PKPM计算参数
PKPM参数定义
PKPM参数定义PKPM,即Peking University People Model,是一种建筑结构性能计算软件,于20世纪90年代由北京大学土木工程系研发,目前已成为国内建筑工程设计领域中使用频率最高的软件之一、PKPM主要用于建筑结构设计、分析和验算,并对建筑结构的强度、刚度和稳定性等进行评估。
PKPM的参数定义是软件中所涉及到的各个计算参数的具体定义和取值范围。
以下将详细介绍PKPM中的几个主要参数。
1.材料参数:PKPM中的材料参数主要包括钢筋的抗拉强度、混凝土的抗压强度和连接件的强度等。
这些参数可以根据设计需要进行定义,并按照相应的规范进行取值。
-钢筋的抗拉强度:钢筋的抗拉强度是指钢筋材料在拉伸状态下能够承受的最大拉力。
根据不同钢筋等级的规范要求,这个数值可以在PKPM 中进行设置。
-混凝土的抗压强度:混凝土的抗压强度是指混凝土材料在受到压力时能够承受的最大压力。
根据混凝土强度等级的不同,这个数值也可以在PKPM中进行设置。
-连接件的强度:连接件的强度是指连接结构中使用的连接件(如螺栓、焊接接头等)能够承受的最大荷载。
不同类型和规格的连接件在PKPM中需要经过专门的计算和定义。
2.结构参数:PKPM中的结构参数主要包括截面尺寸、梁柱间距、楼层高度等。
这些参数是建筑结构中的重要设计参数,可以根据建筑设计的要求进行调整和定义。
-截面尺寸:截面尺寸指的是建筑结构中各个构件(如梁、柱、板等)的横断面尺寸。
可以通过PKPM中的图形界面进行设置和调整。
-梁柱间距:梁柱间距是指建筑结构中梁和柱之间的距离。
根据设计规范和结构布置要求,可以在PKPM中进行设置。
-楼层高度:楼层高度是指建筑结构中相邻楼层之间的距离。
这个参数主要用于计算结构在地震等荷载下的稳定性。
在PKPM中可以设置不同楼层的高度。
3.荷载参数:荷载参数是指建筑结构所受到的外部荷载,包括重力荷载、风荷载和地震荷载等。
PKPM可以根据不同的设计要求进行荷载计算,并对结构的安全性进行评估。
PKPM参数设置
PKPM参数设置PKPM(鹏凯测定物性分析与计算程序)是一种广泛应用于土木工程结构设计中的计算程序,它能够对结构进行受力分析、变形计算以及稳定性分析等,并可以根据需要进行参数设置。
下面将介绍一些常见的PKPM参数设置。
1.结构类型设置:PKPM能够分析各种类型的结构,包括梁、柱、板、桁架等。
在进行计算之前,需要选择结构类型,并设定相关参数,如结构的材料属性、截面形状和尺寸等。
2.受力边界条件设置:在进行结构分析时,需要设定结构的受力边界条件,包括支座类型、受力方向和受力大小等。
支座类型可以选择固定支座、弹性支座或自由支座。
受力方向和大小应根据具体情况进行设置,一般需要根据结构的受力与约束情况进行考虑。
3.材料属性设置:PKPM可以对多种材料进行分析,如钢材、混凝土和木材等。
在进行计算之前,需要设定材料的物理性质,如弹性模量、抗弯强度和抗压强度等。
这些参数可以根据实际情况选择合适的数值,以保证计算结果的准确性。
4.截面参数设置:对于梁、柱等结构,需要设定截面的几何形状和尺寸。
常见的截面形状包括矩形、圆形、T形等,而尺寸可以通过设定宽度、高度、厚度等参数来确定。
在设定截面参数时,需要根据结构的实际形态和受力情况进行选择,以保证计算的准确性。
5.荷载设置:在进行结构分析时,需要考虑结构所受到的外部荷载,如重力荷载、活荷载以及风荷载等。
在设定荷载参数时,需要根据结构的使用要求和设计规范进行选择。
可以根据实际情况设置荷载的种类、大小和分布等。
6.稳定性分析参数设置:在进行结构稳定性分析时,需要设定相关参数,如屈曲长度系数、曲率半径等。
这些参数可以根据结构的几何形状和受力情况进行选择,以保证计算结果的准确性。
总之,PKPM参数设置是进行结构分析与计算的重要环节,合理的参数设定可以保证计算结果的准确性和可靠性。
不同的结构类型和受力条件需要设置不同的参数,设计人员应根据实际情况选择适当的参数值,并遵循相关的设计规范和标准,以保证结构的安全可靠性。
(完整word版)PKPM参数(超详细)解析
一、总信息1、水平力与整体坐标夹角:该参数为地震力、风荷载作用方向与结构整体坐标的夹角。
抗规》5.1.1 条和《高规》4.3.2 条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算”.如果地震沿着不同方向作用,结构地震反应的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向就称为“最不利地震作用方向”。
这个角度与结构的刚度与质量及其位置有关,对结构可能会造成最不利的影响,在这个方向地震作用下,结构的变形及部分结构构件内力可能会达到最大. SATWE 可以自动计算出这个最不利方向角,并在WZQ。
OUT 文件中输出。
如果该角度绝对值大于15 度,建议用户按此方向角重新计算地震力,以体现最不利地震作用方向的影响。
一般并不建议用户修改该参数,原因有三:①考虑该角度后,输出结果的整个图形会旋转一个角度,会给识图带来不便;②构件的配筋应按“考虑该角度"和“不考虑该角度”两次的计算结果做包络设计;③旋转后的方向并不一定是用户所希望的风荷载作用方向.综上所述,建议用户将“最不利地震作用方向角"填到“斜交抗侧力构件夹角”栏,这样程序可以自动按最不利工况进行包络设计。
水平力与整体坐标夹角与地震信息栏中斜交抗侧力构件附加地震角度的区别是:水平力不仅改变地震力而且同时改变风荷载的作用方向;而斜交抗侧力仅改变地震力方向(增加一组或多组地震组合),是按《抗规》5.1.1 条2 款执行的。
