得到新的抛物线, 则新抛物线的解析式是()A. y=6 (x-2) 2+3B. y=6 (x+2) 2+3>。

y=6 (x-2) 2-3 D. y=6 (x+2) 2-37 .将二次函数y=x 2-4的图象先向右平移 2个单位,再向上平移 3个单位后得到的抛物线的函数表达式为()A. y= (x +2) 2—711B. y= (x —2) 2-7C. y= (x+2) 2 - 1D. y= (x — 2) 2 — 18 .关于二次函数y=- I (x-3) 2-2的图象与性质,下列结论错误的是( )9 .如图为二次函数 y=ax 2+bx+c 的图象,下列各式中: ①a >0,②b >0,③c=0,④c=1 ,⑤a+b+c=0 .正确的只有()A.抛物线开口方向向下C.当x>3时,y 随x 的增大而减小B. x=3时,函数有最大值-2 D.抛物线可由yW x 2经过平移得到A.①④B.②③④C.③④⑤ "D.①③⑤A. 土〉。

人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)

人教版九年级数学上册 第22章 二次函数 基础测试题(含答案)

人教版九年级数学第22章基础测试题(含答案)22.1 二次函数的图象和性质一、选择题(本大题共8道小题)1. 已知直线y=bx-c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()2. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度3. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<14. 如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP 的面积为y,则下列能大致反映y与x函数关系的图象是()5. 二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=cx的图象可能是()6. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()7. 如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6 cm,在矩形ABCD中,AB=2 cm,BC=10 cm,点C和点M重合,点B,C(M),N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1 cm的速度向右移动,至点C与点N重合为止.设移动x s 后,矩形ABCD与△PMN重叠部分的面积为y cm2,则y关于x的大致图象是()8. 二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …-2 -1 0 1 2 …y=ax2+bx+c …t m -2 -2 n …且当x =-12时,与其对应的函数值y>0,有下列结论:(1)abc>0;(2)-2和3是关于x 的方程ax 2+bx +c =t 的两个根;(3)0<m +n<203.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共8道小题)9. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.10. 函数y =-4x 2-3的图象开口向________,对称轴是________,顶点坐标是________;当x ________0时,y 随x 的增大而减小,当x ________时,y 有最________值,是________,这个函数的图象是由y =-4x 2的图象向________平移________个单位长度得到的.11. 二次函数y =-x 2+6x -5的图象开口________,对称轴是________,顶点坐标是________;与x 轴的两个交点坐标分别是________,与y 轴的交点坐标是________;在对称轴左侧,即x ________时,y 随x 的增大而________,在对称轴右侧,即x ________时,y 随x 的增大而________,当x =________时,y 有最________值为________;抛物线y =-x 2+6x -5是由抛物线y =-x 2向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)14. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)15. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.16. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.三、解答题(本大题共4道小题)17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(5,-6),C(6,0).(1)求抛物线的解析式.(2)在直线AB下方的抛物线上是否存在点P,使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.19. 已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).(1)求抛物线的解析式.(2)设点P在该抛物线上滑动,则满足条件S△PAB=1的点P有几个?求出所有点P的坐标.(3)设抛物线交y轴于点C,该抛物线的对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.20. (2019·山西)综合与探究如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】C【解析】在A 中,抛物线的对称轴在y 轴右边,∴-b2a >0,∵a>0,∴b <0;而从一次函数图象知b >0,∴选项A 错误;在B 中,抛物线对称轴-b2a >0,∵a <0,∴b >0;而从一次函数图象知b <0,∴选项B 错误;在C 中,抛物线的对称轴在y 轴左边,∴-b2a <0,∵a >0,∴b >0;抛物线与y 轴负半轴相交,∴c <0;而从一次函数图象知b >0,-c >0,∴c <0,∴选项C 正确;在D 中,抛物线与y 轴的正半轴相交,c >0,由一次函数图象知-c >0,即c <0,∴选项D 错误.2. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.3. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根, 整理,得:x2+x+c=0, 所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2, 所以函数y=x2+x+c=0在x=1时,函数值小于0, 即1+1+c<0,综上则140110c c ->⎧⎨++<⎩,解得c<-2, 故选B .4. 【答案】B【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.7. 