变化率与导数、导数的计算学案(高考一轮复习)
高三数学一轮复习导数导学案
课题: 导数、导数的计算及其应用 2课时一、考点梳理:1.导数、导数的计算(1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx=__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′.(3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. !(4).基本初等函数的导数公式(5).导数的运算法则(1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)⎣⎡⎦⎤f x g x ′=__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值(1)导数和函数单调性的关系:(1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________.(2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0⇔f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,⇔f (x )在(a ,b )上为____函数.[(2)函数的极值与导数(1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值.(2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________.(3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤:(1)求函数y =f (x )在(a ,b )上的________;(2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. `二、基础自测:1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx 等于( ).A .4B .4xC .4+2ΔxD .4+2Δx 2原函数 导函数 f (x )=c (c 为常数) f ′(x )=0f (x )=x n (n ∈Q *) ;f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________f (x )=e x >f ′(x )=________ f (x )=log a x f ′(x )=________ f (x )=ln xf ′(x )=________2.曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ).A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1) 3.(2012陕西高考)设函数f (x )=2x +ln x ,则( ).A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 4.若函数y =a (x 3-x )的递减区间为⎝ ⎛⎭⎪⎫-33,33,则a 的取值范围是( ). {A .a >0B .-1<a <0C .a >1D .0<a <15.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为__________. 6.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是__________.三、考点突破:考点一、根据导数的定义求函数的导数 【例1-1】已知f ′(2)=2,f (2)=3,则lim x →2fx -3x -2+1的值为( )A .1 B .2 C .3 D .4【例1-2】用导数的定义求函数y =f (x )=1x在x =1处的导数.~【变式】:求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数.考点二、利用求导公式、法则求导 [例2]求下列函数的导数:(1) y =(2x -3)2;(2)y =tan x ;(3)y =x e x ;(4)y =ln xx . (5)y =ln(2x +5).;【变式】求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ; (2)y =3-x ;考点三、导数的几何意义【例3】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程.…【变式】:求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.考点四、利用导数研究函数的单调性与极值、最值【例4】已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;\【变式】(2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值;(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围."【例5】若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.【变式】设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.@【例6】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.【变式】已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.、(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.四、课题巩固:一、选择题:1.设f (x )为可导函数,且满足lim x →0f1-f 1-2x2x=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( ). ?A .2B .-1C .1D .-22.(2012辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ). A .(-1,1] B .(0,1]C .[1,+∞) D .(0,+∞)3.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )4.已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是( )二、填空题: —5.函数f (x )=x -ln x 的单调减区间为________.6. 已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 7.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是_____________.8.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上有________个零点. 三、解答题9.已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数.?10.设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.11.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.~(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >1,求函数y =f (x )在区间(a -1,a +1)内的极值.课题: 导数、导数的计算及其应用 2课时参考答案 二、基础自测:1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx 等于( ).A .4B .4xC .4+2ΔxD .4+2Δx 2}2.曲线y =x 3在点P 处的切线的斜率为3,则点P 的坐标为( ).A .(-1,1)B .(-1,-1)C .(1,1)或(-1,-1)D .(1,-1) 3.(2012陕西高考)设函数f (x )=2x +ln x ,则( ).A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 4.若函数y =a (x 3-x )的递减区间为⎝ ⎛⎭⎪⎫-33,33,则a 的取值范围是( ). A .a >0 B .-1<a <0C .a >1 D .0<a <15.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为__________. 6.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是__________.《参考答案:1.C 解析:∵Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1=4Δx +2(Δx )2,∴ΔyΔx =4+2Δx . 2.C 解析:y ′=3x 2,∴3x 2=3.∴x =±1.当x =1时,y =1,当x =-1时,y =-1.3.D 解析:由f ′(x )=-2x 2+1x =1x ⎝⎛⎭⎫1-2x =0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.故x =2为f (x )的极小值点. 