高中物理;欧姆定律
高中物理闭合电路欧姆定律
闭合电路欧姆定律的内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
闭合电路欧姆定律公式:I=E/(R+r),I表示电路中电流,E表示电动势,R表示外总电阻,r表示电池内阻。
常用闭合电路欧姆定律公式变形式有:E=I(R+r);E=U外+U内;U 外=E-Ir。
对闭合欧姆定律的理解①用电压表接在电源两极间测得的电压是路端电压U外,不是内电路两端的电压U内,也不是电源电动势,所以U外②当电源没有接入电路时,因无电流通过内电路,所以U内=0,此时E=U外,即电源电动势等于电源没有接入电路时的路端电压。
③式E=I(R+r)只适用于外电路为纯电阻的闭合电路。
U外=E-Ir和E=U外+U内适用于所有的闭合电路。
闭合电路欧姆定律相关的定义①内电路:电源内部的电路叫做闭合电路的内电路。
②内阻:内电路的电阻叫做电源的内阻。
③内电压:当电路中有电流通过时,内电路两端的电压叫内电压,用U内表示。
④外电路:电源外部的电路叫闭合电路的外电路。
⑤外电压:外电路两端的电压叫外电压,也叫路端电压,用U外表示。
⑥电动势:电动势表示在不同的电源中非静电力做功的本领,常用符号E(有时也可用ε)表示。
电动势与电压的区别电动势是对电源而言的,它描述移送单位电量时非静电力做功的多少,即移送1库电量时其他形式的能转化为电能的多少。
电压是对某一段电路而言的,它描述在这段电路中移送单位电量时电场力做功的多少,即移送1C电量时电能转化为其他形式能的多少。
两者是截然不同的物理量,万勿混淆,顺便指出,从能量转化观点来说,电势差、电压、电压降、电压损失等,都表示电场力移送单位电量时电能转化为其他形式能的多少,只不过是几种形式不同的说法而已,习惯上在静电学中常用“电势差”的说法;在电路问题中常用“电压”的说法;在串联分压电路中,常把分压电阻上的电压叫做“电压降”;在远距离输电问题中,输电导线上的电压是没有利用价值的,常叫做“电压损失”。
欧姆定律(高中物理)
二、电阻(R)
1.定义:导体两端的电压和通过导体的电流的比值.
U R=
I
(定义式)
2.单位:欧姆() 千欧(K) 兆欧(M)
1 1V/A 1M 103 k 106
3.物理意义:反映导体对电流阻碍作用的大小.
三、欧姆定律
1、内容:导体中的电流 I 跟导体两端的电压 U 成正比,跟导体的电阻 R 成反比.
等于光速,闭合开关的 瞬间,电路中各处以光 速c建立恒定电场,在 恒定电场的作用下,电 路中各处的自由电子几 乎同时开始定向移动, 整个电路也几乎同时形 成了电流
大小 10-5 m/s
105 m/s
3×108 m/s
特别提醒:电流的形成是电子在速率很大的无规则热运动上附加 一个速率很小的定向移动,电路闭合时,瞬间在系统中形成电场, 使导体中所有自由电荷在电场力的作用下同时定向移动,并不是 电荷瞬间从电源运动到用电器。
3.二极管的伏安特性曲线
二极管具有单向 导电性; 理想二极管正向 电阻趋于零,反 向电阻无穷大
I 负向电流
正向电流 I
备选:
• 例1:已知电子的电荷量为e,质量为m,氢原子的 核外电子在原子核的电场力吸引下做半径为r的匀 速圆周运动.则电子运动形成的等效电流大小为 多少?已知静电力常量k
例2、在显像管的电子枪中,从炽热的金属丝不断放 出的电子进入电压为U的加速电场,设其初速度为零, 经加速后形成横截面积为S、电流为I的电子束.已知 电子的电量为e、质量为m,则在刚射出加速电场时,
由直线斜率的倒数求电阻.
3.非线性元件: 伏安曲线不是直线.
