学年 上 厦门市八年级质量检测数学试卷及答案
福建省厦门市集美区杏南中学2022-2023学年上学期八年级第一次质检数学试卷
2022-2023学年福建省厦门市集美区杏南中学八年级(上)第一次质检数学试卷一、选择题(本大题有10题、每小题4分,共40分)1.(4分)下列长度的三条线段能组成三角形的是( )A.1,2,3B.2,2,4C.3,4,5D.3,4,82.(4分)三角形的一个外角小于与它相邻的内角,这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不确定3.(4分)等腰三角形的两边长分别为4和9,则这个等腰三角形的周长为( )A.17B.13C.17或22D.224.(4分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A.B.C.D.5.(4分)如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是( )A.SAS B.ASA C.SSS D.HL6.(4分)下列条件中,不能判定两个直角三角形全等的是( )A.一锐角和斜边对应相等B.两条直角边对应相等C.斜边和一直角边对应相等D.两个锐角对应相等7.(4分)将两个含30°和45°的直角三角板如图放置,则∠α的度数是( )A.10°B.15°C.20°D.25°8.(4分)如图,在△ABC中,AB的垂直平分线DE与边AB,AC分别交于点D,E.已知△ABC与△BCE的周长分别为22cm和14cm,则BD的长为( )A.3cm B.4cm C.5cm D.6cm9.(4分)如图△ABC中,已知D、E、F分别是BC、AD、CE的中点,且S△ABC=4,那么阴影部分的面积等于( )A.2B.1C.D.10.(4分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,交边BC于点E,连接DE.若∠ABC=40°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°二、填空题(本大题有6小题,每小题4分,共24分)11.(412.(4分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3∠13.(4分)如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1+2= .14.(4分)如图,在△ABC中,∠C=90°,AP是角平分线,若CP=3,AB=12,则△ABP的面积为 .15.(4分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 .(将你认为正确的结论的序号都填上)16.(4分)如图,在△ABC中,∠B=∠C,∠BAD=20°,且∠ADE=∠AED,则∠CDE = .三、解答题(本大题共9题,共86分)17.(8分)一个正多边形内角和为1800°,求它的边数和每个内角的度数.18.(8分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC=80°.求∠C的度数.19.(8分)如图,已知△ABC.(1)利用尺规作图,作△DEF,使△DEF≌△ABC,(不写作法,保留作图痕迹)(2)根据你的作图过程,说明这两个三角形全等的理由.20.(10分)如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.21.(10分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.22.(10分)电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.23.(10分)如图1,在五边形ABCDE中,AE∥BC,∠A=∠C.(1)猜想AB与CD之间的位置关系,并说明理由;∠,∠AED=2∠C﹣(2)如图2,延长DE至F,连接BE,若∠1=∠3,∠AEF=22140°,求∠C的度数.24.(10分)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.25.(12分)(1)如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E证明:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请问结论DE=BD+CE是否成立,若成立,请你给证明:若不存在,请说明理由.(3)应用:如图③,在△ABC中,AB=AC,∠BAD>∠CAE,D、A、E三点都在直线m上,且∠BDA=∠AEC=∠BAC,只出现m与BC的延长线交于点F,若BD=5,DE=7,EF=2CE,求△ABD与△ABF的面积之比.2022-2023学年福建省厦门市集美区杏南中学八年级(上)第一次质检数学试卷(参考答案与详解)一、选择题(本大题有10题、每小题4分,共40分)1.(4分)下列长度的三条线段能组成三角形的是( )A.1,2,3B.2,2,4C.3,4,5D.3,4,8【解答】解:A、1+2=3,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+4>5,能构成三角形,故C正确;D、3+4<8,不能构成三角形,故D错误.故选:C.2.(4分)三角形的一个外角小于与它相邻的内角,这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不确定【解答】解:因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.3.(4分)等腰三角形的两边长分别为4和9,则这个等腰三角形的周长为( )A.17B.13C.17或22D.22【解答】解:分两种情况:①当4为底边长,9为腰长时,4+9>9,∴三角形的周长=4+9+9=22;②当9为底边长,4为腰长时,∵4+4<9,∴不能构成三角形;∴这个三角形的周长是22.故选:D.4.(4分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.5.(4分)如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是( )A.SAS B.ASA C.SSS D.HL【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:B.6.(4A.一锐角和斜边对应相等B.两条直角边对应相等C.斜边和一直角边对应相等D.两个锐角对应相等【解答】解:A、正确.符合AAS;B、正确.符合SAS;C、正确.符合HL;D、错误.要证两三角形全等必须有边的参与.故选:D.7.(4分)将两个含30°和45°的直角三角板如图放置,则∠α的度数是( )A.10°B.15°C.20°D.25°﹣=15°.【解答】解:由三角形的外角性质得,∠α=60°45°故选:B.8.(4分)如图,在△ABC中,AB的垂直平分线DE与边AB,AC分别交于点D,E.已知△ABC与△BCE的周长分别为22cm和14cm,则BD的长为( )A.3cm B.4cm C.5cm D.6cm【解答】解:∵DE是AB的垂直平分线,∴EA=EB,AD=BD=AB.∵△BCE的周长是14cm,∴BC+BE+EC=14cm,即AC+BC=14cm.∵△ABC的周长是22cm,∴AB+AC+BC=22cm,﹣=8(cm),∴AB=2214∴BD=AB=×8=4(cm).故选:B.9.(4分)如图△ABC中,已知D、E、F分别是BC、AD、CE的中点,且S△ABC=4,那么阴影部分的面积等于( )A.2B.1C.D.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,D、E分别是BC、AD的中点,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=4,∴S△BEF=1,即阴影部分的面积为1.故选:B.10.(4分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,交边BC于点E,连接DE.若∠ABC=40°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【解答】解:∵∠B=40°,∠C=50°,∴∠BAC=90°,∵∠ABF=∠EBF,BF=BF,∠BF A=∠BFE=90°,∴△BF A≌△BFE(ASA),∴BA=BE,∵BD=BD,∴△BDA≌△BDE(SAS),∴∠BED=∠BAD=90°,∴∠CED=90°,﹣=40°,∴∠CDE=90°50°故选:B.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)十边形的外角和的度数是 360° .【解答】解:∵任意多边形的外角和等于360°,∴十边形的外角和的度数为360°.故答案为:360°.12.(4分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是 40° .【解答】解:如图,∵直线a∥b,∴∠4=∠1=75°,﹣=40°.由三角形的外角性质得,∠3=∠42﹣∠=75°35°故答案为:40°.13.(4分)如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1+2∠= 180° .【解答】解:如图,在△ABC与△EDF中,,∴△ABC≌△EDF(SAS),∴∠1=∠ABC.∵∠ABC+2∠=180°,∠=180°.∴∠1+2故答案为:180°.14.(4分)如图,在△ABC中,∠C=90°,AP是角平分线,若CP=3,AB=12,则△ABP的面积为 18 .【解答】解:过点P作PF⊥AB于点F,如图所示:∵AP是角平分线,∠C=90°,∴PF=PC,∵CP=3,∴PF=3,∵AB=12,∴S△ABP==18,故答案为:18.15.(4分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 ①②③ .(将你认为正确的结论的序号都填上)【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN(ASA),∴AM=AN,∴CM=BN,∵∠CDM=∠BDN,∠C=∠B,∴△CDM≌△BDN,∴CD=BD,无法判断CD=DN,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.16.(4分)如图,在△ABC B=∠C,∠BAD=20°,且∠ADE=∠AED,则∠CDE = 10° .【解答】解:∵∠EDC+∠C=∠AED,∠ADE=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+20°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=20°,∴∠EDC=10°.故答案为:10°.三、解答题(本大题共9题,共86分)17.(8分)一个正多边形内角和为1800°,求它的边数和每个内角的度数.【解答】解:设这个多边形的边数是n,﹣)•180°=1800°,则(n2解得n=12.故这个多边形的边数为12;1800°÷12=150°,故每个内角的度数150°.18.(8分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC=80°.求∠C的度数.【解答】解:∵∠ANC=∠B+∠BAN,﹣=30°,∴∠BAN=∠ANC﹣∠B=80°50°∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B BAC=70°.19.(8分)如图,已知△ABC.(1)利用尺规作图,作△DEF,使△DEF≌△ABC,(不写作法,保留作图痕迹)(2)根据你的作图过程,说明这两个三角形全等的理由.【解答】解:(1)如图,△DEF即为所求(作法不唯一).(2)由作图可知,AB=DE,EF=BC,DF=AC,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).20.(10分)如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.21.(10分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.22.(10分)电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.【解答】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.23.(10分)如图1,在五边形ABCDE中,AE∥BC,∠A=∠C.(1)猜想AB与CD之间的位置关系,并说明理由;(2)如图2,延长DE至F,连接BE,若∠1=∠3,∠AEF=22∠,∠AED=2∠C﹣140°,求∠C的度数.【解答】解:(1)猜想:AB∥CD,理由:∵AE∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD;(2)∵AE∥BC,∴∠2=∠3,∠A+∠ABC=180°,∵∠1=∠3,∠,∴∠1=∠2=∠3,∠ABC=22∠,∵∠AEF=22∠=∠A+∠AEF=180°,∴∠A+∠ABC=∠A+22∵∠AEF+∠AED=180°,∴∠A=∠AED,∵∠A=∠C,∴∠AED=∠C,﹣,∵∠AED=2∠C140°﹣,∴∠C=2∠C140°解得:∠C=140°.24.(10分)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=6,CE=4,求AC的长.【解答】解:(1)∵AE、CD分别为△ABC的角平分线,∴∠F AC=∠BAC,∠FCA=∠BCA,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠F AC﹣∠FCA=180°﹣×120°=120°;(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠F AC=∠F AD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,,∴△ADF≌△AGF(SAS),∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=AG+GC=10.25.(12分)(1)如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E证明:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请问结论DE=BD+CE是否成立,若成立,请你给证明:若不存在,请说明理由.(3)应用:如图③,在△ABC中,AB=AC,∠BAD>∠CAE,D、A、E三点都在直线m上,且∠BDA=∠AEC=∠BAC,只出现m与BC的延长线交于点F,若BD=5,DE=7,EF=2CE,求△ABD与△ABF的面积之比.【解答】(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥直线m,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)解:结论DE=BD+CE成立,证明:∠CAE=180°﹣∠BAC﹣∠BAD,∠ABD=180°﹣∠ADB﹣∠BAD,∠BDA=∠BAC,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE,即结论DE=BD+CE成立;(3)由(2)得,△ABD≌△CAE,∴AE=BD=5,∴AD=DE﹣AE=2,∴EF=2CE=4,∴△ABD与△ABF的面积之比=AD:AF=2:9.。
2021-2022学年度第一学期期末质量检测八年级数学试卷
2021-2022学年度第一学期期末质量检测八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题卡上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上) 1. 若一个数的平方等于4,则这个数等于 ················································ 【 ▲ 】A .±2B .2C .±16D .162. 若分式15x 有意义,则实数x 的取值范围是 ········································ 【 ▲ 】A .x <5B .x =5C .x >5D .x ≠5 3. 在平面直角坐标系中,点P (-3,2)在 ············································ 【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.·········································································· 【 ▲ 】 A .2和3之间B .3和4之间C .4和5之间D .5和6之间5. 如图,在△ABC 中,AB =AC ,AD 是边BC 上的中线,若AB =5,BC =6,则AD 的长为 ···························································································· 【 ▲ 】 A .3B .7C .4D .116. 如图,已知∠ABC =∠DCB ,添加以下条件,不能判定....△ABC ≌△DCB 的是【 ▲ 】 A .AB =DC B .BE =CE C .AC =DB D .∠A =∠D7. 下列四组线段a ,b ,c ,能组成直角三角形的是 ···································· 【 ▲ 】A .a =1,b =2,c =3B .a =1,b,cC .a =2,b =3,c =4D .a =4,b =5,c =6 8. 某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是 ·············· 【 ▲ 】 A .y =2xB .y =x +1C .y =-x -1D .y =x -1二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9. 等腰三角形的一个内角是100°,则它的底角的度数为 ▲ .(第5题图) C D AB (第6题图) A D B CE学校 班级 考号 姓名……………………………………………密………………………………………封……………………………线……………………………………10.如图,△ABC ≌△ADC ,∠BCA =40°,∠B =80°,则∠BAD 的度数为 ▲ .11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316 000米.将数据316 000用四舍五入法精确到万位,并用科学记数法表示为 ▲ .12.如图,在△ABC 中,∠ACB =90°,点D 为AB 中点,若AB =4,则CD = ▲ . 13.在平面直角坐标系中,过点P (5,6)作P A ⊥x 轴,垂足为点A ,则P A 的长为 ▲ . 14.将一次函数y =2x 图像向上平移1个单位所得的直线函数表达式为 ▲ . 