【答案】A [解析] (1)当点D 位于PM 上时,x =2.当0≤x <2时,重叠部分是等腰直角三角形,y =12x2,图象是顶点为(0,0)且开口向上的抛物线的一部分.(2)当点D 位于PN 上时,x =4.当2≤x≤4时,重叠部分是直角梯形,y =12×(x -2+x)×2=2x -2,图象是直线的一部分;(3)当4<x≤6时,重叠部分是一个五边形,y =12×(2+6)×2-12(6-x)2=8-12(6-x)2,图象是顶点为(6,8)且开口向下的抛物线的一部分.故选A.8. 【答案】C [解析] (1)因为当x =-12时,与其对应的函数值y>0,由表格可知x =0时,y=-2,x =1时,y =-2,可以判断在对称轴左侧,y 随x 的增大而减小,图象开口向上,a>0;由表格可知x =0时,y =-2,x =1时,y =-2,可得对称轴为直线x =12,所以b<0;当x =0时,y =-2,所以c =-2<0,故abc>0,(1)正确.(2)由于对称轴是直线x =12,x =-2和x =3关于对称轴对称,当x =-2时,y =t ,所以当x =3时,y =t ,即-2和3是关于x 的方程ax 2+bx +c =t 的两个根,所以(2)正确.(3)依题意可得c =-2,a +b =0,当x =-12时,与其对应的函数值y>0可得a>83,当x =-1时,m =a -b -2=2a -2>103.因为x=-1和x =2关于对称轴对称,所以m =n ,所以m +n>203,故(3)错误.故选C.二、填空题(本大题共8道小题)9. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.10. 【答案】下y 轴 (0,-3) > =0 大 -3 下 311. 【答案】向下直线x =3 (3,4) (1,0),(5,0) (0,-5) <3 增大 >3 减小 3 大4 右 3 上 412. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.13. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b<a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n (x -m)2+n =0.∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.15. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)bb=3- 3.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)设y =a(x +1)(x -6),把(5,-6)代入解析式,得a(5+1)(5-6)=-6, 解得a =1,∴y =(x +1)(x -6)=x2-5x -6. (2)存在.如图,分别过点P ,B 向x 轴作垂线,垂足为M ,N.设P(m ,m2-5m -6),其中-1<m <5,设四边形PACB 的面积为S ,则PM =-m2+5m +6,AM =m +1,MN =5-m ,CN =6-5=1,BN =6,∴S =S △AMP +S 梯形PMNB +S △BNC =12(-m2+5m +6)(m +1)+12(6-m2+5m +6)(5-m)+12×1×6=-3m2+12m +36=-3(m -2)2+48,当m =2时,S 有最大值为48,这时m2-5m -6=22-5×2-6=-12, ∴P(2,-12).19. 【答案】解:(1)将(1,0),(3,0)分别代入y =-x2+bx +c ,得⎩⎪⎨⎪⎧-1+b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =4,c =-3.∴该抛物线的解析式为y =-x2+4x -3. (2)设点P 的坐标为(x ,y).∵AB =2,S △PAB =12AB·|y|=1,∴y =±1.当y =1时,有1=-x2+4x -3, 即x2-4x +4=(x -2)2=0, 解得x1=x2=2;当y =-1时,有-1=-x2+4x -3,即x2-4x +2=0,解得x1=2-2,x2=2+ 2. ∴满足条件的点P 有3个,坐标分别为(2,1), (2+2,-1),(2-2,-1). (3)存在.作点C 关于抛物线的对称轴的对称点C′,连接AC′交抛物线的对称轴于点M ,连接MC ,任取抛物线对称轴上除点M 外的任意一点N ,连接NA ,NC ,NC′,如图所示.∵NA +NC =NA +NC′>AC′=MA +MC′=MA +MC , ∴当点A ,M ,C′共线时,△MAC 的周长最小. ∵抛物线的解析式为y =-x2+4x -3,∴点C 的坐标为(0,-3),抛物线的对称轴为直线x =-42×(-1)=2,∴C′(4,-3).设直线AC′的解析式为y =mx +n. ∵点A(1,0),C′(4,-3)在直线AC′上,∴⎩⎪⎨⎪⎧m +n =0,4m +n =-3,解得⎩⎪⎨⎪⎧m =-1,n =1,∴直线AC′的解析式为y =-x +1. 当x =2时,y =-x +1=-1,∴直线AC′与抛物线对称轴的交点的坐标为(2,-1),即M(2,-1). ∴存在点M(2,-1),使得△MAC 的周长最小.20. 【答案】(1)抛物线2y ax bx c =++经过点A(–2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC=1126622OA OC ⋅⋅=⨯⨯=,∵S△BCD=34S△AOC,∴S△BCD=39642⨯=,设直线BC的函数表达式为y kx n=+,由B,C两点的坐标得406k nn+=⎧⎨=⎩,解得326kn⎧=-⎪⎨⎪=⎩,∴直线BC的函数表达式为362y x=-+,∴点G的坐标为3(,6)2m m-+,∴2233336(6)34224DG m m m m m=-++--+=-+,∵点B的坐标为(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=1111()2222DG CF DG BE DG CF BE DG BO⋅⋅+⋅⋅=⋅+=⋅⋅,∴S△BCD=22133346242m m m m-+⨯=-+(),∴239622m m-+=,解得11m=(舍),23m=,∴m的值为3;(3)存在,如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图,以BD为边时,有3种情况,∵D点坐标为15(3,)4,∴点N点纵坐标为±154,当点N的纵坐标为154时,如点N2,此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N3,N4, 此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N1点与N2点重合, ∵115(1,)4N -,D(3,154),∴N1D=4, ∴BM1=N1D=4, ∴OM1=OB+BM1=8, ∴M1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【22.2二次函数与一元二次方程】一.