对于计算结果,水平力需用户根据输入的角度不同分两个计算工程目录,人为比较两次计算结果,取不利情况进行配筋包络设计等;而{斜交抗侧力}程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋设计,不需要人为判断。
只有在风荷载起控制作用时,现有的坐标下风荷载不能起到控制结构的最大受力状态,此时填写一个角度(逆时针为正,顺时针为负),让坐标系发生变化,使风荷载在新的坐标系下(如何计算出风荷载产生的内力最大值的角度值?),能起控制作用(控制结构的最大受力状态),改变参数后,地震作用和风荷载的方向(说明两者方向是一致)将同时改变,但地震作用方向已经不是最不利的方向了,故需要在附加地震作用方向上输入一个相反的角度,使地震作用方向应按原坐标系计算,使地震力最大;如不需要改变风荷载的方向,只需考虑其它角度的地震作用时,则无需改变“水平力与整体坐标的夹角”,只增加附加地震作用方向即可。
PKPM参数说明
一.总信息1.混凝土容重取25kN/m3,(美国规范取24 kN/m3),取27 kN/m3是不合理的。
2.墙元细分最大控制长度,一般取2m;但在计算转换梁时,可取为1m,目的是细化剪力墙在转换梁上的内力出口,减少转换梁内力。
3.在考察结构的刚度比、位移比、周期比、最大位移时,选择“刚性楼板”选项。
4.对于10层以下的结构,选择一次性加载;对于10层及以上的结构,选择模拟施工1;对于带加强层或40层以上的结构,宜选择模拟施工3,但相应计算时间较长。
二.风荷载信息1.地面粗糙程度:乡镇选B,中小城市选C,大城市中心区选D。
2.高度小于等于60m的风压按50年一遇选取;高度大于60m的风压按100年一遇选取。
3.结构基本周期按结构试算后的第一周期填写,在施工图配筋前再按计算第一周期填写。
三.地震信息1.考察位移比时,在刚性楼板前提下,偶然偏心和双向地震分别计算,取不利情况。
2.考察周期比、侧向刚度比时,在刚性楼板前提下计算,偶然偏心和双向地震对上述参数没有影响。
3.考察结构最大位移角时,在非刚性楼板前提下,仅考虑双向地震作用。
4.根据省《高规》补充规定,考察结构构件配筋时,在非刚性楼板前提下,仅考虑双向地震作用。
但根据国标《抗震规范》和《高规》,当结构刚度和质量分布明显不对称时、不均匀时,需要分别考虑偶然偏心和双向地震的不利情况;当结构刚度和质量分布均匀时,仅考虑偶然偏心。
为简单及偏于安全起见,统一为:考察结构构件配筋时,分别考虑偶然偏心和双向地震。
5.当结构有较多斜向剪力墙时,应附加相应的地震作用输入角度。
6.周期折减系数:(1) 框架办公楼、公共建筑、课室:0.7,0.75(2) 框架酒店、住宅:0.6,0.65(3) 短肢剪力墙小高层:30~40米:0.7,0.7545~60米:0.75,0.8(4) 框架-剪力墙办公楼:0.85(5) 剪力墙高层住宅:100米以下:0.9100米以上:0.95(6) 大跨度剧院、体育场馆:0.8,0.85,0.9四.活载信息1.柱墙设计时活荷载:折减2.传给基础的活荷载:折减3.根据省高规补充规定第1.0.2,4.1.7条,除活荷载较大的厂房、仓库、车库或消防车道外,民用高层建筑楼盖的内力计算一般不考虑楼面活荷载不利布置的影响。
PKPM参数大全
PKPM参数设置1.风荷载风压标准值计算公式为:WK=βzμsμZ W。
其中:βz=1+ξυφz/μz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。
所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。
具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。
C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。
3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。
新增加的D 类对应的风压高度变化系数最,比C类小20%到50%。
4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。
新增加的D类对应脉动增大系数比89规范小,约5%到10%。
与结构的材料和形式有关。
5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。
在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。
如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。
6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。
结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。
其中N为结构层数。
2.地震作用1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。
PKPM计算参数
PKPM计算参数PKPM是建筑工程设计和施工的一种常用计算软件,全称为“工程结构分析和设计程序”。
PKPM主要用于进行建筑结构的力学分析和设计计算,是国内较早开发的结构计算软件之一在进行PKPM计算时,需要输入一些计算参数,以确保计算的准确性和可靠性。
下面是一些常见的PKPM计算参数:1.材料参数:包括混凝土的抗压强度、抗拉强度、弹性模量等;钢筋的屈服强度、弹性模量等。
这些参数是根据实验室试验结果或国家标准来确定的。
2.结构参数:包括构件的尺寸参数、支座的刚度参数等。
这些参数根据实际的工程结构设计来确定,包括梁、柱、板等构件的尺寸,以及支座的刚度参数。
3.荷载参数:包括静荷载和动荷载。