15.关于x 的分式方程21x ax =1的解为负数,则a 的取值范围为 ▲ . 16.如图,在△ABC 中,AB =AC ,点P 为边AC 上一动点,过点P 作PD ⊥BC ,垂足为点D ,延长DP 交BA 的延长线于点E ,若AC =10,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为 ▲ .(不需写出x 的取值范围)三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分) (138; (2)求x 的值:(x +2)2-9=0.18.(本题满分4分)解方程:1242x x x =2.19.(本题满分5分)先化简再求值:,11112-÷⎪⎭⎫⎝⎛-+a a a 其中a =2.CDA B(第12题图) (第16题图)CD EABP(第10题图)CDAB20.(本题满分5分)如图是8×8的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为(2,-3),点B 坐标为(4,-1). (1)试在图中画出这个直角坐标系;(2)标出点C (1,1),连接AB 、AC ,画出△ABC关于y 轴对称的△A 1B 1C 1.21.(本题满分6分)如图,点D 、B 、C 在一直线上,△ABC 和△ADE 都是等边三角形.试找出图中的一对全等三角形,并证明.22.(本题满分8分)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100 kg ,超过300 kg 时,所有这种水果的批发单价均为3元/kg .图中折线表示批发单价y (元/kg )与质量x (kg )的函数关系. (1)求图中线段AB 所在直线的函数表达式;(2)小李需要一次性批发这种水果280 kg ,需要花费多少元?23.(本题满分8分)甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50 km ,乙车选择没有高架的路线,全程共44 km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?AB(第20题图)(第22题图)kg )(第21题图)DE AB24.(本题满分7分)如图,Rt △ABC 中,∠ACB =90°.(1)尺规作图(保留作图痕迹,不写作法与证明):① 作∠B 的平分线BD 交边AC 于点D ; ② 过点D 作DE ⊥AB 于点E ;(2)在(1)所画图中,若CD =3,AC =8,则AB 长为 ▲ .25.(本题满分9分)如图,在四边形ABCD 中,∠ABC =90°,过点B 作BE ⊥CD ,垂足为点E ,过点A 作AF ⊥BE ,垂足为点F ,且BE =AF . (1)求证:△ABF ≌△BCE ;(2)连接BD ,且BD 平分∠ABE 交AF 于点G .求证:△BCD 是等腰三角形.26.(本题满分14分)如图,已知一次函数y =x -2的图像与y 轴交于点A ,一次函数y =4x +b 的图像与y 轴交于点B ,且与x 轴以及一次函数y =x -2的图像分别交于点C 、D ,点D 的坐标为(-2,m ).(1)关于x 、y 的方程组⎩⎨⎧=--=-.4,2b x y x y 的解为 ▲ ;(2)关于x 的不等式x -2≥4x +b 的解集为 ▲ ; (3)求四边形OADC 的面积;(4)在x 轴上是否存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形?若存在,求出点ECDEFGAB(第25题图)(第24题图)CAB (第26题图)八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)9.40° 10.120° 11.3.2×105 12.2 13.6 14.y =2x +1 15.a >1且a ≠2 16.y =20-x 三、解答题 17.(本题满分6分,每小题3分)解:(1)原式=4-(-2) ········································································· 2分=6. ················································································ 3分 4给12给1分.(2)x +2=±3. ··················································································· 1分x +2=3或x +2=-3. x =1或-5. ·················································································· 3分 说明:x =1给1分;x =-5给1分. 18.(本题满分4分)解:x -2=4(x -2) ················································································· 1分x =2 ························································································· 2分检验:当x =2时,2(x -2)=0,x =2是增根. ············································ 3分 ∴原方程无解. ···················································································· 4分 19.(本题满分5分)解:原式=1(1)1(1)(1)a aa a a ··························································· 2分=(1)(1)1a a a a a ··································································· 3分=-a +1. ·············································································· 4分当a =2时,原式=-2+1=-1. ···························································· 5分 20.(本题满分5分)解:如图所示. ···················································································· 2分(2)如图所示. ················································································· 5分 说明:1.x 轴给1分;y 轴给1分;点C 给1分;△A 1B 1C 1给2分. 2.字母没有标记不扣分. 21.(本题满分6分)解:△ABE ≌△ACD . ············································································ 2分 证明:∵△ABC 、△ADE 都是等边三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°.∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE . ···························· 3分在△ABE 和△CAD ,AB AC BAE CAD AE AD =﹐=﹐=﹐······················································· 4分∴△ABE ≌△ACD . ··············································································· 6分 说明:AB =AC 给1分;AD =AE 给1分. 22.(本题满分8分)解:(1)设线段AB 所在直线的函数表达式为y =kx +b (k ≠0). 把点(100,5),(300,3)分别代入,得 51003300k b k b ﹐﹒== 2分解得0.016k b ﹐﹒==4分∴线段AB 所在直线的函数表达式为y =-0.01x +6. 5分(2)在y =-0.01x +6中,当x =280时,y =3.2. 6分 ∴需要花费的费用为280×3.2=896(元). 8分 23.(本题满分8分)解:设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20) km/h .根据题意,得 1.2×5020x =44x. ·························································· 3分解得x =55. ························································································ 5分 经检验,x =55是所列方程的解. ····························································· 6分 x +20=75. ························································································· 7分 答:甲车行驶的平均速度为75 km/h ,乙车行驶的平均速度为55 km/h . ··········· 8分 24.(本题满分7分)解:(1)①如图,BD 就是所要求作的图形. ·············································· 2分 ②如图,DE 就是所要求作的图形. ·························································· 4分(2)10. ····························································································· 7分 说明:不交待结论不扣分.CDE AB25.(本题满分9分)解:(1)证明:∵BE ⊥CD ,AF ⊥BE , ∴∠AFB =∠BEC =90°. ········································································ 1分 ∴∠ABE +∠BAF =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠BAF =∠EBC . ··············································································· 3分 在△ABF 和△BCE 中, AFB BEC AF BE BAF EBC ﹐﹐﹐ ··················································································· 4分 ∴△ABF ≌△BCE . ··············································································· 5分 (2)∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ······································································ 6分 ∵∠BEC =90°,∴∠DBE +∠BDE =90°. ······································································ 7分 ∵BD 平分∠ABE , ∴∠ABD =∠DBE . ∴∠DBC =∠BDE . ············································································· 8分 ∴BC =CD ,即△BCD 是等腰三角形. ·················································· 9分 说明:其它证法类似给分. 26.(本题满分14分)解:(1)24y x =﹐=﹒················································································ 2分(2)x ≤-2. ······················································································· 4分 (3)如图1,过点D 作DH ⊥AB 于H . 由(1)知D (-2,-4). ∴DH =2.在y =x -2中,当x =0时,y =-2. ∴A (0,-2).把D (-2,-4)代入y =4x +b 得-4=4×(-2)+b ,解得b =4. ∴B (0,4),直线BD 的函数表达式为y =4x +4. ∴AB =4-(-2)=6.∴S △ABD =12AB ·DH =12×6×2=6. ······················································· 6分在y =4x +4中,当y =0时,0=4x +4,解得x =-1. ∴C (-1,0). ∴OC =1. ∵B (0,4), ∴OB =4.∴S △OBC =12OB ·OC =12×4×1=2. ······················································· 8分 ∴S 四边形OADC =S △ABD -S △OBC =6-2=4. ····················································· 9分(4)如图2,当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4). ∴E 1(-2,0). ·················································································· 10分 当点C 为直角顶点时,x 轴上不存在点E . ················································ 11分 当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0). ∵C (-1,0),E 1(-2,0), ∴CE 2=-1-t ,E 1E 2=-2-t . ∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在Rt △DE 1E 2中,由勾股定理得22DE =21DE +2212E E =42+(-2-t )2=t 2+4t +20.在Rt △CDE 1中,由勾股定理得CD 2=12+42=17. 在Rt △CDE 2中,由勾股定理得22CE =22DE +CD 2.∴(-1-t )2= t 2+4t +20+17. 解得t =-18. ∴E 2(-18,0). ················································································ 14分 综合知,点E 坐标为(-2,0)或(-18,0).图1图2。
2023-2024学年福建省厦门市湖里区八年级(上)期末数学试卷(含解析)
2023-2024学年福建省厦门市湖里区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算m⋅m2的正确结果是( )A. mB. m2C. m3D. 2m22.使分式xx−1有意义,则x满足条件( )A. x>0B. x≠0C. x>1D. x≠13.如图,点D在线段BC的延长线上,过点B作射线BF交AC于点E,则下列是△ABE的外角的是( )A. ∠ACDB. ∠AEBC. ∠AEFD. ∠CEF4.点A(5,2)关于y轴对称的点的坐标为( )A. (5,−2)B. (−5,−2)C. (−5,2)D. (2,−5)5.周日,小乔在家帮妈妈打扫卫生,为方便拆取窗帘,拿来一个人字梯,并且在人字梯的中间绑了一条结实的绳子,如图所示,请问小乔这样做的道理是( )A. 两点之间,线段最短B. 两点确定一条直线C. 三角形具有稳定性D. 过一点有且只有一条直线与已知直线垂直6.如图是一个4×4的正方形网格.根据图中标示的各点位置,在下列三角形中,与△ABC全等的是( )A. △ABDB. △ABEC. △ABFD. △ABG7.下列各式从左向右变形正确的是( )A. a+2b+2=abB. a−ba2−b2=1a+bC. a+2a=2 D. 3b−13c−1=b−1c−18.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为( )A. 900x+1×2=900x−3B. 900x+1=900x−3×2C. 900x−1×2=900x+3D. 900x+1=900x+3×29.如图,已知∠MAN=60°,点B,D在边AN上,且点D在点B的右侧,AB=2,点C是边AM上一动点,在点C运动的过程中,始终保持CB=CD,若AC=m,则AD的长为( )A. 12m+1B. 12m+2C. 12m−1D. m−210.四个全等的直角三角形按如图1所示的方式摆放,形成两个正方形,大正方形的面积为60cm2,空白区域所示的小正方形面积为48cm2.将图1中的直角三角形分别沿着斜边往里翻折,形成如图2所示的更小正方形,若直角三角形的两条直角边长分别为a,b(a>b),则代数式(a−b)的值为( )A. 4B. 6C. 12D. 18二、填空题:本题共6小题,每小题4分,共24分。
新人教版八年级(上)期末数学检测卷2——数学人教版8年级册期中期末试卷及答案(73份)
