第九章 电磁感应
大学物理第九章
动生电动势
由于导体运动而产生的感应电动势。
dΦ B dS Bldx
i
dΦ dt
Bl
dx dt
Bl
d a
B
l
c b
dx
负号表示电动势的方向。
在磁场中运动的导线内的感应电动势
导线内每个自由电子受到的
洛仑F兹力e
B
非静E电k 场 强Fe
B
a
电场。
解:由场的对称性,变化磁场所激发的感生电场
线在管内、外都是与螺线管同轴的同心圆。
取任一电场线(半径为r)作
为闭合回 路, 则
L L
E E
E
ddll21LrESdSlBtBt2ddSrSE
ER
r
B
感生电场
1)
当r
S
<RB时 dS t
S
B t
dS
r 2 dB
dt
E
1
2r
S
§9-1 电磁感应定律
法拉第(1791-1867英国)
1831年,发现电磁感应现象。 1833年,发现电解定律。 1837年,发现电解质对电容的影响, 引入电容率概念。 1845年,发现磁光效应,顺磁质、抗 磁质等。
§9-1 电磁感应定律
1. 电磁感应现象
N
S
现象1
条形磁铁N极(或S极)插入线圈时,线圈中就有电 流通过,这种电流称为感应电流。 实验表明:磁铁与线圈有相对运动时,线圈中就有感 应电流,相对速度越大,感应电流也越大。
(a)Φ 0, dΦ
B
dt en
0, i
0
i
(b)Φ 0, dΦ
B
dt en
第九章 电磁感应 电磁场(一)作业答案
一。
选择题[ D ]1.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【分析】dt dI LL -=ε,在每一段都是常量。
dtdI[ D ]2. (基础训练5)在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于导线中的电动势 【分析】连接oa 与ob ,ob ab ob oab εεεε++=。
因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=⋅==⎰→→l d E ob ob εεoab ob d dB S dt dtφεε==-=- o ab oabd d dtdtϕϕ∴<[ B ]3.(基础训练6)如图12-16所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) 0ε= 221l B U U c a ω=- (B) 0ε= 221l B U U c a ω-=-(C)2B l εω=221l B U U c a ω=- (D) 2B l εω= 221l B U U c a ω-=-【分析】ab 边以匀速转动时 0=-=dtd abc φε 22l B l d B v U U U U L c b c a ω-=∙⎪⎭⎫⎝⎛⨯=-=-⎰→→→ t t tt t (b)(a)Bab clω图12-16[ B ]4.(自测提高2)真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ【分析】距离为a 的空间该点的磁感应强度大小为:aIB πμ20=磁能密度为 200022212⎪⎭⎫ ⎝⎛==a I B w m πμμμ [ B ]5.(自测提高5)用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图12-26所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向? 【分析】根据公式S dt B d l E S Ld d ⋅-=⋅⎰⎰⎰感,因为0<dtB d 且磁场方向垂直图面向里,所以感应电流为顺时针方向,再由于感应电流是涡电流,故选B 图。
第九章 第2单元 法拉第电磁感应定律 自感和涡流
又逐渐熄灭,所以C错误,D正确. 答案: BD
5.如图9-2-2所示,在竖直向下
的磁感应强度为B的匀强磁场中, 有两根水平放置、相距L且足够长 的平行金属导轨AB、CD,在导轨 图9-2-2
的A、C端连接一阻值为R的电阻,一根垂直于导轨放 置的金属棒ab,质量为m,导轨和金属棒的电阻及它 们间的摩擦不计,若用恒力F水平向右拉棒ab使之运 动,求金属棒ab的最大速度.
向下,大小为4.5×10-5T.一灵敏电压表连接在当地入海河
段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为 导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下 列说法正确的是 A.电压表记录的电压为5 mV B.电压表记录的电压为9 mV C.河南岸的电势较高 ( )
D.河北岸的电势较高
5.电磁阻尼 当导体在磁场中运动时,感应电流会使导体受到安培力, 安培力的方向总是 阻碍 导体的运动的现象.
6.电磁驱动
如果磁场相对于导体转动,在导体中会产生感应电流, 感应电流使导体受到 安培力 的作用, 安培力 使导体 运动起来,这种作用称为电磁驱动. 交流电动机就是利用 电磁驱动 的原理制成的.