选择题1.若抛物线y=x2﹣6x+m与x轴只有一个交点,则m的值为()A.﹣6B.6C.3D.92.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5B.8C.10D.113.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200B.x1=0,x2=400C.x1=100,x2=300D.x1=100,x2=5005.已知二次函数y=ax2+bx+c(a≠0)的图象过点(0,m)(2,m)(m>0),与x轴的一个交点为(x1,0),且﹣1<x1<0.则下列结论:①若点(,y)是函数图象上一点,则y>0;②若点(﹣),()是函数图象上一点,则y2>y1;③(a+c)2<b2.其中正确的是()A.①B.①②C.①③D.②③6.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 7.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 9.若抛物线y=x2+bx+c与x轴交于(1,0),(3,0),则b和c的值为()A.b=4,c=﹣3B.b=﹣4,c=3C.b=﹣4,c=﹣3D.b=4,c=﹣3 10.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x 轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或二.填空题11.抛物线y=ax2﹣2x﹣1与x轴有两个交点,则a的取值范围为.12.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为13.已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.14.已知抛物线y=a(x﹣h)2+k经过点A(﹣2,0),B(3,0)两点.若关于x的一元二次方程a(x﹣h+m)2+k=0的一个根是1,则m的值为.15.抛物线y=ax2﹣3x+2与x轴正半轴交于A、B两点,且AB=2,则a=.三.解答题16.已知关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,求k的取值范围.17.抛物线y=﹣x2+bx+c交x轴于A(3,0)、B两点,与y轴交于点C(0,3),点D为顶点,对称轴l交x轴于点E,点P是抛物线上一点,AP交对称轴于点M,BP交对称轴于点N.求点D坐标及对称轴l.18.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.19.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.20.如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=1,请你解答下列问题:(Ⅰ)求m的值;(Ⅱ)求出抛物线与x轴的交点;(Ⅲ)当y随x的增大而减小时x的取值范围是.(Ⅳ)当y<0时,x的取值范围是.参考答案一.选择题1.解:根据题意得△=(﹣6)2﹣4m=0,解得m=9.故选:D.2.解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.3.解:由图象可知,当y>0时,x的取值范围是x<﹣1或x>2,故选:D.4.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.解:∵抛物线经过点(0,m)(2,m)(m>0),(x1,0)(﹣1<x1<0),∴抛物线开口向下,对称轴为直线x=﹣=1,即b=﹣2a,∴当x=时,y>0,则①正确;∵点()到直线x=1和点()到直线x=1的距离相等,∴y1=y2,所以②错误;∵x=1,y>0;x=﹣1,y<0,即a+b+c>0,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2,则③正确.故选:C.6.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.7.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.8.解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.9.解:抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3.所以b=﹣4,c=3.故选:B.10.解:∵y=ax2+2ax﹣3a=a(x+3)(x﹣1)=a(x+1)2﹣4a,∴点A的坐标为(﹣3,0),点B(1,0),点D(﹣1,﹣4a),∴D′(3,4a),C(5,0),∵△CDD′是直角三角形,∴当∠DD′C=90°时,4a=×(5﹣1)=2,得a=,当∠D′CD=90°时,CB=DD′,∴5﹣1=,解得,a1=,a2=﹣(舍去),由上可得,a的值是或,故选:A.二.填空题21.解:∵抛物线y=ax2﹣2x﹣1与x轴有两个交点,∴,解得,a>﹣1且a≠0,故答案为:a>﹣1且a≠0.22.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.23.解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n <0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.24.解:由已知可得:对称轴为x=,∴h=,∴y=a(x﹣)2+k,将点A(﹣2,0)代入y=a(x﹣)2+k,∴k=﹣a,∵a(x﹣h+m)2+k=0,∴a(x﹣+m)2﹣a=0,∵a≠0,∴(x﹣+m)2=,∵方程的一个根为1,∴(1﹣+m)2=,故答案为m=2或m=﹣3.25.解:当y=0时,ax2﹣3x+2=0,∵a>0,∴(x﹣1)(x﹣2)=0,解得x1=,x2=,∴A、B两点的坐标为(,0),(,0),∵AB=2,∴﹣=2,解得a=.故答案为.三.解答题31.解:∵关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点,∴或,解得,k≤2且k≠1或k=1,由上可得,k的取值范围是k≤2.32.解:把A(﹣3,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3,因为y=﹣(x﹣1)2+4,所以D点坐标为(1,4),抛物线的对称轴l为直线x=1.33.解:(1)令y=0,得:﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点A(﹣3,0),点B(1,0);令x=0,得:y=3,∴点C(0,3);设直线AC的解析式为:y=kx+b,点A(﹣3,0),点C(0,3)在直线AC上,,解得:,∴直线AC的解析式为:y=x+3.