20××-20××学年新人教版八年级(上)期末数学检测卷2一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+13.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2 7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为_________.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=_________.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为_________.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为_________.13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=_________.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=_________.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是_________.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是_________.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN (1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=_________.(2)探究线段BE与FD的数量关系,并加以证明.20××-20××学年新人教版八年级(上)期末数学检测卷2参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+1考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方.分析:同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式的法则分别进行计算即可.解答:解:A、a3•a4=a7,故本选项错误;B、(a2)3=a6,故本选项正确;C、(3a)3=27a3,故本选项错误;D、a(a+1)=a2+a,故本选项错误;故选B.点评:此题考查了同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个考点:三角形的角平分线、中线和高.分析:根据三角形的定义,三角形的角平分线、高线、中线对各选项分析判断后利用排除法求解.解答:解:①应为三条线段首尾顺次相接组成的图形叫做三角形,故本小题错误;②三角形的角平分线是线段,故本小题错误;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部,也有可能是直角三角形的直角顶点,故本小题错误;④三角形的三条中线相交于一点,且这点一定在三角形的内部正确,综上所述,正确的有④共1个.故选D.点评:本题考查了三角形的定义,以及三角形的角平分线、高线、中线,是基础题,需熟记.4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角考点:三角形内角和定理.分析:根据三角形内角和定理可以进行判断.解答:解:A、正确;B、在△ABC中,至少有2个锐角,故正确;C、在△ABC中三个内角α:β:γ=1:3:5,则α+β<γ,γ是钝角,因而是钝角三角形.故错误;D、一个三角形中至多有两个角是锐角,故错误.故选C.点评:本题考查了三角形内角和定理,一个三角形中至多有两个角是锐角,最多有一个直角或一个钝角.5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,看看已知是否符合条件,即可得出答案.解答:解:A、根据AB=DE,BC=EF和∠A=∠D不能判定两三角形全等,故本选项错误;B、根据∠A=∠D,∠C=∠F,AC=DF才能得出两三角形全等,故本选项错误;C、根据∠B=∠E,∠A=∠D,AC=DF才能得出两三角形全等,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故本选项正确;故选D.点评:本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②应对应相等,符合条件才能得出两三角形全等.6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法和公式法分别分解因式,从而可判断求解.解答:解:A、m3﹣m=m(m2﹣1)=m(m﹣1)(m+1),故此选项正确;B、x2﹣x﹣6=(x﹣3)(x+2),故此选项错误;C、2a2+ab+a=a(2a+b+1),故此选项错误;D、x2﹣y2=(x﹣y)(x+y),故此选项错误;故选:A.点评:本题主要考查提公因式法与公式法分解因式综合运用,能熟练地运用提公因式法分解因式是解此题的关键.7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个考点:分式的值为零的条件;分式有意义的条件.分析:分式有意义:分母不等于零;分式无意义:分式等于零;分式的值等于零:分子等于零,且分母不等于零.解答:解:当x=﹣时,分子2x+a=0,当x=时,分母3x﹣1=0,当﹣=,即a=﹣时,分母3x﹣1=0.综上所述,正确的说法是③.故选C.点评:本题考查了分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义.专题:几何综合题;压轴题.分析:根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.解答:解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°﹣45°﹣67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选C.点评:综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.考点:等腰三角形的性质;三角形内角和定理.专题:计算题;分类讨论.分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=•a3b6=.故答案为:.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.考点:线段垂直平分线的性质.专题:计算题.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12.考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=9.考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到a2+2ab+b2=19,则2ab=5,再根据完全平方公式得(a﹣b)2=a2﹣2ab+b2,把a2+b2=14,2ab=5代入计算即可.解答:解:∵(a+b)2=19,即a2+2ab+b2=19,而a2+b2=14,∴14+2ab=19,∴2ab=5,∴(a﹣b)2=a2﹣2ab+b2=14﹣5=9.故答案为9.点评:本题考查了完全平方公式:a2±2ab+b2=(a±b)2,也考查了代数式的变形能力以及整体思想的运用.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=ab.考点:含30度角的直角三角形.分析:作CD⊥AB于点D,在直角三角形ACD中利用直角三角形的性质定理求得CD的长,然后根据三角形的面积公式即可求解.解答:解:作CD⊥AB于点D.∵在直角三角形ACD中,∠CAD=180°﹣∠BAC=30°,∴CD=AC=b,则S△ABC=AB•CD=a•b=ab.故答案是:ab.点评:本题考查了直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,正确作出辅助线是关键.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是3<AB<13.考点:三角形三边关系;全等三角形的判定与性质.分析:延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得CE=AB,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边解答.解答:解:延长AD到E,使DE=AD,连接CE,则AE=2AD=2×4=8,∵AD是BC边上的中线,∴BD=CD,∵在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,又∵AC=5,∴5+8=13,8﹣5=3,∴3<CE<13,即AB的取值范围是:3<AB<13.故答案为:3<AB<13.点评:本题考查了全等三角形的判定与性质,“遇中线加倍延”作辅助线构造出全等三角形是解题的关键.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.考点:分式方程的解.专题:计算题;压轴题.分析:方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.解答:解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.点评:本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把2x+y=4代入进行计算即可.解答:解:原式=[x2+y2+2xy﹣x2﹣y2+2xy﹣2xy+y2]÷4y=(2xy+y2)÷4y=(2x+y)=×4=1.点评:本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•=;(2)去分母得:2(3x﹣1)+3x=1,去括号得:6x﹣2+3x=1,解得:x=,经检验x=是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.注:本题学生能正确得出一个点的位置得(6分),得出两个点的位置得(8分).点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.考点:全等三角形的判定;等腰三角形的性质.分析:根据已知得出∠BDE=∠CEF,再得出∠B=∠C,利用角边角得出三角形全等.解答:解:△CEF≌△BDE.(1分)理由如下:∵∠DEF=∠B,∠DEC=∠B+∠BDE=∠DEF+∠CEF,(已知)(三角形外角的性质)(等量代换),∴∠BDE=∠CEF.(等式的性质)(3分),在△ABC中,∵AB=AC,(已知),∴∠B=∠C.(等边对等角)(4分)在△CEF和△BDE中,,(5分)∴△CEF≌△BDE.(角边角)(6分)点评:此题主要考查了三角形的全等判定,根据题意得出∠BDE=∠CEF是解决问题的关键.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?考点:分式方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.解答:解:(1)设乙单独整理x分钟完工,根据题意得:,解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y分钟完工,根据题意,得,解得:y≥25,答:甲至少整理25分钟完工.点评:分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?考点:整式的混合运算.专题:应用题.分析:设该产品原价为a元,根据题意列出两种方案的价格,利用作差法比较大小即可.解答:解:设该产品的原价是a元,根据题意得:方案1的价格为:a(1﹣p%)(1﹣q%),方案2的价格为:a(1﹣%)2,则a(1﹣p%)(1﹣q%)﹣a(1﹣%)2=﹣(q%﹣p%)2,∵p≠q,∴﹣(q%﹣p%)2<0,则方案1降价多.点评:此题考查了整式的混合运算,弄清题意是解本题的关键.24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.考点:整式的混合运算.分析:(1)根据题意得出算式,求出两式的差,再判断即可;(2)求出两种方案的算式,求出两式的差,再判断即可.解答:解:(1)设原来长方形的面积是S1,变化后的长方形的面积是S2,根据题意得:S=ab,S2=(a+1)(b﹣1)=ab+b﹣a﹣1,∴S2﹣S1=ab+b﹣a﹣1﹣ab=b﹣a﹣1,∵a=b,∴b﹣a﹣1=﹣1<0,∴S2<S1,∴变化后面积减小了.(2)方案1,S1=(a+1)(b﹣1)=ab﹣a+b﹣1,方案2,S2=(a﹣1)(b+1)=ab+a﹣b﹣1,∴S1﹣S2=﹣2a+2b=﹣2(a﹣b),∵a>b,∴S1﹣S2<0,∴方案2变化后面积大.点评:本题考查了整式的混合运算的应用,关键是能根据题意列出算式.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形.专题:几何综合题.分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM 和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:(1)MN=AM+CN.理由如下:如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=180°,把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,∴∠BCM′+∠BCD=180°,∴点M′、C、N三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△BMN和△BM′N中,∵,∴△BMN≌△BM′N(SAS),∴MN=M′N,又∵M′N=CM′+CN=AM+CN,∴MN=AM+CN;(2)MN=CN﹣AM.理由如下:如图,作∠CBM′=∠ABM交CN于点M′,∵∠ABC+∠ADC=180°,∴∠BAD+∠C=360°﹣180°=180°,又∵∠BAD+∠BAM=180°,∴∠C=∠BAM,在△ABM和△CBM′中,,∴△ABM≌△CBM′(ASA),∴AM=CM′,BM=BM′,∵∠MBN=∠ABC,∴∠M′BN=∠ABC﹣(∠ABN+∠CBM′)=∠ABC﹣(∠ABN+∠ABM)=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△MBN和△M′BN中,∵,∴△MBN≌△M′BN(SAS),∴MN=M′N,∵M′N=CN﹣CM′=CN﹣AM,∴MN=CN﹣AM.点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=22.5°.(2)探究线段BE与FD的数量关系,并加以证明.考点:全等三角形的判定与性质.专题:计算题.分析:(1)作DH⊥AB于H,根据等腰直角三角形的性质得∠ABC=∠C=45°,则∠EDB=∠C=22.5°,所以∠EBD=90°﹣22.5°=67.5°,然后根据∠EBF=∠EBD﹣∠ABC进行计算;(2)BE与DH的延长线交于G点,由DH∥AC得到∠BDH=45°,则△HBD为等腰直角三角形,于是HB=HD,由∠EBF=22.5°得到DE平分∠BDG,根据等腰三角形性质得BE=GE,即BE=BG,然后根据“AAS”证明△BGH≌△DFH,则BG=DF,所以BE=FD.解答:解:(1)作DH⊥AB于H,如图,∵∠A=90°,AB=AC,∴∠ABC=∠C=45°,∴∠EDB=∠C=22.5°,∵BE⊥DE,∴∠E=90°,∴∠EBD=90°﹣22.5°=67.5°,∴∠EBF=∠EBD﹣∠ABC=22.5°.(2)BE=FD.理由如下:BE与DH的延长线交于G点,如图,∵DH∥AC,∴∠BDH=∠C=45°,∴△HBD为等腰直角三角形∴HB=HD,而∠EBF=22.5°,∵∠EDB=∠C=22.5°,∴DE平分∠BDG,而DE⊥BG,∴BE=GE,即BE=BG,∵∠DFH+∠FDH=∠G+∠FDH=90°,∴∠DFH=∠G,∵∠GBH=90°﹣∠G,∠FDH=90°﹣∠G,∴∠GBH=∠FDH在△BGH和△DFH中,,∴△BGH≌△DFH(AAS),∴BG=DF,∴BE=FD.故答案为22.5°.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.第20页,共20页。
学年上厦门市八年级质量检测数学试卷及答案
2018-2019学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)(2019厦门八上质检1)计算12-的结果是( )A .2-B .12-C .12D .1(2019厦门八上质检2)1x =是方程22x a +=-的解,则a 的值是( ) A .4- B .3- C .0 D .4 (2019厦门八上质检3)四边形内角和是( )A .90 B . 180 C .360 D .540(2019厦门八上质检4)在平面直角坐标系xoy 中,若ABC ∆在第一象限,则ABC ∆关于x 轴对称的图形所在的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限(2019厦门八上质检5)若AD 是ABC ∆的中线,则下列结论正确的是( )A .BD CD =B .AD BC ⊥ C .BAD CAD ∠=∠ D . BD CD =且AD BC ⊥ (2019厦门八上质检6)运用完全平方公式222()2a b a ab b +=++计算21()2x +,则公式中的2ab 是( )A.12x B . x C . 2x D . 4x (2019厦门八上质检7)甲完成一项工作需要n 天,乙完成该项工作需要的时间比甲多3天,则乙一天能完成的工作量是该项工作的( ) A .3nB .13n C . 113n + D . 13n + (2019厦门八上质检8)如图1,点,F C 在BE 上,ABC DEF ≌,AB 和DE ,AC 与DF 是对应边,,AC DF 交于点M ,则AMF ∠等于( ).2A B ∠ .2B ACB ∠ .C A D +∠∠ D.B ACB +∠∠(2019厦门八上质检9)在半径为R 的圆形钢板上,挖去四个半径都为r 的小圆.若16.8R =,剩余部分的面积为272π,则r 的值( ).A 3.2 .B 2.4 .C 1.6 .D 0.8(2019厦门八上质检10)在平面直角坐标系xOy 中,点()0,A a ,(),12B b b -,()23,0C a -,012a b <<<,若OB 平分AOC ∠,且AB BC =,则a b +的值为( ).A 9或12 .B 9或11 .C 10或11 .D 10或12 二、填空题(本大题有6小题,每小题每题4分,共24分) (2019厦门八上质检11)计算下列各题:()421xx x ÷=()()22=ab(2019厦门八上质检12)要使分式13x -有意义,x 应满足的条件是 (2019厦门八上质检13)如图2,在ABC 中,°90C =∠,°=30A ∠,4AB =,则BC 的长为(2019厦门八上质检14)如图3,在ABC 中,=60B AD ∠︒,平分BAC ∠,点E 在AD 延长线上,且EC AC ⊥.若=50E ∠︒,则ADC ∠的度数是(2019厦门八上质检15)如图4,已知,,,E F P Q 分别是长方形纸片()ABCD AD AB >各边的中点,将该纸片对着,使顶点,B D 重合,则折痕所在的直线可能是 .(2019厦门八上质检16)已知,a b 满足22(2)()442a b a b ab b b a a -+-++=-,且2a b ≠,则a 与b 的数量关系是 .三、解答题(本大题有9小题,共86分)(2019厦门八上质检17)(本题满分12分)计算: (1)23105;mn mn m n ÷⋅ (2)(32)(5)x x +-.(2019厦门八上质检18)(本题满分7分)如图5,在ABC 中,=60B ∠︒,过点C 作//,CD AB 若60ACD ∠=︒,求证:ABC 是等边三角形.(2019厦门八上质检19)(14分)化简并求值: (1),)42()12(22+--a a 其中;234=+a (2),4331232-+÷⎪⎭⎫ ⎝⎛+-m m m 其中4=m(2019厦门八上质检20)(7分)如图6,已知D CF AB ,//是AB 上一点,DF 交AC 于点E ,若CF BD AB +=,求证:CFE ADE ∆≅∆(2019厦门八上质检21)(7分)在平面直角坐标系xOy 中,点A 在第一象限,点B A 、关于y 轴对称。