4.A 解析:∵y ′=a (3x 2-1)=3a ⎝ ⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33,∴当-33<x <33时,⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33<0. ∴要使y ′<0,必须取a >0.5.4x -y -3=0 解析:设切点为(x 0,y 0),y ′=4x 3,4x 03=4,∴x 0=1.∴y 0=1.∴l 的方程为4x -y -3=0.6.3 解析:∵f (x )=x 3-ax 在[1,+∞)上是单调增函数,∴f ′(x )=3x 2-a ≥0在[1,+∞)上恒成立,即a ≤3x 2在[1,+∞)上恒成立,而当x ∈[1,+∞)时,(3x 2)min =3×12=3.∴a ≤3,故a max =3. 三、考点突破: ^考点一、根据导数的定义求函数的导数 【例1-1】已知f ′(2)=2,f (2)=3,则lim x →2fx -3x -2+1的值为( ).A .1B .2C .3D .4 【例1-2】用导数的定义求函数y =f (x )=1x在x =1处的导数. 【例1-1】C 解析:令Δx =x -2,则lim x →2f (x )-3x -2+1=lim Δx →0f (Δx +2)-f (2)Δx +1=f ′(2)+1=2+1=3. 【例1-2】解:Δy =f (1+Δx )-f (1)=11+Δx -11=1-1+Δx 1+Δx=-Δx1+Δx (1+1+Δx ).∴ΔyΔx =-11+Δx (1+1+Δx ),∴lim Δx →0Δy Δx =lim Δx →0⎣⎢⎡⎦⎥⎤-11+Δx (1+1+Δx )=-12.∴f ′(1)=-12. 【变式】:求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数. 解 ∵Δy =x 0+Δx2+1-x 20+1=x 0+Δx 2+1-x 20-1x 0+Δx2+1+x 20+1=2x 0Δx +Δx 2x 0+Δx2+1+x 20+1,¥∴ΔyΔx =2x 0+Δxx 0+Δx 2+1+x 20+1.∴Δx →0时,Δy Δx →x x 2+1.∴y ′=xx 2+1.考点二、利用求导公式、法则求导 [例2]求下列函数的导数:(1) y =(2x -3)2;(2)y =tan x ;(3)y =x e x ;(4)y =ln xx . (5)y =ln(2x +5). 解:(1)y ′=(4x 2-12x +9)′=8x -12.(2)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . (3)y ′=x ′e x +x (e x )′=e x +x e x =e x (x +1).(4)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. ?(5)设u =2x +5,则y =ln(2x +5)由y =ln u 与u =2x +5复合而成.∴y ′=y ′u ·u ′x =1u ·2=2u =22x +5.【变式】求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ; (2)y =3-x ; 考点三、导数的几何意义【例3】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程;(3)求斜率为1的曲线的切线方程.解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为:y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为:y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 03+43,则切线的斜率为:0|x x y '==x 02.∴切线方程为y-⎝⎛⎭⎫13x 03+43=x 02(x -x 0),即y =x 02·x -23x 03+43.∵点P (2,4)在切线上,∴4=2x 02-23x 03+43,即x 03-3 x 02+4=0,∴x 03+x 02-4x 02+4=0,∴x 02(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 0,y 0),则x 02=1,x 0=±1,切点为(-1,1)或⎝⎛⎭⎫1,53,∴切线方程为y -1=x +1或y -53=x -1,即x-y +2=0或3x -3y +2=0.?【变式】:求曲线f (x )=x 3-3x 2+2x 过原点的切线方程. 解:f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②由①②得x 0=32,k =-14.∴所求曲线的切线方程为y =-14x .综上,曲线f (x )=x 3-3x 2+2x 过原点的切线方程为y =2x 或y =-14x .考点四、利用导数研究函数的单调性与极值、最值【例4】已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;解:(1)当a =2时,f (x )=(-x 2+2x )e x ,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,∵e x >0,∴-x 2+2>0,解得-2<x < 2.∴函数f (x )的单调递增 /区间是(-2,2).(2)∵函数f (x )在(-1,1)上单调递增,∴f ′(x )≥0对x ∈(-1,1)都成立.∵f ′(x )=[-x 2+(a -2)x +a ]e x ,∴[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.∵e x >0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即x 2-(a-2)x -a ≤0对x ∈(-1,1)恒成立.设h (x )=x 2-(a -2)x -a ,只需满足⎩⎪⎨⎪⎧h -1≤0h 1≤0,解得a ≥32.【变式】(2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值;(2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围. 解 (1)由题意得f ′(x )=3x 2+2(1-a )x -a (a +2),又⎩⎪⎨⎪⎧f 0=b =0f ′0=-a a +2=-3,解得b =0,a =-3或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎪⎨⎪⎧-1<a <1,a ≠-a +23或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12或⎩⎪⎨⎪⎧-5<a <1,a ≠-12.所以a 的取值范围为(-5,-12)∪(-12,1). 【例5】若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围. 【解 (1)由题意可知f ′(x )=3ax 2-b .于是⎩⎪⎨⎪⎧ f ′2=12a -b =0f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4故函数为f (x )=13x 3-4x +4. (2)由(1)可知f ′(x )=x 2-4=(x -2)(x +2).令f ′(x )=0得x =2或x =-2, 当x 变化时,f ′(x ),f (x )的变化情况如下表所示:x (-∞,-2) -2 (-2,2) 2 ](2,+∞)f ′(x ) +0 - 0 + f (x )~ 单调递增极大值单调递减极小值单调递增因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43, 所以函数的大致图象如右图,故实数k 的取值范围为(-43,283).【变式】 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. >解 (1)f ′(x )=a x +2bx +1,∴⎩⎪⎨⎪⎧f ′1=a +2b +1=0f ′2=a2+4b +1=0.解得a =-23,b =-16. (2)f ′(x )=-23x +(-x3)+1=-x -1x -23x.函数定义域为(0,+∞),列表 x(0,1) 1 (1,2) 2 (2,+∞) { f ′(x ) - 0 + 0 - f (x )单调递减[极小值单调递增极大值单调递减∴x =1是f (x )的极小值点,x =2是f (x )的极大值点.【例6】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值. 解: (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b , 当x =1时,切线l 的斜率为3,可得2a +b =0;① 、当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0.②由①②解得a =2,b =-4,又切点的横坐标为x =1,∴f (1)=4.∴1+a +b +c =4.∴c =5.(2)由(1),得f (x )=x 3+2x 2-4x +5,∴f ′(x )=3x 2+4x -4.令f ′(x )=0,得x =-2或x =23,∴f ′(x )<0的解集为⎝⎛⎭⎫-2,23,即为f (x )的减区间.[-3,-2)、⎝⎛⎦⎤23,1是函数的增区间.又f (-3)=8,f (-2)=13,f ⎝⎛⎭⎫23=9527,f (1)=4,∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.解 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2. (2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2,令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2),(2,+∞)上是减函数; )当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43. 