静荷载是指直接作用于建筑结构上的恒定荷载,如自重、楼层荷载等;动荷载是指作用于结构上的变化荷载,如风荷载、地震荷载等。
这些荷载参数需要根据实际工程情况和设计规范来确定。
4.边界条件:包括结构的支座条件、约束条件等。
这些条件是结构计算中的边界条件,用于确定结构的受力和变形情况。
例如,支座条件可以是固定支座、弹性支座或浮动支座等。
约束条件可以是禁止一些位移或转角,以模拟实际工程中的约束情况。
5.分析方法:PKPM可以进行静力分析、动力分析以及非线性分析等。
静力分析是指在稳态荷载下进行的结构分析,动力分析是指在动态荷载下进行的结构响应分析,非线性分析是指考虑构件变形和材料非线性等因素的分析。
不同的分析方法需要输入不同的计算参数。
在进行PKPM计算时,需要根据具体的工程情况和设计要求来确定这些计算参数。
在输入参数时,需要保证参数的准确性和合理性,确保计算结果的可靠性。
另外,还需要根据计算结果来进行适当的修改和调整,以满足工程实际需求。
需要注意的是,PKPM计算参数的输入应当遵循相应的设计规范和国家标准,以确保结构的安全性和可靠性。
此外,在使用PKPM进行计算时,还需要结合具体的结构计算原理和方法进行分析,以获得准确的计算结果。
pkpm参数
SATWE参数设置一:总信息1、水平力与整体坐标夹角(度):一般为缺省。
若地震作用最大的方向大于15度则回填。
2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。
3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。
4、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1)。
7、地下室层数:根据实际情况输入。
8、墙元细分最大控制长度(m):一般为缺省值1。
9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。
如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加。
此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。
10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。
在进行结构内力分析和配筋计算时不选择。
11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。
特别是对于板柱结构定义了弹性板3、6情况。
但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。
12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。
不勾选的话位移偏小。
13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。
14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。
PKPM荷载计算步骤详细讲解
一、PM参数输入1、在计算底板时,注意梁、板保护层厚度取50mm;与土直接接触的梁板保护层厚度取50mmI;关于保护层厚度取值问题,可参见二类a环境下,结构构件保护层厚度和裂缝控制的感想2、在计算底板抗浮,按倒楼盖配筋时,注意混凝土容重取0KN/M3;3、一般情况下混凝土容重取26KN/M3;4、上部楼层梁柱混凝土保护层厚度统一取30mm,不再区分25mm和30mm;5、楼面恒活荷载输入时,按自动计算现浇楼板自重,且普通住宅装修层荷载按1.6KN/M2考虑,其它按实际情况取;6、梁间墙体线荷载,240墙体统一按4.2KN/M2,120墙体统一按3.0KN/M2,注意考虑门窗洞口折减和挑板自重;7、地下室外墙按混凝土墙建模,如遇到剪力墙和混凝土墙相临情况,可局部用深梁替代,这样便于JCCAD导荷布桩.二、结构楼面布置信息:1、板厚一般按板短跨1/35取值;普通楼层板厚不小于100mm,屋面板厚不小于120mm,对局部露台,当板跨较小时,板厚也可以取100mm;2、楼梯间板厚取0,电梯间全房间开洞,且注意楼板错层;三、楼面荷载传导计算:1、一般楼面和屋面活荷载按荷载规范取,楼梯间恒载取8.0KN/M2,活载对普通多层住宅楼梯取2.5KN/M2,对高层住宅或者消防楼梯取3.5KN/M2,当梯板为较大跨度或者较厚板厚时,按实际情况取恒载;2、应注意楼梯间实际的导荷方式,如板式楼梯,为两边楼梯梁受力,应选择单向导荷方式;四、画结构平面图:1、一般情况下,普通楼层考虑0.3mm裂缝控制,底板考虑0.2mm裂缝控制,地下车库顶板可根据覆土厚度,先按0.3mm控制,可做一定放大,如按0.25mm裂缝控制,这个具体工程自己把握,对车库顶板上有消防车情况,可按0.3mm进行裂缝控制;2、对与剪力墙相连的板边界,按固端考虑,对与较大边梁相连的板边界,可考虑边梁的约束作用,适当放大板支座配筋,其余板边界边支座按简支考虑;五、平面荷载校核:1、在布桩时,该项导荷作为参考条件,以JCCAD为主,如框架剪力墙结构,JCCAD 里面墙体分担的荷载较多,柱分担的荷载较少;反之,PM导核里面,墙体分担的荷载较少,柱分担的荷载较多;六、分析与设计参数补充定义:1、混凝土容重取26KN/M2;在计算底板抗浮,按倒楼盖配筋时,注意混凝土容重取0KN/M3;2、在进行整体计算时,对所有楼层强制采用刚性楼板假定,来查看位移比和位移角,其中计算位移角时,不考虑偶然偏心;对高层位移比应41.4;对构件进行配筋时,对所有楼层强制采用刚性楼板假定不选;3、模拟施工加载选加载3;4、风荷载信息栏中,对结构基本周期,按SATWE整体计算周期结果,将振型1周期进行返输入;注意体型分段数,对有地下室,裙房结构,应分别分段;5、同时选考虑偶然偏心和考虑双向地震;6、对有斜交抗侧力构件,应注意该项取值;7、对计算振型数,应按实际情况取,且使有效质量系数大于90%;8、应注意周期折减系数,对不同结构类型取不同值,对框架结构取。
