数学思想方法简介
小学数学五大思想方法
小学数学五大思想方法
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般都是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快的找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式等
5、类比思想方法
类比思想是指根据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
数学思想方法介绍
◆数学方法具有三个基本特征:
(1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用:
(1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
二. 中学数学中常用的数学方法
一种方法,数学中许多方法都属于RMI方法,例如,分割法、
函数法、坐标法、换元法、复数法、向量法、参数法等。
☆RMI方法不仅是数学中应用广泛的方法,而且可以拓展到人
文社会科学中去。例如,哲学家处理现实问题的思想方法,就 可以看作RMI方法的拓展 (客观物质世界---哲学家的思维---哲
学理论体系---解决客观世界的现实问题)。
3)同态与同构 4)数的概念的扩充 5)多项式理论与整数理论的类比 整数
+、- 、×
带余除法 算术基本定理
多项式
+、- 、× 带余除法 代数基本定理
3. 归纳法(逻辑学中的方法)
与数学归纳法(数学中的一般方法)
☆归纳就是从特殊的、具体的认识推进到一般的认识的 一种思维方法。归纳法是实验科学最基本的方法。 归纳法的特点:1)立足于观察和实验;2)结论具有猜 测的性质;3)结论超越了前提所包含的内容。 归纳法用于猜测和推断。 例子:1) Fermat数(1640年,Fn=22 +1, Fermat素数:3,5, 17,257,65537); 2)Goldbach猜想(1742年)。
《数学思想与数学文化》
数学思想方法介绍
内 容
一.前言
二.中学数学中常用的数学方法
三.几类常用的数学思想方法介绍
1.演绎法或公理化方法 2.类比法 3.归纳法与数学归纳法 4.数学构造法
主要数学思想方法简介
第一章数学思想和方法第一节主要数学思想方法简介数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想方法是一种数学意识,属于思维范畴,只能领会和运用.通过数学思想的培养,数学的能力才会有一个大幅度的提高.掌握数学思想,就是掌握数学的精髓.掌握数学思想方法,可以受用一生.常用的数学思想:分类讨论思想、数形结合思想、方程与函数思想、化归与转化思想等,其他还有建模思想、归纳推理思想、两边夹的思想、换元思想、等效思想、优化思想、连续性思想、运动变化思想等.数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略.常用的一般性数学方法有定义法、配方法、换元法、消元法、参数法、待定系数法、数学归纳法等,常用的逻辑方法有分析法、综合法、反证法、同一法、归纳法、演绎法等,常用的数学思维方法有观察与实验、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等.数学思想方法与数学基础知识相比较,它是深层次的.它来源于数学基础知识及常用的数学方法,在运用数学基础知识及方法处理数学问题时,具有指导性的地位.数学思想是宏观的,它更具有普遍的指导意义.而数学方法是微观的,它是解决数学问题的直接具体的手段.一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略.但由于中学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的.如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以中学数学通常把数学思想和方法看成一个整体概念,即中学数学思想方法.下面介绍四种主要的数学思想方法.一、函数与方程思想方法用运动和变化的观点分析和研究数学中的数量关系,建立函数关系或构造函数,然后运用函数的图像和性质去分析问题和解决问题的思想即函数思想.从问题的数量关系入手,运用数学语言将问题中的条件转化为方程(组)或不等式(组)等数学模型,然后通过解方程(组)或不等式(组)来解决问题的思想即方程思想.函数与方程是互相转化的,方程f(x)=0的解就是函数y=f(x)的图像与x 轴的交点的横坐标,即函数y=f(x)的零点,函数y=f(x)也可以看作二元方程f(x)-y=0.所以方程的问题可以用函数的方法解决,反之函数问题也可以用方程的方法来解决.挖掘题目中的隐含条件,找出需要解答的问题与函数方程的关系,是应用函数与方程思想的关键.比如函数与不等式的关系:()()f x g x >的几何意义就是函数()y f x =的图象在函517数()y g x =的图象的上方,故可用函数思想解决有关不等式问题.又如函数与数列的关系:数列是特殊的函数,即数列的通项或前n 项和是自变量为正整数的函数,故用函数思想可以处理数列问题.再如函数与二项式定理的关系:函数*()()()n f x ax b n N =+∈与二项式定理具有相同的形式,故利用函数思想及赋值法和比较系数法可以解决很多二项式问题.再如函数方程与几何的关系:解析几何中的线和线的位置关系就是方程组问题,参数的取值范围、线段长度的最值、图形面积的最值等就是函数的值域问题.立体几何中有关线段、角、面积、体积的计算也经常用列方程或建立函数的方法来解决.下面举几个简单的例子.1.一般问题典型例题:已知,,a b c R ∈且515b c a -=,则____.A.24b ac > B.ac b 42≥ C.ac b 42< D.ac b 42≤解:观察选择支,显然与判别式相关,故构造方程.由题意得550a b c ⋅-⋅+=,看成5是实系数一元二次方程20ax bx c -+=的一个实根,所以240b ac ∆=-≥,即ac b 42≥,故选 B.2.计算问题典型例题:求12122+++⋅⋅⋅的极限值.解:这是求无限式的值,一般是用极限方法解决此题,这里我们用方程来解决.设原式x =,列出方程12x x +=,解得262x +=(262x -=舍去),所以原式262+=.3.函数与方程的转化典型例题:已知,a b R ∈,且32351a a a -+=,32355b b b -+=,求a b +的值.解:这是解方程问题,直接解方程难度较大,故转化为函数问题.条件变形得3(1)2(1)2a a -+-=-,3(1)2(1)2b b -+-=,构造函数3()2f x x x =+,则()f x 是奇函数、单调递增函数,所以(1)(1)(1)f a f b f b -=--=-,于是11a b -=-即2a b +=.5184.解决三角函数问题典型例题:已知,,A B C R +∈且2A B C++=,求证1sin sin sin 8A B C ≤.