四、课题巩固: 一、选择题:1.设f (x )为可导函数,且满足lim x →0f1-f 1-2x2x=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-22.(2012辽宁高考)函数y =12x 2-ln x 的单调递减区间为( ). A .(-1,1] B .(0,1]C .[1,+∞) D .(0,+∞):3.如图所示的曲线是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )4.已知f ′(x )是f (x )的导函数,在区间[0,+∞)上f ′(x )>0,且偶函数f (x )满足f (2x -1)<f ⎝⎛⎭⎫13,则x 的取值范围是( )参考答案:1.B 解析:lim x →0f (1)-f (1-2x )2x =lim x →0f (1-2x )-f (1)-2x =-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1.2.B 解析:对函数y =12x 2-ln x 求导,得y ′=x -1x =x 2-1x (x >0),令⎩⎪⎨⎪⎧x 2-1x ≤0,x >0,解得x ∈(0,1].因此函数y =12x 2-ln x 的单调递减区间为(0,1].故选B.3.C [由图象知f (x )=x (x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d ,∴b =-1,c =-2,d =0.而x 1,x 2是函数f (x )的极值点,故x 1,x 2是f ′(x )=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c3,、x 21+x 22=(x 1+x 2)2-2x 1x 2=49b 2-2c 3=169.][∵x ∈[0,+∞),f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又因f (x )是偶函数,∴f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13⇒|2x -1|<13,∴-13<2x -1<13.即13<x <23. 二、填空题:5.函数f (x )=x -ln x 的单调减区间为________.6. 已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是_____. 7.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是_____________.8.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上有________个零点.|参考答案:1.(0,1) 2.-37 3. ⎣⎡⎭⎫3π4,π 4. 1个解析:f ′(x )=x 2-2ax =x (x -2a )=0⇒x 1=0,x 2=2a >4,易知f (x )在(0,2)上为减函数,且f (0)=1>0,f (2)=113-4a <0,由零点判定定理知,在函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有1个零点. 三、解答题9.已知函数f (x )=x ln x .(1)求f (x )的极小值;(2)讨论关于x 的方程f (x )-m =0 (m ∈R )的解的个数. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )=0,得x =1e , 当x ∈(0,+∞)时,f ′(x ),f (x )的变化的情况如下:x ⎝⎛⎭⎫0,1e 1e 《⎝⎛⎭⎫1e ,+∞ f ′(x ) -0 +f (x )极小值¥所以,f (x )在(0,+∞)上的极小值是f ⎝⎛⎭⎫1e =-1e .(2)当x ∈⎝⎛⎭⎫0,1e ,f (x )单调递减且f (x )的取值范围是⎝⎛⎭⎫-1e ,0;当x ∈⎝⎛⎭⎫1e ,+∞时,f (x )单调递增且f (x )的取值范围是⎝⎛⎭⎫-1e ,+∞.令y =f (x ),y =m ,两函数图象交点的横坐标是f (x )-m =0的解,由(1)知当m <-1e 时,原方程无解;由f (x )的单调区间上函数值的范围知,当m =-1e 或m ≥0时,原方程有唯一解;当-1e <m <0时,原方程有两解. 10.设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解:对f (x )求导得f ′(x )=e x1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12. 结合①,可知 所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,因此Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.11.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >1,求函数y =f (x )在区间(a -1,a +1)内的极值.解: (1)由函数f (x )图象过点(-1,-6),得m -n =-3.①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n .而g (x )的图象关于y 轴对称,所以-2m +62×3=0.所以m =-3,代入①,得n =0.于是f ′(x )=3x 2-6x =3x (x -2).由f ′(x )>0,得x >2或x <0,故f (x )的单调递增区间是(-∞,0)∪(2,+∞);由f ′(x )<0,得0<x <2,故f (x )的单调递减区间是(0,2).(2)由(1)得f ′(x )=3x (x -2),令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x )、f (x )的变化情况如下表:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得:当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当1<a <3时,f (x )有极小值-6,无极大值;当a ≥3时,f (x )无极值.x ⎝⎛⎭⎫-∞,1212 …⎝⎛⎭⎫12,32 32 ⎝⎛⎭⎫32,+∞ f ′(x ) + 0 -0 +f (x )极大值极小值。
高考数学第一轮高效复习导学案-导数
高考数学第一轮高效复习导学案导数及其应用1.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2. 熟记八个基本导数公式(c,m x (m 为有理数),x x a e x x a x x log ,ln ,,,cos ,sin 的导数);掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.第一课时 导数概念与运算【学习目标】1.了解导数的定义、掌握函数在某一点处导数的几何意义——图象在该点处的切线的斜率;2.掌握幂函数、多项式函数、正弦函数、余弦函数、指数函数、对数函数的导数公式及两个函数的和、差、积、商的导数运算法则及简单复合函数的求导公式,并会运用它们进行求导运算;【考纲要求】导数为B 级要求【自主学习】1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = . 2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u =])(['x Cf = )('uv = ,)('vu = )0(≠v 【基础自测】1.在曲线y=x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则xy ∆∆为 . 2.已知f(x)=sinx(cosx+1),则)(x f '= .3.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 .4.曲线在y=53123+-x x 在x=1处的切线的方程为 . 5.设曲线y ax e =在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .[典型例析]例1.求函数y=12+x 在x 0到x 0+Δx 之间的平均变化率.例2. 求下列各函数的导数:(1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y (3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111x x y ++-=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.[当堂检测]1. 函数y =ax 2+1的图象与直线y =x 相切,则a =2.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则xy ∆∆为 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为4.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f (x )g(x )<0的解集是________________5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数有 个。
第13讲变化率与导数导数的运算课件-高考理科数学一轮复习
数 y=f(x)图像的切线,则切线方程
为
.