2024版PKPM参数的介绍
2024版PKPM参数的介绍PKPM(Paragraph and Keypoints of Hand Calculation ofBuilding Structures,建筑结构手算段落和关键点)是一种常用的建筑结构设计计算方法,用于计算和分析建筑结构的各种参数和特性。
2024版PKPM参数是指该方法在2024年进行了一次更新和改进后所使用的参数,本文将对其进行详细介绍。
2024版PKPM参数包括了结构设计中各种重要的力学参数、几何参数和材料参数等,下面将逐一进行介绍。
首先是力学参数。
力学参数包括结构中的荷载参数和结构反力参数。
荷载参数是指结构在使用过程中受到的各种荷载,如自重、活载、风载等。
结构设计需要合理估计这些荷载的大小和作用方式,以确保结构的安全可靠。
结构反力参数是指在荷载作用下,结构各个部分产生的反力大小和分布。
这些反力是计算和分析结构各个部分的强度和稳定性所必需的。
其次是几何参数。
几何参数指结构的尺寸和形状参数。
在进行结构计算和分析时,需要准确的尺寸和形状参数作为计算的基础。
这些参数包括结构的长度、宽度、高度以及各种截面的面积、惯性矩等。
通过合理估计和测量这些参数,可以更准确地分析结构的力学特性。
然后是材料参数。
材料参数包括结构所使用的各种材料的特性参数,如混凝土的强度、钢筋的强度、木材的强度等。
这些参数是根据相关的材料试验和经验确定的,可以用于计算和分析结构的强度和稳定性。
为了保证结构的安全可靠,设计中需要根据实际情况选择合适的材料参数。
除了上述的力学参数、几何参数和材料参数外,2024版PKPM还包括了其他一些重要的参数。
比如,计算参数是指进行计算和分析时所使用的一些细节参数,如计算方法、分析模型等。
这些参数对于计算和分析结果的准确性和可靠性有着重要的影响。
此外,界面参数还包括了与其他设计软件或分析软件的接口参数,用于实现不同软件之间的数据交换和共享。
总的来说,2024版PKPM参数是一种用于计算和分析建筑结构的方法,包含了力学参数、几何参数、材料参数、计算参数和界面参数。
PKPM设计参数
一、建模1、梁悬挑高跨比1/5-1/6。
2、单向板跨高比1/30,双向板1/40,悬挑板1/10,有柱帽无梁楼盖1/35。
3、主梁高跨比1/8-1/12,次梁高跨比1/12-1/18。
4、女儿墙恒重取值大于等5.0。
5、楼楼顶层不开洞。
6、洞口小于500的洞口可以不建模,大于1m的洞口要设置洞口梁。
7、楼梯荷载位置,最上层时休息平台已不存在,只需输入入户平台荷载,注意楼柱荷载的位置。
8、计算梁上墙荷载时应先计算出各墙的面荷载(双面抹灰可取3.6,一面抹灰,一面粘砖的可取3.9)。
9、多层计算时施工加载方式取施工加载模拟3。
10、荷载归并,可取一位小数。
11、注意整个建筑中小房间的活载取值(如贮藏室等)。
12、上层柱可以采用变截面柱。
13、结构布置时要注意梁的整体性,不能出现传力不明的不完整梁。
上级次梁要比下一级次梁高50mm。
14、一般采用钢性楼板假定。
15、震周期选第一振动周期,周期比是第一扭转周期除以第一平动周期。
A级高层不应大于0.9,B级高层不应大于0.85(等于0.5对应的周期)。
16、架周期折减取0.7。
17、地震的偏心、扭转计算均考虑。
18、折减严格按照规范确定。
19、中梁刚度系数取1.8。
20、柱配筋按单偏压计算,双偏压验算。
21、结构位移比位移角1/550。
22、计算梁上墙线荷截时要减去梁高,对于外承重墙取墙体密度为14KN/m3,对于非承重的墙取12KN/m3。
23、剪重比要求,查看WZQ.OUT文件。
参照搞规5.2.5条。
抗震验算时,结构任一楼层的水平地震剪力应符合下式要求24、桩载面设计要求,三级抗震时不宜小于400mm25、注意休息平台处梁是否需要下降,及其它梁的设计标高26、确定梁截面时注意外围有窗梁窗的标高。
27、同一根梁宜做等宽梁。
28、多级次梁短跨梁应做为一级次梁。
29、阳台栏杆荷载一般取530、荷载不要多输漏输31、积水荷载与活载比较取大者32、屋面板厚至少要100厚33、注意板挠度计算34、局部小房间活截35、建筑找坡荷载的计算36、主梁抗扭剪超筋时,考虑把次梁两边设为铰支。
PKPM计算参数详解
PKPM计算参数详解PKPM是计算机软件中的一种结构计算分析方法,常用于建筑结构设计及分析。
其参数的计算涉及到很多概念和公式,下面详细介绍PKPM计算参数的相关内容。
1.全天候房屋屋面线拟合全天候房屋屋面线拟合是指通过地下室控制点样点数据,自动生成房屋主体外曲线的过程。
其计算过程中,需要考虑样点的坐标、高程等参数,并采用曲线拟合算法,如B样条曲线算法或多项式拟合算法。
2.框架结构内力计算框架结构内力计算是指在建筑结构设计中,根据荷载和结构几何参数,计算结构内力的过程。
在PKPM中,可以通过输入结构的节点坐标、梁柱参数、荷载参数等,使用刚度矩阵法或弹性法等方法计算结构的内力。
3.楼板受弯承载力计算楼板受弯承载力计算是指计算楼板在负弯矩作用下的承载能力。
在PKPM中,可以通过输入楼板的几何参数、材料参数、加载参数等,使用等效矩形法或混凝土应力-应变关系等方法计算楼板的受弯承载力。
4.柱承载力计算柱承载力计算是指计算柱子在纵向压力作用下的承载能力。
在PKPM 中,可以通过输入柱子的几何参数、材料参数、加载参数等,使用截面特性法或等效矩形法等方法计算柱子的承载力。