2020-2021学年福建省厦门市湖里中学八年级(上)期中数学试卷 解析版
2020-2021学年福建省厦门市湖里中学八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.2.三角形的重心是()A.三个内角的平分线的交点B.三条边上的中线的交点C.三条边的垂直平分线的交点D.三条边上的高所在的直线的交点3.已知点P的坐标是(3,﹣1),则点P关于x轴的对称点坐标在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列三角形存在的是()A.底为5cm,腰为2cm的等腰三角形B.边长为3cm、4cm、5cm的三角形C.底角为90°的等腰三角形D.外角和是180°的三角形5.如图所示,根据条件不能判断△ABD≌△ACD的是()A.在△ABD和△ACD中,AB=AC,BD=CDB.在△ABD和△ACD中,∠B=∠C=90°,BD=CDC.AD平分∠BAC,AB=ACD.AD平分∠BAC,BD=CD6.210+(﹣2)10所得的结果是()A.0B.210C.211D.2207.下列说法错误的是()A.五边形有5条对称轴B.等腰三角形的一条对称轴为底边的中线所在的直线C.角和线段都是轴对称图形D.顶角和底角相等的等腰三角形是等边三角形8.若3m+1=243,则3m+2的值为()A.243B.245C.729D.21879.已知△ABC与△ADC的边BC与AD交于点E,∠B=∠D=90°,EB=DE,∠ACB=30°,F为AC的中点,连接EF,则下列说法正确的有()(1)△AEC是等腰三角形;(2)EF垂直平分AC;(3)CE平分∠ACD;(4)这个图形是轴对称图形;(5)EF=AD.A.2个B.3个C.4个D.5个10.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.①②③B.①②④C.②③④D.①③④二、填空题(11题每空1分,其他题目每小题6分,共26分)11.(6分)填空:(1)x2•x=;(2)(m2)3=;(3)(﹣m2n)3=;(4)3ab•2b2=;(5)(π﹣3)0=;(6)﹣8a2b3÷4b2=.12.一个正多边形的内角和为1080度,则它的边数为边.13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=度.14.(1)若(2x)2=2x+1,则x=;(2)计算:(0.25)4×45=.15.在平面直角坐标系中,A为直线y=1上一点,点B的坐标为(2,4),坐标系里存在点C(7,m)满足AB=AC且AB⊥AC,则m=.16.如图,已知正六边形ABCDEF中,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为.三.解答题(共84分)17.(20分)(1)解方程组;(2)解不等式组;(3)计算:a•a3•a5+(2a3)3;(4)计算:(x+3)(x+4).18.(7分)已知A、D、C、F在一条直线上,BC与DE交于点G,AD=CF,BC∥EF且BC=EF,求证:△ABC≌△DEF.19.(7分)先化简再求值:(1)3x(x﹣1)﹣x(2x+5),其中x=﹣1;(2)2xy(x3y+3x)+xy(x3y﹣x),其中x2y=3.20.(7分)如图,AD与BC交于点O,OA=OD,OB=OC,OE⊥AB垂足为E,OF⊥CD 垂足为F.(1)求证:AB=CD;(2)求证:E、O、F共线.21.(12分)完成下列尺规作图:(1)如图(1),已知在Rt△ABC中,∠C=90°,作∠C的平分线;(2)如图(2),已知∠B=60°,AB=BC,作∠A=30°;(3)如图(3),已知AB=BC,∠A=15°,在射线AB上找到一点D,使得CD=BC;(4)如图(4),已知AB∥CD,点P在AC上,在射线AB上找到一点Q,使得P到CD 的距离等于P到QC的距离.22.(7分)已知22m=16,23n=27,2a=12(其中m,n,a为任意实数)(1)m=,2n=;(2)先化简再求值:x(x+a)﹣x(x+n),其中x=2;(3)若6b=12,请判断(a+b)4×(ab)4是否为同底数幂的乘法运算,试说明理由.23.(10分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.24.(14分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,BD平分∠ABC交AC于点D,F为BC上一点,连接AF交BD于点E.(ⅰ)若AB=BF,求证:BD垂直平分AF;(ⅱ)若AF⊥BD,求证:AD=CF.(2)如图2,BD平分∠ABC交AC于点D,CE⊥BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,F为BC上一点,∠EFC=∠B,CE⊥EF,垂足为E,EF与AC交于点D.写出线段CE和FD的数量关系(不要求写出过程).2020-2021学年福建省厦门市湖里中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都是轴对称图形;C、不是轴对称图形.故选:C.2.三角形的重心是()A.三个内角的平分线的交点B.三条边上的中线的交点C.三条边的垂直平分线的交点D.三条边上的高所在的直线的交点【分析】直接利用三角形重心的定义进行判断.【解答】解:三角形的重心是三条边上的中线的交点.故选:B.3.已知点P的坐标是(3,﹣1),则点P关于x轴的对称点坐标在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】关于x轴对称的点的横坐标相同,纵坐标互为相反数,据此可得点P关于x轴的对称点的位置.【解答】解:∵点P的坐标为(3,﹣1),∴点P关于x轴的对称点的坐标为(3,1),它在第一象限.故选:A.4.下列三角形存在的是()A.底为5cm,腰为2cm的等腰三角形B.边长为3cm、4cm、5cm的三角形C.底角为90°的等腰三角形D.外角和是180°的三角形【分析】根据等腰三角形的性质,三角形三边关系定理,三角形外角和定理求解即可.【解答】解:A、∵2+2<5,∴底为5cm,腰为2cm的等腰三角形不存在;B、∵3+4>5,∴边长为3cm、4cm、5cm的三角形存在;C、∵等腰三角形的两个底角相等,而两个底角的和为180°,与三角形三个内角的和为180°相矛盾,∴底角为90°的等腰三角形不存在;D、∵三角形的外角和为360°,∴外角和是180°的三角形不存在.故选:B.5.如图所示,根据条件不能判断△ABD≌△ACD的是()A.在△ABD和△ACD中,AB=AC,BD=CDB.在△ABD和△ACD中,∠B=∠C=90°,BD=CDC.AD平分∠BAC,AB=ACD.AD平分∠BAC,BD=CD【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据条件,可以根据SSS判断△ABD≌△ACD,本选项不符合题意.B、根据条件,可以根据HL判断△ABD≌△ACD,本选项不符合题意.C、根据条件,可以根据SAS判断△ABD≌△ACD,本选项不符合题意.D、SSA,不能判定三角形全等,本选项符合题意.故选:D.6.210+(﹣2)10所得的结果是()A.0B.210C.211D.220【分析】直接提取公因式210,再利用同底数幂的乘法运算法则得出答案.【解答】解:210+(﹣2)10=210+210=210×(1+1)=211.故选:C.7.下列说法错误的是()A.五边形有5条对称轴B.等腰三角形的一条对称轴为底边的中线所在的直线C.角和线段都是轴对称图形D.顶角和底角相等的等腰三角形是等边三角形【分析】分别根据轴对称图形的定义,等腰三角形的性质以及等边三角形的判断逐一判断即可.【解答】解:A、正五边形有5条对称轴,一般五边形不是轴对称图形,属于原说法错误,故本选项符合题意;B、等腰三角形的一条对称轴为底边的中线所在的直线,说法正确,故本选项不符合题意;C、角和线段都是轴对称图形,说法正确,故本选项不符合题意;D、顶角和底角相等的等腰三角形是等边三角形,说法正确,故本选项不符合题意;故选:A.8.若3m+1=243,则3m+2的值为()A.243B.245C.729D.2187【分析】同底数幂相乘,底数不变,指数相加,据此解答即可.【解答】解:∵3m+1=243,∴3m+2=3m+1×3=243×3=729.故选:C.9.已知△ABC与△ADC的边BC与AD交于点E,∠B=∠D=90°,EB=DE,∠ACB=30°,F为AC的中点,连接EF,则下列说法正确的有()(1)△AEC是等腰三角形;(2)EF垂直平分AC;(3)CE平分∠ACD;(4)这个图形是轴对称图形;(5)EF=AD.A.2个B.3个C.4个D.5个【分析】证明△AEB≌△CED,推出EA=EC,利用等腰三角形的性质以及角平分线的性质定理即可解决问题.【解答】解:在△ABE和△CDE中,,∴△AEB≌△CED(ASA),∴AE=EC,∴△AEC是等腰三角形,故(1)正确,∵AF=FC,∴EF⊥AC,∴EF垂直平分线段AC,故(2)(4)正确,∵EA=EC,∴∠EAC=∠ECA=30°,∵∠D=90°,∴∠ACD=60°,∴∠ACE=∠ECD=30°,∴CE平分∠ACD,∵EF⊥CF,ED⊥CD,∠ECD=∠ECF,∴EF=ED,∵∠AFE=90°,∠EAF=30°,∴AE=2EF,∴AD=AE+DE=2EF+EF=3EF,故⑤正确,故选:D.10.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.①②③B.①②④C.②③④D.①③④【分析】根据等腰三角形的判定对①②③④个选项逐一分析,只有②不能被一条直线分成两个小等腰三角形.【解答】解:①、中作∠B的角平分线即可;③、过A点作BC的垂线即可;④、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有②选项不能被一条直线分成两个小等腰三角形.故选:D.二、填空题(11题每空1分,其他题目每小题6分,共26分)11.(6分)填空:(1)x2•x=x3;(2)(m2)3=m6;(3)(﹣m2n)3=﹣m6n3;(4)3ab•2b2=6ab3;(5)(π﹣3)0=1;(6)﹣8a2b3÷4b2=﹣2a2b.【分析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)直接利用幂的乘方运算法则计算得出答案;(3)直接利用积的乘方运算法则计算得出答案;(4)直接利用单项式乘单项式计算得出答案;(5)直接利用零指数幂的性质计算得出答案;(6)直接利用单项式除以单项式计算得出答案.【解答】解:(1)x2•x=x3;(2)(m2)3=m6;(3)(﹣m2n)3=﹣m6n3;(4)3ab•2b2=3×2ab•b2=6ab3;(5)(π﹣3)0=1;(6)﹣8a2b3÷4b2=(﹣8÷4)a2b3÷b2=﹣2a2b.故答案为:(1)x3;(2)m6;(3)﹣m6n3;(4)6ab3;(5)1;(6)﹣2a2b.12.一个正多边形的内角和为1080度,则它的边数为八边.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设它是n边形,则(n﹣2)•180°=1080°,解得n=8.故答案为八.13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=10度.【分析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.故答案为:10.14.(1)若(2x)2=2x+1,则x=1;(2)计算:(0.25)4×45=4.【分析】(1)根据幂的乘方运算法则可得关于x的一元一次方程,解方程即可求出x的值;(2)积的乘方,等于每个因式乘方的积,据此计算即可.【解答】解:(1)∵(2x)2=2x+1,∴2x=x+1,解得x=1,故答案为:1;(2)(0.25)4×45=(0.25)4×44×4==14×4=1×4=4.故答案为:4.15.在平面直角坐标系中,A为直线y=1上一点,点B的坐标为(2,4),坐标系里存在点C(7,m)满足AB=AC且AB⊥AC,则m=3.【分析】如图,设直线y=1与直线x=7交于点N,过点B作直线y=1垂线,垂足为M.证明△BMA≌△ANC(AAS),推出BM=AN=3,AM=CN=2,可得结论.【解答】解:如图,设直线y=1与直线x=7交于点N,过点B作直线y=1垂线,垂足为M.由题意B(2,4),M(2,1),N(7,1),可得BM=3,MN=5,∵∠BMA=∠BAC=∠ANC=90°,∴∠B+∠BAM=90°,∠BAM+∠CAN=90°,∴∠B=∠CAN,在△BMA和△ANC中,,∴△BMA≌△ANC(AAS),∴BM=AN=3,AM=CN=2,∴C(7,3),∴m=3,故答案为:3.16.如图,已知正六边形ABCDEF中,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为60°.【分析】如图,连接PF,BF,BF交GH于点P′,连接AP′.首先证明当点P与点P′重合时,P A+PB的值最小,利用等腰三角形的性质求出∠AFB=30°即可解决问题.【解答】解:如图,连接PF,BF,BF交GH于点P′,连接AP′.∵正六边形ABCDEF中,G,H分别是AF和CD的中点,∴GH是正六边形的对称轴,∴P A=PF,∴P A+PB=PB+PF,∵PB+PF≥BF,∴当点P与点P′重合时,P A+PB的值最小,∵∠BAF=120°,AB=AF,∴∠ABF=∠AFB=30°,∵∠FGP′=90°,∴∠FP′G=60°,故答案为60°.三.解答题(共84分)17.(20分)(1)解方程组;(2)解不等式组;(3)计算:a•a3•a5+(2a3)3;(4)计算:(x+3)(x+4).【分析】(1)直接利用待定系数法解方程组得出答案;(2)直接利用不等式组的解法得出答案;(3)直接利用同底数幂的乘法运算、积的乘方运算法则,分别化简得出答案;(4)直接利用多项式乘多项式计算得出答案.【解答】解:(1),把①代入②得:m+2m=6解得:m=2,则n=4,故方程组的解为:;(2),解①得:a<﹣3,解②得:a≥﹣4,故不等式组的解集为:﹣4≤a<﹣3;(3)a•a3•a5+(2a3)3=a9+8a9=9a9;(4)(x+3)(x+4)=x2+4x+3x+12=x2+7x+12.18.(7分)已知A、D、C、F在一条直线上,BC与DE交于点G,AD=CF,BC∥EF且BC=EF,求证:△ABC≌△DEF.【分析】根据SAS证明三角形全等即可.【解答】证明:∵AD=CF,∴AD+DC=DC+CF,即AC=DF,∵BC∥EF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DFE(SAS).19.(7分)先化简再求值:(1)3x(x﹣1)﹣x(2x+5),其中x=﹣1;(2)2xy(x3y+3x)+xy(x3y﹣x),其中x2y=3.【分析】(1)先算乘法,再合并同类项,最后求出答案即可;(2)先算乘法,再合并同类项,最后求出答案即可.【解答】解:(1)3x(x﹣1)﹣x(2x+5)=3x2﹣3x﹣2x2﹣5x=x2﹣8x,当x=﹣1时,原式=(﹣1)2﹣8×(﹣1)=9;(2)2xy(x3y+3x)+xy(x3y﹣x)=2x4y2+6x2y+x4y2﹣x2y=3x4y2+5x2y,当x2y=3时,原式=3×32+5×3=42.20.(7分)如图,AD与BC交于点O,OA=OD,OB=OC,OE⊥AB垂足为E,OF⊥CD 垂足为F.(1)求证:AB=CD;(2)求证:E、O、F共线.【分析】(1)证明△AOB≌△DOC(SAS),即可.(2)证明△OEB≌△OFC(AAS),推出∠EOB=∠COF,由∠EOB+∠EOC=180°,推出∠EOC+∠COF=180°,可得结论.【解答】证明:(1)在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD.(2)∵△AOB≌△DOC(SAS),∴∠B=∠C,∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFC=90°,在△OEB和△OFC中,,∴△OEB≌△OFC(AAS),∴∠EOB=∠COF,∵∠EOB+∠EOC=180°,∴∠EOC+∠COF=180°,∴E、O、F共线.21.(12分)完成下列尺规作图:(1)如图(1),已知在Rt△ABC中,∠C=90°,作∠C的平分线;(2)如图(2),已知∠B=60°,AB=BC,作∠A=30°;(3)如图(3),已知AB=BC,∠A=15°,在射线AB上找到一点D,使得CD=BC;(4)如图(4),已知AB∥CD,点P在AC上,在射线AB上找到一点Q,使得P到CD 的距离等于P到QC的距离.【分析】(1)如图1中,作∠ACB的角平分线CP即可.(2)如图2中,作AT⊥BC于T即可.(3)如图3中,作CD⊥AB交AB的延长线于点D.(4)如图4中,点Q即为所求.【解答】解:(1)如图1中,射线CP即为所求.(2)如图2中,∠ABT即为所求.(3)如图3中,线段CD即为所求.(3)如图4中,点Q即为所求.22.(7分)已知22m=16,23n=27,2a=12(其中m,n,a为任意实数)(1)m=2,2n=3;(2)先化简再求值:x(x+a)﹣x(x+n),其中x=2;(3)若6b=12,请判断(a+b)4×(ab)4是否为同底数幂的乘法运算,试说明理由.【分析】(1)根据幂的乘方法则计算;(2)根据同底数幂的除法法则得到a﹣n=2,根据整式的混合运算法则把原式化简,把已知数据代入计算即可;(3)根据幂的乘方法则得到(b﹣1)(a﹣1)=1,整理得到ab=a+b,根据同底数幂的乘法法则解答即可.【解答】解:(1)∵24=16,22m=16,∴2m=4,解得,m=2,∵33=27,23n=(2n)3=27,∴2n=3,故答案为:2;3;(2)∵2n=3,2a=12∴2a÷2n=4,即2a﹣n=22,∴a﹣n=2,∴x(x+a)﹣x(x+n)=x2+xa﹣x2﹣xn=xa﹣xn=x(a﹣n),当x=2时,原式=2×2=4;(3)(a+b)4×(ab)4是同底数幂的乘法运算,理由如下:∵6b=12,∴6b=6×2,∴6b﹣1=2,∵2a=12,∴2a﹣1=6,∴(6b﹣1)a﹣1=6,∴(b﹣1)(a﹣1)=1,整理得,ab=a+b,∴(a+b)4×(ab)4是同底数幂的乘法运算.23.(10分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【分析】(1)由E为等边三角形AB边的中点,利用三线合一得到CE垂直于AB,且CE 为角平分线,由ED=EC,利用等边对等角及等腰三角形的性质得到一对角相等,利用等角对等边即可得;(2)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,由BC+DB求出CD 的长即可.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴2BD=BC;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.24.(14分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,BD平分∠ABC交AC于点D,F为BC上一点,连接AF交BD于点E.(ⅰ)若AB=BF,求证:BD垂直平分AF;(ⅱ)若AF⊥BD,求证:AD=CF.(2)如图2,BD平分∠ABC交AC于点D,CE⊥BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,F为BC上一点,∠EFC=∠B,CE⊥EF,垂足为E,EF与AC交于点D.写出线段CE和FD的数量关系(不要求写出过程).【分析】(1)(ⅰ)由等腰三角形的性质可得出答案;(ⅱ)过点C作CM⊥AF交AF的延长线于点M,证明△ABE≌△CAM(AAS),由全等三角形的性质得出AE=CM,证明△AED≌△CMF(ASA),则可得出AD=CF;(2)延长BA、CE相交于点F,利用“角边角”证明△BCE和△BFE全等,根据全等三角形对应边相等可得CE=EF,根据等角的余角相等求出∠ABD=∠ACF,然后利用“角边角”证明△ABD和△ACF全等,根据全等三角形对应边相等可得BD=CF,然后求解即可.(3)过点F作FG∥BA,交AC于H,交CE的延长线于点G.证明△CEF≌△GEF(ASA),由全等三角形的性质得出CE=GE,证明△CGH≌△FDH(ASA),得出CG=DF.则可得出结论.【解答】(1)(ⅰ)证明:∵AB=BF,BD平分∠ABC,∴BE⊥AF,AE=EF,即BD垂直平分AF;(ⅱ)证明:过点C作CM⊥AF交AF的延长线于点M,∵∠BAC=90°,AF⊥BD,∴∠CAM=∠ABE,在△ABE和△CAM中,,∴△ABE≌△CAM(AAS),∴AE=CM,∵AF⊥BD,AF⊥CM,∴BD∥CM,∴∠FCM=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠FCM=∠ABD,∴∠FCM=∠EAD,在△AED和△CMF中,,∴△AED≌△CMF(ASA),∴AD=CF;(2)解:BD=2CE.理由如下:如图2,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE.(3)解:CE=FD.过点F作FG∥BA,交AC于H,交CE的延长线于点G.∵FG∥AB,∠EFC=∠B,∴∠EFC=∠GFE,又∵CE⊥FE,∴∠CEF=∠GEF=90°,在△CEF和△GEF中,,∴△CEF≌△GEF(ASA),∴CE=GE,即CE =CG,∵FG∥AB,∠A=90°,AB=AC,∴∠CHG=∠DHF=90°,CH=FH.又∵∠GCH=∠DFH,∴△CGH≌△FDH(ASA),∴CG=DF.∴CE =FD.31 / 31。