[答案] y=-2 或 y=9x+16
[解析] 对函数求导,得 f'(x)=3x2-3.
当点 P(-2,-2)为切点时,切线斜率 k=3×(-2)2-3=9,
根据点斜式得切线方程为 y=9x+16.
当点 P(-2,-2)不是切点时,设切点坐标为(m,n),
������ = ������3-3������,
求简单的复合函数(仅限于形如 f(ax+b)的复合函数)的导数.
课前双基巩固
知识聚焦
1.变化率与导数
(1)平均变化率:
概念 几何 意义
对于函数
y=f(x),f(x2)-f(x1)=������y叫作函数
x2-x1 ������x
y=f(x)从
x1
到
x2
的
平均 变化率
函数 y=f(x)图像上两点(x1,f(x1)),(x2,f(x2))连线的 斜率
课前双基巩固
7.已知 f(x)=x2+3xf'(2),则 f(2)=
.
[答案] -8 [解析] 因为 f'(x)=2x+3f'(2),令 x=2, 得 f'(2)=-2,所以 f(x)=x2-6x,所以 f(2)=-8.
课前双基巩固
8.已知 f(x)=x3,则 f'(2x+3)=
,[f(2x+3)]'=
坐标为
.
[思路点拨] 先根据 f(x)为偶函数 求得 a=1,再建立方程,解得切点的 横坐标.
课堂考点探究
例 3 设 a∈R,函数 f(x)=ex+e������������是偶函数,若曲 线 y=f(x)的一条切线的斜率是32,则切点的横
第一节 变化率与导数、导数的计算-高考状元之路
第三章 导数及其应用复习备考资讯考纲点击1.变化率与导数、导数的计算(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)能根据导数定义求函数xy x y x y c y 1,,,2====的导数. (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.2.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(3)会利用导数解决某些实际问题.考情分析1.导数的运算是导数的基本内容,在高考中每年必考,一般一单独命题,而在考查导数应用的同时考查.2.导数的几何意义是高考考查的重点内容,常与解析几何知识交汇命题,多以选择题、填空题的形式出现,有时也出现在解答题中关键的一步.3.利用导数研究函数的单调性、极值、最值以及解决生活中的优化问题,巳成为近几年高考炙手可热的考点。
4.选择题、填空题,侧重于利用导数确定函数的单调性和极值;解答题,侧重于导数与函数、解析几何、不等式、数列的综合应用,一般难度较大,属中高档题,第一节 变化率与导数、导数的计算预习设计 基础备考知识梳理1.函数)(x f y =从1x 到2x 的平均变化率函数)(x f y =从1x 到2x 的平均变化率为若),()(,1212x f x f y x x x -=∆-=∆则平均变化率可表示为2.函数)(x f y =在0x x =处的导数(1)定义;称函数0)(x x x f y ==在处的瞬时变化率 = 为函数)(x f y =在0x x =处的导数,记作,|)(0/0/x x y x f =或即=∆=---ΛAxy x r lim )(0 (2)几何意义:函数)(x f 在点0x 处的导数)(0/x f 的几何意义是在曲线)(x f y =上点 处的 .相应地,切线方程为3.函数)(x f 的导函数称函数=)(/x f 为)(x f 的导函数,导函数有时也记作/y4.基本初等函数的导数公式5.导数运算法则=±/)]()]()[1(x g x f=/)]()()[2(x g x f=/])()()[3(x g x f ).0)((=/x g典题热身1.设,ln )(x x x f =若,2)(0/=x f 则=0x ( )2.e A e B . 22ln .c 2ln .D2.(2011.山东高考)曲线113+=x y 在点P(l ,12)处的切线与y 轴交点的纵坐标是( )9.-A 3.-B 9.C 15.D3.(2010.全国课标卷)曲线123+-=x x y 在点(1,O)处的切线方程为( )1-=⋅x y A 1+-=⋅x y B 22-=⋅x y C 22+-=⋅x y D4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a1.A 21.B 21.-c 1.-D5.(2011.湖南高考)曲线21cos sin sin -+=x x x y 在点)0,4(πM 处的切线的斜率为 ( ) 21.-A 21.B 22.-c 22.D 课堂设计 方法备考【例1】 已知P ,Q 为抛物线y x 22=上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__ __.【例2】已知曲线 ⋅+=34313x y (1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.例3已知函数)(x f y =的图象是折线段ABC ,其中).0,1().5,21()0,0(C B A 函数x x xf y ≤=0)(()1≤的图象与x 轴围成的图形的面积为解题思路解析 由已知可得⎪⎪⎩⎪⎪⎨⎧∈+-∈=],1,21(,1010],21,0[,10)(x x x x x f 则⎪⎩⎪⎨⎧∈+-∈==],1,21(,1010],21,0[,10)(22x x x x x x xf y 画出函数图象,如图所示,所求面积+=⎰+dx x s )10(20+=+-⎰++0321|310)1010(x dx x x +=+-+125|)5310(123x x )41581310()5310(⨯+⨯--+-⋅=45题型三 导数的几何意义及其应用【例3】设函数),,(1a )(z b a bx x x f ∈++=曲线)(x f y =在点(2,,f(2))处的切线方程为.3=y (1)求)(x f 的解析式;(2)证明函数)(x f y =的图像是一个中心对称图形,并求其对技法巧点1.函数求导的方法和步骤求导数时,先化简再求导是运算的基本方法.一般地,分式函数的求导,要先观察函数的结构特征,可否化为整式函数或较简单的分式函数;对数函数的求导,先化为和、差形式,再求导;三角函数求导,先应用三角公式转化为和或差的形式.2.与导数的几何意义有关的两类问题有关导数几何意义的题目一般有两类:一类是求曲线韵切线方程,这类题目要注意审好题,看到底是在某点处的切线还是过某点的切线,在某点处的切线一般有一条,过某点的切线可能有两条或更多;另一类是已知曲线的切线求字母的题目,已知曲线的切线一般转化为两个条件,即原函数一个条件,导函数一个条件,导函数的条件一般不会忽视,但原函数的条件很容易被忽视。
《变化率与导数、导数的计算》教学设计
第一课时 变化率与导数、导数的计算 教学设计一、导入设计:多媒体展示只是框图,并介绍高考重点难点。
设计意图与教学活动:本节课是侧重于构建知识结构的复习课,首先给出导数本章的知识网络,它既有导数的初步知识,又有导数的应用。
这一过程通过课件展示知识网络,教师讲述重点难点,让学生对导数以及导数的应用有整体性的认识把握:导数的初步知识包括导数的概念、求导数的方法,导数的应用主要介绍函数的单调性,可导函数的极值与函数的最大值与最小值。
其中重点是理解导数定义的本质;难点是导数的灵活应用。