2 1
U
IU图线(伏安特性曲线)
线性 元件的
图线
R1>R2
高中物理:闭合电路的欧姆定律
高中物理:闭合电路的欧姆定律【知识点的认识】1.闭合电路欧姆定律(1)内容:闭合电路里的电流跟电源的电动势成正比,跟内、外电阻之和成反比。
(2)公式:①I=(只适用于纯电阻电路);②E=U外+Ir(适用于所有电路)。
2.路端电压与外电阻的关系:一般情况U=IR=•R=,当R增大时,U增大特殊情况(1)当外电路断路时,I=0,U=E=,U=0(2)当外电路短路时,I短【命题方向】(1)第一类常考题型是对电路的动态分析:如图所示,电源电动势为E,内阻为r,当滑动变阻器的滑片P处于左端时,三盏灯L1、L2、L3均发光良好。
在滑片P从左端逐渐向右端滑动的过程中,下列说法中正确的是()A.小灯泡L1、L2变暗B.小灯泡L3变暗,L1、L2变亮C.电压表V1、V2示数均变大D.电压表V1、V2示数之和变大分析:在滑片P从左端逐渐向右端滑动的过程中,先分析变阻器接入电路的电阻如何变化,分析外电路总电阻的变化,由闭合电路欧姆定律分析干路电流的变化,即可由欧姆定律判断L2两端电压的变化,从而知道灯泡L2亮度的变化和电压表V2示数的变化。
再根据路端电压的变化,分析灯泡L3亮度的变化和电压表V1示数的变化;根据干路电流与L3电流的变化,分析L1电流的变化,即可判断灯泡L1亮度的变化。
根据路端电压的变化,判断两电压表示数之和的变化。
解:B、滑片P向右滑动的过程中,滑动变阻器接入电路的电阻变大,整个闭合回路的总电阻变大,根据闭合欧姆定律可得干路电流I=变小,灯泡L2变暗,故B错误。
C、灯泡L2两端电压U2=IR2变小,即电压表V2示数变小,电压表V1的读数为U1=E﹣I (r+R2),变大,故C错误。
A、小灯泡L3变亮,根据串、并联电路的特点I=I1+I3,I减小,I3=变大,则通过小灯泡L1的电流I1减小,小灯泡L1变暗,故A正确。
D、电压表V1、V2示数之和为U=E﹣Ir,I减小,U增大,故D正确。
故选AD。
点评:本题首先要搞清电路的连接方式,搞懂电压表测量哪部分电路的电压,其次按“局部→整体→局部”的思路进行分析。
欧姆定律公式讲解
欧姆定律公式讲解
欧姆定律公式:
标准式:I=U/R
部分电路欧姆定律公式:I=U/R或I=U/R=GU(I=U:R)
公式说明:
定义:在电压一定时,导体中通过的其中G= I/R,电阻R的倒数G叫做电导,其国际单位制为西门子(S).
其中:I、U、R——三个量是属于同一部分电路中同一时刻的电流强度、电压和电阻.
I=Q/t电流=电荷量/时间(单位均为国际单位制)
也就是说:电流=电压/电阻
或者电压=电阻×电流『只能用于计算电压、电阻,并不代表电阻和电压或电流有变化关系』
注意:在欧姆定律的公式中,电阻的单位必须用欧姆、电压的单位必须用伏特.如果题目给出的物理量不是规定的单位,必须先换算,再代入计算.这样得出来的电流单位才是安培。
欧姆定律适用于纯电阻电路,金属导电和电解液导电,在气体导电和半导体元件等中欧姆定律将不适用。
高中物理教科版选修31课件:第二章 第1节 欧 姆 定 律
欧_姆_定_律
1.电荷的定向移动形成电流,电流是标量,但有方 向,规定正电荷定向移动的方向为电流方向。
2.欧姆定律的表达式为 I=UR,此式仅适用于纯电 阻电路。
3.电阻反映了导体对电流阻碍作用的大小,其定义 式为 R=UI ,电阻的大小取决于导体本身,与 U 和 I 无关。
4.电学元件的电流 I 随电压 U 变化的关系图线叫 元件的伏安特性曲线。
[答案] 见解析
在电解液中,若已知 t 时间内到达阳极的负离子和到达阴
极的正离子的电荷量均为 q,则此时电流 I=qt ,而非 I=2tq。 因为这段时间内只有q2的正离子和q2的负离子在同时移动。
1.关于电流,下列说法中正确的是
()
A.导体中无电流的原因是其内部自由电荷停止了运动
B.同一个金属导体接在不同的电路中,通过的电流强度往
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/222021/11/222021/11/2211/22/2021
•7、不能把小孩子的精神世界变成单纯学习知识。如果我们力求使儿童的全部精神力量都专注到功课上去,他的生活就会变得不堪忍 受。他不仅应该是一个学生,而且首先应该是一个有多方面兴趣、要求和愿望的人。2021/11/222021/11/22November 22, 2021
v (3)结论 由此可见,从微观上看,电流决定于导体中单位体积内的自 由电荷数、自由电荷的电荷量、自由电荷定向移动的速率以及导 体的横截面积。
3.三种速率的区别
电子定向移
电子热运
动的速率
动的速率
电流传导的速率
电流是由电 构成导体的电子
荷的定向移 在不停地做无规
动形成的, 则热运动,由于
高中物理选修三2.3欧姆定律
知识图解
核心素养 物理观念:电阻、电压、电流的概念和欧姆定律. 科学思维:(1)欧姆定律的理解及应用. (2)通过比值法定义电阻,分析、总结欧姆定律的适用范围. 科学探究:伏安特性曲线的理解及伏安特性曲线的应用. 科学态度与责任:(1)欧姆定律的发现及对电学发展的贡献. (2)运用欧姆定律解决相关实际问题.
R 甲=UI22--UI11=142--00 Ω=3 Ω, R 乙=ΔΔUI =122--00 Ω=6 Ω.
答案:CD
利用 I-U 图象或 U-I 图象求电阻 (1)明确图线斜率的物理意义,即弄清图线斜率是等于电阻 R 还是等于电阻 R 的倒数. (2)某些电阻在电流增大时,由于温度升高而使电阻变化,伏安 特性曲线不是直线,但对某一状态欧姆定律仍然适用.
2.欧姆定律 (1)内容:导体中的电流跟导体两端的电压 U 成___正__比___,跟 导体的电阻 R 成___反__比___. (2)公式:I=UR. (3)适用条件:适用于__金__属____导电和_电__解__质__溶__液__导电.对气 态导体和半导体元件不适用.