(1)分清求解感应电动势时用速度的平均值还是瞬时值.
(2)求解第(3)问时合理应用牛顿第二定律.
[解析]
1 2 (1)5 s 内的位移 x= at =25 m 2
x 5 s 内的平均速度 v = t =5 m/s 0+v5 (也可用 v = 求解) 2 故平均感应电动势 E =BL v =0.4 V.
解析:ab棒受恒力F作用向右加速运动产生感应电流,ab 棒在磁场中受安 培力F安,如右图所示.随着v↑→E↑→I↑→F安↑→F合 ↓→a↓,当ab棒所受合力为零时,加速 度为零,速度最大.此时 F- F安 = 0 ①
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
大学物理-第九章 电磁感应 电磁场理论
2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1
r
R 2
区
域内且
wm
B2 2
8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr
第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流
第九章电磁感应
第2讲法拉第电磁感应定律自感涡流
命制人:王善锋审核人:于孔彬定时:40分钟
一、学习目标
1、高考要求:自感、涡流Ⅰ;法拉第电磁感应定律Ⅱ
学习目标:
1)能理解和熟练应用法拉第电磁感应定律,用于电路分析
2)了解自感和涡流的产生原因和现象
二、自学填空大一轮P156
三、预习问题
1、法拉第电磁感应定律
1)产生感应电动势的部分为电源,其正负极如何判断?内部电流方向如何确定?
2)感生电动势是如何产生的?产生条件如何,与感应电流产生条件有何不同?大小由哪些因素决定?
3)导体平动和转动切割匀强磁场时,动生电动势是如何产生的?大小分别怎样?
4)如何计算回路中电流的大小?如何计算某一部分电路两端的电压?
2、自感
1)什么是自感和互感?自感电动势与哪些因素有关?
2)线圈在通电自感和断电自感中各起什么作用?线圈直流电阻不计和考虑有何区别?灯泡为何有时会闪亮后逐渐熄灭?
3、涡流
1)什么是涡流?有哪些应用?有哪些危害?如何防止涡流产生?
2)什么是电磁驱动和电磁阻尼?
四、典型例题
《大一轮》例1、例2、例3
五、提升训练
A组《大一轮》跟踪训练1-1、2-1、3-1,高考题组
B组《大一轮》基础自测
六、课后反思。
高考复习 第九章 电磁感应
第九章 电磁感应知识网络:第1单元 电磁感应 楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、右手定则伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。
三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 )2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致R其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
大学物理 第九章 电磁感应 电磁场理论的基本概念
选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B
L
A
1 2 m B dS BS AOCA B L 2
o
C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt
d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同
第九章 电磁感应9-3(新课标复习资料)
第九章 电磁感应
限 时 规 范 特 训 随 堂 针 对 训 练
考 技 案 例 导 析
易 错 易 混 分 析
金版教程
高三物理
解析:(1)棒MN右移时,切割磁感
基 础 知 识 梳 理
线,产生感应电动势,棒MN相当于一 个电源.流过棒的电流即为电源内的电 流,当棒过圆心O时,棒两端的电压即
随 堂 针 对 训 练
(2)撤去中间的金属棒MN,将右面的半圆环OL2O′ 以OO′为轴向上翻转90° ,若此时磁场随时间均匀变 化,其变化率为ΔB/Δt=4T/s,求L1的功率.