5.剪力墙水平抗力计算剪力墙水平抗力计算是指计算剪力墙在水平力作用下的抗力。
在PKPM中,可以通过输入剪力墙的几何参数、材料参数、加载参数等,使用理论模型计算剪力墙的水平抗力。
6.风荷载计算风荷载计算是指计算建筑结构在风力作用下的受力情况。
在PKPM中,可以通过输入建筑结构的几何参数、材料参数、风速参数等,使用规范中给出的风荷载计算方法计算建筑结构的受力情况。
7.地震荷载计算地震荷载计算是指计算建筑结构在地震作用下的受力情况。
在PKPM 中,可以通过输入建筑结构的几何参数、材料参数、地震参数等,使用规范中给出的地震荷载计算方法计算建筑结构的受力情况。
8.基础底座承载力计算基础底座承载力计算是指计算建筑基础底座在垂直力作用下的承载能力。
在PKPM中,可以通过输入基础的几何参数、材料参数、荷载参数等,使用规范中给出的基础底座承载力计算方法计算基础底座的承载能力。
PKPM参数设置(个人总结)
一、PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、保护层厚度,【砼规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲、乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)。
5、抗震构造措施和抗震等级,【抗规3.3.2】建筑场地为1类时,对甲、乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲、乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
PKPM计算全参数
PKPM计算参数一、总信息1.水平力与整体坐标夹角:一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。
根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。
当计算出来的角度大于15度时,应返填入此项。
2.砼容重:25结构类型框架结构框剪结构剪力墙结构重度 25 2 6 273.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。
4.裙房层数:高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。
层数是计算层数,等同于裙房屋面层层号。
5.转换层所在层号:该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。
(层号为计算层号)6.地下室层数:程序据此信息决定底部加强区范围和内力调整。
当地下室局部层数不同时,以主楼地下室层数输入。
地下室一般与上部共同作用分析;地下室刚度大于上部层刚度的2倍,可不采用共同分析;地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。
当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。
当相对刚度为负值,地下室完全嵌固。
7.墙元细分最大控制长度:可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。
8.墙元侧向节点信息:内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。
对于多层结构,应选此项。
外部节点:按外部节点处理时,耗机时和内存资源较多。
对于高层结构,可选此项。
9.恒活荷载计算信息:一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。
PKPM参数大全
PKPM参数大全PKPM(简称Pohlke和Patoski方法)是结构设计常用的一种参数法。
该方法源于美国草原理工学院的Pohlke、Patoski教授。
PKPM方法适用于框架结构,能够方便快捷地计算结构的受力和刚度。
本文将介绍PKPM中常用的一些参数及其计算方法。
1.杆件长短比(L/r):杆件的长短比是指杆件长度与其截面半径的比值,用来反映杆件的细长程度。
细长杆件在受力时容易发生侧扭和屈曲,因此长短比超过一定值后,需要进行屈曲稳定分析。
一般情况下,屈曲稳定分析要求杆件的长短比不超过100。
2.一阶矩(M1)和二阶矩(M2):一阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的乘积之和。
二阶矩是指结构中截面各杆件受到的外力与该杆件到结构重心的垂直距离的平方乘积之和。
一阶矩和二阶矩的计算可以通过根据杆件的节点坐标和杆件上的荷载来求解。
3.弹性刚度(K):弹性刚度是指结构在受力下的刚度。
PKPM方法中通常将杆件的弹性刚度表示为杆件长度与截面的刚度比值。
刚度计算方法可以通过杆件的几何参数和材料力学性质来求解。
4.轴向力(N):轴向力是指杆件受到的沿杆件轴线方向的拉力或压力。
轴向力的计算可以通过杆件上的受力和几何参数来求解。
5.弯矩(M):弯矩是指杆件在受力时发生的弯曲变形引起的内力。
弯矩的计算可以通过受力和几何参数来求解。
6.剪力(V):剪力是指杆件在受力时发生的剪切形变引起的内力。
剪力的计算可以通过受力和几何参数来求解。
7. 屈曲载荷(Pcr):屈曲载荷是指杆件在受力时的临界载荷,即当杆件承受的载荷超过该临界值时,杆件将出现屈曲失稳现象。
屈曲载荷的计算可以通过杆件的几何参数和材料力学性质来求解。
8.挠度(Δ):挠度是指结构中杆件在受力下发生的弯曲变形引起的位移。
挠度的计算可以通过受力、几何参数和材料刚度来求解。