拓展 根据 R=UI ,如果测出了 U、I,就可以确定 R,为我们提供了 一种测量电阻 R 的方法——伏安法.
任何导体
利用欧姆定律解题的三种方法
(1)直接利用公式 I=UR,将数据代入计算. (2)利用 R= ((ΔΔ))UI 计算电阻.对于阻值一定的电阻,变化量的 比值 ((ΔΔ))UI 仍表示电阻的阻值. (3)利用 I-U 图象,由图象的意义直接得出相关量之间的关系.
要点二 导体的伏安特性曲线
1.I-U 曲线上各点与原点连线的斜率表示电阻的倒数,而 U -I 曲线上各点与原点连线的斜率表示电阻.
【答案】 ABD
高中物理欧姆定律
高中物理欧姆定律
欧姆定律(Ohm's law)是描述电流、电压和电阻之间关系的基本物理定律。
它由德国物理学家Georg Simon Ohm在19世纪提出,被称为欧姆定律以纪念他的贡献。
欧姆定律可以用以下公式表示:
V = I × R
其中,
V表示电压(单位为伏特,V),
I表示电流(单位为安培,A),
R表示电阻(单位为欧姆,Ω)。
欧姆定律说明了在一条电阻为恒定值的导线中,电流与电压之间的关系是线性的。
具体来说,当电压V施加在电阻R上时,电流I通过电路的大小与电压和电阻成正比。
根据欧姆定律,我们可以推导出其他两个量之间的关系。
例如,如果我们已知电流I和电阻R,可以用以下公式计算电压V:
V = I × R
如果我们已知电压V和电阻R,可以用以下公式计算电流I:
I = V / R
同样地,如果我们已知电压V和电流I,可以用以下公式计算电阻R:
R = V / I
欧姆定律适用于各种电路,包括直流电路和某些交流电路。
然而,需要注意的是,欧姆定律只适用于线性电阻,即电阻值在整个电流范围内保持不变的情况。
对于非线性元件,欧姆定律不成立。
欧姆定律在解决电路中的问题时非常有用。
通过利用该定律,我们可以计算电路中的电流、电压和电阻,或者根据已知的两个量来推断第三个量。
这使得欧姆定律成为理解和分析电路行为的基础。
高中物理最基础系列: 欧姆定律
欧姆定律 (选修3—1第二章:恒定电流的第三节欧姆定律)★★○○○1、部分电路欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比.(2)公式:I =错误!.(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路。
2、伏安特性曲线:在直角坐标系中,用纵轴表示电流I ,用横轴表示电压U ,画出I 。
U 的关系图象,叫做导体的伏安特性曲线.1、对欧姆定律的理解(1)欧姆定律不同表达式的物理意义① R U I =是欧姆定律的数学表达式,表示通过导体的电流I 与电压U 成正比,与电阻R 成反比.②公式IU R =是电阻的定义式,在物理学中用电压与电流的比值表示电阻;它表明了一种测量电阻的方法,不能错误地认为“电阻跟电压成正比,跟电流成反比”.2、对伏安特性曲线的理解(1)图线的意义①由于导体的导电性能不同,所以不同的导体有不同的伏安特性曲线.②伏安特性曲线上每一点的电压坐标与电流坐标的比值,对应这一状态下的电阻。
(2)图线的区别①图甲中图线a、b表示线性元件,图乙中图线c、d表示非线性元件。
②在伏安特性曲线中,线性元件图线的斜率表示电阻的倒数,斜率越大,电阻越小,故Ra<Rb(如图甲所示)。
③图线c的斜率增大,电阻减小;图线d的斜率减小,电阻增大(如图乙所示)。
3、注意的问题(1)在I -U 曲线上某点切线的斜率不是电阻的倒数.(2)要区分是I -U 图线还是U -I 图线.(3)对线性元件:I U I UR ∆∆==;对非线性元件:I UI UR ∆∆≠=.应注意,线性元件不同状态时比值不变,非线性元件不同状态时比值不同.(4)运用伏安特性曲线求电阻应注意的问题如图所示,非线性元件的I .U 图线是曲线,导体电阻R n =错误!,即电阻要用图线上点(U n ,I n )的坐标来计算,而不能用该点的切线斜率来计算.(2015-2016学年天津市第一中学高二上学期期中考试)如图所示,为A 、B 两电阻的伏安特性曲线,关于两电阻的描述正确的是( )A. 电阻A的电阻随电流的增大而增大,电阻B阻值不变B。
欧姆定律的公式。
欧姆定律的公式
欧姆定律的公式是I=U/R,其中I表示电流,U表示电压,R表示电阻。
这个公式说明了在一段不包含电源的电路中,导体中的电流与导体两端的电压成正比,与这段电路的电阻成反比。
欧姆定律的公式可以写成三种形式,即I=U/R、U=IR和R=U/I。
这三个公式都可以用来计算电路中的电流、电压和电阻。
其中,I表示电流,单位是安培(A);U表示电压,单位是伏特(V);R表示电阻,单位是欧姆(Ω)。
欧姆定律的公式是基于实验观测和理论推导得出的,它适用于金属导电和电解液导电等线性电阻器件。
在电路中,如果知道任意两个量,就可以利用欧姆定律的公式计算出第三个量。
例如,如果知道电路中的电阻和电流,就可以计算出电路两端的电压;如果知道电路两端的电压和电阻,就可以计算出通过电路的电流。