解:这里有三个变量,故可以以其中一个变量为主元构造方程.设sin sin sin t A B C =1sin [cos()cos()]2A B C B C =--+1sin [cos()sin ]2A B C A =--,整理得到一个关于sin A 的一元二次方程2sin cos()sin 20A B C A t --+=,因为方程有解,故其判别式2cos ()80B C t ∆=--≥,则211cos ()88t B C ≤-≤,即1sin sin sin 8A B C ≤.5.解决不等式问题典型例题:对于任意1[,3]2m ∈不等式2424x mx m x ++>+恒成立,求x 的取值范围.解:转化为2(2)(2)0m x x -+->恒成立.(1)当2x =时,不等式不成立;(2)当2x ≠时,看成m 的一次函数2()(2)(2)f m x m x =-+-,则1()02(3)0f f ⎧>⎪⎨⎪>⎩,解之得(,1)(2,)x ∈-∞-+∞ .6.解决数列问题典型例题:设等差数列{}n a 的前n 项和为n S ,已知123=a ,120S >,130S <,问1S 、2S 、3S 、…、12S 中哪一个最大,并说明理由.解:由题意1122a d =-,则215(12)22n S dn d n =+-,这是关于n 的二次函数;而函数215()(12)22f x dx d x =+-的对称轴方程为5122x d =-;再由题意得1213144420156520S d S d =+>⎧⎨=+<⎩,得2437d -<<-,故51213622d <-<,所以6n =时n S 最大.7.列方程解应用题常见的列方程解应用题,就是方程思想的体现.典型例题:有一种玻璃瓶装饮料,每瓶1元.为了环保,玻璃瓶回收.某人用6元钱买这种饮料,回收3个玻璃瓶可以换1瓶饮料,问此人最多可以喝到多少瓶饮料?解:设此人最终喝了x 瓶饮料,则可列出方程63x x =+,解得9x =.即此人最终喝了9519瓶饮料.二、化归与转化思想方法解题时,把未知的、不熟悉的、复杂的、抽象的、一般的、非基本的问题通过不同方式,转化为已知的、熟悉的、简单的、具体的、特殊的、基本的容易解决的问题,这种方法称为转化法,又称为化归法.转化有等价转化与非等价转化.等价转化的转化过程是充分且必要的,转化后的结果仍为原问题的结果.非等价转化其过程是充分或必要的,之后要对结论进行必要的修正(如无理方程化有理方程要求验根).消元法、换元法、数形结合法等具体方法,其实都体现了转化思想.1.数学语言和自然语言的转化典型例题:设(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B =∅ ,求r 的取值范围.解:由题意,转化为“集合A 表示以原点为圆心以2的半径的圆,集合B 表示以(3,4)为圆心以r 为半径的圆,当两圆无交点时,求半径r 的取值范围”.由图象易得r 的取值范围为03r <<或7r >.2.数与形的转化典型例题:若函数2()4f x x x a =+-+有且仅有一个零点,求a 的取值范围.解:转化为直线y x a =--与半圆24y x =-有且仅有一个交点,如图可知a 的取值范围为22a -<≤或22a =-.3.生疏问题转化为熟悉问题典型例题:求和222222222141614121416141n n S n ++++=+++⋅⋅⋅+----.解:拆分分式转化为熟悉的裂项抵消,22221111133557(21)(21)n S n n =++++++⋅⋅⋅++⨯⨯⨯-⨯+52011111113352121n n n =+-+-+⋅⋅⋅+--+221n n n =++.4.困难问题转化为容易问题典型例题:判断命题“若5x y ->,则3x >或2y <-”的真假.解:设y a -=,转化为判断“若5x a +>,则3x >或2a >”,再转化为判断其逆否命题“若3x ≤且2a ≤,则5x a +≤”,此命题显然正确,故原命题正确.5.繁杂问题转化为简单问题典型例题:已知1111a b c a b c++=++=,求证a 、b 、c 中至少有一个等于1.证明:a 、b 、c 中至少有一个为1,转化为1a -、1b -、1c -中至少有一个为零,只需证(1)(1)(1)0a b c ---=即可.由1111a b c ++=得bc ac ab abc ++=,所以(1)(1)(1)a b c ---()()10abc ab ac bc a b c =-+++++-=,故结论成立.6.正与反的转化当顺向思维较难或无从下手时就反向思考,即反证法、逆向思维的思想.典型例题:已知()f x 、()g x 是定义在R 上的函数,证明存在,[0,1]x y ∈使1()()4xy f x g y --≥.证明:假设对任意,[0,1]x y ∈,有1()()4xy f x g y --<.令0x y ==,则1(0)(0)4f g +<;令0,1x y ==,则1(0)(1)4f g +<;令1,0x y ==,则1(1)(0)4f g +<;则当1x y ==时1(1)(1)f g --1[(1)(0)][(0)(0)][(0)(1)]f g g f f g =-+++-+1(1)(0)(0)(0)f g g f ≥-+-+1(0)(1)4f g -+>,这与假设矛盾,故原命题得证.7.常量与变量的转化典型例题:对于任意01m ≤≤,不等式2(1)20x m x m --+->恒成立,求x 的取值范围.解:我们习惯于x 为变量m 为常量,所以题目转化为“对于任意01x ≤≤,不等式2(1)20m x m x --+->恒成立,求m 的取值范围”,即2()(1)20f x m x m m =-++->对521于任意01x ≤≤恒成立,则22(0)20(1)10f m m f m ⎧=+->⎪⎨=->⎪⎩,解之得(,2)(1,)m ∈-∞-+∞ ,即x 的取值范围为(,2)(1,)x ∈-∞-+∞ .8.抽象问题转化为具体问题典型例题:设函数2()f x ax bx c =-+,若不等式()0f x >的解集为(1,3),解关于t 的不等式2(8)(2)f t f t +<+.抽象不等式可以根据函数单调性转化为具体不等式.解:不等式()0f x >的解集为(1,3),则0a <且函数对称轴为2x =,故函数在区间[2,)+∞上递减,而88t +≥,222t +≥,由函数的单调性,不等式转化为282t t +>+即260t t --<,解之得(3,3)t ∈-.三、数形结合思想方法把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来解决数学问题的方法即数形结合方法.运用数形结合,能避免复杂的计算与推理,能简化解题过程.它在解选择题、填空题中更显其优越性.下面举少数简单的例子说明,与其他知识点结合还有许多,更多参见本书后面各章节的图象法.1.解决集合问题典型例题:已知集合3cos (,),03sin x M x y y θθπθ⎧⎫=⎧⎪⎪=<<⎨⎨⎬=⎩⎪⎪⎩⎭,{(,)|}N x y y x b ==+,且M N ≠∅ ,求b 的取值范围.