一、学习目标:(导入与目标展示 3分钟)1、变化率与导数① 了解导数概念的实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等)② 掌握函数在一点处的导数的定义和导数的几何意义,会在已知切点的情况下求切线方程;③理解导函数的概念; 瞬时变化率 平均速度 瞬时速度 平均变化率 割线斜率 切线斜率 导 数 基本初等函数导数公式、导数运算法则 导数与函数单调性的关系导数与极(最)值的关系2、导数的运算 ①能根据导数定义求函数xy x y x y C y 1,,,2====的导数②能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数设计意图与教学活动:通过多媒体展示目标,使学生明白本节课的任务,重点难点,激发主动学习的热情,做到有的放矢。
二、自学探究(包括教师点拨17分钟)1、自学课本P73—78(1)通过问题2了解平均变化率和顺势变化率的关系,如何由平均变化率得到瞬时变化率?(2)函数的瞬时变化率与导数是怎样定义的?导数与瞬时变化率的关系是怎样的?(3)导数有什么几何意义?设计意图与教学活动:以问题探究的形式帮助学生完成知识的构建、教师适时点评学生可以回答的问题:平均变化率和瞬时变化率,导数几何意义与已知切点切线方法 需要教师强调、点拨的问题:1、导数的本质研究的是当自变量的增量趋向于0(0→∆x )时,函数的增量与自变量的增量的比值的极限。
最新2.11-变化率与导数、导数的计算学案(高考一轮复习)
2014年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算一.学习目标:1.了解导数概念的实际背景,理解导数的几何意义;2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1x的导数;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.二.学习重、难点:1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数;2.学习难点:理解导数的几何意义.三.学习方法:讲练结合四.自主复习:1.导数的概念(1)函数在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0Δy Δx, 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.(2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________.(3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.2.基本初等函数的导数公式3.运算法则(1)[f(x)±g(x)]′=_________________;(2)[f(x)·g(x)]′=________________________;(3)[f(x)g(x)]′=_______________________ (g(x)≠0).五.复习前测:1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1C.cos1-1 D.-1-cos12.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x3.某汽车的路程函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,汽车的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 24.已知函数f (x )=⎩⎨⎧x ,x >0cos x ,x ≤0,则f ′(1)f (0)=__________.5.已知函数f (x )=x e x ,则f ′(x )=__________;函数f (x )图象在点(0,f (0))处的切线方程为__________.要点点拨:1.对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线的切线的求法若已知曲线过点P (x 0,y 0),求曲线的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)点P (x 0,y 0)是切点的切线方程y -y 0=f ′(x 0)(x -x 0).(2)当点P (x 0,y 0)不是切点时可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1)).第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1). 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1.第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)·(x -x 1)可得过点P (x 0,y 0)的切线方程.六.复习过程:题型一:利用导数的定义求函数的导数 [例1](1)求函数y =x 2的导数.(2)求函数y =x 在x =1处的导数.[思路点拨] 解决本题的关键是正确的求出Δy ,ΔyΔx ,然后求出极限即可..[规律总结] 注意[f (x 0)]′,f ′(x 0)与f ′(x )的区别:f ′(x 0)代表函数f (x )在x =x 0处的导数值,不一定为0;而[f (x 0)]′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数值,其导数一定为0,即[f (x 0)]′=0,而f ′(x )是函数f (x )的导函数,是一个函数,是f (x )求导后的函数关系.变式训练1一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法).题型二:导数的计算 [例2] 求下列函数的导数: (1)y =(2x 2-1)(3x +1); (2)y =x +x 5+sin xx 2;(3)y =-sin x 2(1-2cos 2x4).[规律总结] 导数运算时应注意的问题:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.变式训练2求下列函数的导数:(1)y =3x e x -2x +e ;(2)y =ln xx 2+1题型三:导数的几何意义 [例3] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.[规律总结] 求解过曲线上某点的切线方程时,应注意到这条切线与曲线的切点不一定是该点.变式训练3曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1,x ∈[1,2]上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为__________.题型四:导数几何意义的综合应用[例4] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7变式训练4(2013·惠州质检)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l 的方程; (2)求函数g (x )的解析式.创新探究——导数几何意义规范解答[例题] (2012·重庆)设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值.[思路点拨] (1)对f (x )求导,运用f ′(1)=0求出a 的值;(2)由f ′(x )=0解得x 值,结合函数定义域,讨论在各区间上f ′(x )的符号,从而确定极值.