欧姆定律的公式是电路分析的基础,它可以用来分析串联电路和并联电路的电流、电压和电阻关系。
在电机工程学和电子工程学中,欧姆定律被广泛应用来分析和设计电路。
此外,在物理学中,欧姆定律也被用来研究物质的电性质,例如在均匀外电场中的均匀截面导电体。
解释欧姆定律
解释欧姆定律
欧姆定律(Ohm's law)是指在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。
该定律是由德国物理学家乔治·西蒙·欧姆1826年4月发表的《金属导电定律的测定》论文提出的。
科尔劳施使用Dellmann静电计在1849年研究了欧姆定律。
通过电流表测量电流,象限电位表测量电位差,则依据测量结果,导体的电流强度与电位差成正比。
随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。
为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。
高中物理必修三12.2闭合电路欧姆定律
A.电动机所消耗的电功率I2R
B.t秒内所产生的电热为UIt
C.t秒内所产生的电热为I2Rt
D.t秒内输出的机械能为(U-IR)It
课堂练习
3. 如图所示,直线a为某电源的路端电压随干路电流的变化图线,直
线b为某一电阻R两端的电压随电流的变化图线,把该电源和该电阻组
功率关系:
EI I R I r
电压关系:
2
2
2
2
2
E IR Ir U 外 U内
=
+
新知讲解
三、闭合电路欧姆定律及其能量分析
1.电源电动势等于内、外电路电势降落之和。 = 外 +内
2.闭合电路的欧姆定律
(1)内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻
外=2(外电路为纯电阻电路)
4.联系:
或
= 内 + 外
=2 + 外
(外电路为纯电阻电路)
温故知新
5.输出功率的最大值:(纯电阻电路)
²
²
=
² =
=
+
+ ²
− ² +
²
=
− ²
+
²
(1)当 = 时,输出功率最大, 出 =
+
+
+
+
+
电源
_
_
_
_
+
负极
新知讲解
一、电动势
2.电动势
(1)定义:非静电力所做的功与移动的正电荷的电量的比值叫做电动势。
高中物理欧姆定律教案(优秀9篇)
高中物理欧姆定律教案(优秀9篇)欧姆定律教案篇一一、教学目标知识与技能:掌握解欧姆定律,并能运用欧姆定律解决简单的电路问题。
过程与方法:通过对欧姆定律的探究学习,学会“控制变量法”研究问题,并加强了电路实验的操作能力。
情感、态度与价值观:通过本节内容的学习和实验操作,培养实事求是的科学态度,体会到物理与生活密切联系。
二、教学重难点重点:欧姆定律的概念和表达式。
难度:实验探究欧姆定律的过程和欧姆定律的应用。
三、教学过程环节一:新课导入多媒体展示:教师用多媒体展示城市夜晚灯光璀璨,霓虹灯闪烁的情景,引导学生注意观察场景中灯光的变化,学生根据知识经验能得出变化的灯光是由电流的变化引起的。
教师引导:进一步引导学生思考电路中的电流是如何轻易改变的?以及电流、电压和电阻之间到底存在这怎样的关系?进而引出课题——《欧姆定律》。
环节二:新课讲授探究实验:电流跟电阻电压的关系提出问题:电压能使电路产生电流,电阻表示导体对电流的阻碍作用。
那么,电压、电阻是怎样影响电流的大小呢?教师引导学生通过实验,探究电流与电压、电阻的关系。
猜想与假设:学员根据之前所学电压和电阻的概念和特点,可能会猜想电流跟导体两端电压成正比,跟导体的电阻成反比。
制定计划与设计实验:首先设计实验电路,教师通过向学生提出问题,请学生思考讨论,完成实验方案的制定。
①电流与电阻和电压均有关系,如何确定电流的变化是由电压还是电阻引起的?(控制变量法)②如何保持电阻不变,而改变电阻两端的电压?(电阻不变,更换电池数量或改变滑动变阻器阻值)③如何保持电压不变,而改变导体电阻?(更换不同阻值的电阻,并改变滑动变阻器的阻值,使电阻两端电压保持不变)④为了更好的找到规律,应该如何测量实验数据?(测量多组实验数据)学生根据之前学习有关电压和电阻的知识,交流谈论问题答案,确定实验方案。
教师总结得出要探究电流跟电压、电阻的关系,可以分成两个课题分别探究。
课题一:控制电阻不变,改变电阻两端电压,探究电流与电压的关系;课题二:控制电阻两端电压不变,改变电阻,探究电流与电阻的关系。
高中物理部分电路的欧姆定律专题讲解
部分电路欧姆定律要点一、电阻定义及意义 要点诠释:1.导体电阻的定义及单位导体对电流的阻碍作用叫做导体的电阻,导体的电阻与导体本身性质有关,与电压、电流均无关。
(1)定义:导体两端的电压与通过导体的电流大小之比叫导体的电阻。
(2)公式:U R I=. (3)单位:欧姆(Ω),常用单位还有千欧(k Ω)、兆欧(M Ω). 361Ω10k Ω10M Ω--==. 2.物理意义反映导体对电流阻碍作用的大小。