限 时 规 范 特 训
易 错 易 混 分 析
选修3-2
第九章 电磁感应
金版教程
基 础 知 识 梳 理
高三物理
[解析] (1)棒滑过圆环直径OO′的瞬时,MN中的 电动势 E1=B2av=0.2×0.8×5 V=0.8 V① 等效电路如图(1)所示,流过灯L1的电流 I1=E1/R=0.8/2 A=0.4 A②
金版教程
高三物理
选 修 3-2
选修3-2
第九章
电磁感应
金版教程
高三物理
第九章
电磁感应
选修3-2
第九章
电磁感应
金版教程
高三物理
第3单元 电磁感应规律的综合应用
选修3-2
第九章
电磁感应
金版教程
基 础 知 识 梳 理
高三物理
考 技 案 例 导 析
基础知识梳理
随 堂 针 对 训 练
易 错 易 混 分 析
考 技 案 例 导 析
为路端电压,其等效电路如图所示. 金属棒经过环心时,棒中产生的感应电动势为 E=B· v=2Bav. 2a·
第九章第3单元__电磁感应的综合应用
如图所示,一对光滑的平行金属导轨固定在同一水平面内,
导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻。一质量m=
0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置 于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T。棒在
水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀
解析:在PQ棒右侧放金属棒时,回路中会有感应电流,
使金属棒加速,PQ棒减速,当获得共同速度时,回路
中感应电流为零,两棒都将匀速运动,A、B项错误。 当一端或两端用导线连接时,PQ的动能将转化为内能 而最终静止,C、D两选项正确。 答案:CD
2.如图2所示,用粗细相同的铜丝做成边长分 别为L和2L的两只闭合线框a和b,以相同 的速度从磁感应强度为B的匀强磁场区域
2.(2013· 福州模拟)如图9-3-16所示,在
x≤0的区域内存在匀强磁场,磁场的方 向垂直于xOy平面(纸面)向里。具有一
图9-3-16
定电阻的矩形线框abcd位于xOy平面内,线框的ab边 与y轴重合。令线框从t=0时刻起由静止开始沿x轴正 方向做匀加速运动,则线框中的感应电流I(取逆时针 方向为电流正方向)随时间t的变化图线(I-t图线)可
图9-3-18
进入磁场的这段时间内,线框运动的速度—时间图象 不可能是图9-3-19中的 ( )
图9-3-19
解析:当ab边刚进入磁场时,若线框所受安培力等于重
力,则线框在从ab边开始进入磁场到cd边刚进入磁场前
做匀速运动,故A是可能的;当ab边刚进入磁场时,若线 框所受安培力小于重力,则线框做加速度逐渐减小的加 速运动,最后可能做匀速运动,故C情况也可能;当ab边 刚进入磁场时,若线框所受安培力大于重力,则线框做 加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B项是不可
大学物理第九章+电磁感应
• …… • 所以, 磁也可能产生电 8
9-1 电磁感应定律
1834 楞次(Lenz)
楞次定律
1845 诺埃曼(Neumann) 电磁感应数学表达
1864 麦克斯韦(Maxwell) 麦克斯韦电磁场理论
9
9.1 电磁感应定律
一、电动势*
1 .非静电力与电源
(1).有源情况下形成稳恒电流的条件
= =
p(υ×B)⋅dl =
o
− L ω lBdl = 0
LυB sin 90 cos180
0
−ωB
L
ldl
=−
0
dl = − 1 ω BL
2
LυBdl
0
2<0
(3)判断电动势方向 P端为负极,O端为正极。
40
9-1 电磁感应
七、发电机
电磁感应定律最伟大 应用之一——发电机
水轮发 电机
法拉第圆 盘发电机
22
四、Faraday电磁感应定律
1 .定律的表述
当穿过以闭合回路为边界的任意曲面的磁通量发生 变化时,产生的感应电动势正比于磁通量变化率的 负值,即(国际单位制下)
ε = − dΦ
dt
2 .感应电动势的大小:与磁通量无关,仅与磁通量的时 间变化率成正比。
23
3.“-”号的意义—确定感应电动势方向(反映
=
μ0I0L 2π
⎢⎣⎡ω
sin(ωt) ln
b + vt a + vt
− vHale Waihona Puke cosωt⎜⎛⎝b
1 + vt
−
a
1 + vt
⎟⎠⎞⎥⎦⎤
高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】
第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。
(2)安培力的特点:安培力为阻力,并随速度减小而减小。
(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。
第九章 电磁感应