链接高考:1.(2012·广东)曲线y =x 3-x +3在点(1,3)处的切线方程为__________.2.(2012·辽宁)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.七.反馈练习:1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln22.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12B.12 C .-22D.223.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)4.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 5.已知点P (2 013π3,-1)在函数f (x )=a 2cos x 的图象上,则该函数的图象在x =3π4处的切线方程是( )A .2x +2y -42-32π2=0 B .2x -2y +42-32π4=0 C .2x -2y -42-32π4=0 D.2x +2y +42-32π4=06.(2013·泰安模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A .1B. 2C.22 D. 37.已知函数f (x )=f ′(π2)sin x +cos x ,则f (π4)=__________.8.若曲线y =g (x )在点(1,g (1))处的切线的方程为y =2x +1,则曲线f (x )=g (x )+ln x 在点(1,f (1))处切线的斜率为__________,该切线方程为________.9.已知f 1(x )=sin x +cos x ,记f 2(x )=f ′1(x ),f 3(x )=f ′2(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1(π2)+f 2(π2)+…+f 2 012(π2)=__________.10.求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.12.设函数f (x )=ln x -12ax 2-bx .(1)当a =b =12时,求f (x )的最大值;(2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a 的取值范围.八.思维总结:九.自我评价:1.你对本章的复习的自我评价如何?A.很好B.一般C.不太好2.你认为在这章复习中还有哪些知识漏洞?。
高考数学一轮必备 3.1《变化率与导数、导数的运算》考情分析学案
3.1变化率与导数、导数的运算考情分析1.导数的实际意义是指瞬时变化率,几何意义是指曲线在某一点处切线的斜率.2.求导公式和运算法则是利用导数研究函数问题的基础,须熟练掌握.3.高考中,通常以选择题或填空题的形式考查导数的几何意义,也可以在大题中考查.导数的运算每年必考,一般不单独命题考查,而是在应用中考查.仅做为一个考点或工具出现,难度不大,但基础性很强.基础知识1.导数的概念(1)函数)(x f y =在0x x =处的导数:一般地,函数)(x f y =在0x x =处的瞬时变化率0000()()limlim x x f x x f x y x x δ∆→→+∆-∆=∆∆,称其为函数)(x f y =在0x x =处的导数,记作00()|x x f x y =''或(2)当()()x f x f x '变化时,称为的导函数,则()f x y ''==0()()limx f x x f x x ∆→+∆-∆ 2.导数的几何意义函数)(x f y =在0x x =处的导数的几何意义,就是曲线)(x f y =在点0(,)o p x y 处切线的斜率,过点P 的切线方程为: 000()()y y f x x x '-=-3.基本初等函数的导数公式:(1) 0c '=(c 为常数) (2) 1()()x nx Q ααα-*'=∈(3) (sin )cos x x '= (4) (cos )sin x x '=-(5) ()x x e e '= (6) ()ln x x a a a '= (7) 1(ln )x x '= (8) 1(log )ln a x x a'= 4.导数的运算法则:(1) [()()]()()f x g x f x g x '''±=± (2) [()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3) 2()()()()()[](()0)()[()]f x f x g x f x g x g x g x g x ''⋅-⋅'=≠ 注意事项1.曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.2.(1)导数的四则运算法则.(2)复合函数的求导法则.3.(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.(2)要正确理解直线与曲线相切和直线与曲线只有一个交点的区别.(3)正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.题型一 导数的定义【例1】利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处切线与曲线f (x )=x 3的交点.解 f ′(x 0)=lim x →x 0 f x -f x 0x -x 0=lim x →x 0 x 3-x 30x -x 0 =lim x →x 0 (x 2+xx 0+x 20)=3x 20.曲线f (x )=x 3在x =x 0处的切线方程为y -x 30=3x 20·(x -x 0),即y =3x 20x -2x 30,由⎩⎪⎨⎪⎧ y =x 3,y =3x 20x -2x 30, 得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0.若x 0≠0,则交点坐标为(x 0,x 30),(-2x 0,-8x 30);若x 0=0,则交点坐标为(0,0).【变式1】 利用导数的定义证明奇函数的导数是偶函数,偶函数的导数是奇函数. 证明 法一 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x )f ′(x )=li m Δx →0 f x +Δx -f x Δx则f ′(-x )=li mΔx →0 f -x +Δx -f -x Δx =li m Δx →0 f x -Δx -f x -Δx=f ′(x ) 因此f ′(x )为偶函数,同理可证偶函数的导数是奇函数.法二 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x ),即f (x )=-f (-x )因此f ′(x )=[-f (-x )]′=- [f (-x )]′=f ′(-x )则f ′(x )为偶函数同理可证偶函数的导数是奇函数.