说明:①导体对电流的阻碍作用,是由于自由电荷在导体中做定向运动时,跟导体中的金属正离子或原子相碰撞发生的。
②电流流经导体时,导体两端出现电压降,同时将电能转化为内能。
③UR I=提供了测量电阻大小的方法,但导体对电流的这种阻碍作用是由导体本身性质决定的,与所加的电压,通过的电流均无关系,决不能错误地认为“导体的电阻与导体两端的电压成正比,与电流成反比。
” ④对U R I =,因U 与I 成正比,所以U R I∆=∆. 【典型例题】类型一、 电阻定律例1.两根完全相同的金属裸导线,如果把其中一根均匀的拉长到原来的两倍,把另一根导线对折后绞合起来,则它们的电阻之比为多少? 【答案】161∶【解析】金属线原来的电阻为:l R S ρ=.拉长后:'2l l =,因为体积V lS =不变,所以'2S S =:'''44l l R R S S ρρ===,对折后"2l l =,''2S S =,所以''/2''''24l l R R S S ρρ==⋅=,则''':16:1R R =.【变式】(2014 兰州一中期中)将截面均匀、长为L 、电阻为R 的金属导线截去Ln,再拉长至L ,则导线电阻变为( ) A.nn R)1(- B.nRC.)1(-n nRD.nR【答案】C 【解析】金属线原来的电阻为:L R S =ρ.截去后:体积变为(1)n L V S n -=,再拉长后,V 不变,所以(1)(1)n LSn S n V L L nS --'=== 则电阻变为(1)11L L L R ρρρn S S S nn nR n n '==='=-⋅-- 要点二、电阻定律 要点诠释1.电阻定律的内容及适用对象(1)内容:同种材料制成的导体,其电阻R 与它的长度l 成正比,与它的横截面积S 成反比;导体电阻与构成它的材料有关。
高中物理闭合电路欧姆定律
高中物理闭合电路欧姆定律1. 认识电路的基本概念1.1 电路的基础大家好,今天我们聊聊电路中的一个基本概念——欧姆定律。
想象一下,你家里的灯泡,电池、导线组成了一个闭合电路。
这个电路就像一条通道,电流在里面流动,就像水流在管道里一样。
1.2 电流、电压和电阻在电路里,电流(I)就像水流的速度;电压(V)像水流的压力;而电阻(R)则像管道的粗细。
如果管道很细,水流就会被挡住,流速变慢。
电阻大的地方,电流流动也会受阻。
电压高,电流流动也会更强劲。
明白了吗?2. 欧姆定律的核心2.1 欧姆定律的公式欧姆定律告诉我们,电流、电压和电阻之间有一个简单的关系:V = I × R。
也就是说,电流等于电压除以电阻。
就像你买东西的时候,知道了价格和折扣,就能算出实际花费。
这个公式是电路设计的“宝典”,了解了它,你就能掌握电路的“脉搏”。
2.2 实际应用举例举个例子吧,假设你有一节1.5伏的电池和一个10欧姆的电阻。
根据欧姆定律,电流就是电压除以电阻,也就是1.5伏除以10欧姆,结果是0.15安培。
明白了吧?这个公式让我们能预测电流的大小,帮我们设计电路。
3. 欧姆定律在生活中的应用3.1 电器的选择在生活中,我们常常需要根据欧姆定律选择合适的电器。
比如,家里的电灯泡有不同的功率,功率越大,电阻一般也越小,这样就能让电流更强劲,灯泡更亮。
用电器的时候,理解电压、电流和电阻的关系,能让你更好地选择和使用这些设备。
3.2 安全使用电器欧姆定律还能帮助我们避免电路问题。
例如,如果你知道电流和电压,就能计算出电阻,防止电路过载。
家里电器的电线选择也是基于电流和电阻的计算,如果电线太细,电流过大,就有可能引发危险。
所以说,了解欧姆定律,不仅能帮助你更好地使用电器,还能确保你的安全哦!4. 总结总的来说,欧姆定律是电路中的一个基础而重要的规律。
它让我们能够理解电流、电压和电阻之间的关系,帮助我们设计电路,选择合适的电器,保障使用安全。
高中物理欧姆定律-难点剖析
欧姆定律-难点剖析一、对欧姆定律的理解1.R 是一个跟导体本身有关的量,与导体两端电压U 和通过的电流I 无关,绝不能由R=I U 而错误地认为“R 与U 成正比,R 与I 成反比”. 2.I=RU 中的I 、U 、R 是同一时刻对同一导体或同一段不含电源的电路而言的. 3.欧姆定律是一个实验定律,是在金属导电的基础上总结出来的.使用欧姆定律时应注意:(1)对象准确.电压U 必须是导体R 两端的电压,电流I 才是通过R 的电流.(2)欧姆定律并不适用于所有导电现象.除金属外,对电解液导电也是适用的,但对气体导电就不适用了.欧姆定律适用于“线性电阻”.(3)将欧姆定律变形得R=IU ,是电阻的定义式,表明了一种量度和测量电阻的方法,并不说明“电阻与导体两端的电压成正比,与通过导体的电流成反比”.R=I U 适用于所有导体,无论是“线性电阻”还是“非线性电阻”.4.“I=R U ”与“I=t q ”两者是不同的,I=tq 是电流的定义式,只要导体中有电流,不管是什么导体在导电,都适用,而I=R U 是欧姆定律的表达式,只适用于特定的电阻(线性电阻),不能将两者混淆. 【例1】根据欧姆定律,下列说法中错误的是( )A.