解:集合M 表示以原点为圆心3为半径的上半圆(不含端点),题意为直线y x b =+与半圆有交点,求b 的取值范围.画出草图,如图易知b 的取值范围为332b -<≤.2.解决函数问题典型例题:设2()22f x x ax =-+,当[1,)x ∈-+∞时()f x a >恒成立,求a 的取值范围.522解:转化为“函数2()22g x x ax a =-+-,[1,)x ∈-+∞的图像在x 轴上方”.函数的对称轴x a =,当1a ≥-时由图象得244(2)0a a ∆=--<,故11a -≤<;当1a <-时由图象得(1)0g ->,故31a -<<-;综上可知a 的取值范围为31a -<<.3.解决方程与不等式的问题典型例题:已知关于x 的方程2230x kx k ++=的两根都在1-和3之间(含1-和3),求k 的取值范围.解:由题意画出草图,如图,则2134120(1)0(3)0k k k f f -≤-≤⎧⎪∆=-≥⎪⎨-≥⎪⎪≥⎩,解之得k ∈[-1,0],即k 的取值范围.4.解决三角问题典型例题:求函数sin 2cos 2x y x +=-的值域.解:因为函数sin 2cos 2x y x +=-表示过两点(2,2)P -、(cos sin )A x x ,的直线的斜率,而点A 是圆221x y +=上的点,如图,求函数的值域即求过点P 与圆有交点的直线的斜率的取值范围12[,]y k k ∈,设过点P 的切线为2(2)y k x +=-,则有2|22|11k k +=+,解之得1,2473k -=±,所以函数的值域为4747[]33y ---+∈,.5.解决几何问题523典型例题:求函数246u t t =++-的最值.解:设24x t =+,6y t =-,u x y =+,则22216(04022)x y x y +=≤≤≤≤,,转化为直线y x u =-+与椭圆22216x y +=第一象限的部分(包括端点)有公共点,如图,min 22u =,当直线与部分椭圆相切于第一象限时,u 取最大值,由22216y x u x y =-+⎧⎨+=⎩得22342160x ux u -+-=,根据∆=0得26u =±,取26u =,即max 26u =.四、分类讨论思想方法在数学中有些问题的结论有多种情况,有些问题的结论不能以统一的形式进行表示,有些问题的条件中含有字母且字母的取值不同结果也不同,等等,解决这些问题时就需要根据题目的特点和要求分类,转化成若干个小问题;这种按不同情况分类,然后再逐一解决的思想方法,就是分类讨论思想方法.解题时,要抓住引起分类讨论的原因,把握分类标准,进行合理分类.分类的对象是确定的,标准是统一的,原则是不遗漏、不重复,科学地划分,分清主次,不越级讨论.中学数学中引起分类讨论的原因主要是以下几个方面:由数学概念引起的分类讨论:如绝对值定义、指数函数与对数函数的底数的意义、等比数列的前n 项和公式等等;由数学运算要求引起的分类讨论:如开偶次方、对数中的底数和真数的要求、不等式两边同乘一实数对不等号方向的影响、函数单调性对不等式中不等号方向的影响等等;由某些概念、定理、法则、公式的限制条件引起的分类讨论;由几何图形中点、线、面、体的相对形状、位置不确定引起的分类讨论;由参数的变化引起的分类讨论:某些含参数的问题,由于参数的取值不同会导致所得结果不同,或由于不同的参数值要运用不同的求解或证明方法;其他根据实际问题具体分析进行分类讨论,如排列、组合问题,实际应用题等.典型例题1.设{}2|870A x x x =-+=,{}|140B x ax =-=,若A B B = ,求实数a 的值.524解:由题意得{}1,7A =,由A B B = 知B A ⊆,故分B =∅与B ≠∅讨论.(1)当B =∅时,即方程140ax -=无解,则0a =;(2)当B ≠∅时,即方程140ax -=的解为1或7,则14a =或2;综上,a 的值为0、2、14.典型例题2.解关于x 的不等式(1)12a x x ->-.解:原不等式化为(1)(2)02a x a x -+->-,即2(1)()(2)01a a x x a---->-.(1)当1a >时,原不等式化为2()(2)01a x x a --->-,因为211211a a a -=-<--,故其解为2(,)(2,)1a x a -∈-∞+∞- ;(2)当1a =时,原不等式化为102x >-,其解为(2,)x ∈+∞;(3)当01a <<时,原不等式化为2()(2)01a x x a ---<-,因为211211a a a -=->--,故其解为2(2,)1a x a -∈-;(4)当0a =时,原不等式无解;(5)当0a <时,原不等式化为2()(2)01a x x a ---<-,因为211211a a a -=-<--,故其解为2(,2)1a x a -∈-;综上所述:当1a >时,解为2(,)(2,)1a x a -∈-∞+∞- ;当1a =时,解为(2,)x ∈+∞;当01a <<时,解为2(2,)1a x a -∈-;当0a =时,无解;当0a <时,解为2(,2)1a x a -∈-.典型例题3.已知函数2()log ()a f x ax x =-在[2,4]上是增函数,求实数a 的取值范围.解:(1)当1a >时,则2()u x ax x =-在[2,4]上是增函数且恒大于零,根据图象得122(2)420a u a ⎧≤⎪⎨⎪=->⎩,解得12a >,所以1a >;(2)当01a <<时,则2()u x ax x =-在[2,4]上是减函数且恒大于零,根据图象得525()14241640a u a ⎧≥⎪⎨⎪=->⎩,不等式组无解;综上所述,实数a 的取值范围为1a >.典型例题4.数列}{n a 中,11=a ,22=a ,数列}{1+⋅n n a a 是公比为q (0>q )的等比数列,求数列}{n a 的前n 2项的和n S 2.解:由题意得121n n n n a a q a a +++=,即2n na q a +=,故数列}{n a 的所有奇数项、所有偶数项分别成等比数列,且公比都是q .(1)当1≠q 时,n S 2135212462()()n n a a a a a a a a -=+++++++++ 12(1)(1)11n n a q a q q q --=+--3(1)1n q q-=-;(2)当1=q 时,n S 2135212462()()3n n a a a a a a a a n -=+++++++++= .典型例题5.设常数0a >,变量R λ∈,经过原点O 以(,)e a λ= 为方向向量的直线与经过定点(0,)A a 以(1,2)f a λ=- 为方向向量的直线相交于点P ,问是否存在两个定点E 、F ,使得PE PF +为定值.解:由题意直线OP 、AP 的方程分别为y ax λ=、2y a ax λ-=-,当0λ≠时消去λ,得点(,)P x y 的方程为22()2y y a a x -=-,即222()211()82a y x a -+=;当0λ=时得点(0,)P a ,也在此方程上.