2015—2016学年(上)厦门市八年级质量检测数学参考答案
2015—2016学年(上)厦门市八年级质量检测数学参考答案二、填空题(本大题共6小题,每题4分,共24分) 11.50.12.a 2-1.13.110. 14.6a .15.32.16.2127.17.(本题满分7分) 解:(2x +1)(x +3)=2x 2+6x +x +3……………………………5分 =2x 2+7x +3……………………………7分 18.(本题满分7分)证明:∵AB =DC ,BF =CE ,∠B =∠C ,……………………………3分∴△ABF ≌△DCE .……………………………5分∴AF =DE .……………………………7分 19.(本题满分7分) 解:x -1x +1+x 2+1x +1=x 2+x x +1……………………………4分 =x .……………………………7分20.(本题满分7分)解:解不等式x +1>2,得x >1.……………………………3分解不等式1+2x3≤x -1,得x ≥4.……………………………6分∴不等式组⎩⎪⎨⎪⎧x +1>2,1+2x 3≤x -1的解集是x ≥4.……………………………7分21.(本题满分7分)解:正确画出坐标系;…………………1分 正确画出△ABC (正确画各顶点,每点得1分);…………………4分EFDCBA正确画出△A 1B 1C 1(正确画各顶点,每点得1分).…………………7分22.(本题满分7分)解:当腰长为5cm 时,底边长是20-2×5=10cm ,…………………2分∵腰长+腰长=10cm =底边长,不合题意舍去;…………………3分当底边长5cm 时,腰长是20-52=7.5cm ,…………………5分∵7.5×2>5,7.5+5>7.5,…………………6分∴此等腰三角形的腰长是7.5cm ,底边长是5cm .…………………7分 23.(本题满分7分)证明:过点D 作DM ⊥PE ,DN ⊥PF ,垂足分别为M ,N . 则有DM =DN .…………………2分 ∵PD =PD , ∴Rt △DMP ≌Rt △DNP .…………………3分 ∴∠DPM =∠DPN .…………………4分 ∵PE ∥AB ,∴∠DPM =∠DAB .…………………5分 ∵∠PFD =∠C , ∴PF ∥AC .∴∠DPF =∠DAC .…………………6分 ∴∠BAD =∠DAC .∴AD 是∠BAC 的平分线.∴点D 到AB 和AC 的距离相等.…………………7分24.(本题满分7分)设甲的速度是x km/h ,则乙的速度是4x km/h . 设乙追上上甲的时间是a h . 由题意得x (a +32)=4xa .……………………………3分解得a=12(h ).……………………………4分当乙追上上甲时,乙走的路程是2x km .……………………………5分 ∵x ≤10,∴2x ≤20.∴2x <25.……………………………6分∴乙能在途中超过甲.……………………………7分 25.(本题满分7分)假设3是有理数,……………………………1分AB CFMN PD那么存在两个互质的正整数m,n,使得3=n m,于是有3m2=n2.……………………………3分∵3m2是3的倍数,∴n2也是3的倍数.∴n是3的倍数.……………………………4分设n=3t(t是正整数),则n2=9t2,即9t2=3m2.∴3t2=m2.∴m也是3的倍数.……………………………5分∴m,n都是3的倍数,不互质,与假设矛盾.……………………………6分∴假设错误.∴3不是有理数.……………………………7分26.(本题满分11分)(1)(本小题满分4分)解:∵∠B=60°,∠BDA=∠BAD,∴∠BDA=∠BAD=60°.………………………1分∴AB=AD.………………………2分∵CD=AB,∴CD=AD.∴∠DAC=∠C.………………………3分∴∠BDA=∠DAC+∠C=2∠C.∵∠BDA=60°,∴∠C=30°.………………………4分(2)(本小题满分7分)证明:延长AE至M,使得EM=AE.………………1分连接DM.∵EM=AE,BE=DE,∠AEB=∠MED.∴△ABE≌△MDE.………………2分∴∠B=∠MDE,AB=DM.………………3分∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,………………4分又∵DM=AB=CD,AD=AD,∴△MAD≌△CAD.………………5分∴∠MAD=∠CAD.………………6分∴AD是∠EAC的平分线.………………7分27.(本题满分12分)(1)(本小题满分5分)解:∵p+q=4,即a3+a-3+a3-a-3=4,………………2分∴2a3=4.………………3分DE C BAM∴a 3=2.∴a -3=12.………………4分∴p -q =a 3+a -3-a 3+a -3 =2a -3=1.………………5分 (2)本小题满分5分) ∵q 2=22n +122n-2=(2n -12n )2,………………6分又∵n ≥1, ∴2n -12n >0.∵a 是大于1的实数,∴a 3-a -3>0.即q >0.同理p >0. ∴q =2n -12n .………………7分∵p 2-q 2=(a 3+a -3)2-(a 3-a -3)2 =4.………………8分 ∴p 2=q 2+4.=22n +122n +2=(2n +12n )2.∴p =2n +12n .………………9分∵p +q =2a 3,即2×2n =2a 3, ∴a 3=2n .∴p -(a 3+14)=12n -14.当n =1时, ∵12n -14=12>0, ∴p >a 3+14.………………10分当n =2时, 12n -14=0.∴p =a 3+14.………………11分当n >2,且n 是整数时, ∵12n ÷14=22-n <1, ∴12n -14<0.即p <a 3+14.………………12分 声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。
人教版初中数学八年级上册期末试卷及答案
人教版初中数学八年级上册期末试卷及答案2013-2014学年度第一学期期末质量检查八年级数学科试卷说明】本卷满分120分,考试时间100分钟。
一、选择题(本大题共10小题,每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A。
1,2,6B。
2,2,4C。
1,2,3D。
2,3,42.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A。
直角三角形B。
锐角三角形C。
钝角三角形D。
等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A。
60°B。
70°C。
80°D。
90°4.观察下列图标,从图案看是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个5.若分式的值为x=-2,则()x+2A。
x=-2B。
x=±2C。
x=2D。
x=06.计算2x/(x-2)的结果是()A。
B。
1C。
-1D。
x7.下列各运算中,正确的是()A。
3a+2a=5aB。
(-3a)²=9a²C。
a÷a=1D。
(a+2)²=a²+4a+48.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数是()A。
70°B。
55°C。
50°D。
40°9.如图,在四边形ABCD中,AB=AD,CB=CD,若连结AC、BD相交于点O,则图中全等三角形共有()A。
1对B。
2对C。
3对D。
4对10.已知(m-n)=8,(m+n)=2,则m+n的值为()A。
10B。
6C。
5D。
3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a-4b=(a+2b)()。
12.正十边形的每个内角的度数为()。
13.若m+n=1,mn=2,则(2/m+1/n)的值为()。
14.已知实数x,y满足|x-4|+(y-8)²=(),则以x,y的值为两边长的等腰三角形的周长是()。
最新-学年八(上)厦门市八年级质量检测数学试卷资料
2016—2017学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列四个标志中,是轴对称图形的是 A .B .C .D .2.4的算术平方根是A .2B .-2C .D.3.下列计算结果为a 5的是A .a 2+a 3B .a 2· a 3C .(a 3)2D .153a a ÷4.分式211x x --的值为0,则x 的值为A .0B .1C .﹣1D .5.下列四组值中不是..二元一次方程21y x =+的解的是 A .01x y =⎧⎨=⎩ B . 13x y =⎧⎨=⎩C .120x y ⎧=-⎪⎨⎪=⎩D .11x y =-⎧⎨=⎩6.下列等式从左到右的变形中,属于因式分解的是A .(x +1)(x ﹣1)=x 2﹣1B .x 2+2x +1=(x +1)2C .x 2+2x ﹣1=x (x +2)﹣1D .x (x ﹣1) =x 2﹣x7.若2(1)(3)x x x ax b -+=++,则a ,b 的值分别为A .a =2,b =3B .a =﹣2,b =﹣3C .a =﹣2,b =3D .a =2,b =﹣38.在△ABC 中, AB =AC =4,∠B =30°,点P 是线段 BC 上一动点,则线段AP 的长可能是A .1 B. C.D.9.若02017=a ,2201620172015-⨯=b ,20172016)23()32(⨯-=c ,则下列a ,b ,c 的大小关系正确的是A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.如图1,在△ABC 中, AB =AC ,∠BAC =120°, AD ⊥BC 于点D ,AE ⊥AB交BC 于点E .若 229nm S ABC +=∆,mnS ADE =∆,则m 与n 之间的数量关系是A .m =3nB .m =6nC .n =3mD .n =6m二、填空题(本大题有6小题,每小题4分,共24分) 11.若分式12x -有意义,则x 的取值范围为 . 12.某细胞的直径约为0.000102毫米,用科学记数法表示0.000102为 . 13.若点A (a ,1)与点B (3,b )关于x 轴对称,则a b =________.14.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为 . 15.观察下列等式:①2×4+1=32 ,②5×7+1=62,③8×10+1=92,……按照以上规律,第4个等式是 ,第n 个等式是 . 16. 如图2,在△ABC 中,∠B =30°,点D 是BC 的中点,DE ⊥BC 交AB 于点E , 点O 在DE 上,OA =OC ,OD =1, OE =2.5,则BE = ,AE = . 三、解答题(本大题有11小题,共86分) 17.(本题满分8分,每小题4分)计算:(1) (1)(21)x x ++; 34223x x y y÷()18.(本题满分8分) 19.(本题满分8分)E D CBA图1C如图3,AB =AC ,AD =AE .求证:∠B =∠C . 解不等式组 -20,3 1.2x x x >⎧⎪⎨-≤+⎪⎩20. (本题满分8分)在平面直角坐标系中,已知△ABC 的三个顶点为A (3,0),B (1,1),C (0,-2),将△ABC 关于y 轴对称得到111C B A ∆.请画出平面直角坐标系,并在其中画出△ABC 和 111C B A ∆. 21.(本题满分8分)解方程1222x x x+=--,并说明“去分母”这一步骤的作用.22.(本题满分10分) EDCB A 图3某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨29.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5 m 3,求该市2015年居民用水的价格.23.(本题满分10分)已知43155m m m -=-.(1)试问:2m 的值能否等于2?请说明理由;(2)求221m m +的值.24. (本题满分12分)在四边形ABCD 中,∠B =90°,点E 在BC 边上.(1)如图4,∠C =90°,AE =DE ,AB =EC .求∠ADE 的度数; (2)如图5,AB =2,AE 平分∠BAD ,DE 平分∠ADC ,∠AED =105°.设CD =x ,CE =y ,请用含有x ,y 的式子表示AD .EDCBAEDCBA图4图525. (本题满分14分)在平面直角坐标系中,O 为坐标原点,点A (a ,a )在第一象限,点B (0,3),点C (c ,0),其中0<c <3,∠BAC =90°.(1)根据题意,画出示意图;(2)若a =2,求OC 的长;(3)已知点D 在线段OC 上,若 CAD S OC OB ∆=-822,四边形OBAD 的面积为845,求a a -2的值.。
福建省厦门市2020-2021学年八年级上学期期中数学试题(word版 含答案)
福建省厦门市2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣12)﹣2=4 D.(﹣2)0=﹣13.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17 4.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个5.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°6.已知正五边形的对称轴是过任意一个顶点与该顶点对边中点的直线.如图所示的正五边形中相邻两条对称轴所夹锐角α的度数为()A.75°B.72°C.70°D.60°7.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS8.如图,点E在正方形ABCD的对角线AC上,且2EC AE=,Rt FEG∆的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A .223aB .214aC .25a 9 D .249a 9.如图,AD 是△ABC 的角平分线,则AB :AC 等于( )A .BD :CDB .AD :CDC .BC :AD D .BC :AC二、填空题 10.如图,已知△ABC ≌△ADE ,D 是∠BAC 的平分线上一点,且∠BAC =60°,则∠CAE =____.11.如图,△ABC ≌△ADE ,①若△ABC 周长为24,AD =6,AE =9,则BC =______;②若∠BAD =42°,则∠EFC =______.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是_____.13.如图△ABC 中,AD 平分∠BAC ,AB=4,AC=2,且△ABD 的面积为3,则△ACD 的面积为____.14.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D,DE ⊥AB 于点E ,若AB =5 cm ,则△BDE 的周长为________.15.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=_____度.16.若a2n=5,b2n=16,则(ab)n=______.17.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_____个.三、解答题18.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)19.已知:∠1=∠2,∠3=∠4.求证:AC=AD20.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.21.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB =10,S△ABD=15,求CD的长.22.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.23.若x m+n=12,x n=3,(x≠0),求x2m+n的值.24.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.25.如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB 的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE 于N,AE与BD交于F(1)求证:AE=BD;(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.26.