从关系式R=IU可知,对于一个确定的导体来说,如果通过的电流越大,则导体两端的电压也越大 B.从关系式R=IU 可知,导体的电阻跟导体两端的电压成正比,跟导体中的电流成反比 C.从关系式I=RU 可知,导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比 D.从关系式R=I U 可知,对一个确定的导体来说,所加的电压跟通过的电流的比值是一确定值思路分析:将欧姆定律的数学表达式I=R U 转换成公式R=I U 和公式U=IR ,其中公式I=RU 表示电流的决定式,即I 与U 成正比,与R 成反比;公式R=I U 是电阻的定义式,即R 与U 、I 皆无关;公式U=IR 只是电流I 经过电阻R 的电压降,即U 与I 成正比(R 一定时),与R 成正比(I 一定时),所以A 、C 、D 都是正确的说法.答案:B温馨提示:对I=R U 和R=IU 我们一定要理解其本质的物理含义,而不能仅仅只从数学的角度来进行理解. 【例2】若加在某导体两端的电压变为原来的53时,导体中的电流减小了0.4 A.如果所加电压变为原来的2倍,则导体中的电流是多大?思路分析:本题考查欧姆定律的应用,我们可以用多种方法进行解决.解法一:依题意和欧姆定律得:R=4.05/30000-=I U I U ,所以I 0=1.0 A又因为R=20002I U I U =,所以I 2=2I 0=2.0 A. 解法二:由R=4.05/201100U I U I U =∆∆=,得I 0=1.0 A 又R=2200I U I U ∆∆=,所以ΔI 2=I 0,I 2=2I 0=2.0 A. 解法三:画出导体的I-U 图象,如图2-3-2所示,设原来导体两端的电压为U 0时,导体中的电流为I 0,导体两端的电压为53U 0时,导体中的电流为I ,则I=I 0-0.4图2-3-2当U ′=2U 0时,电流为I 2.由I-U 图象可知,02000002524.0534.0U I U U I U I ===-,所以I 0=1.0 A,I 2=2I 0=2.0 A. 答案:2.0 A温馨提示:(1)用I-U 图象结合比例式解题,显得更直观、简捷,物理意义更鲜明.(2)导体的电阻是导体自身的一种属性,与U 、I 无关,因而R=I U =IU ∆∆,用此式讨论问题更简捷明了. 【例3】某电流表的电阻约为0.1 Ω,它的量程是0.6 A ,如将这个电流表直接连接到2 V 的蓄电池的两极上,会产生什么后果?思路分析:因为电流表的电阻很小,直接连到电源的两极上后,会因通过电流表的电流过大而烧坏电流表.该题只需计算出在2 V 的电压下通过电流表的电流值,然后跟电流表的量程进行比较即可.答案:根据欧姆定律,I=R U =1.02 A=20 A 20 A>>0.6 A,会将电流表烧坏.温馨提示:由于电流表的电阻都很小,所以实验中绝不允许直接把电流表接到电源的两极上.而电压表的电阻都很大(数千欧以上),如把电压表直接连到电源的两极上,通过电压表的电流很小(约几毫安)可忽略,所以实验中可以用电压表直接测电源电压.【例4】将10 V 电压加在阻值为500 Ω的金属导体两端,在1 min 内有多少电子通过导体的横截面? 思路分析:根据欧姆定律求出金属导体中的电流,再结合电流的定义式即可求出1 min 内通过导体横截面的电荷量,最后求出电子数目.答案:根据欧姆定律知,通过导体的电流:I=R U =50010 A=0.02 A 在1 min 内通过导体横截面的电荷量q=I ·t=ne即0.02×60=n ×1.6×10-19可解在1 min 内通过导体横截面的电子数为:n=7.5×1018(个).温馨提示:本题将欧姆定律和电流的意义综合在一起考查,解决本题的关键是抓住电流是联系欧姆定律和电荷量的中间纽带.二、伏安特性曲线和U-I 曲线伏安特性曲线上各点与原点连线的斜率表示电阻的倒数,而U-I 特性曲线上各点与原点连线的斜率表示电阻.在作导体的伏安特性曲线时,坐标轴标度的选取是任意的,因此利用图线的斜率求电阻大小时,不能用tan θ,必须利用ΔU 和ΔI 的比值计算.【例5】图2-3-3所示的图象所对应的两个导体:图2-3-3(1)电阻关系R 1∶R 2为__________;(2)若两个导体中的电流相等(不为零)时,电压之比U 1∶U 2为__________;(3)若两个导体的电压相等(不为零)时,电流之比I 1∶I 2为__________.思路分析:本题考查欧姆定律和I-U 图象的综合应用,我们只要清楚欧姆定律的内容及I-U 图象的意义,题目即可解决.解析:(1)由I-U 图象可知 R=IU k ∆∆==θtan 11 所以R 1=331051010--⨯⨯ Ω=2 Ω R 2=3310151010--⨯⨯ Ω=32 Ω 因此R 1∶R 2=2∶(32)=3∶1. (2)由欧姆定律得U 1=I 1R 1,U 2=I 2R 2.由于I 1=I 2,则U 1∶U 2=R 1∶R 2=3∶1.