选修3-2 第九章 电磁感应第1讲 电磁感应产生的条件 楞次定律磁通量 Ⅰ(考纲要求)1.磁通量的计算(1)公式:Φ=BS .(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.(3)单位:韦伯,1 Wb =1 T·m 2.2.碰通量的物理意义(1)可以形象地理解为磁通量就是穿过某一面积的磁感线的条数.(2)同一个平面,当它跟磁场方向垂直时,磁通量最大,当它跟磁场方向平行时,磁通量为零.电磁感应现象 Ⅰ(考纲要求) 1.当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象. 2.产生感应电流的条件表述1 闭合电路的一部分导体在磁场内做切割磁感线运动.表述2 穿过闭合电路的磁通量发生变化.3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流.楞次定律 Ⅱ(考纲要求) 1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用条件:所有电磁感应现象.2.右手定则(如图9-1-1所示)(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.2.判断感应电流方向的“三步法”规律 适用范围 基本现象 安培定则 电流的磁效 应 运动电荷、电流产生磁场 左手 定则 磁场力 磁场对运动电荷、电流的作用 右手定则 楞次定律 电磁电应 导体做切割磁感线运动 回路的磁通量变化图9-1-1图9-1-2 图9-1-4 3.右手定则掌心——磁感线垂直穿入, 拇指——指向导体运动的方向, 四指——指向感应电流的方向.1.下图中能产生感应电流的是( ).2.如图9-1-2所示,小圆圈表示处于匀强磁场中的闭合电路一部分导线的横截面,速度v 在纸面内.关于感应电流的有无及方向的判断正确的是( ).A .甲图中有感应电流,方向向外B .乙图中有感应电流,方向向外C .丙图中无感应电流D .丁图中a 、b 、c 、d 四位置上均无感应电流3.(2011·杭州高三检测)如图9-1-3所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平行)通电导线,则穿过线框的磁通量将( )。
第9章电磁感应
第9章 电磁感应第1讲 电磁感应现象 楞次定律板块一 主干梳理·对点激活知识点1 磁通量 Ⅰ1.磁通量(1)定义:匀强磁场中,磁感应强度(B )与垂直磁场方向的面积(S )的乘积叫作穿过这个面积的磁通量,简称磁通,我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:Φ=BS 。
(3)适用条件:①匀强磁场;②S 是垂直磁场中的有效面积。
(4)单位:韦伯(Wb ),1 Wb =1_T·m 2。
(5)标量性:磁通量是标量,但有正负之分。
磁通量的正负是这样规定的,即任何一个平面都有正、反两面,若规定磁感线从正面穿入时磁通量为正,则磁感线从反面穿入时磁通量为负。
2.磁通量的变化量 在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
3.磁通量的变化率(磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。
知识点2 电磁感应现象 Ⅰ1.电磁感应现象:当闭合电路的磁通量发生改变时,电路中有感应电流产生的现象。
2.产生感应电流的条件 (1)电路闭合。
(2)磁通量变化。
3.电磁感应现象的两种情况(1)闭合电路中部分导体切割磁感线运动。
(2)穿过闭合回路的磁通量发生变化。
4.电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
5.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
知识点3 楞次定律 Ⅱ1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
2.右手定则(1)内容:①磁感线穿入右手手心。
(从掌心入,手背穿出) ②大拇指指向导体运动的方向。
③其余四指指向感应电流的方向。
(2)适用范围:适用于部分导体切割磁感线。
双基夯实一、思维辨析1.磁通量等于磁感应强度B 与面积S 的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.关于磁通量,下列说法中正确的是( )A.磁通量是反映磁场强弱和方向的物理量B.穿过某个面积的磁感线的条数越多则磁通量越大C.穿过某一面积的磁通量等于面积S与该处的磁感应强度B的乘积D.若穿插过某一面积的磁通量为0,则该处的磁感应强度B也一定为02.如图12-1-3所示,四面体OABC处在沿Ox方向的匀强磁场中,下列关于磁场穿过各个面的磁通量的说法中正确的是( )A.穿过AOB面的磁通量为0B.穿过ABC面和BOC面的磁通量相等C.穿过AOC面的磁通量为0D.穿过ABC面的磁通量大于穿过BOC面的磁通量3.下列关于电磁感应的说法中正确的是( )A.只要导线做切割磁感线的运动,导线中就产生感应电流B.只要闭合金属线圈在磁场中运动,线圈中就产生感应电流C.