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从B点出发以2cm/秒的速度向A点运动,点Q从A点出发以1cm/秒的速度向C点运动,设P、Q分别从B、A同时出发,运动时间为t秒.解答下列问题:(1)用含t的代数式表示线段AP,AQ的长;(2)当t为何值时△APQ是以PQ为底的等腰三角形?PQ BC?(3)当t为何值时//参考答案1.B【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A .不是轴对称图形,故本选项错误;B .是轴对称图形,故本选项正确;C .不是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项错误.故选B .2.C【详解】A.3336233a a a a +=≠ ,错误;B.2356()a a a a -⋅=≠- ,错误;C.21()42--= ,正确;D.0(2)11-=≠- ,错误.故选C.3.D【详解】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想4.D【详解】试题解析:在△ABD 与△CBD 中, {AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.5.A【详解】试题分析:∵AB ∥ED ,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE ,∴△ADE 是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB ﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD ,∴∠B=∠ACB ,∠ACD=∠ADC ,在四边形ABCD 中,∠BCD=12(360°﹣∠BAD )=12(360°﹣60°)=150°.故选A .考点:1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.6.B【详解】试题分析:根据正五边形的对称性及周角的度数即可求得结果.由图可得360572α=︒÷=︒,故选B.考点:正五边形的对称性点评:本题属于基础应用题,只需学生熟练掌握正五边形的对称性,即可完成.7.C【详解】试题分析:如图,连接EC 、DC .根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.8.D【分析】过E 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,△EPM ≌△EQN ,利用四边形EMCN 的面积等于正方形PCQE 的面积求解.【详解】解:如图,过点E 作EP BC ⊥于点P ,EQ CD ⊥于点Q ,∵四边形ABCD 是正方形,∴90BCD ︒∠=,又∵90EPM EQN ︒∠=∠=,∴90PEQ ︒∠=,∴90PEM MEQ ︒∠+∠=,∴四边形PCQE 为矩形.在Rt FEG ∆中,90NEF QEN MEQ ︒∠=∠+∠=,∴PEM QEN ∠=∠.∵CA 平分BCD ∠,90EPC EQC ︒∠=∠=,∴EP EQ =,∴四边形PCQE 是正方形.在EPM ∆和EQN ∆中,PEM QEN EP EQ EPM EQN ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴EPM EQN ∆∆≌,∴EQN EPM S S ∆∆=,∴四边形EMCN 的面积等于正方形PCQE 的面积.∵正方形ABCD 的边长为a ,∴AC =,又∵2EC AE =,∴EC =, ∴23EP PC a ==, ∴正方形PCQE 的面积为2224339a a a ⨯=, ∴四边形EMCN 的面积为249a . 故选D .【点睛】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM ≌△EQN .9.A【详解】试题分析:如图,过点B 作BE ∥AC 交AD 延长线于点E ,∵BE ∥AC ,∴∠DBE=∠C ,∠E=∠CAD,∴△BDE∽△CDA,∴BD BECD AC=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴AB BDAC CD=,∴AB:AC=BD:CD.故选A.考点:角平分线的性质.10.30°【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=12∠BAC=30°,即可得∠CAE的度数.【详解】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE-∠DAC=60°-30°=30°.故答案为30°.【点睛】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.11.9 42°【分析】①根据全等三角形对应边相等可得AB=AD,AC=AE,再根据三角形的周长的定义列式计算即可得解;②根据全等三角形对应角相等可得∠BAC=∠DAE,∠C=∠E,再求出∠CAE=∠BAD,然后根据三角形的内角和定理可得∠EFC=∠CAE.【详解】解:①∵△ABC≌△ADE,∴AB=AD=6,AC=AE=9,∵△ABC周长为24,∴BC=24-6-9=9;②∵△ABC≌△ADE,∴∠BAC=∠DAE,∠C=∠E,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠CAE=∠BAD=42°,∴∠EFC=∠CAE=42°.故答案为:9;42°.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.AE=AF或∠EDA=∠FDA或∠AED=∠AFD【分析】【详解】①添加条件:AE=AF,证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS),②添加条件:∠EDA=∠FDA,证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,∴△AED≌△AFD (ASA).故答案为AE=AF或∠EDA=∠FDA.13..【详解】试题分析:过点D作DE⊥AB,DF⊥AC,由角平分线的性质可得出DE=DF,再由AB=4,△ABD的面积为3求出DE的长,由AC=2即可得出△ACD的面积.解:过点D作DE⊥AB,DF⊥AC,∵AD平分∠BAC,∴DE=DF,∵AB=4,△ABD的面积为3,∴S△ABD=AB•DE=×4×DE=3,解得DE=;∴DF=,∵AC=2,∴S△ACD=AC•DF=×2×=.故答案为.考点:角平分线的性质.14.5 cm【详解】∵AD平分∠BAC,∠C=90∘,DE⊥AB,∴CD=DE,在△ACD和△AED中, AD=AD,CD=DE,∴△ACD≌△AED(HL),∴AC=AE,∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,∵AB=5cm,∴△BDE的周长=5cm.故答案为5cm.15.30o【详解】试题分析:根据AB=AC,∠A=40°可得:∠ABC=∠C=70°,根据中垂线的性质可得:∠ABD=∠A=40°,则∠DBC=∠ABC -∠ABD=70°-40°=30°. 考点:(1)、等腰三角形;(2)、线段中垂线16.45【分析】由222()n n n a b ab ⎡⎤=⎣⎦,即可求出()n ab 的大小. 【详解】∵2222()()51680n n n n a b ab ab ⎡⎤===⨯=⎣⎦,∴()n ab ==±, 故答案为:45.【点睛】本题主要考查积的乘方的逆用和幂的乘方的逆用,利用平方根的含义解方程,二次根式的化简,熟练掌握上述公式,是解题的关键.17.4【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】如图所示,有4个位置使之成为轴对称图形.故答案为4.【点睛】此题考查轴对称图案,解题关键在于利用对称轴找出对称图案即可.18.见解析.【分析】找出点A 、B 、C 关于直线m 的对称点的位置,然后顺次连接即可.【详解】解:如图所示,△A ′B ′C ′即为△ABC 关于直线m 对称的图形.【点睛】本题考查了利用轴对称变换作图,准确找出点A、B、C的对称点的位置是解题的关键.19.见解析【分析】由∠3=∠4可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【详解】证明:∵∠3=∠4,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,证明△ABC≌△ABD是解本题的关键.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【详解】(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC为等腰三角形,AD⊥BC,故BD=CD,即CB=2CD,又∵△AEF≌△CEB,∴AF=CB=2CD.21.3【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=12AB•DE=12×10•DE=15,解得DE=3.∴CD=3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.22.见解析【详解】试题分析:(1)根据轴对称作图作出即可;(2)根据平移的性质作出A 2C 2,在作出△A 2B 2C 2,使A 2C 2=C 2B 2(答案不唯一).试题解析:(1)△A 1B 1C 1如图所示;(2)线段A 2C 2和△A 2B 2C 2如图所示(符合条件的△A 2B 2C 2不唯一).考点:轴对称作图;平移的性质.23.48【分析】首先利用同底数幂的除法法则求出m x 的值,然后再利用同底数幂的乘法以及幂的乘方的运算法则计算即可.【详解】∵x m +n =12,x n =3,4m m n n m n n x x x x +-+∴==÷=,()22224348m n m n m n x x x x x +∴=⋅=⋅=⨯=.【点睛】本题主要考查同底数幂的乘除法以及幂的乘方,掌握同底数幂的乘除法及幂的乘方的运算法则计算即可.24.见解析.【分析】连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.【详解】证明:如图,连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,即∠CBD=∠CDB,∴CD=CB.【点睛】本题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.25.(1)详见解析;(2)△MNC是等边三角形,理由详见解析.【分析】(1)先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形.【详解】(1)证明:∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE ,∠ACE=∠DCB ,在△ACE 与△DCB 中,∵AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB ,∴AE=BD ;(2)解:△MNC 是等边三角形.理由如下:∵由(1)得,△ACE ≌△DCB ,∴∠CAM=∠CDN ,∵∠ACD=∠ECB=60°,而A 、C 、B 三点共线,∴∠DCN=60°,在△ACM 与△DCN 中,∵CAM NDC AC DC ACM DCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△DCN ,∴MC=NC ,∵∠MCN=60°,∴△MCN 为等边三角形.【点睛】本题考查了等边三角形的判定与性质及全等三角形的判定与性质,掌握全等三角形的判定定理是解题的关键.26.(1)AP =12-2t ,AQ =t ;(2)当t =4s 时△APQ 是以PQ 为底的等腰三角形;(3)当t =3s 时,//PQ BC .【分析】(1)由题意,可知BP =2t ,AP =AB -BP ,AQ =t .(2)若△APQ 是以PQ 为底的等腰三角形,则有AP =AQ ,即12-2t =t ,求出t 即可.(3)若//PQ BC ,则有AQ :AC =AP :AB .再由题意可得∠B =30°,AC =6cm .从而问题可求.【详解】解:(1)∵AB =12,∴由题意得:BP =2t ,AP =AB -BP =12-2t ,AQ =t .(2)∵△APQ 是以PQ 为底的等腰三角形,∴AP =AQ ,即12-2t =t ,解得t =4,即当t =4秒时△APQ 是等腰三角形.(3)∵Rt △ABC 中,∠C =90°,∠A =60°,∴∠B =30°.∵当30QPA B ∠=∠=︒时,有//PQ BC ,2,AP AQ ∴=1222,t t ∴-=∴解得t =3.即当t =3秒时,//PQ BC .【点睛】本题考查等腰三角形的判定和直角三角形的性质等知识点的综合应用能力.。
2021-2022学年八年级第一学期期中考试数学试卷附答案
2021-2022学年八年级上学期期中考试数学试卷一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列判定两个三角形全等的说法中,不正确的是( )A .三角对应相等的两个三角形全等B .三边对应相等的两个三角形全等C .有一边及其对角和另一角对应相等的两个三角形全等D .有一组直角边和一组斜边对应相等的两个直角三角形全等3.等腰三角形的两边长分别为3cm 和7cm ,则周长为( )A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.138.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.49.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3B.10C.12D.15 10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 11.如图,已知AE∥DF,BE∥CF,AC=BD,则下列说法错误的是()A.△AEB≌△DFC B.△EBD≌△FCA C.ED=AF D.EA=EC 12.等边三角形的三条高把这个三角形分成()个直角三角形.A.8B.10C.11D.12二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P(2−m,12m)关于x轴的对称点在第四象限,则m的取值范围为.14.如图,已知∠1=58°,∠B=60°,则∠2=°.15.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了米.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.18.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个等腰三角形的底角度数是.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是.(2)确定由B地到河边l的最短路线的依据是.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ 的形状,并加以证明.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.2021-2022学年八年级上学期期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.下列图形中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.下列判定两个三角形全等的说法中,不正确的是()A.三角对应相等的两个三角形全等B.三边对应相等的两个三角形全等C.有一边及其对角和另一角对应相等的两个三角形全等D.有一组直角边和一组斜边对应相等的两个直角三角形全等解:A、三角对应相等的两个三角形不一定全等,故A选项符合题意;B、三边对应相等的两个三角形全等,故B选项不符合题意;C、有一边及其对角和另一角对应相等的两个三角形全等,故C选项不符合题意;D、有一组直角边和一组斜边对应相等的两个直角三角形全等,故D选项不符合题意;故选:A.3.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm 解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选:B .4.已知∠AOB ,求作射线OC ,使OC 平分∠AOB 作法的合理顺序是( )①作射线OC ;②在OA 和OB 上分别截取OD ,OE ,使OD =OE ;③分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C . A .①②③ B .②①③ C .②③① D .③②①解:角平分线的作法是:在OA 和OB 上分别截取OD ,OE ,使OD =OE ;分别以D ,E 为圆心,大于12DE 的长为半径作弧,在∠AOB 内,两弧交于C ; 作射线OC .故其顺序为②③①.故选:C .5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确解:(1)如图所示:过两把直尺的交点P 作PE ⊥AO ,PF ⊥BO ,∵两把完全相同的长方形直尺,∴PE =PF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A .6.如图,将△ABC沿过边上两点D,E的直线折叠后,使得点B与点A重合.若已知BE =4cm,DE=3cm,则△ABC的周长与△ADC的周长的差为()A.4cm B.5cm C.8cm D.10cm解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,BE=AE=4,∴AB=BE+AE=4+4=8,∴△ABC的周长﹣△ADC的周长=AB+BC+AC﹣AC﹣CD﹣AD=AB+BD﹣AD=AB=8(cm),故选:C.7.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE,分别交AB,AC于点D,E.若AD=3,BC=5,则△BEC的周长为()A.8B.10C.11D.13解:∵AB的垂直平分线DE分别交AB、AC于点D、E,∴AE=BE,∵AD=3,∴AB=6,∴AE+EC=AC=AB=6,∵BC=5,∴△EBC的周长=BC+BE+CE=BC+AE+CE=BC+AC=6+5=11;故选:C.8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则BD的长是()A.7B.6C.5D.4解:如图,作DE⊥AB于点E,∵AD为∠CAB的平分线,∴DE=CD=3,∵∠B=30°,则BD=2DE=6,故选:B.9.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A .3B .10C .12D .15解:作DH ⊥AC 于H ,如图,在Rt △ABC 中,∠B =90°,AB =6,BC =8,∴AC =√62+82=10,∵AD 为∠BAC 的角平分线,∴DB =DH ,∵12×AB ×CD =12DH ×AC , ∴6(8﹣DH )=10DH ,解得DH =3,∴S △ADC =12×10×3=15.