(2)如图所示,设点P的坐标为(a,﹣a2﹣2a+3),由PM∥x轴,可知点M的纵坐标为﹣a2﹣2a+3,∴x=﹣a2﹣2a,∴PM=﹣a2﹣2a﹣a=﹣a2﹣3a(﹣3<a<0),=.当a=时,PM最大34.解:(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.35.解:(Ⅰ)抛物线的对称轴为直线x=﹣=1,∴m=3;(Ⅱ)∵m=3,∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点为(﹣1,0),(3,0);(Ⅲ)∵a=﹣1<0,对称轴为直线x=1,∴当x>1时,y的值随x的增大而减小,故答案为x>1;(Ⅳ)当x<﹣1或x>3时,y<0,故答案为x<﹣1或x>3.22.3 实际问题与二次函数一、选择题(本大题共10道小题)1. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③4. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C .600平方米D .2400平方米5. 如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm ,点P 从点A出发,沿AB 方向以2 cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP 面积的最小值是( )A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 26. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 27. 如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC向点C 以1 cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm/s 的速度运动(点Q 运动到点B 时,两点同时停止运动),在运动过程中,四边形P ABQ 的面积的最小值为 ( )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 28. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -19. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE =CF =x cm ,要使包装盒的侧面积最大,则x 应取( )A.30 B.25 C.20 D.15二、填空题(本大题共7道小题)11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.15. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.17. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. 如图,工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕,并求长方体底面面积为12 dm2时,裁掉的正方形的边长;(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长为多少时,总费用最低,最低为多少元?20. 如图,某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室的长为x(m),占地面积为y(m2).(1)如图②,当饲养室的长x为多少时,占地面积y最大?(2)如图③,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室的长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.21. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.人教版 九年级数学 22.3 实际问题与二次函数同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm2.2. 【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确; ④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40. 解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.4. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米, 则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.5. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,。

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故答案为:2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故答案为:﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故答案为:2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一、单选题(共48分)1.(本题4分)抛物线23y x =-与y 轴的交点坐标为( )A .(-3,0)B .(0,-3)C .(3,0)-D .(3,0) 2.(本题4分)已知:抛物线y =a (x +1)2的顶点为A ,图象与y 轴负半轴交点为B ,且OB =OA ,若点C (-3,b )在抛物线上,则△ABC 的面积为( )A .3B .3.5C .4D .4.53.(本题4分)二次函数y =﹣x 2﹣4的图象经过的象限为( )A .第一象限、第四象限B .第二象限、第四象限C .第三象限、第四象限D .第一象限、第三象限、第四象限4.(本题4分)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 5.(本题4分)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.则下列结论不正确的是( )A .小球在空中经过的路程是40mB .小球运动的时间为6sC .小球抛出3s 时,速度为0D .当 1.5t =s 时,小球的高度30h =m 6.(本题4分)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B .2C .3D .27.(本题4分)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.(本题4分)已知二次函数()222y x =--,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A .