闭合金属线圈放在磁场中,只要磁感应强度发生变化,线圈中就产生感应电流D.闭合金属线圈放在磁场中,只要线圈中磁通量发生变化,线圈就产生感应电流4.线圈在长直导线电流的磁场中,做如图12-1-1的运动:A向右平动;B向下平动;C绕轴转动(边bc向外);D从纸面向纸外做平动,E向上平动(边bc上有个缺口);则线圈中有感应电流的是( )5. 用同样材料和规格的导线做成的圆环a 和b ,它们的半径之比r a :r b =2:1,连接两圆环部分的两根直导线的电阻不计,均匀变化的磁场具有理想的边界如图所示,磁感应强度以恒定的变化率变化.那么当a 环置于磁场中与b 环置于磁场中两种情况下,A 、B 两点电势差之比U 1 / U 2为 .6. 有一边长为l 、匝数为n 、电阻为R 的正方形闭合线框处于磁感应强度为B匀强磁场中,磁场方向垂直于线圈平面,若将线框在磁场中翻转180°,求在这个过程中通过导线横截面的电量。
7. 单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则线圈中 [ ]A .O 时刻感应电动势最大B .D 时刻感应电动势为零C .D 时刻感应电动势最大D .O 至D 时间内平均感生电动势为0.4V8. 将一条形磁铁插入螺线管线圈,第一次插入用0.2秒,第二次插入用0.4秒,并且两次起始和终了位置相同,则( )A. 第一次磁通量变化比第二次大B. 第一次磁通量变化比第二次快C. 第一次产生的感应电动势比第二次大D. 若断开电键S ,两次均无感应电流两次线圈中磁通量之比为 ,感应电动势之比为 ,电流强度之比为 ,通过线圈的电量之比为 ,线圈放出的热量之比为 。
B A BA9.如图9-10所示,有一夹角为θ的金属角架,角架所围区域内存在匀强磁场中,磁场的磁感应强度为B,方向与角架所在平面垂直,一段直导线ab,从角顶c贴着角架以速度v向右匀速运动,求:(1)t时刻角架的瞬时感应电动势;(2)t时间内角架的平均感应电动势;(3)画出i-t图像。
10.如图所示,一导线弯成半径为a的半圆形闭合回路。
虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面。
回路以速度v向右匀速进入磁场,直径CD始终与MN垂直。
从D点到达边界开始到C点进入磁场为止,下列结论正确的是()A.感应电流方向不变B.CD段直导线始终不受安培力C.感应电动势最大值D.感应电动势平均值11.如图所示,在两根平行长直导线M、N中,通以同方向,同强度的电流,导线框abcd和两导线在同一平面内,线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动,在移动过程中,线框中感应电流的方向: ( )A.沿abcda不变;B.沿dcbad不变;C.由abcda变成dcbad;D.由dcbad变成abcda。
12.如图所示,一水平放置的圆形通电线圈I固定,有另一个较小的线圈II从正上方下落,在下落过程中线圈II的平面保持与线圈I的平面平行且两圆心同在一竖直线上,则线圈II从正上方下落到穿过线圈I直至在下方运动的过程中,从上往下看线圈II:( )A. 无感应电流;B. 有顺时针方向的感应电流;C. 有先顺时针后逆时针的感应电流;D. 有先逆时针后顺时针的感应电流。
13. 如图示,一闭合的铜环从静止开始由高处下落通过条形磁铁后继续下落,空气阻力不计,则在圆环的运动过程中,下列说法正确的是:( )A. 圆环在磁铁的上方时,加速度小于g ,在下方时大于g ,B. 圆环在磁铁的上方时,加速度小于g 在下方时也小于g ,C. 圆环在磁铁的上方时,加速度小于g ,在下方时等于g ,D. 圆环在磁铁的上方时,加速度大于g ,在下方时小于g.14. 如图所示,两个相同的铝环套在一根无限长的光滑杆上,将一条形磁铁向左插入铝环(未穿出)的过程中,两环的运动情况是:( )A. 同时向左运动,距离增大;B. 同时向左运动,距离不变;C. 同时向左运动,距离变小;D. 同时向右运动,距离增大。
15. 金属圆环的圆心为O ,金属棒Oa 、Ob 可绕O 在环上转动,如图示,当外力使Oa 逆时针方向转动时,Ob 将: ( )A. 不动B. 逆时针方向转动C. 顺时针方向转动D. 无法确定16. 如图所示,a 、b 、c 、d 为四根相同的铜棒,c 、d 固定在同一水平面上,a、b 对称地放在c 、d 棒上,它们接触良好,O 点为四根棒围成的矩形的几a O ωb何中心,一条形磁铁沿竖直方向向O点落下,则ab可能发生的情况是: ( )A.保持静止;B.分别远离O点;C.分别向O点靠近;D.无法判断。
17.如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴始终保持重合。