(3)由欧姆定律得I 1=11R U ,I 2=22R U 由于U 1=U 2所以I 1∶I 2=R 2∶R 1=1∶3.答案:(1)3∶1 (2)3∶1 (3)1∶3温馨提示:分析I-U 图象或U-I 图象时,首先要明确是什么图象,再明确图线斜率k 的意义,究竟是k=R 还是k=R1. 【例6】如图2-3-4所示,为导体a 、b 的U-I 图线,由此判断( )图2-3-4A.导体a 的电阻大于导体b 的电阻B.导体a 的电阻小于导体b 的电阻C.若将两导体串联,导体a 的发热功率大于导体b 的发热功率D.若将两导体并联,导体a 的发热功率大于导体b 的发热功率思路分析:导体的电阻R=IU 在导体a 、b 的U-I 图线上分别取横坐标相同(即电流值相同)的两点.由图知导体a 的U-I 图上该点的纵坐标较大,故导体a 的电阻R=I U 较大.故选项A 正确,B 错误. 在串联电路中,各段电路上损耗的电功率跟电路电阻成正比,而在并联电路中,每条支路上损耗的电功率跟支路电阻成反比.由于R a >R b ,故C 正确,D 错误.答案:AC温馨提示:判断两根导体电阻的大小还可以这样分析:方法一,在a 、b 导体的U-I 图线上,取纵坐标相同的两点(即电压值相同的两点).由图可知,b 图线上该点的横坐标较大,即电流较大,据电阻定义R=IU知,导体b 的电阻较小.方法二,在某一图线上取一点,设其坐标为(I,U ),由电阻定义知,该图线描述的导体电阻R=IU ,即为该图线的斜率,即R=tan α(α为图线的倾角),由图知,a 的斜率较大,故导体a 的电阻较大.注意:R=tan α结论仅适用于纵轴表示电压,横轴表示电流时的U-I 图线.若纵轴表示电流,横轴表示电压,则R=cot α.解图象问题时一定要注意纵轴和横轴分别表示什么物理量,其斜率的物理意义是什么.若该图象为I-U 图象,则答案就不同了.【例7】如图2-3-5所示,为某小灯泡的电流与其两端的电压关系图线,试分别计算出其电压为5 V 、10 V 时小灯泡的电阻,并说明电阻的变化规律.图2-3-5思路分析:我们可以先由伏安特性曲线结合欧姆定律解出两个状态的电阻,然后再说明电阻的变化规律. 答案:根据图象,当电压为5 V 时,电流为0.5 A ,所以有:R=I U =5.05 Ω=10 Ω 当电压为10 V 时,电流为0.7 A ,所以R 2=I U =7.010 Ω≈14.3 Ω 随着电压的升高,曲线的斜率越来越小,电阻越来越大,因此其电阻是非线性电阻,不是一个固定的值.实际上我们生活中用的白炽灯泡都是这样一种情况,只不过在电压变化不大的情况下不考虑罢了. 温馨提示:对于非线性元件其I-U 图象为曲线,不遵守欧姆定律,但对于某一确定的电压和相应的电流,其间的关系仍满足欧姆定律.。
高中物理欧姆定律重点归纳
高中物理欧姆定律重点归纳1、欧姆定律定义常见简述:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。
标准式:(变形公式U=IR;R=U/I)注意:公式中物理量的单位:I:(电流)的单位是安培(A)、U:(电压)的单位是伏特(V)、R:(电阻)的单位是欧姆(Ω)。
部分电路公式:I=U/R,或I=U/R=P/U(I=U:R)(由欧姆定律的推导式【U=IR;R=U/I】不能得到①:电压即为电流与电阻之积;②:电阻即为电压与电流的比值。
所以,这些变形公式仅作计算参考,并无具体实际意义。
)欧姆定律成立时,以导体两端电压为横坐标,导体中的电流I为纵坐标,所做出的曲线,称为伏安特性曲线。
这是一条通过坐标原点的直线,它的斜率为电阻的倒数。
具有这种性质的电器元件叫线性元件,其电阻叫线性电阻或欧姆电阻。
欧姆定律不成立时,伏安特性曲线不是过原点的直线,而是不同形状的曲线。
把具有这种性质的电器元件,叫作非线性元件。
全电路公式:I=E/(R+r)E为电源电动势,单位为伏特(V);R是负载电阻,r是电源内阻,单位均为欧姆符号是Ω.I的单位是安培(A).2、电压电压的作用1.电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。
电源是提供电压的装2.电路中获得持续电流的条件:①电路中有电源(或电路两端有电压);②电路是连通的。
注:说电压时,要说“某某”两端的电压,说电流时,要说通过“某某”的电流。
3.在理解电流、电压的概念时,通过观察水流、水压的模拟实验帮助我们认识问题,这里使用了科学研究“类比法”电压的单位国际单位:伏特(V)常用单位:千伏(kV)、毫伏(mV)、微伏(μV)换算关系:1Kv=103V1V=103mV1mV=103μV记住一些电压值:一节干电池1.5V一节蓄电池2V家庭电压220V人体的安全电压不高于36V电压测量:1.仪器:电压表,符号:V量程和分度值:电压表有三个接线柱,两个量程.使用“-”和“3”两个接线柱时,量程是0~3V,分度值“0.1V”;使用“-”和“15”两个接线柱时,量程是0~15V,分度值“0.5V”.(大量程是小量程的5倍,大分度值也是小分度值的5倍),指针位置相同,则示数也是5倍关系3.使用规则:两要、一不①电压表要并联在电路中。