9.水平变位(Δh):水平变位是指结构中节点点在水平方向上的位移。
水平变位的计算可以通过节点受力和结构刚度来求解。
PKPM计算全参数
PKPM计算全参数PKPM(Physical Diagram Analysis Method)是一种针对钢结构进行结构分析和设计的计算方法。
它是根据物理图解分析的原理和方法,通过对结构的内力平衡条件和位移协调条件进行分析,来计算结构的受力状态和变形情况的一种理论计算方法。
在PKPM计算中,需要考虑的参数较多,下面将详细介绍PKPM计算的全参数。
1.结构材料参数:-弹性模量(E):钢结构的弹性模量是指单位面积受力后产生的应力与应变之比,是材料刚性和变形能力的量度。
根据每种钢材料的不同,其弹性模量的数值也会有差异。
-屈服强度(σy):钢材的屈服强度是指单位面积受力时,钢材开始发生塑性变形的应力值。
不同类型的钢材具有不同的屈服强度。
-破坏应变(εu):钢材的破坏应变是指材料发生破坏时的应变值。
不同类型的钢材在破坏时表现出不同的应变值。
2.截面参数:-截面面积(A):截面面积是指钢结构截面上各个部分的面积之和,是计算受力和弯曲等问题时的重要参数。
-惯性矩(I):惯性矩是指钢结构截面对于弯曲应力分布的阻力能力,是刚度和变形性能的一个重要指标。
3.荷载参数:-静载荷(G):静载荷是指所有稳定作用于结构上的自重和外部荷载的总和。
静载荷的大小直接影响结构的受力状态。
-活载荷(Q):活载荷是指结构在使用过程中受到的非永久性、可变化的荷载,如人员、货物等。
活载荷的大小会影响结构的变形和破坏。
4.边界条件:-支座刚度(k):支座刚度是指结构受力点的支座的刚度,是模拟结构与地基之间约束程度的参数。
支座刚度的大小会影响结构的位移和变形情况。
5.结构拆装参数:-焊接强度(τ):焊接强度是指焊接接头的承载能力和破坏程度的指标,是决定焊接接头在使用过程中是否安全可靠的参数。
-螺栓预紧力(N):螺栓预紧力是指通过对螺栓施加预紧力来使螺栓接头形成一定的摩擦力,从而使结构受力的一种方法。
螺栓预紧力的大小会影响结构的受力和变形情况。
6.安全系数:-安全系数(γ):安全系数是指结构或材料承受的荷载与其承载能力之间的比值,用于保证结构在使用过程中的安全性。
PKPM参数
1、水平力与整体坐标角:一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,如果风荷载影响比较大,需要将风荷载最大角度在此输入进行计算,地震方向可以在斜交抗侧力构件中输入。
2、裙房层数:1:高规第3.9.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。
2:层数的输入从结构最底层算起,包括地下室层数。
3、嵌固端层号:这里的嵌固端指上部结构的计算嵌固端,当地下室顶板作为嵌固时,那么嵌固端所在层为地上一层,即地下室层数+1。
4、地下室:土层水平抗力系数的比例系数(M值)按建筑桩基技术规范JGJ94-2008表5.7.5中灌注桩取值。
如果填负数m则表示地下m层无水平位移。
5、刚性楼板假定主要是在周期比和位移比的算不过的时候点此选项,算配筋时不能点此选项,否则计算结果有问题。
6、结构类型框剪结构:高规8.1.3已有明确规定。
a、框架部分承受的地震倾覆力矩不大于结构总地震倾覆力矩的10%时,按剪力墙结构设计,其中框架部分应按框架-剪力墙结构中的框架进行设计。
b、框架部分承受的地震倾覆力矩占结构总地震倾覆力矩的10%~50%时,按框架-剪力墙结构进行设计。
c、框架部分承受的地震倾覆力矩占结构总地震倾覆力矩的50%~80%时,按框架-剪力墙结构进行设计,其最大适用高度可比框架结构适当增加,其中框架部分的抗震等级和轴压比限值宜按框架结构的规定采用。
d、框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的80%时,按框架剪力墙结构进行设计,但其最大适用高度宜按框架结构采用,框架部分的抗震等级和轴压比限值应按框架结构的规定采用,当结构的层间位移角不满足框架—剪力墙结构的规定时,可按本规程第3.11节的有关规定进行结构抗震性能分析的论证。
7、模拟施工加载:SATWE说明中已明确,模拟1:一次集成刚度,分层加载模拟2:一次集成刚度,柱刚度放大10倍,分层加载模拟3:分层集成刚度,分层加载,最符合实际受力情况,一般情况下均选择模拟3。
2024版PKPM参数的介绍
2024版PKPM参数的介绍PKPM(Parallel-Key Primitive Matrix)是一种专门为分布式计算而设计的矩阵计算模型。
它是由中国科学院计算技术研究所于2024年发布的,并被广泛用于高性能计算和大规模数据处理领域。
以下是对2024版PKPM参数的详细介绍:1. 数据分布参数(Data Distribution Parameters):(1)块大小(Block Size):决定了数据在分布式系统中的划分方式。
块大小越小,划分得越细,有利于提高并行计算的粒度,但也会增加通信和计算开销。
(2)划分策略(Partitioning Strategy):指定了将数据划分到各个计算节点上的方式。
常见的划分策略包括按行划分、按列划分以及按块划分。
2. 任务调度参数(Task Scheduling Parameters):(1)任务粒度(Task Granularity):指定了在分布式系统中一个任务(如矩阵乘法)被划分为多个子任务的粒度大小。
任务粒度越小,可以提高并行度,但也会增加调度和通信开销。
(2)调度策略(Scheduling Policy):决定了如何将子任务分配给空闲的计算节点。
例如,可以采用负载均衡的策略,将子任务分配给负载最轻的计算节点。