有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 9.(本题4分)记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( )A .y =﹣(x ﹣60)2+1825B .y =﹣2(x ﹣60)2+1850C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+200010.(本题4分)已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .2023 11.(本题4分)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD 2+PC 的最小值是( )A .4B .2+22C .22D .32223+ 12.(本题4分)抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( ) A .1m <-或0m > B .1122m -<< C .02m ≤< D .11m -<<二、填空题(共20分)13.(本题5分)若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 14.(本题5分)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).15.(本题5分)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD 的长)为______.16.(本题5分)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(共52分)17.(本题6分)二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax 2+bx +c >0的解集为 ;(3)方程ax 2+bx +c =m 有两个实数根,m 的取值范围为 .18.(本题6分)已知抛物线经过点(0,-2),(3,0),(-1,0),求抛物线的解析式.19.(本题6分)已知:二次函数2142y x x =-++. (1)通过配方,将其写成()2y a x h k =-+的形式;(2)求出函数图象与x y 、轴的交点、、A B C 的坐标;(3)当0y >时,直接写出x 的取值范围;(4)当x ________时,y 随x 的增大而减少.20.(本题6分)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(本题6分)一隧道内设双行公路,隧道的高MN 为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF 的三条边围成的,矩形的长DE 是8米,宽CD 是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少?22.(本题6分)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式; (2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 23.(本题8分)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标.24.(本题8分)已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.参考答案1.B2.A3.C4.B5.A6.D7.A8.D9.D10.C11.A12.D13.214.<15.40米16.②③17.(1)y =x 2﹣2x ﹣3;(2)x <﹣1或x >3;(3)m ≥﹣4.18.224233y x x =-- 19.(1)()219122x --+ (2)A (-2,0),B (4,0),C (0,4)(3)-2<x <4(4)>120.(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元21.(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14 22.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 23.(1)223y x x =+-(2)2;P (-1,0)24.(1)①,0),0)②m>0或m<-3 (2)-9(3)49a=或12a≥或14a-≤。

人教版(2024)数学九年级上册第二十二章 二次函数 本章复习与测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 本章复习与测试(含答案)

第二十二章 二次函数一、选择题1. 已知函数 y =(m−3)x m2−7是二次函数,则 m 的值为 ( )A . −3B . ±3C . 3D . ±72. 把抛物线 y =x 2+1 向右平移 3 个单位,再向下平移 2 个单位,得到抛物线的解析式为 A .y =(x +3)2−1B .y =(x +3)2+3C .y =(x−3)2−1D .y =(x−3)2+33. 已知函数 y =(k−3)x 2+2x +1 的图象与 x 轴有交点.则 k 的取值范围是 ( ) A . k <4B . k ≤4C . k <4 且 k ≠3D . k ≤4 且 k ≠34. 已知 A (4,y 1),B (1,y 2),C (−3,y 3) 在函数 y =−3(x−2)2+m (m 为常数)的图象上,则 y 1,y 2,y 3 的大小关系是 ( ) A . y 3<y 1<y 2B . y 1<y 3<y 2C . y 3<y 2<y 1D . y 1<y 2<y 35. 已知二次函数 y =x 2−6x +m (m 为常数)的图象与 x 轴的一个交点为 (1,0),则关于 x 的一元二次方程 x 2−6x +m =0 的两个实数根是 ( ) A . x 1=1,x 2=−1 B . x 1=−1,x 2=3 C . x 1=−1,x 2=4D . x 1=1,x 2=56. 如图是一个横断面为抛物线形状的拱桥.当水面在 l 时,拱顶(拱桥洞的最高点)离水面 2 m ,水面宽 4 m .如图建立平面直角坐标系,则抛物线的关系式是A .y =−12x 2B .y =2x 2C .y =−2x 2D .y =12x 27. 如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx−8=0(a≠0)的一个根为4,那么该方程的另一个根为( )A.−4B.−2C.1D.38. 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为−3和1;④a−2b+c≥0,其中正确的命题是( )A.①②③B.①③C.①④D.①③④二、填空题9. 二次函数y=−(x+5)2−3,图象的顶点坐标是.10. 如果二次函数的图象经过点(1,2),且在对称轴x=2的右侧部分是上升的,那么这个二次函数的解析式可以是(只要写出一个符合要求的解析式).11. 