高中物理学案:欧姆定律含解析
3欧姆定律1.欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.(2)表达式:I=错误!.(3)适用条件:实验表明,除金属外,欧姆定律对电解质溶液也适用,对气体导体和半导体元件不适用.探究在U。
I图象中,图线的斜率表示的物理意义是什么?提示:在UI图象中,图线的斜率表示导体的电阻,k=错误!=R,图线的斜率越大,电阻越大.2.导体的伏安特性曲线(1)伏安曲线:在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I.U图象叫做导体的伏安特性曲线.(2)线性元件:金属导体在温度没有显著变化时,电阻几乎是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件.(3)非线性元件:伏安特性曲线不是过原点的直线,也就是说,电流与电压不成正比,这类电学元件叫做非线性元件(例如:气体和半导体).探究在I。
U图象中,伏安特性曲线的斜率表示的物理意义是什么?提示:在IU图象中,伏安特性曲线的斜率表示导体电阻的倒数,k=ΔIΔU=错误!。
图线的斜率越大,电阻越小.3.实验:测绘小灯泡的伏安特性曲线(1)实验器材:小灯泡(2.5 V,0。
5 W)、电压表、电流表、滑动变阻器、电源(3 V)、开关、导线若干.(2)实验原理:为小灯泡提供两端能从零连续变化的电压,连成如图所示的电路.(在虚线方框内画出滑动变阻器的连接电路)(3)实验步骤:①按图连好电路,开关闭合前滑动变阻器的滑片应滑至左端(选填“左”或“右").②闭合开关,右移滑片到不同的位置,并分别记下电压表和电流表的多组数据.③依据实验数据在坐标纸上作出小灯泡的伏安特性曲线.考点一对欧姆定律的理解1.对导体的电阻的理解导体的电阻大小是由导体本身的因素(如:长度、材料、横截面积、温度)决定的;而电阻的定义式R=错误!,表明了一种量度和测量电阻的方法,并不说明“电阻与导体两端的电压成正比,与通过导体的电流成反比”.I=错误!只适用于线性元件,变形后的R=错误!适用于所有的导体,无论是线性元件还是非线性元件.2.对公式I=UR及I=q/t,R=错误!和U=IR的含义的理解物理意义适用条件I=错误!某段导体电流、电压和电阻的关系仅适用于纯电阻电路I=错误!电流定义式已知q和t情况下,可计算I的大小R=错误!导体电阻定义式,反映导体对电流的阻碍作用R由导体本身决定,与U、I无关,适用于所有导体U=IR 沿电流方向电势逐渐降低,电压降等于I和R乘积计算导体两端电压,适用于金属导体、电解液同体性:公式反映的是同一段导体上,或同一段电路上的电压、电流和电阻之间的关系.,同时性:公式反映的是同一时刻同一段导体或同一段电路上电阻、电流与电压的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理:让闭合电路欧姆定律:含电容器电路问题书忆教育3天前作为高二、高三的学生,自学习到闭合电路的欧姆定律这一节的时候我们就开始接触到含电容器电路的问题。
根据以往的教学经验知道,对于含电容器电路问题,学生学习的困惑主要包括两方面:第一,不懂如何简化含电容器的电路;第二,不理解电容器两极电压的计算。
今天我们就针对这两方面内容,对含电容器电路问题进行分析、总结;希望对你有帮助。
一、含电容器电路的简化:直接把电容器所在支路的所有电器元件去掉(用手盖住,可以把含电容器的整个支路想象成是一个电压表。
)
在直流电路中,当电容器充、放电时,电路里有充、放电电流。
一旦电流达到稳定状态,电容器在电路中就相当于一个电阻值无穷大的元件,在电路分析时可看作是断路,简化电路时可去掉它。
若要求电容器所带电荷量时,可在相应的位置上,用理想电压表代替,此电压表的读数即为电容器两端的电压。
二、含电容器电路问题的一些解题结论:
(1)只有当电容器充电、放电时,含电容器的支路才会有电流通过;当电路稳定时,电容器对电路的作用是断路,此时含电容器的整个支路相当于一个电压表(简化电路时把整个含电容器的支路直接去掉)。
(2)电路稳定时,与电容器串联的电阻为等势体(即电容器的电压和该电阻(或串联的其他电器元件)电压相等),改变与电容器串联的电阻对电容器两极间的电压没有影响,此时电容器两极间的电压等于和电容器并联的电阻两端的电压。
(3)电路中的电流、电压变化时,将会引起电容器的充(放)电,如果电容器两端电压升高,电容器将充电;如果电压降低,电容器将通过与它连接的电路放电。
电容器电荷量的变化问题要点诠释:对电容器电荷量的变化问题,要注意电容器两个极板的电性变化。
①若极板电性不变,则电荷量变化等于始、末状态电容器电荷量之差;②若极板电性互换,则电荷量变化等于始末状态电容器电荷量之和。
三、含电容器电路问题:解
【试着做一做】。