故选:D .10.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .11.如图,已知AE ∥DF ,BE ∥CF ,AC =BD ,则下列说法错误的是( )A .△AEB ≌△DFC B .△EBD ≌△FCA C .ED =AFD .EA =EC 证明:∵AE ∥DF ,∴∠EAB =∠FDC ,∵BE ∥CF ,∴∠EBC =∠BCF ,∴∠ABE =∠FCD ,∵AC =BD ,∴AB =CD ,在△AEB 和△DFC 中,{∠EAB =∠FDC AB =CD ∠ABE =∠FCD,△AEB ≌△DFC (ASA ),∴BE =CF ,在△EBD 和△FCA 中,{BE =CF ∠EBD =∠ACF AC =BD,∴△EBD ≌△FCA (SAS ),∴ED =AF .故A ,B ,C 选项正确,AE =CE 说法不正确,故选:D .12.等边三角形的三条高把这个三角形分成( )个直角三角形.A .8B .10C .11D .12 解:如图:直角三角形有△ABE 、△ACE 、△ABF 、△BCF 、△ACD 、△BCD 、△ADO 、△AFO 、△CFO 、△CEO ,△BEO 、△BDO ,共12个.故选:D .二.填空题(共6小题,满分24分,每小题4分)13.平面直角坐标系中的点P (2−m ,12m)关于x 轴的对称点在第四象限,则m 的取值范围为 0<m <2 .解:点P (2﹣m ,12m )关于x 轴对称的点的坐标为P 1(2﹣m ,−12m ), ∵P 1(2﹣m ,−12m )在第四象限,∴{2−m >0−12m <0,解得0<m <2, ∴m 的取值范围为 0<m <2.故答案为0<m <2.14.如图,已知∠1=58°,∠B =60°,则∠2= 118 °.解:∵∠2=∠B +∠1,∴∠2=58°+60°=118°,故答案为118.15.如图,已知BC 与DE 交于点M ,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 360° .解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠B+∠MBE+∠BEM+∠E+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.16.如果一斜坡的坡度为i=1:√3,某物体沿斜面向上推进了10米,那么物体升高了5米.解:∵斜坡的坡度为i=1:√3,又∵i=tan∠ABC=AC BC∴ACBC =√3=√33,∴∠ABC=30°,∵某物体沿斜面向上推进了10米,即AB=10,∴AC=5.故答案为:5.17.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P ,Q 是△ABO 边上的两个动点(点P 不与点C 重合),以P ,O ,Q 为顶点的三角形与△COQ 全等,则满足条件的点P 的坐标为 (2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2) .解:以P ,O ,Q 为顶点的三角形与△COQ 全等,①如图1所示,当△POQ ≌△COQ 时,即OP =OC =4,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F ,则PE ∥BF ,∵B (2,6),∴OF =2,BF =6,∴OB =√22+62=2√10,∵PE ∥BF ,∴△POE ∽△BOF ,∴OP OB =PE BF =OE OF , ∴2√10=PE 6=OE2, ∴PE =6√105,OE =2√105, ∴点P 的坐标为(2√105,6√105);②如图2,当△POQ ≌△CQO 时,即QP =OC =4,OP =CQ ,∴四边形PQCO 是平行四边形,∴PQ ∥OA ,过P 作PE ⊥OA 于E ,过B 作BF ⊥OA 于F , 则PE ∥BF ,∵B(2,6),∴OF=2,BF=6,∴OB=√22+62=2√10,∵PQ∥OA,∴PBOB =PQ OA,∴PB=√10,∴PE=√10,∴点P是OB的中点,∵PE∥BF,∴PE=12BF=3,OE=12EF=1,∴点P的坐标为(1,3),如图3,如图3,当△OQC≌△QOP时,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴AF=6,∴△ABF和△APE是等腰直角三角形,∴PE=AE,∵直线AB的解析式为y=﹣x+8,∴设点P的坐标为(x,﹣x+8),连接PC∵△OQC≌△QOP,∴∠POQ=∠CQO,PQ=OC,CQ=OP,∴△PQC≌△COP,∴∠OPC=∠QCP,∴∠OQC=∠QCP,∴PC∥OQ,∴PC=12OB=√10,∵PC2=CE2+PE2,∴10=(x ﹣4)2+(﹣x +8)2,解得:x =5,x =7(不合题意舍去),∴P (5,3);如图4,当△OQC ≌△QOP 时,过P 作PE ⊥OA 于E ,连接PC ,同理PE =AE ,PC ∥OQ ,∵AC =OC ,∴AP =PQ ,∵△OQC ≌△QOP ,∴PQ =OC =4,∴AP =PQ =4,∴PE =AE =2√2,∴OE =8﹣2√2,∴P (8﹣2√2,2√2),综上所述,点P 的坐标为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2). 故答案为(2√105,6√105)或(1,3)或P (5,3)或(8﹣2√2,2√2).18.如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个等腰三角形的底角度数是 5° .解:∵在△CBA 1中,∠B =20°,A 1B =CB ,∴∠BA 1C =180°−∠B 2=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×80°; 同理可得,∠EA 3A 2=(12)2×80°,∠F A 4A 3=(12)3×80°, ∴第n 个等腰三角形的底角度数是(12)n ﹣1×80°. ∴第5个等腰三角形的底角度数为:(12)4×80°=5°,故答案为:5°.三.解答题(共7小题)19.如图,五边形ABCDE的内角都相等,EF平分∠AED,求证:EF⊥BC.证明:五边形内角和为:(5﹣2)×180°=540°.∵5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF平分∠AED,∴∠1=∠2=54°.∵四边形的内角和为360°,在四边形ABFE中,∠3=360°﹣(108°+108°+54°)=90°.∴EF⊥BC.20.画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.21.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.解:(1)符合上述条件的五个结论为:△AOB ≌△DOC ,OA =OD ,OB =OC ,∠ABO =∠DCO ,∠OBC =∠OCB .(2)证明如下:∵AB =DC ,∠A =∠D ,又有∠AOB =∠DOC∴△AOB ≌△DOC∴OA =OD ,OB =OC ,∠ABO =∠DCO∵OB =OC∴∠OBC =∠OCB .22.如图,△ABC 中,A 点坐标为(2,4),B 点坐标为(﹣3,﹣2),C 点坐标为(3,1).(1)在图中画出△ABC 关于y 轴对称的△A ′B ′C ′(不写画法),并写出点A ′,B ′,C ′的坐标.(2)求△ABC 的面积.解:(1)如图,A ′(﹣2,4),B ′(3,﹣2),C ′(﹣3,1);(2)S △ABC =6×6−12×5×6−12×6×3−12×1×3,=36﹣15﹣9﹣112, =1012.23.如图,在△ABC中,∠B=36°,∠C=76°,AD是△ABC的角平分线,BE是△ABD 中AD边上的高,求∠ABE的度数.解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=12×68°=34°,∵AE⊥BE,∴∠AEB=90°,∴∠ABE=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣34°=56°.24.如图1,在△CAB和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,连接AD、BE.(1)求证:△ACD≌△BCE;(2)如图2,当α=90°时,取AD、BE的中点P、Q,连接CP、CQ、PQ,判断△CPQ的形状,并加以证明.解:(1)如图1,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{CA =CB ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ),∴BE =AD ;(2)△CPQ 为等腰直角三角形.证明:如图2,由(1)可得,BE =AD ,∵AD ,BE 的中点分别为点P 、Q ,∴AP =BQ ,∵△ACD ≌△BCE ,∴∠CAP =∠CBQ ,在△ACP 和△BCQ 中,{CA =CB∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.25.问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=DC+EC.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.解:(1)∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAE AD=AE,∴△BAD≌△CAE(SAS),∴∴∠ACE=∠B=60°,BD=CE,∴BC=BD+CD=EC+CD,∴AC=BC=EC+CD;故答案为:60°,AC=DC+EC;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC=√9+25=√34,∵∠BAC=90°,AB=AC,∴AB=AC=√17,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴CE=5﹣DE,∵AE2+CE2=AC2,∴AE2+(5﹣AE)2=17,∴AE=1,AE=4,∴AD=√2或AD=4√2.。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
2021-2022学年福建省厦门市思明区莲花中学八年级(上)期末数学试卷(解析版)
2021-2022学年福建省厦门市思明区莲花中学八年级第一学期期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分。
每小题都有四个选项,其中有且只有一个选项正确)1.下面有4个汽车标志图案,其中不是轴对称图形的是()A.B.C.D.2.计算a6÷(﹣a)3的结果是()A.a2B.﹣a2C.a3D.﹣a33.某种细菌的半径约为0.00000023米,数据0.00000023用科学记数法表示为()A.0.23×10﹣7B.2.3×10﹣7C.2.3×10﹣6D.23×10﹣64.若分式有意义,则x的取值范围是()A.x>2B.x≠0C.x≠0且x≠2D.x≠25.下列二次根式中,能与合并的是()A.B.C.D.6.已知一个多边形的内角和与外角和的和为1980°,这个多边形的边数为()A.9B.10C.11D.127.如图,点B、G、C在直线FE上,点D在线段AC上()A.∠FBA B.∠DBC C.∠CDB D.∠BDG8.下列各式中,不能因式分解的是()A.4x2﹣4x+1B.x2﹣4y2C.x3﹣2x2y+xy2D.x2+y2+x2y29.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab10.在平面直角坐标系xOy中,点A(0,a),B(b,12﹣b),C(2a﹣3,0),0<a<b <12,且AB=BC,则a+b的值为()A.9或12B.9或11C.10或11D.10或12二、填空题(本大题有6小题,11题每空2分,其余每小题6分,共26分)11.计算:(1)(﹣2020)0=;(2)(x3y)2=;(3)3a2•2a4=.12.等腰三角形的一个内角为100°,则顶角的度数是.13.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形°.14.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.15.如图,AC平分∠DCB,CB=CD,若∠EAC=49°,则∠BAE的度数为.16.如图,园区入口A到河的距离AE为100米,园区出口B到河的距离BF为200米,现策划要在河上建一条直径CD为100米的半圆形观赏步道(如图:C在D左侧),游览路线定为A﹣C﹣D﹣B米处,才能使游览路线最短.三、解答题(本大题有9小题,共84分)17.(1)计算:(x﹣2)(x﹣5)﹣x(x﹣3);(2)计算:÷﹣×+;(3)因式分解:9a2(x﹣y)+4b2(y﹣x);(4)解方程:﹣1=.18.已知,如图,∠B=∠C,EC=ED,求证:△DEC为等边三角形.19.已知:在△ABC中,∠ACB=90°,BP平分∠ABC.过点A作AB的垂线,MN∥BC 交AC于点N,PQ⊥AB于点Q求证:AP=AM.20.先化简,再求值:(1)[(a+2b)(a﹣2b)﹣(a+4b)2]÷4b,其中a=﹣5,b=2;(2)﹣x﹣2,其中|x|=2.21.如图,在△ABC中,∠B=40°(1)尺规作图:在BC边上作一点D,使点D到A、B两点的距离相等(要求:保留作图痕迹,不写作法);(2)在(1)所作的图中,连接AD,求证△DAE为等腰三角形.22.长春市政府计划对城区某道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造480米的道路比乙队改造同样长的道路少用2天.(1)求乙工程队每天能改造道路的长度;(2)若甲队工作一天的改造费用为8万元,乙队工作一天的改造费用为6万元,如需改造的道路全长为8000米,并一起完成这项城区道路改造,求改造该段道路所需的总费用.23.观察下列式子:12+32+42=2×(12+32+3),22+32+52=2×(22+32+6),32+72+102=2×(32+72+21),…(1)请你观察上面三个算式的规律,再写一个符合上述规律的等式:;(2)用a、b、c表示等式左边的由小到大的三个底数,则c与a、b的关系为:;(3)用字母a、b表示上述式子的规律,并加以证明.24.如图,在△ABC中,∠ABC=3∠C,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).25.在Rt△ABC中,∠ACB=90°,∠A=30°,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连接BM,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连接BP,PQ交DE延长线于Q,探究线段PD,并证明.参考答案一、选择题(本大题有10小题,每小题4分,共40分。
2021-2022学年福建省厦门市八年级(上)期末数学试卷(解析版)
2021-2022学年福建省厦门市八年级第一学期期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.三角形的外角和是()A.60°B.90°C.180°D.360°2.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.2﹣3可以表示为()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)4.要使式子值为0,则()A.a≠0B.b≠0C.5a=b D.5a=b且b≠0 5.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF6.已知m,n是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是()A.a n a m=a m+n B.(a m)n=a mn C.a0=1D.(ab)n=a n b n 7.若967×85=p,则967×84的值可表示为()A.p﹣1B.p﹣85C.p﹣967D.p8.方程=的解是()A.3B.2C.1D.09.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c10.距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576 边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.2.9B.3C.3.1D.3.14二、填空题(本大题有6小题,第11小题8分,其它各小题每题4分,共28分)11.计算下列各题:(1)|3﹣4|﹣1=;(2)=;(3)30=;(4)+=.12.六边形的内角和是°.13.已知△ABC是等腰三角形,∠A=70°,则∠B=.14.如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是.15.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米.16.如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是.三、解答题(本大题有9小题,共82分)17.(1)计算:2ab2c﹣2÷(a﹣2b)2.(2)计算:(x+6)(4x﹣1).18.(1)解不等式组并把解集在数轴上表示出来.(2)计算:1024×243÷25.19.在平面直角坐标系中,已知点A(﹣3,1),B(﹣2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.计算:÷﹣1.21.如图,在△ABC中,AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.22.已知△ABC与△DEF,现给出四个条件:①AC=DF;②AB=DE;③AC边上中线与DF边上中线相等;④△ABC的面积与△DEF的面积相等.(1)请你以其中的三个条件作为命题的已知条件,以“△ABC≌△DEF”作为命题的结论,将一个真命题写在横线上.(2)请你以其中的三个条件(其中一个必须是条件④,另两个自选)作为命题的已知条件,以“△ABC≌△DEF”作为命题的结论,将一个假命题写在横线上,并举一反例说明.23.某种产品的原料提价因而厂家决定对产品进行提价.现有三种方案:方案1第一次提价p%,第二次提价q%;方案2第一次提价q%,第二次提价p%;方案3第一,二次提价均为(p+q)/2%.(1)若p,q是相等的正数,则三种方案哪种提价多?(2)若p,q是不相等的正数,则三种方案哪种提价多?24.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…⇒2m×2n=2m+n,…⇒a m•a n=a m+n(m,n都是正整数).我们亦知:,,,,….(1)请你根据上面的材料归纳出a,b,c(a>b>0,c>0)之间的一个数学关系式;(2)如图,在Rt△ACE中,B在CE边上,∠C=90°,CE=a,CB=b,AC=c(a>b).