小明推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系为y=−1(x−4)2+3,则小明12推铅球的成绩是m.12. 当−3≤x≤2时,函数y=ax2−4ax+2(a≠0)的最大值是8,则a=.13. 如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.14. 已知抛物线y=ax2+bx+c的部分图象如图所示,则抛物线与x轴负半轴的交点坐标是.15. 如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C.若点Aʹ的横坐标为1,则AʹC的长为.16. 如图,在平面直角坐标系中,正方形ABCD的三个顶点A,B,D均在抛物线y=ax2−4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为.三、解答题17. 已知二次函数y=x2−mx−m−3.(1) 求证:无论m为何值,此二次函数的图象与x轴都有两个不同的交点;(2) 若函数y的最小值为−2,求此二次函数的解析式,18. 已知二次函数y=−x2+2x+3.(1) 求函数图象的顶点坐标,并在图中画出这个函数的图象;(2) 根据图象,直接写出:①当函数值y为正数时,自变量x的取值范围;②当−2<x<2时,函数值y的取值范围.19. 百货商店服装柜在销售中发现:某童装每天可卖20件,每件盈利40元.为迎接“六一”儿童节,商场决定采取适当降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:每件童装降价1元,每天可多卖2件.(1) 要想平均每天获利1200元,那么每件童装应降价多少元?(2) 要使每天盈利最多,每件应降价多少元?20. 如图,已知抛物线y=x2−4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1) 求线段AD的长;(2) 平移该抛物线得到一条新抛物线,设新抛物线的顶点为Cʹ.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CCʹ平行于直线AD,求新抛物线对应的函数表达式.21. 音乐喷泉(如图①)可以使喷水造型随音乐的节奏起伏变化而变化.已知某种音乐喷泉喷出的水柱形状是抛物线,设其出水口为原点,出水口离岸边18 m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(如图②),这组抛物线的统一形式为y=ax2+bx.(1) 若k=1,且喷出的抛物线水柱最大高度为3 m,求此时a,b的值;(2) 若k=1,喷出的水柱恰好到达岸边,则此时喷出的抛物线水柱的最大高度是多少?(3) 若k=3,a=−2,则喷出的抛物线水柱能否到达岸边?722. 如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m,宽AB为2 m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到原点O的距离为6 m.(1) 求抛物线的解析式;(2) 如果该隧道内设双行道,现在一辆货运卡车高4.2 m,宽2.4 m,这辆货运卡车能否通过该隧道?通过计算说明你的结论.23. 学校”科技创新”社团向市场推出一种新型电子产品,试销发现:该电子产品的销售价格y(元/件)与销售量x(件)之间满足一次函数关系,其图象如图所示,已知该产品的成本价是40元/件,且销售价格高于成本价.(1) 求y与x之间的数关系式.(2) 求销售利润w(元)关于销售量x(件)的函数解析式,并求出当销售量为多少件时,销售利润最大?最大值是多少元?(3) 该社团继续开展科技创新,降低产品成本价格,预估当销售量在120件以上时,销售利润达到最大,则科技创新后该产品的成本价格应低于多少元?答案一、选择题1. A2. C3. B4. A5. D6. A7. B8. B二、填空题9. (−5,−3)10. y=x2−4x+5(答案不唯一)11. 1012. 27或−3213. x<−1或x>414. (−3,0)15. 316. 4三、解答题17.(1) 令x2−mx−m−3=0,则Δ=m2−4(−m−3)=m2+4m+12=(m+2)2+8>0.∴无论m为何值,此二次函数的图象与x轴都有两个不同的交点.(2) ∵函数y的最小值为−2,∴4×1×(−m−3)−(−m)24×1=−2.解得m1=m2=−2.∴此二次函数的解析式为y=x2+2x−1.18.(1) ∵y=−x2+2x+3=−(x−1)2+4,∴图象的顶点坐标为(1,4).图象如图.(2) ①当−1<x<3时,函数值y为正数.②当−2<x<2时,函数值y的取值范围为−5<y≤4.19.(1) 设每件童装应降价x元,根据题意列方程得(40−x)(20+2x)=1200,解得x1=20,x2=10.∵增加盈利,减少库存,∴x=10(舍去).答:每件童装降价20元.(2) 设每天销售这种童装利润为y元,则y=(40−x)(20+2x)=−2x2+60x+800=−2(x−15)2+1250.答:当每件童装降价15元时,能获最大利润1250元.20.(1) 由x2−4=0,得x1=−2,x2=2,∵点A位于点B的左侧,∴A(−2,0),∵直线y=x+m经过点A,∴−2+m=0,解得m=2,∴点D的坐标为(0,2),∴AD=OA2+OD2=22.(2) 设新抛物线对应的函数表达式为y=x2+bx+2,则y=x2+bx+2=(x+b2)2+2−b24,则点Cʹ的坐标为(−b2,2−b24),∵CCʹ平行于直线AD,且经过C(0,−4),∴直线CCʹ的表达式为y=x−4,∴2−b24=−b2−4,解得b1=−4,b2=6,∴新抛物线对应的函数表达式为y=x2−4x+2或y=x2+6x+2.21.(1) 当k=1时,抛物线的顶点在直线y=x上.∵抛物线y=ax2+bx的顶点坐标为(−b2a,−b24a),抛物线水柱最大高度为3 m,∴{−b2a=−b24a,−b24a=3.解得{a=−13,b=2.∴此时a,b的值分别是−13,2.(2) 当k=1时,抛物线的顶点在直线y=x上,∵喷出的水柱恰好到达岸边,出水口离岸边18 m,∴此时抛物线的对称轴为直线x=9.∴y=x=9.∴此时喷出的抛物线水柱的最大高度是9 m.(3) ∵y=ax2+bx的顶点(−b2a,−b24a)在直线y=kx上,且k=3,a=−27,∴−b2a ⋅k=−b24a,即−b−27×2×3=−b2−27×4.解得b=6或0(舍).∴抛物线的解析式为y=−27x2+6x.当y=0时,0=−27x2+6x.解得x1=21,x2=0.∵21>18,∴喷出的抛物线水柱能到达岸边.22.(1) 据题意,设抛物线的解析式为y=ax2+c.∵EO=6,∴c=6,∵D(4,2),∴16a+c=2,得a=−14,∴抛物线解析式为y=−14x2+6.(2) 当x=2.4时,y=4.56>4.2,故这辆货运卡车能通过该遂道.23.(1) 设y与x之间的函数关系式为y=kx+b.由题意,得{64=80k+b,70=50k+b.解得{k=−15,b=80.∴y=−15x+80.∵y>40,∴−15x+80>40.