题型二 导数的运算【例2】求下列各函数的导数:(1)y =x +x 5+sin x x 2; (2)y =(x +1)(x +2)(x +3);(3)y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =11-x +11+x ;解 (1)∵y =x 12+x 5+sin xx 2=x -32+x 3+sin x x 2, ∴y ′=⎝ ⎛⎭⎪⎫x -32′+(x 3)′+(x -2sin x )′ =-32x -52+3x 2-2x -3sin x +x -2cos x . (2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)· (x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11. (3)∵y =sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x , ∴y ′=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x . (4)y =11-x +11+x =1+x +1-x -x+x =21-x , ∴y ′=⎝ ⎛⎭⎪⎫21-x ′=--x-x 2=2-x 2. 【变式2】 求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x; (3)y =e x ln x ;(4)y =(x +1)2(x -1).解 (1)y ′=nx n -1e x +x n e x =x n -1e x (n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x. (3)y ′=e x ln x +e x ·1x =e x ⎝ ⎛⎭⎪⎫1x +ln x . (4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=3x 2+2x -1.题型三 求复合函数的导数【例3】求下列复合函数的导数.(1)y =(2x -3)5;(2)y =3-x ;(3)y =sin 2⎝⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). 解 (1)设u =2x -3,则y =(2x -3)5,由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x .由y =u 12与u =3-x 复合而成. y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6. (3)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y x ′=y u ′·u x ′y ′=12x +5·(2x +5)′=22x +5. 【变式3】 求下列函数的导数: (1)y =x 2+1; (2)y =sin 22x ;(3)y =e -x sin 2x; (4)y =ln 1+x 2.解 (1)y ′=12 x 2+1·2x =x x 2+1, (2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x(3)y ′=(-e -x )sin 2x +e -x (cos 2x )×2=e -x (2cos 2x -sin 2x ).(4)y ′=11+x 2·121+x 2·2x =x 1+x 2. 重难点突破【例4】已知函数f (x )=ln x -ax +1-a x-1(a ∈R ). (1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性. [解析] (1)当a =-1时,f (x )=ln x +x +2x-1, x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分) 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1.又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分)(2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞),所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;(6分)②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a-1>1>0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝ ⎛⎭⎪⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a-1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,函数f (x )在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减; 当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝ ⎛⎭⎪⎫1,1a -1上单调递增, 函数f (x )在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.(12分) 巩固提高1.下列求导过程中①⎝ ⎛⎭⎪⎫1x ′=-1x 2;②(x )′=12x;③(log a x )′=⎝ ⎛⎭⎪⎫ln x ln a ′= 1x ln a;④(a x )′=(eln a x )′=(e x ln a )′=e x ln a ln a =a x ln a 其中正确的个数是( ).A .1B .2C .3D .4答案 D2.函数f (x )=(x +2a )(x -a )2的导数为( ).A .2(x 2-a 2)B . 2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).答案 C3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ). A .-12 B.12 C .-22 D.22解析 本小题考查导数的运算、导数的几何意义,考查运算求解能力. y ′=cos x x +cos x -sin xx -sin x x +cos x 2=11+sin 2x ,把x =π4代入得导数值为12. 答案 B4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ).A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解析 令f ′(x )=2x -2-4x =x -x +x >0,利用数轴标根法可解得-1<x <0或x >2,又x >0,所以x >2.故选C.答案 C5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=______;li m Δx →0 f +Δx -fΔx =________(用数字作答).答案 2 -2。
高考数学一轮复习10变化率与导数导数的计算课件理
[同类练]——(着眼于触类旁通) 1.[2019·武汉调研]曲线 f(x)=xln x 在点 M(1,f(1))处的切线 方程为________.
解析:由题意,得 f′(x)=ln x+1,所以 f′(1)=ln 1+1=1, 即切线的斜率为 1.因为 f(1)=0,所以所求切线方程为 y-0=x- 1,即 x-y-1=0.
第十六页,共三十二页。
(5)令 u=2x-5,y=ln u. 则 y′=(ln u)′u′=2x-1 5·2=2x-2 5,即 y′=2x-2 5.