能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.25.如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O 三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.参考答案一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.三角形的外角和是()A.60°B.90°C.180°D.360°【分析】根据三角形的外角和定理即可得到结论.解:三角形的外角和是360°,故选:D.2.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【分析】直接提取公因式a即可.解:a2﹣4a=a(a﹣4),故选:A.3.2﹣3可以表示为()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)【分析】根据负整数指数幂、同底数幂的除法,即可解答.解:A、22÷25=22﹣5=2﹣3,故正确;B、25÷22=23,故错误;C、22×25=27,故错误;D、(﹣2)×(﹣2)×(﹣2)=(﹣2)3,故错误;故选:A.4.要使式子值为0,则()A.a≠0B.b≠0C.5a=b D.5a=b且b≠0【分析】根据分式有意义的条件:分子等于0且分母不等于0即可得出答案.解:∵5a﹣b=0,a+b≠0,∴5a=b且b≠0,故选:D.5.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解:在△ABC和△DEB中,,∴△ABC≌△DEB(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.6.已知m,n是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是()A.a n a m=a m+n B.(a m)n=a mn C.a0=1D.(ab)n=a n b n 【分析】根据积的乘方法则:积的乘方,等于每个因式乘方的积,据此判断即可.解:已知m,n是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是(ab)n=a n b n.故选:D.7.若967×85=p,则967×84的值可表示为()A.p﹣1B.p﹣85C.p﹣967D.p【分析】原式变形后,将已知等式代入即可得到结果.解:∵968×85=p,∴967×84=967×(85﹣1)=967×85﹣967=p﹣967,故选:C.8.方程=的解是()A.3B.2C.1D.0【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x=2(x﹣1),解得:x=2,检验:把x=2代入得:x(x﹣1)≠0,∴分式方程的解为x=2.故选:B.9.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c【分析】举反例说明A、B、C错误;利用不等式的性质证明D正确.解:A、例如a=5,b=1,c=2,满足条件a>b+c,但是不满足结论c<0,故本选项错误;B、例如a=5,b=8,c=﹣6,满足条件a>b+c,c<0,但是不满足结论a>b,故本选项错误;C、例如a=5,b=1,c=2,满足条件a>b,a>b+c,但是不满足结论c<0,故本选项错误;D、∵c<0,∴a+c<a,即a>a+c,∵a>b,∴a+c>b+c,∴a>b+c,故本选项正确.故选:D.10.距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576 边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.2.9B.3C.3.1D.3.14【分析】设半径为r的圆内接正n边形的周长为L,圆的直径为d,则π≈,延长即可解决问题;解:由题意n=6时,π≈==3,故选:B.二、填空题(本大题有6小题,第11小题8分,其它各小题每题4分,共28分)11.计算下列各题:(1)|3﹣4|﹣1=0;(2)=3;(3)30=1;(4)+=.【分析】(1)根据绝对值的性质即可求出答案.(2)根据二次根式的性质即可求出答案.(3)根据零指数幂的意义即可求出答案.(4)根据分式的加减运算法则即可求出答案.解:(1)原式=|﹣1|﹣1=1﹣1=0.(2)原式=3.(3)原式=1.(4)原式=+==.故答案为:(1)0.(2)3.(3)1.(4).12.六边形的内角和是720°.【分析】根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.解:(6﹣2)•180°=720°.故答案为:720.13.已知△ABC是等腰三角形,∠A=70°,则∠B=70°或55°或40°.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B为顶角,∠A为底角.解:∵∠A=70°,△ABC是等腰三角形,∴分三种情况;①当∠C为顶角时,∠B=∠A=70°;②当∠A为顶角时,∠B=(180°﹣70°)÷2=55°;③当∠B为顶角时,∠B=180°﹣70°×2=40°;综上所述:∠B的度数为70°、55°、40°.故答案为:70°或55°或40°.14.如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是.【分析】通过证明△ABC≌△DEC,然后根据全等三角形的性质可得DE=AB,从而求得三角形面积.解:在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴DE=AB=3,又∵∠D=90°,∴S△ACE=AC•DE==,故答案为:.15.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 1.3米.【分析】计算出工人转移需要的最短时间,然后即可确定导火线的最短长度.解:设导火线的长度为x(m),工人转移需要的时间为:+=130(s),由题意得,>130,解得x>1.3m.故答案为:1.3.16.如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是作∠CBG=∠ADB,取BG=AD,连接AG与BC相交,得点E.作DF=BE,得点F.则点E,F即为所求.【分析】作∠CBG=∠ADB,取BG=AD,连接AG与BC相交,得点E.作DF=BE,得点F.解:如图,作∠CBG=∠ADB,取BG=AD,连接AG与BC相交,得点E.作DF=BE,得点F.则点E,F即为所求.故答案为:作∠CBG=∠ADB,取BG=AD,连接AG与BC相交,得点E.作DF=BE,得点F.则点E,F即为所求.三、解答题(本大题有9小题,共82分)17.(1)计算:2ab2c﹣2÷(a﹣2b)2.(2)计算:(x+6)(4x﹣1).【分析】(1)先算乘方,然后利用单项式除以单项式的运算法则进行计算;(2)利用多项式乘多项式的运算法则进行计算.【解答】(1)解:原式=2ab2c﹣2÷(a﹣4b2)=2a5c﹣2=;(2)原式=4x2﹣x+24x﹣6=4x2+23x﹣6.18.(1)解不等式组并把解集在数轴上表示出来.(2)计算:1024×243÷25.【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(2)根据有理数的乘法、除法法则以及乘法的交换律和结合律进行计算即可.解:(1)解不等式2x﹣1≥x+1得x≥2;解不等式3x﹣1≥x+5得x≥3;∴不等式组的解集是:x≥3,在数轴上表示为;(2)1024×243÷25=210×35÷25=35×25=65(或7776).19.在平面直角坐标系中,已知点A(﹣3,1),B(﹣2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【分析】根据平面直角坐标系找出点A、B、C的位置,然后顺次连接,再找出关于y轴对称的点位置,然后顺次连接即可.解:如图所示:20.计算:÷﹣1.【分析】原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=÷﹣1=•﹣1=﹣==.21.如图,在△ABC中,AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.【分析】利用全等三角形△BDE≌△CDE的对应角相等的性质得到CE平分∠ACB.【解答】证明:∵在△ABC中,AB=AC,AD是△ABC的中线,∴∠ABC=∠ACB,点D是BC的中点,AD⊥BC,∴BD=CD,∠BDE=∠CDE=90°.在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴∠EBD=∠ECD.∵BE平分∠ABC交AD于点E,∴∠EBD=∠ABC,∴∠ECD=∠ACB.即CE平分∠ACB.22.已知△ABC与△DEF,现给出四个条件:①AC=DF;②AB=DE;③AC边上中线与DF边上中线相等;④△ABC的面积与△DEF的面积相等.(1)请你以其中的三个条件作为命题的已知条件,以“△ABC≌△DEF”作为命题的结论,将一个真命题写在横线上在△ABC与△DEF中,若①AC=DF,②AB=DE,③AC边上中线与DF边上中线相等,则△ABC≌△DEF.(2)请你以其中的三个条件(其中一个必须是条件④,另两个自选)作为命题的已知条件,以“△ABC≌△DEF”作为命题的结论,将一个假命题写在横线上在△ABC与△DEF中,若①AC=DF,②AB=DE,④△ABC的面积与△DEF的面积相等,则△ABC≌△DEF,并举一反例说明.【分析】(1)由①②③为条件,以“△ABC≌△DEF”为结论可组成一个真命题;利用全等三角形的判定方法可判断此命题为真命题;(2)由①②④为条件,以“△ABC≌△DEF”为结论可组成一个假命题;利用反例图进行说明.解:(1)在△ABC与△DEF中,若①AC=DF,②AB=DE,③AC边上中线与DF边上中线相等,则△ABC≌△DEF;故答案为:在△ABC与△DEF中,若①AC=DF,②AB=DE,③AC边上中线与DF边上中线相等,则△ABC≌△DEF;(2)假命题为:在△ABC与△DEF中,若①AC=DF,②AB=DE,④△ABC的面积与△DEF的面积相等,则△ABC≌△DEF;反例为:如图,△ABC与△DEF中,AC=DF,AB=DE,且顶角A与D互补,则两个三角形面积相等,但△ABC与△DEF”不一定全等.故答案为:在△ABC与△DEF中,若①AC=DF,②AB=DE,④△ABC的面积与△DEF 的面积相等,则△ABC≌△DEF;23.某种产品的原料提价因而厂家决定对产品进行提价.现有三种方案:方案1第一次提价p%,第二次提价q%;方案2第一次提价q%,第二次提价p%;方案3第一,二次提价均为(p+q)/2%.(1)若p,q是相等的正数,则三种方案哪种提价多?(2)若p,q是不相等的正数,则三种方案哪种提价多?【分析】(1)设原料价格为x,分别计算出三种方案的提价然后做比较即可;(2)设原料价格为y,然后计算出三种方案的提价作比较即可.解:(1)设原料价格为x,若p=q,则方案1、2、3的提价均为x[(1+p%)2﹣1],则三种方案提价一样多;(2)设原料价格为y,方案1:y(1+p)(1+q),方案2:y(1+q)(1+p),方案3:,,∴方案3提价最多.24.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…⇒2m×2n=2m+n,…⇒a m•a n=a m+n(m,n都是正整数).我们亦知:,,,,….(1)请你根据上面的材料归纳出a,b,c(a>b>0,c>0)之间的一个数学关系式;(2)如图,在Rt△ACE中,B在CE边上,∠C=90°,CE=a,CB=b,AC=c(a>b).能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.【分析】(1)根据具体的例子,由“特殊”到“一般”进行抽象概括,归纳出数学关系式即可;(2)根据S△ABC<S△AEC得到不等式ac>bc,两边都加ab,变形即可证明.解:(1)a,b,c的数学关系式是;(2)能.因为S△ABC<S△AEC,所以ac>bc,因此ac+ab>ab+bc,∴a(b+c)>b(a+c),即.25.如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O 三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.【分析】(1)过D1作D1E⊥x轴于E,利用含30度角的直角三角形即可解决问题;(2)过C1作直线GF∥y轴,交D1F于F,其中D1F∥x轴.证明△D1AE≌△D1C1F,进而可以解决问题.【解答】(1)证明:过D1作D1E⊥x轴于E,∴∠D1OE=30°,又n=2,∴OD1=4,(2)解:如图,过C1作直线GF∥y轴,交D1F于F,其中D1F∥x轴.∵AD1=D1C1,∠D1EA=∠D1FC1=90°,∠D1AE=∠D1C1F,∴△D1AE≌△D1C1F(AAS),∴D1E=D1F,又m+n=﹣4,∴G(﹣4,0),即p=﹣4,则q=3,∴p+q=﹣1.。
福建省厦门市集美区2023-2024学年八年级上学期期末数学试卷(含答案)
2023-2024学年福建省厦门市集美区八年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算a3•a2=a m,则m的值为( )A.5B.6C.8D.92.下列长度的三条线段能组成三角形的是( )A.5,5,5B.5,5,10C.5,6,12D.3,4,73.如图,△ABC和△DEF关于直线l对称,点A的对称点是( )A.点C B.点F C.点E D.点D4.点P(2,3)关于x轴的对称的点的坐标是( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.下列分式的值与相等的是( )A.B.C.D.6.如图,AC,BD是四边形ABCD的对角线,BD=DC,∠ABD=∠DCB,点E在BC上,连接DE,若△ABD 与△DEC全等,下列线段长度等于AB+BE的是( )A.BC B.BE C.BD D.AC7.若对于两个多项式的乘积:(m+n)(p+q),能用完全平方公式进行简捷运算,则满足的条件可以是( )A.m=﹣p,n=q B.m=p,n=﹣q C.m=p,n=q D.m=p,n=2q8.如图,B,C是∠MAN的边AM,AN上的点,连接BC,∠BCN的平分线交AM于点E,若∠MAN=40°,∠AEC=α,下列角中大小为2α+80°的是( )A.∠CEM B.∠ACE C.∠BCN D.∠ABC9.如图,某小区规划在边长为x m的正方形场地上,修建两条宽度相等的甬道,其余部分种草,若该场地种草部分的面积为(x2﹣6x+9)m2,则甬道的宽度是( )A.3 m B.6 m C.9 m D.15 m10.在Rt△ABC中,∠BAC=90°,AD是△ABC的高,将△ABC沿AD折叠,点C的对应点为E,当BE<CE 时,△ABC满足的条件是( )A.30°<∠B<45°B.30°<∠B<90°C.45°<∠C<90°D.30°<∠C<60°二、填空题(本大题有6小题,共26分)11.计算:(1)20240= ;(2)3﹣1= ;(3)9mn2÷3n= .12.分式有意义,则x的值可以是 .(写出一个符合题意的x的值即可)13.五边形的外角和为 .14.如图,AD是△ABC的角平分线,DE⊥AC于点E,若DE=1,AB=2,则△ABD的面积为 .15.几何学起源于土地测量,据史料记载,古希腊数学家泰勒斯发明了一种用帽子测量河流宽度的方法,具体操作步骤如下:①如图,人垂直站立在河岸边上,视线与河岸边保持垂直;②调整帽子,使视线通过帽檐正好落在对面的河岸边上;③人保持姿势,转过一个角度,这时视线通过帽檐落在了自己所在岸的某一点上;④测量该点与人站立位置的距离就是河流的宽度.请用你学过的一个数学定理解释通过以上步骤能测得河流宽度的道理: .16.城建局计划在市民公园的人工湖上修建一个湖心亭,并铺设四条木栈道分别连接湖边的A,B,C,D四个木栈道入口,供市民散步,欣赏湖上风景.如图是人工湖的平面示意图,湖上有M,N,P,Q四个位置可用于建设湖心亭.为测算建设成本,工作人员利用测量工具测得∠BAD=60°,∠BCD=120°,AB=AD =a,BC=b,CD=c.要使铺设木栈道所需要的材料最少,湖心亭应选择建在点 ,(填“M”,“N”,“P”,“Q”);此时需要铺设的木栈道总长度为 .(用含a,b,c的式子表示)三、解答题(本大题有8小题,共84分)17.(1)计算:2a(a﹣3b);(2)计算:(x﹣2y)(x+2y);(3)分解因式:2m2﹣4mn+2n2.18.如图,点B,F,C,E在同一条直线上,BF=EC,∠A=∠D,DE∥AB.证明:AB=DE.19.先化简,再求值:(1﹣)÷,其中x=2.20.现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料,甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运300千克所用的时间与乙型机器人搬运400千克所用的时间相同,两种机器人每小时分别搬运多少装潢材料?21.如图,在△ABC中,∠ABC=30°,∠ACB=45°,BC=6,点C和点D关于直线AB对称.(1)求作点D;(要求:尺规作图,保留作图痕迹,不写过程)(2)连接BD,过点C作CE∥BD交BA的延长线于点E,求AE的长度.22.下列各组的两个整式具有共同特征,我们将具有这种特征的两个整式称为“孪生整式”.观察下列各组孪生整式:①(x+1)(x+3),3(x+1)(x+);②(x+3)(x﹣5),﹣15(x+)(x﹣);③6(x﹣)(x﹣),(x﹣2)(x﹣3);④(2x+12)(x+4),48(x+)(x+);⑤(﹣3x+6)(x﹣5),﹣30(x﹣)(x﹣);⋯⋯根据你观察到的规律,解决下列问题:(1)写出(x+4)(x﹣7)的孪生整式;(2)探究整式[(2m+n)x﹣2](x﹣n)与3mx2+(2m﹣9n)x+2m+3是否可能为一组孪生整式.23.某市环保部门计划在某东西向的高速公路边上建设P和Q两个垃圾焚烧发电厂,处理A市产生的可燃物垃圾并发电供A市使用.垃圾焚烧过程中会产生灰渣、粉尘、二噁英等有害物质,对环境产生污染,因此垃圾焚烧处理厂的选址要求距离城市超过20km.根据研究,垃圾焚烧发电厂对城市的污染程度H=,其中d(单位:km)表示垃圾焚烧发电厂到城市的距离,k为污染比例系数,不同垃圾焚烧发电厂对城市的污染程度不同,H的值越大,污染程度越大.已知P,Q垃圾焚烧发电厂对城市的污染比例系数分别为1和4,A市到高速公路的距离为mkm.(1)如图,若A市恰好在P垃圾焚烧发电厂的北偏东60°方向,Q垃圾焚烧发电厂到A市的距离比P垃圾焚烧发电厂到A市距离的一半多30km,求Q垃圾焚烧发电厂到A市的距离;(用含m的式子表示)(2)在(1)的条件下,判断哪个垃圾焚烧发电厂对A市的污染程度更大,并说明理由.24.数学兴趣小组用两把直尺和两个大小相同含45°的三角尺进行数学探究活动:如图1所示,直尺l1水平摆放,将三角尺ABC的斜边BC固定在直尺l1上,直尺l2靠在边AC上,三角尺DEF的直角顶点D在直尺l1上滑动,顶点E始终落在直尺l2上,探究点F的运动规律.(1)如图2,当D是BC中点时,连接CF,求证:CF=AE;(2)点D在直尺l1上滑动,点F的位置也会随之变化,记F1,F2是其中任意两个位置.探究直线F1F2与AB的位置关系;11。