解得x<200.∴y与x之间的数关系式为y=−15x+80(0<x<200).(2) 由题意,得w=(y−40)x=(−15x+80−40)x=−15x2+40x=−15(x−100)2+2000.∵−15<0,0<x<200,∴当x=100时,w取得最大值,最大值为2000元.∴当销售最为100件时,销售利润最大,最大值是2000元.(3) 设科技创新后该产品的成本价格为a元.由题意,得w=(y−a)x=−15x2+(80−a)x.∵当销售量在120件以上时,销售利润达到最大,∴−80−a2×(−15)>120.解得a<32.答:科技创新后该产品的成本价格应低于32元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学第22章测试题附答案(时间:120分钟 满分:120分)姓名:______ 班级:______ 分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.二次函数y =x 2+ax +b 的图象经过点(1,1),则a +b 的值为 ( A )A .0B .1C .-1D .22.抛物线y =2(x +m )2+n (m ,n 是常数)的顶点坐标是( B )A .(m ,n )B .(-m ,n )C .(m ,-n )D .(-m ,-n )3.将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是 ( D )A .向左平移1个单位长度B .向右平移3个单位长度C .向上平移3个单位长度D .向下平移1个单位长度4.已知抛物线y =ax 2+bx +c (a <0)过A (-3,0),B (1,0),C (-5,y 1),D (5,y 2)四点,则y 1与y 2的大小关系是( A )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定5.以x 为自变量的二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是 ( A )A .b ≥54B .b ≥1或b ≤-1C .b ≥2D .1≤b ≤26.抛物线y =ax 2+bx +c 经过点(-2,0),且对称轴为直线x =1,其四个结论:部分图象如图所示,对于此抛物线有如下则x =1①ac >0;②16a +4b +c =0;③若m >n >0,+m 时的函数值小于x =1-n 时的函数值;④点⎝ ⎛⎭⎪⎫-c 2a ,0不在此抛物线上.其中正确结论的序号是 ( B )A .①②B .②③C .②④D .③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是y =x 2-1(只需写一个).8.若抛物线y =-x 2+8x -12的顶点是P ,与x 轴的两个交点是C ,D 两点,则△PCD 的面积是__8__.9.(原创题)军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y (m)与飞行时间x (s)的关系满足y =-15x 2+10x ,经过 25 s 时间,炮弹到达它的最高点,最高点的高度是 125 m ,经过 50 s 时间,炮弹落到地上爆炸了.10.当a ≤x ≤a +2时,二次函数y =3x 2+6x +2的最大值为47,则a 的值是__-5或1__.11.如图是抛物线y =ax 2+bx +c 的一部分,另为直线x =一部分被墨水污染,发现:对称轴1,与x 轴的一个交点为(3,0).请你经过推理分析,不等式ax 2+bx +c >0的解集是__-1<x<3__.12.已知二次函数的图象经过原点及点⎝ ⎛⎭⎪⎫-12,-14,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为__y =-13x 2+13x 或y =x 2+x __.三、(本大题共5小题,每小题6分,共30分)13.已知二次函数的解析式为y =x 2-6x +5,(1)利用配方法将解析式化成y =a (x -h )2+k 的形式;(2)写出该二次函数图象的对称轴和顶点坐标.解:(1)y =x 2-6x +9-9+5=(x -3)2-4.(2)抛物线的对称轴为x =3,顶点坐标为(3,-4).14.已知抛物线y =x 2-2mx +3m +4.(1)抛物线经过原点时,求m 的值;(2)顶点在x 轴上时,求m 的值.解:(1)∵抛物线y =x 2-2mx +3m +4经过原点,∴3m +4=0,解得m =-43.(2)∵抛物线y =x 2-2mx +3m +4顶点在x 轴上,∴b 2-4ac =0.∴(-2m )2-4×1×(3m +4)=0,解得m =4或m =-1.15.已知抛物线y=ax2-3ax-4a(a≠0).(1)直接写出该抛物线的对称轴;(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.解:(1)抛物线的对称轴为x=--3a2a=32.(2)y=ax2-3ax-4a=a(x+1)(x-4).当(x+1)(x-4)=0,即x=-1或4时,y=0,∴抛物线一定经过(-1,0),(4,0).ABC的16.如图所示,已知等腰直角三角形直角边长与正方形MNPQ的边长均为20 cm,与点N重AC与MN在同一直线上,开始时点A合,让△ABC以每秒2 cm的速度向左运动,最终点A与点M重合.(1)求重叠部分面积y(cm2)与时间t(s)之间的函数关系式及自变量t的取值范围;(2)求重叠部分面积是△ABC面积的18时t的值.解:(1)y=12(20-2t)2(0≤t≤10).(2)由题意得12(20-2t)2=18× 20× 20,解得t1=5,t2=15.∵0≤t≤10,∴t=5.如图17.某工厂大门是一抛物线形水泥建筑物,的高所示.大门地面宽AB =4 m ,顶部C 离地面度为4.4 m ,现有一辆满载货物的汽车欲通过大门,请判货物顶部距地面2.8 m ,装货宽度为2.3 m ,断这辆汽车能否顺利通过大门.解:以大门地面的中点为原点,大门地面为x 轴,建立直角坐标系.根据对称性设二次函数的解析式为y =a (x +2)(x -2).将(0,4.4)代入得a =-1.1.∴二次函数的解析式为y =-1.1x 2+4.4.当y =2.8时,有-1.1x 2+4.4=2.8,解得x 1≈1.21,x 2≈-1.21(舍去).∵2× 1.21=2.42> 2.3,∴汽车可以顺利通过大门.四、(本大题共3小题,每小题8分,共24分)的图象18.如图,已知二次函数y =x 2+bx +c过点A(1,0),C(0,-3).(1)求此二次函数的解析式;面积为(2)若在抛物线上存在点P ,使△ABP 的10,请直接写出点P 的坐标.解:(1)∵二次函数y =x 2+bx +c 的图象过点A (1,0),C (0,-3),∴⎩⎪⎨⎪⎧1+b +c =0,c =-3,解得⎩⎪⎨⎪⎧b =2,c =-3.∴此二次函数的解析式为y=x2+2x-3.(2)P(-4,5)或P(2,5).19.已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,请仅用无刻度直尺按要求作图:(1)在图①中,直线l为对称轴,请画出点C关于直线l的对称点;(2)在图②中,若CD∥x轴,请画出抛物线的对称轴.