若取磁铁中心O 为坐标原点,建立竖直向下正方向的x轴,则图乙中最能正确反映环中感应电流i随环心位置坐标x变化的关系图像是18.如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直于纸面向外的匀强磁场中,下列说法中正确的是()A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点19.如图所示,在匀强磁场中放有平行铜导轨,它与大导线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨中的裸金属棒ab的运动情况是(两导线圈共面位置)()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动20.在图所示的实验中,带铁芯的、电阻较小的线圈L与灯A并联,且线圈电阻明显小于灯A的电阻.当合上电键K 后,灯A正常发光,下列说法正确的是()A.当断开K时,灯A立即熄灭B.当断开K时,灯A突然闪亮后熄灭C.当闭合K时,灯A立即亮起D.当闭合K时,灯A慢慢亮起21.如图(a)所示,水平放置的两根平行金属导轨,间距L=0.3m.导轨左端连接R=0.6Ω的电阻.区域abcd内存在垂直与导轨平面的B=0.6T的匀强磁场,磁场区域宽D=0.2m.细金属棒A1和A2用长为2D=0.4m的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直.每根金属棒在导轨间的电阻均为r=0.3Ω,导轨电阻不计.使金属棒以恒定的速度v=1.0m/s沿导轨向右穿越磁场.计算从金属棒A1进入磁场(t=0)到A2离开磁场的时间内,不同时间段通过电阻R的电流强度,并在图(b)中画出.22.如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为El;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比El:E2分别为()A.c→a,2:1B.a→c,2:1C.a→c,1:2D.c→a,1:223.如图所示,两根足够长的光滑金属导轨ab、cd竖直放置,导轨间距离为L1电阻不计。
在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。
整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。
现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。
金属棒下落过程中保持水平,且与导轨接触良好。
已知某时刻后两灯泡保持正常发光。
重力加速度为g。
求:(1) 磁感应强度的大小(2) 灯泡正常发光时导体棒的运动速率24.均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m。
将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示。
线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界面平行。
当cd边刚进入磁场时:(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件。
25.如图所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为θ。
在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B。
在导轨的A、C端连接一个阻值为R的电阻。
一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑。
求ab棒的最大速度。
(已知金属棒ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)26.如图所示,光滑的U型金属导轨PQMN水平地固定在竖直向上的匀强磁场中.磁感应强度为B,导轨的宽度为L,其长度足够长,QM之间接有一个阻值为R的电阻,其余部分电阻不计.一质量为m,电阻也为R的金属棒ab,恰能放在导轨之上并与导轨接触良好.当给棒施加一个水平向右的冲量,棒就沿轨道以初速度v0开始向右滑行.求:(1)开始运动时,棒中的瞬间电流i和棒两端的瞬间电压u分别为多大?(2)当棒的速度由v0减小到 1 10 v0的过程中,棒中产生的焦耳热Q是多少?27.电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。
阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Qr=0.1J。
(取g=10m/s2)求:(1)金属棒在此过程中克服安培力的功;(2)金属棒下滑速度v=2m/s时的加速度a。
(3)为求金属棒下滑的最大速度vm,有同学解答如下:由动能定理,……。
由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
28.如图所示,水平放置的两平行导轨左侧连接电阻,其他电阻不计.导体MN放在导轨上,在水平恒力F的作用下,沿导轨向右运动,并将穿过方向垂直纸面向里的匀强磁场,磁场边界PQ与MN平行,从MN进入磁场开始计时,通过MN的感应电流i随时间t的变化可能是如图所示中的。