(1)当22=a 时,方程表示圆,故不存在满足题意的定点E 、F ;(2)当202a <<或22a >时,方程表示椭圆,故存在两个定点E 、F 使得PE PF +为定值,这时E 、F 为椭圆的焦点.典型例题6.如果异面直线a 、b 所成的角为θ,P 为空间一定点,且过点P 的直线l 与a 、b 所成的角相等,设求满足条件的直线l 的条数.526解:平行平移三条直线交于一点P ,如图,设过点P 的直线l 与a 、b 所成的角均为ϕ;由题意知,(0,]2πθϕ∈,直线l 绕点P 运动变化,则(1)当02θϕ<<时,这样的直线不存在;(2)当2θϕ=时,这样的直线只有一条;(3)当22θπθϕ-<<时,这样的直线有两条;(4)当2πθϕ-=时这样的直线有3条;(5)当22πθπϕ-<<时,这样的直线有四条;(6)当2πϕ=时,这样的直线只有一条.第二节常见的数学方法简介前面介绍了宏观的数学思想方法,在具体的解题中,要用到许多微观的方法技巧.这些方法技巧有几百种之多,这里介绍几种常用的方法.一、定义法定义法,就是直接用数学定义解题.数学中的定理、公式、性质和法则等,都是由定义和公理推演出来.用定义法解题,是最直接的方法.典型例题1.已知{}0,1A =,}{B x x A =⊆,则下列关系正确的是.A.A ⊆BB.A ⊇BC.A∈BD.A ∉B 解:由题意{}{}{}{},0,1,0,1B =∅,由定义{}0,1A =是B 的一个元素,故选C .典型例题2.函数()y f x =存在反函数,则方程()3f x =的的零点有个.A.只有1个 B.至少1个 C.至多1个D.可以有无数个解:由题意,函数()y f x =是一一映射,根据一一映射的定义,选C .典型例题3.奇函数()f x 的最小正周期为T,求()2T f -的值.解:由奇函数的定义得()()22T T f f -=-,由周期函数的定义得()()()222T T T f f T f =-=-,所以()()22T T f f -=--,即()02T f -=.527。
数学四大思想八大方法
数学四大思想八大方法数学是一门古老而又充满魅力的学科,它的发展离不开数学家们的思想和方法。
在数学的发展过程中,形成了许多重要的思想和方法,其中最具代表性的就是数学四大思想和八大方法。
下面我们就来一一介绍一下。
首先,我们来谈谈数学四大思想。
数学四大思想是指,抽象思维、逻辑思维、直观思维和计算思维。
抽象思维是数学家在研究问题时,将具体问题抽象出来,从而得出一般性的结论。
逻辑思维是数学家在进行推理和证明时所运用的思维方式,它要求严密的逻辑推理。
直观思维是指数学家在解决问题时,常常依靠自己的直觉和想象力。
计算思维是数学家在进行计算和运算时所运用的思维方式,它要求准确和高效。
接下来,我们来介绍数学八大方法。
数学八大方法是指,归纳法、演绎法、逆证法、反证法、数学归纳法、数学演绎法、数学逆证法和数学反证法。
归纳法是从个别事实归结出一般规律的推理方法。
演绎法是从一般规律推导出个别事实的推理方法。
逆证法是通过假设与结论相反的结论来推导出矛盾,从而证明原结论的方法。
反证法是通过否定所要证明的结论的否定来得出矛盾,从而证明原结论的方法。
数学归纳法是指证明对于所有自然数n成立的方法。
数学演绎法是指从已知命题出发,推出新的命题的方法。
数学逆证法是指通过假设与结论相反的结论来推导出矛盾,从而证明原结论的方法。
数学反证法是指通过否定所要证明的结论的否定来得出矛盾,从而证明原结论的方法。
总之,数学四大思想和八大方法是数学家们在研究数学问题时所运用的重要思想和方法,它们为数学的发展做出了重要贡献。
希望我们能够在学习数学的过程中,认真学习和运用这些思想和方法,不断提高自己的数学水平。
十大数学思想方法
十大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面请欣赏店铺为大家带来的十大数学思想方法,希望对大家有所帮助~1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
高中数学七大数学基本思想方法
高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。
在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。
本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。
一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。
在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。
二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。
在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。
三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。
在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。
四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。
在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。
五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。
在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。
六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。
在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。
七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。
在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。
总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。
通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。
数学思想方法
2004年中央广播电视大学出版社出版的图书
01 内容简介
03 基础概念 05 演算方法
目录
02 作品目录 04 思维方法
基本信息
《数学思想方法》是2004年6月中央广播电视大学出版社出版的图书,作者是顾泠沅。该书主要介绍数学思 想方法的两个源头、数学思想方法和几次重要转折、数学的真理性以及现代数学的发展趋势,从时间维度和宏观 上用粗线条勾画出数学思想方法发展的概貌。
1.何以如此概括?