4. 存储参数(Storage Parameters):(1)数据布局(Data Layout):指定了矩阵数据在内存中的存储方式,主要有行存储和列存储两种方式。
行存储适用于以行为单位进行计算的情况,而列存储适用于以列为单位进行计算的情况。
5. 算法参数(Algorithm Parameters):(1)并行算法选用(Parallel Algorithm Selection):指定了在分布式系统中使用的具体算法。
不同的算法在性能和精度等方面存在差异,可以根据问题的特点和要求进行选择。
总之,2024版PKPM参数是为分布式计算而设计的矩阵计算模型的关键参数,包括数据分布参数、任务调度参数、通信参数、存储参数和算法参数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PKPM计算参数一、总信息1.水平力与整体坐标夹角:一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。
根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。
当计算出来的角度大于15度时,应返填入此项。
2.砼容重:25结构类型框架结构框剪结构剪力墙结构重度 25 2 6 273.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。
4.裙房层数:高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。
层数是计算层数,等同于裙房屋面层层号。
5.转换层所在层号:该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。
(层号为计算层号)6.地下室层数:程序据此信息决定底部加强区范围和内力调整。
当地下室局部层数不同时,以主楼地下室层数输入。
地下室一般与上部共同作用分析;地下室刚度大于上部层刚度的2倍,可不采用共同分析;地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。
当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。
当相对刚度为负值,地下室完全嵌固。
7.墙元细分最大控制长度:可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。
8.墙元侧向节点信息:内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。
对于多层结构,应选此项。
外部节点:按外部节点处理时,耗机时和内存资源较多。
对于高层结构,可选此项。
9.恒活荷载计算信息:一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。
因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。
模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。
但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。
于是就有了下一种竖向荷载加载法。
模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。
采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。
由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。
但是我认为这种方法人为的扩大了竖向构件与水平构件的线刚度比,所以它的计算方式值得探讨。
所以,专家建议:在进行上部结构计算时采用“模拟施工方法1”;在基础计算时,用“模拟施工方法2”的计算结果。
这样得出的基础结果比较合理。
(高层建筑)10.结构体系:规范规定不同结构体系的内力调整及配筋要求不同;同时,不同结构体系的风振系数不同;结构基本周期也不同,影响风荷计算。
宜在给出的多种体系中选最接近实际的一种,当结构体系定义为短肢剪力墙时,对墙肢高度和厚度之比小于8的短肢剪力墙,其抗震等级自动提高一级。
11.对所有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。
应该注意的是,除了位移比计算,其他的结构分析、设计不应选择此项。
故在计算过程中必须进行2次计算,一次来在假定楼板全刚性的情况下算得控制位移比,第二次在真实的环境来算得构件的配筋。
12.地震作用计算信息一般应计算水平地震作用,8、9度时的大跨度和长悬臂结构及9度时的高层建筑(如结构转换层中的转换构件、跨度大于24m的楼盖或屋盖、悬挑大于2m的水平悬臂构件等),应计算竖向地震作用。
二、风荷载信息1.地面粗糙度类别:A类:近海海面,海岛、海岸、湖岸及沙漠地区。
(0.12)B类:指田野、乡村、丛林、丘陵及中小城镇和大城市郊区。
(0.16)C类:指有密集建筑群的城市市区。
(0.22)D类:指有密集建筑群且房屋较高的城市市区。
(0.30)2.修正后的基本风压:对于高层建筑应按基本风压乘以系数1.1采用。
风荷载作用面的宽度,多数程序是按计算简图的外边线的投影距离计算的,因此,当结构顶层带多个小塔楼而没有设置多塔楼时,应注意修改风荷载文件,从风荷载中减去计算简图的外边线间无建筑面的空面面积上的风载,否则会造成风载过大,特别是风载产生的弯矩过大。
顶层女儿墙高度大于1米时应修正顶层风载,在程序给出的风荷上加上女儿墙风荷。
当计算坐标旋转时,应注意风荷计算是否相应作了旋转处理。
大多数程序风载从嵌固端算起,当计算嵌固端在地下室时,应将风荷载修正为从正负零算起。