解:(1)如图①,点E即为所求(画法不唯一).(2)如图②,直线m即为所求.20.如图,足球场上守门员在O处开出一高球,球从离地面1米的A 处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?(取43≈7)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取26≈5)解:(1)设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x-6)2+4,由题意得当x=0时y=1,即1=36a+4,∴a=-112,∴解析式为y=-112(x-6)2+4.(2)令y=0,-112(x-6)2+4=0,∴(x-6)2=48,解得x1=43+6≈13,x2=-43+6<0(舍去),∴足球第一次落地距守门员约13米.(3)第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴2=-112(x-6)2+4,解得x1=6-26,x2=6+26,∴CD=|x1-x2|=46≈10,∴BD=13-6+10=17(米).即运动员乙应再向前跑17米.五、(本大题共2小题,每小题9分,共18分)21.如图,在矩形OABC中,OA=8,OC=4,OA,OC分别在x轴与y轴上,点D为OA上一点,且CD=AD.(1)求点D的坐标;(2)若经过B,C,D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC 的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.解:(1)设OD =x ,则AD =CD =8-x .在Rt △OCD 中,(8-x )2=x 2+42,解得x =3,∴OD =3,∴D(3,0).(2)由题意知,抛物线的对称轴为直线x =4.∵D(3,0),∴另一交点E(5,0).(3)若存在这样的P ,则由S 梯形=20得S △PBC =12·BC·h =20.∴h =5. ∵B(8,-4),C(0,-4),D(3,0),∴该抛物线函数关系式为y =-415x 2+3215x -4,顶点坐标为⎝ ⎛⎭⎪⎫4,415, ∴顶点到BC 的距离为4+415=6415<5. ∴不存在这样的点P ,使得△PBC 的面积等于梯形DCBE 的面积.22.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于成本的90%,市场调研发现,在一段时间内,每天销售数量(个)与销售单价(元)符合一次函数关系,如图所示:(1)根据图象信息,求出y 与x 的函数关系式;(2)该公司要想每天获得3 000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?解:(1)设y =kx +b (k ≠0,b 为常数),将点(50,160),(80,100)代入得⎩⎪⎨⎪⎧160=50k +b ,100=80k +b ,解得⎩⎪⎨⎪⎧k =-2,b =260,∴y 与x 的函数关系式为y =-2x +260.(2)由题意得(x -50)(-2x +260)=3 000,化简得x 2-180x +8 000=0,解得x 1=80,x 2=100,∵50×(1+90%)=95,∴x 2=100>95(不符合题意,舍去),∴销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x -50)(-2x +260)=-2x 2+360x -13 000=-2(x -90)2+3 200,∵a =-2<0,抛物线开口向下,∴w 有最大值,当x =90时,w 最大值=3 200.∴销售单价为90元时,每天获得的利润最大,最大利润是3 200元.六、(本大题共12分)23.如图①,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x -b1),C1与x轴的正半轴交于点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图②,抛物线C1:y1=a1x(x-b1)经过变换可得到抛物线C2:y2=a2x(x -b2),C2与x轴的正半轴交于点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图③,可得到抛物线C3:y3=a3x(x-b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=1,b1=2;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n x(x-b n)与正方形OB n A n D n(n≥1).①请用含n的代数式直接表示出C n的解析式;②当x取任意不为0的实数时,试比较y2 019与y2 020的函数值的大小并说明理由.解:(1)令y1=0,a1x(x-b1)=0,x1=0,x2=b1,∴A1(b1,0),由正方形OB 1A 1D 1得OA 1=B 1D 1=b 1,∴B 1⎝ ⎛⎭⎪⎫b 12,b 12,D 1⎝ ⎛⎭⎪⎫b 12,-b 12, ∵B 1在抛物线C 上,则b 12=⎝ ⎛⎭⎪⎫b 122, 解得b 1=0(不符合题意,舍去)或b 1=2,∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)得-1=-a 1, ∴a 1=1,故答案为1,2.(2)令y 2=0,a 2x (x -b 2)=0,x 1=0,x 2=b 2,∴A 2(b 2,0), 由正方形OB 2A 2D 2得OA 2=B 2D 2=b 2,∴B 2⎝ ⎛⎭⎪⎫b 22,b 22, ∵B 2在抛物线C 1上,则b 22=⎝ ⎛⎭⎪⎫b 222-2×b 22, 解得b 2=0(不符合题意,舍去)或b 2=6,∴D 2(3,-3),把D 2(3,-3)代入C 2的解析式,得-3=3a 2(3-6),a 2=13, ∴C 2的解析式为y 2=13x (x -6)=13x 2-2x , 令y 3=0,a 3x (x -b 3)=0,x 1=0,x 2=b 3,∴A 3(b 3,0), 由正方形OB 3A 3D 3得OA 3=B 3D 3=b 3,∴B 3⎝ ⎛⎭⎪⎫b 32,b 32, ∵B 3在抛物线C 2上,则b 32=13×⎝ ⎛⎭⎪⎫b 322-2×b 32, 解得b 3=0(不符合题意,舍去)或b 3=18,∴D 3(9,-9),把D 3(9,-9)代入C 3的解析式,得-9=9a 3(9-18),解得a3=19,∴C3的解析式为y3=19x(x-18)=19x2-2x.(3)①C n的解析式为y n=13n-1x2-2x(n≥1).②由上题可得,抛物线C2 019的解析式为y2 019=132 018x2-2x,抛物线C2 020的解析式为y2 020=132 019x2-2x,∴两抛物线的交点为(0,0);如图,由图象得当x≠0时,y2 019>y2 020.。

相关文档
最新文档