首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方 法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像 自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反 映数学认识的本质。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种 情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完 整性,使之具有确定性。
思维方法
思维方法
数学认识的一般性与特殊性
数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再 实践的认识路线。但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论 形式。由此产生数学认识论的特有问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
数形结合
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等; 一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数学的思想和方法
数学的思想和方法
数学的思想和方法是指数学研究中所采用的思考方式和解决问题的途径。
它们包括以下几个方面:
1. 抽象与逻辑思维:数学的基础是抽象和逻辑思维,通过抽象可以将具体问题转化为可用数学语言描述的形式,通过逻辑思维可以进行推理和证明。
2. 归纳与演绎:数学既可通过归纳法从特例中总结出一般规律,又可以通过演绎法从已知条件推导出结论,从而建立起一套完整的数学理论体系。
3. 规范化与符号化:数学借助规范化和符号化的手段将问题和解法以严谨的形式表示出来,使得数学结果的传递和交流更为方便和准确。
4. 分析与综合:数学的思想和方法需要具备分析和综合的能力,既要能够对问题进行细致入微的分析,把复杂问题分解为简单的组成部分,又要能够将各个部分综合起来,形成整体。
5. 形式化与计算:数学思想和方法经常需要将问题形式化,即用数学符号和公式来表示问题,并通过计算来解决问题或得出结论。
6. 推理与证明:数学思想和方法需要借助推理和证明来验证推断和结论的正确性,通过建立严密的逻辑链条来证明数学命题的真伪。
总之,数学的思想和方法是建立在抽象、逻辑和严谨基础上的,通过规范化、符号化和计算等手段来分析和解决问题,同时又借助推理和证明来验证和确立数学结论。
数学思想十大数学思想方法
数学思想十大数学思想方法数学思想十大数学思想方法一、假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
例:在一次登山活动中,胖楚楚上山时每分钟走50米,到达山顶后沿原路下山,每分钟走75米,胖楚楚上山下山的平均速度是多少?【分析与解】我们要求平均速度,就必须知道上、下山共走了多少米的路,可它是个未知数,我们一点也不知道,这时我们就可以假设上、下山的总路程是150米(150是50和75的最小公倍数),那么平均速度就是用总路程除以总时间就可以了。
假设上山和下山分别都是150米;150÷50=3分,150÷75=2分;150×2=300米;所以平均速度是:300÷(2+3)=60(米/分)。
在这其中我们也用到了另外一种方法,在数学上叫做“特殊值”代入法,在以后的学习中我们将会更多的接触到这种方法。
还有在我们的经典类型——鸡兔同笼当中,大部分题型都是用我们的假设法。
二、对应法应用题的一些数量关系之间存在着对应关系,如总数与总份数的对应,路程与时间的对应,分数、百分数应用题中量与率的对应等。
解题时找准数量之间的对应关系,就能实现由未知向已知的转化。
这种运用对应关系解题的方法,就是对应法。
例:如果把两个连在一起的圆称为一对,那么图(1)中相连的圆共有多少对?将各圆心用线段连起来,两圆心的“连线”与“一对圆”之间可建立“一对一”的对应关系。
于是将数有多少个圆,转化为数有多少条相邻圆心之间的连线。
而每个“正摆”的小等边三角形有三条“连线”。
所以相连的圆共有(1+2+3+4+5)X3=45对。
三、从简单情况考虑有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。
数学四大思想八大方法
数学四大思想八大方法数学是一门古老而又深邃的学科,它的发展离不开一系列重要的思想和方法。
在数学的发展史上,有四大思想和八大方法被认为是至关重要的。
本文将围绕这一主题展开讨论,希望能够为读者们带来一些启发和思考。
首先,我们来谈谈数学的四大思想。
这四大思想分别是数学归纳法、递归思想、抽象思维和逻辑推理。
数学归纳法是数学中常用的一种证明方法,通过证明一个基本情况成立,并假设n=k时成立,推导出n=k+1时也成立,从而得出结论。
递归思想则是将一个问题分解成若干个同类的子问题,通过解决子问题来解决原问题。
抽象思维是数学家们常用的一种思考方式,通过抽象出一般规律来解决具体问题。
逻辑推理则是数学证明中不可或缺的一环,通过合理的推理来得出结论。
接下来,我们来讨论数学的八大方法。
这八大方法分别是数学归纳法、递归法、反证法、构造法、逼近法、分类讨论法、数学建模法和数学实验法。
数学归纳法和递归法在四大思想中已经有所涉及,这里不再赘述。
反证法是通过假设命题的否定,推导出矛盾,从而证明原命题成立。
构造法是通过构造出满足条件的对象来解决问题。