用SATWE进行多塔楼分析时,程序能自动对每个塔楼取为一独立刚性块分析,但风荷载按整体投影面计算,因此一定要进行多塔楼定义,否则风荷载会出现错误。
3.结构的基本周期:宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T=(0.08-0.10)N;框剪结构、框筒结构T=(0.06~0.08)N;剪力墙、筒中筒结构T=(0.05~0.06)N,N为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;程序中给出的基本周期是采用近似方法计算得到的,建议计算出结构的基本周期后,再代回重新计算。
4.体型系数:a)圆形和椭圆形平面,Us=0.8b)正多边形及三角形平面,Us=0.8+1.2/(n的平方根),其中n为正多边形边数c)矩形、鼓形、十字形平面Us=1.3d)下列建筑的风荷载体形系数Us=1.4i:V形、Y形、弧形、双十字形、井字形平面;ii:L形和槽形平面;iii:高宽比H/Bmax大于4、长宽比L/Bmax不大于1.5的矩形、鼓形平面。
三、地震信息由于抗震设防烈度为6度时,某些房屋可不进行地震作用计算,但仍应采取抗震构造措施,因此,若在第一页参数中选择了不计算地震作用,本页中地震烈度、框架抗震等级和剪力墙抗震等级仍应按实际情况填写,其他参数可不必考虑。
1.结构规则性信息:平面不规则的类型扭转不规则:楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。
凹凸不规则:结构平面凹进的一侧尺寸,大于相应投影方向总尺寸的30%。
楼板局部不连续:楼板的尺寸和平面刚度急剧变化,例如,不效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或较大的楼层错层。
竖向不规则的类型侧向刚度不规则:该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下一层的25%。
竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递。
楼层承载力突变:抗侧力结构的层间受剪承载力小于相邻上一楼层的80%。
2.扭转耦联信息:对于耦联选项,建议总是采用;质量和刚度分布明显不对称的结构,楼层位移比或层间位移比超过1.2时,应计入双向水平地震作用下的扭转影响。
偶然偏心:验算结构位移比时,总是考虑偶然偏心位移比超过1.2时,则考虑双向地震作用,不考虑偶然偏心。
位移比不超过1.2时,则考虑偶然偏心,不考虑双向地震作用例:一31层框支结构,考虑双向水平地震力作用时,其计算剪重比增量平均为12.35%;规则框架考虑双向水平地震作用时,角柱配筋增大10%左右,其他柱变化不大;对于不规则框架,角、中、边柱配筋考虑双向地震后均有明显的增大;通过双向地震力、柱按单偏压计算和双向地震力、双偏压计算比较可知,后者计算柱的配筋较前者有明显的增大。
建议:若同时勾选双向地震力、柱双向配筋,程序自动取二者之间的大值,而不是二者的叠加。
3.设计地震分组、设防烈度、场地类别,按规范及地质报告。
4.框架、剪力墙抗震等级:5.考虑偶然偏心及双向地震作用:计算单向地震力,应考虑偶然偏心的影响。
5%的偶然偏心,是从施工角度考虑的。
计算考虑偶然偏心,使构件的内力增大5%~10%,使构件的位移有显著的增大,平均为18.47%。
注:对于不规则的结构,应采用双向地震作用,并注意不要与“偶然偏心”同时作用。
“偶然偏心”和“双向地震力”应是两者取其一,不要都选。
建议的选用方法:当为多层(≤8层,≤30m),考虑扭转耦联与非扭转耦联均可;当为一般高层,可选用耦联+偶然偏心;当为不规则高层、满足抗规2条以上不规则性时,或在刚性板假定下,位移比大于1.2,考虑双向地震作用。
6.计算振型个数:按侧刚计算时:单塔楼考虑耦联时应大于等于9;复杂结构应大于等于15;N 个塔楼时,振型个数应大于等于N×9。
(注意各振型的贡献由于扭转分量的影响而不服从随频率增加面递减的规律)一般较规则的单塔楼结构不考虑耦联时取振型数大于等于3就可,顶部有小塔楼时就大于等于6。
按总刚计算时;采用的振型数不宜小于按铡刚计算的二倍,存在长梁或跨层柱时应注意低阶振型可能是局部振型,其阶数低,但对地震作用的贡献却较小。
规范要求,地震作用有效质量系数要大于等于0.9;基底的地震剪力误差已很小,可认为取的振型数已满足。
7.活荷质量折减系数:取0.5。
8.周期折减系数:周期折减的目的是为了充分考虑非承重填充砖墙刚度对结构自振周期的影响。
因为周期小的结构,其刚度较大,相应吸收的地震力也较大。
若不做周期折减,则结构偏于不安全。
根据《高规》3.3.17 条规定,当非承重墙体为实心砖墙时,ψT可按下列规定取值:框架结构0.6~0.7;框架-剪力墙结构0.7~0.8;剪力墙结构0.9~1.0。
实际取值时可根据填充墙的数量和刚度大小来取上限或下限。
当非承重墙体为空心砖或砌块时,ψT可按下列规定取值:框架结构0.75(灰砂砖),0.80(空心砌块);框架-剪力墙结构0.9~1.0;剪力墙结构可取0.95。
当结构的第一自振周期T1≤Tg时,不需进行周期折减,因为此时地震影响系数由程序自动取结构自振周期与特征周期的较大值进行计算。
10.结构的阻尼比:钢筋混凝土结构均取5%。
11.特征周期:罕遇加0.05s12.多遇及罕遇地震影响系数最大值13.斜交抗侧力构件方向附加地震数及相应角度:《抗规》5.1.1条规定,有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用。
主要是针对“非正交的、平面不规则”的结构,这里填的是除了两个正交的,还要补充计算的方向角数。