逼近法是通过逐步逼近一个数值,得到一个足够精确的结果。
分类讨论法是将问题分成若干类别进行讨论,从而得出结论。
数学建模法是将实际问题抽象成数学模型,通过模型来解决问题。
数学实验法则是通过实验的方法来研究数学问题。
综上所述,数学的四大思想和八大方法贯穿于整个数学发展的历程中,它们不仅是数学家们解决问题的重要工具,也是培养数学思维和逻辑思维的重要途径。
希望通过本文的介绍,读者们能够对数学的思想和方法有更深入的了解,从而在学习和研究数学的过程中能够更加得心应手。
十大数学思想方法
十大数学思想方法数学是一门既宏大又精巧的学科,它的发展离不开各种思想方法的推动。
本文将介绍十大数学思想方法,包括归纳法、演绎法、反证法、类比法、综合法、递归法、直觉法、猜想法、近似法和分析法。
归纳法是数学推理中常用的一种思想方法。
通过观察个别现象,总结其共同的特征,并从中归纳出一般规律。
例如,从求和公式的若干个特例中,我们可以猜测并通过归纳法证明求和公式的一般形式。
演绎法是数学推理的另一种重要思想方法。
它通过已知的定理和命题,运用逻辑关系来推导出结论。
在证明几何定理时,我们常常使用演绎法,从已知的条件出发,通过一系列的推理步骤得到所需的结论。
反证法是一种常见且有效的数学思想方法。
它假设所要证明的结论不成立,然后通过推理和论证,得出矛盾的结论,从而证明原命题的正确性。
反证法在数学证明中应用广泛,它常常能够简化证明的过程,提高证明的效率。
类比法是数学思考中的一种重要方法。
通过将已知问题与类似的问题进行比较和类比,我们可以从已解决的问题中获得启示,进而解决当前的问题。
类比法在数学建模和问题求解中有着广泛的应用。
综合法是一种将不同的方法和思想综合运用的思维方式。
它通过综合不同的理论和方法,得到一个更全面、更深入的结论。
综合法在数学研究中起着重要的作用,帮助我们理解和解决复杂的问题。
递归法是一种通过不断递推和迭代的方法来解决问题的思想方法。
通过将大问题分解为小问题,并通过递归推导,最终得到整体的解决方案。
递归法在计算机科学和离散数学中得到广泛应用,尤其在算法设计和数据结构方面起到关键作用。
直觉法是数学思考中的一种重要方法。
它基于个人的直观感受和经验,通过直观的理解和直觉的推测来解决问题。
虽然直觉法不能代替严密的逻辑推理,但它常常是启发数学家发展新理论和解决难题的源泉。
猜想法是一种通过猜测和假设来推动数学研究的思想方法。
当面对一个未解的问题时,我们可以通过猜想和假设来寻找一种可能的解决方案,然后通过证明或反证来验证我们的猜想。
数学思想方法有哪七种
数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。
“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。
转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某
些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。
当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。
7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。
数学四大思想八大方法
数学四大思想八大方法数学作为一门重要的学科,其思想和方法对于我们的学习和生活都有着重要的影响。
在数学领域中,有四大思想和八大方法,它们是数学发展的重要理论基础,也是我们学习和应用数学知识的重要指导。
首先,我们来谈谈数学的四大思想。
第一是抽象思维,数学是一门抽象的学科,它通过抽象的概念和符号来描述客观世界中的事物和规律。
抽象思维是数学家进行数学研究和创新的重要思维方式,也是培养学生数学思维能力的重要途径。
第二是逻辑推理,数学是一门严谨的学科,它要求我们用严密的逻辑推理来证明数学命题和定理,逻辑推理是数学思维的基本方法,也是数学研究和应用的重要手段。
第三是直观图像,数学是一门具有直观图像的学科,它通过图形、图表、几何图形等形式来描述数学概念和规律,直观图像是帮助我们理解和应用数学知识的重要工具。
第四是数学模型,数学是一门建立模型的学科,它通过建立数学模型来描述和解决现实世界中的问题,数学模型是数学应用的重要手段,也是数学发展的重要方向。
接下来,我们来谈谈数学的八大方法。
第一是归纳法,归纳法是从具体到一般的推理方法,它通过观察和实验总结出一般规律,是数学研究和应用的重要方法。
第二是演绎法,演绎法是从一般到具体的推理方法,它通过已知的前提推导出结论,是数学证明和推理的重要方法。
第三是对偶法,对偶法是一种将命题中的“与”、“或”、“非”等逻辑关系相互转换的方法,它有助于我们理解和证明数学命题。
第四是反证法,反证法是通过假设命题的反面,推导出矛盾,从而证明原命题成立的方法,是数学证明的重要手段。
第五是递推法,递推法是通过已知的前几项推导出后面项的方法,它在数学中有着重要的应用。
第六是分析法,分析法是将复杂的问题分解成若干简单的部分进行研究的方法,它有助于我们理解和解决复杂的数学问题。
第七是综合法,综合法是将若干简单的结论综合起来得到更一般的结论的方法,它有助于我们推广和应用数学知识。
第八是数学实验法,数学实验法是通过实验和计算来验证数学结论和方法的正确性,它在数学教学和研究中有着重要的作用。
常见的数学思想方法
常见的数学思想方法
1. 归纳法:通过已知结论推导出未知结论的方法。
2. 反证法:通过假设逆命题的真假,来证明所需要的命题的真假。
3. 递推法:通过已知项和递推关系式,推导出未知项。
4. 分析法:通过分析问题的特点和条件,将其转化成易于解决的数学模型。
5. 近似法:通过简化问题,使用近似的方法求解。
6. 对称法:通过利用问题的对称性质,简化问题的求解过程。
7. 反思法:通过回顾和反思已有的知识和结果,寻找新的问题解决思路。
8. 等价转化法:通过将问题转化为等价或相似的问题,来求解原问题。
9. 极限思想:通过分析问题的极限情况,来得到问题的解或性质。
10. 约束条件法:通过分析问题的约束条件,确定问题的可行解范围。
11. 逆向思维:通过倒推或逆向思考,找到问题的解决方法。
12. 概率思想:通过概率与统计的方法,分析问题的可能性和影响因素。
什么是数学思想方法
什么是数学思想方法数学思想方法是指在数学问题的解决过程中,采用的一种思维方式和方法论,它是数学家在解决问题时所遵循的一种思维逻辑和推理方式。
数学思想方法旨在理性地分析问题,构建合理的数学模型,并通过严密的推理和证明来解决问题,是数学家在研究和发现数学规律时所使用的思维工具和方法。
数学思想方法具有普遍性和抽象性,它在解决各种数学问题时都能发挥作用。
数学思想方法的普遍性表现在它不仅适用于某一类特定的数学问题,而是适用于各种类型的数学问题,例如代数、几何、分析等。
数学思想方法的抽象性表现在它将具体问题抽象为一般的数学模型,从而可以适用于各种不同的具体情况。
因此,数学思想方法是数学家们在进行数学研究时所共同遵循的一种基本思维方式。
数学思想方法的核心是逻辑推理和严密证明。
在数学研究中,数学家们首先要对问题进行合理地分析和抽象,然后构建起逻辑严密的数学模型,并运用严格的推理和证明方法来解决问题。
这种思维方式要求数学家们具备严密的逻辑思维能力和严密的数学分析能力,以确保他们得出的结论是正确和可靠的。
因此,数学思想方法是一种注重合理性和严谨性的思维方式,它要求数学家们在解决问题时保持开放的思维,严格的逻辑推理和严密的数学证明是数学思想方法的主要表现形式。
数学思想方法还包括数学家们在研究和探索数学规律时所采用的一些具体的数学方法和技巧。
例如,在解决代数问题时,数学家们常常采用代数方法,包括方程求解、多项式因式分解、代数结构的研究等;在解决几何问题时,数学家们则会运用几何方法,包括几何图形的构造和证明、几何变换和几何定理的应用等。
这些数学方法和技巧都是数学思想方法的具体体现,它们在数学研究中有着重要的作用,有助于数学家们更好地理解和解决问题。
除了逻辑推理和数学方法外,数学思想方法还包括数学家们在研究和发现数学规律时所具有的创造性和想象力。
在数学研究中,数学家们常常需要发挥自己的创造力,构思新的数学理论和方法;同时,他们还需要具备丰富的想象力,以便能够构建出丰富多样的数学模型,并从中发现新的数学规律。
数学思想方法
数学思想方法数学思想方法是数学家们为了解决问题而采用的一系列思考方法和策略。
这些方法和策略涉及到逻辑推理、归纳和演绎、分类和比较、抽象和具体、观察和实验、模型和推广等方面。
首先,逻辑推理是数学思想方法中的重要组成部分。
在数学中,逻辑推理是通过合乎逻辑的推导和推理来得出结论。
数学家会使用各种推理方法,如直接推理、间接推理、反证法等来证明定理和解决问题。
其次,归纳和演绎也是数学思想方法中常用的推理方法。
归纳是通过观察已有的例子或情况得出一般规律或结论。
数学家通过对特殊情况的研究和总结,逐步提炼出普遍规律。
演绎则是从一般规律出发,通过逻辑推理得出特殊情况或结论。
另外,分类和比较是数学思想方法中一种重要的策略。
数学家通过将问题或对象进行分类,找出其中的共性和差异,进而解决问题。
比较不同的对象或方法,可以更好地理解数学概念和定理,并找到解题的思路。
此外,抽象和具体也是数学思想方法中的关键因素。
数学家常常通过抽象来简化问题,将其转化为更容易处理的形式。
同时,数学家也会通过具体的例子或实验来验证和巩固理论和结论。
还有,观察和实验也是数学思想方法中的重要环节。
观察可以帮助数学家发现问题的特征和规律,实验则可以验证和验证数学家的猜想和推论。
最后,模型和推广是数学思想方法中的重要策略。
数学家经常使用模型来描述和分析现实世界中的问题,从而得到理论和结论。
然后,数学家还会尝试将已有的理论和结论推广到更一般的情况,以便解决更复杂的问题。
总之,数学思想方法包括逻辑推理、归纳和演绎、分类和比较、抽象和具体、观察和实验、模型和推广等多个方面。
这些方法和策略有助于数学家解决问题、发现规律和推导定理。
数学四大思想八大方法
数学四大思想八大方法
数学四大思想八大方法是数学领域中的重要理论和技巧,它们为解决各种数学问题和推动数学发展起到了至关重要的作用。
四大思想包括:抽象思维、逻辑推理、问题解决和创造性思维。
抽象思维是指通过将具体问题抽象为符号和符号系统,从而获得更广泛的应用和推广的能力。
逻辑推理是指通过运用逻辑规则和推理方法,通过推导和演绎,得出准确的结论。
问题解决是指通过分析和解构问题,找到解决问题的方法和路径。
创造性思维则是指对问题进行创新和创造,寻求新的解决方法和理论。
而八大方法则是在数学思想的指导下,对待待解决问题的一种思考方法和实践技巧。
这八大方法分别是:归纳法、演绎法、逆证法、对偶法、直观法、结构法、统计法和数学模型法。
归纳法是通过观察和总结已知的特例和规律,推导出普遍的结论。
演绎法则是根据已知的前提和定理,通过推理得到结论。
逆证法是通过反证法来证明某个结论的正确性,即假设结论不成立,推导出矛盾的结论。
对偶法则是根据命题的逻辑关系,通过对命题的互补或对立的形式进行推导和论证。
直观法是通过凭直觉和直观的认识,从直观的角度找到解决问题的思路和方法。
结构法则是通过分析和研究问题的结构和组织关系,寻找问题的内在规律。
统计法是通过收集和分析数据,用统计的方法来研究问题。
数学模型法则是通过建立数学模型来研究和描述问题,从而得到问题的解答和结论。
四大思想和八大方法的应用,使得数学能够在各个领域得到广泛的应用和推广,也为解决实际问题提供了强有力的工具和方法。
同时,它们也是培养数学思维和解决问题能力的重要途径和方式。
数学思想方法的含义
数学思想方法的含义数学思想方法是指融入了数学家在研究和解决数学问题时所运用的思维方式和方法。
这些方法并不仅适用于数学领域,它们也可以用于其他学科的问题解决中。
数学思想方法是数学思维的核心,它包含了一系列的思维模式、方法和技巧,帮助人们深入理解问题的本质、发现规律和解决问题。
一、抽象思维抽象思维是数学思想方法的核心之一、它是指将具体的实物或概念转化为符号表示,从而描述和研究抽象的数学对象。
抽象思维能够摒弃干扰注意力的非本质细节,关注问题的本质和共性。
通过抽象思维,数学家能够通过研究同一类数学对象的共性来发现规律和推导出定理。
二、归纳与演绎归纳与演绎是数学思想方法中基本的推理方法。
归纳是从一系列具体的例子中总结出一般规律或结论,通过有限的特例来推测普遍性。
演绎则是从已知的前提出发,通过逻辑推理得出新的结论。
归纳与演绎相辅相成,既可以从特殊到一般,也可以从一般到特殊。
三、数学模型建立和推理数学模型是数学思想方法在应用中的重要手段。
它是通过对问题进行抽象化和理想化,将实际问题转化为数学问题,以便进行数学分析和求解。
建立数学模型需要将问题的各个方面和要素用数学符号和方程来表示,并利用数学工具和技巧进行推理和计算。
数学模型可以帮助人们深入理解问题的本质和结构,将复杂的问题转化为简单的数学形式,从而更好地分析和解决问题。
四、直观与形象思维直观与形象思维是数学思想方法中的重要组成部分,它强调对数学对象的直观感知和形象思考。
数学家经常使用图形、图像和几何形象等形式来帮助理解和推导公式和定理。
通过直观与形象思维,可以帮助人们更直观地理解抽象的数学概念和关系,从而促进创造性思维和问题解决。
五、推广与特例分析思维推广与特例分析思维是数学思想方法中的一种重要思维模式。
推广思维是指在已有结论的基础上,通过对问题的一般特征和共性进行分析和抽象,从而发现更广泛的规律和定理。
特例分析思维则是通过对特殊、特例情况的研究和分析,来揭示问题的本质和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法简介
简介
数学思想是数学的灵魂,是数学方法与技能实质的体现,对解题思路的产生具有指导意义。
因此,深刻理解数学思想、学会运用数学思想来分析、解决问题对提高解题能力将有很大帮助。
高考题型中考查的有数形结合的思想、函数与方程的思想、分类讨论的思想、转化和化归的思想。
数形结合思想
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且节法简捷。
数形结合的重点是研究“以形助数”。
运用数形结合思想,不仅直观,易发现解题途径,而且能避免复杂的计算和推理,大大简化解题过程,这在解选择题、填空题中更显其优越性。
函数思想
函数思想是指用联系变化的观点分析问题,通过函数的形式把问题中的数量关系表示出来,运用函数的概念、图像、性质等对问题加以研究,使问题获得解决。
方程思想
方程的思想是指将问题转化为对方程(组)的认识,通过解方程(组)或对方程的讨论使问题得以解决。
函数与方程二者密不可分,如函数y=f(x)也可看作方程,函数有意义则方程有解,方程有解,则函数有意义等。
函数与方程思想体现了动与静、变量与常量的辩证统一,是重要的数学思想方法之一。
分类讨论思想
解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分为几个能用不同形式去解决的问题将这些小问题一一加以解决,从而使问题得到解决,这就是分类讨论思想。
分类的标准是根据题目中的条件而定,没有确定的分类标准。
转化思想
把复杂问题转化为较简单问题,把未知问题转化为已知问题,把生疏的问题转化
为教熟悉的问题,将抽象问题转化成较具体的问题,在解决有关含参数不等式问题时,这种转化思想的应用是十分重要的。
1.数形结合
若x x m log 2<在)21,0(∈x 内恒成立,求实数m 的取值范围。
(答案:
116
1<≤m )
2.方程组思想
2.1若函数)(x f 满足12)1()(-=-+x x f x xf ,求)(x f 的解析式 (答案:1
252)(22+-+-=x x x x x f )
2.2若[]).1(2)(log ,)(log ,)(222≠==+-=a a f b a f b x x x f 且
⑴求)(log 2x f 的最小值及对应的x 值;
⑵x 取何值时,[]?)1()(log )1()(log 22f x f f x f <>且
3.分类讨论思想 解不等式)(12)1(R a x x a ∈>--(答案:212,0112
2,10<<--<=--<
<<<x a a a a a a x a 则若,则原不等式无解若则若) 3.1(2007广东)已知a 是实数,函数,322)(2a x ax x f --+=如果函数)(x f y =在区间[]1,1-上有零点,求a 的取值范围
4.转化思想
4.1若不等式,342-+>+p x px x 对于一切40≤≤p 均成立,则实数x 的取值范围为
(答案:x>3或x<-1)
4.2已知等差数列{}n a 的前n 项和为n S ,且;225,5153==S a 数列{}n b 是等比数列,.128,52323=+=b b a a b
⑴求数列{}n a 的通项公式及数列{}n b 的前8项的和8T ⑵求使得4
171>-n a 成立的正整数n。