第十七页,共三十二页。
悟·技法
第十八页,共三十二页。
考向二 导数的几何意义[分层深化型] [例] (1)[2018·全国卷Ⅱ]曲线 y=2ln(x+1)在点(0,0)处的切 线方程为________; (2)[2019·武汉调研]过点 P(1,1)作曲线 y=x3 的切线,则切线 方程为______________.
答案:x-y-1=0
第二十三页,共三十二页。
2.[2019·广州五校联考]曲线
y=e
1 2
x
在点(4,e2)处的切线与
坐标轴所围三角形的面积为( )
A.92e2
B.4e2
C.2e2
D.e2
第二十四页,共三十二页。
析:∵y′=12e
1 2
x
,∴k=12e
14 2
=12e2,∴切线方程为
y-e2
=12e2(x-4),令 x=0,得 y=-e2,令 y=0,得 x=2,∴所求面
5π 3π A. 6 B. 4
ππ C.4 D.6
第二十九页,共三十二页。
解析:由题意知 tanα=ex+e-x-3≥2-3=-1,当且仅当 x =0 时等号成立,即 tanα≥-1,又-12≤x≤12,所以 tanα=ex+e -x-3≤ e+ 1e-3<0,所以-1≤tanα<0,又 α∈[0,π],所以 α 的最小值是34π.
2023年高考数学一轮复习:变化率与导数 导数的计算
3.(选修2-2 P8练习改编) 已知函数f(x)的图象如图,f′(x)是f(x)的导函数,则 下列数值排序正确的是 ( ) A.0<f′(2)<f′(3)<f(3)-f(2) B.0<f′(3)< f′(2)<f(3)-f(2) C.0<f′(3)<f(3)-f(2)<f′(2) D.0<f(3)-f(2)< f′(2)<f′(3)
典题索引
导数公式记错
考点一、T1,2
导数运算法则记错
考点一、T3,4,5
混淆f′(x0) 与f′(x)
“未知切点”与“已知切 点”题型混淆
考点二、T2 考点三、角度2
求切点坐标时,等量关系的 来源不清晰
考点三、角度2
【教材·基础自测】
1.(选修2-2 P10习题1.1T2改编)
某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h(t)=10-
为函数y=f(x)在x=x0处的导数
记作f′(x0)或 y |xx0 ,
即f′(x0)=
y lim x0 x
=___lxim_0_f_(x_0___x_x)__f_(x_0_) _.
几何 是曲线y=f(x)在点_(_x_0,_f_(_x_0_)_)_处的_切__线__斜__率__,相应的切线方程
意义 为_y_-_f_(_x_0_)_=_f_′__(_x_0)_(_x_-_x_0_)_.
【解析】选C.f(3)-f(2)可写为 f 3 ,表f 示2过点(2, f(2)),(3, f(3))连线
32
的斜率, f′(2), f′(3)分别表示曲线f(x)在点
(2, f(2)),(3, f(3))处切线的斜率,设过点(2, f(2)),(3, f(3))的直线为m,曲
高三数学一轮复习精品教案2:变化率与导数、导数的计算教学设计
第1节变化率与导数、导数的计算1.导数的概念(1)函数y=f(x)在x=x0处的导数:①定义:称函数y=f(x)在x=x0处的瞬时变化率_f(x0+Δx)-f(x0)Δx=_ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=ΔyΔx=_f(x0+Δx)-f(x0)Δx.②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.(瞬时速度就是位移函数s(t)对时间t的导数)相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(2)函数f(x)的导函数:称函数f′(x)=_f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)『f (x )±g (x )』′=f ′(x )±g ′(x ); (2)『f (x )·g (x )』′=f ′(x )g (x )+f (x )g ′(x ); (3)『f (x )g (x )』′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数f 『v (x )』在点x 处可导,且f ′(x )=f ′(u )·v ′(x ),即y ′x =y ′u ·u ′x .1.(人教A 版教材习题改编)某汽车的路程函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,汽车的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2『解析』 由题意知,汽车的速度函数为v (t )=s ′(t )=6t 2-gt ,则v ′(t )=12t -g ,故当t =2 s 时,汽车的加速度是v ′(2)=12×2-10=14 m/s 2. 『答案』 A2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x『解析』 f ′(x )=cos x -x sin x -cos x =-x sin x . 『答案』 B3.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 『解析』 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 『答案』 B4.(2013·青岛模拟)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15『解析』 ∵y =x 3+11,∴y ′=3x 2,∴y ′|x =1=3,∴曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 『答案』 C5.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 『解析』 ∵y ′=3x 2-1,∴y ′|x =1=3×12-1=2.∴所求切线方程为y -3=2(x -1),即2x -y +1=0. 『答案』 2x -y +1=0求下列函数的导数: (1)y =e x sin x ; (2)y =x (x 2+1x +1x 3);(3)y =x -sin x 2cos x2;(4)y =ln (2x +3)x 2+1.『思路点拨』 (1)利用积的导数运算法则求解,(2)(3)先化简再求导,(4)利用商的导数运算法则和复合函数求导法则求解.『尝试解答』 (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)y ′=(ln (2x +3))′(x 2+1)-ln (2x +3)(x 2+1)′(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2.1.本题在解答过程易出现商的求导中,符号判定错误. 2.求函数的导数的方法(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导. (4)复合函数:确定复合关系,由外向内逐层求导.(5)不能直接求导的:适当恒等变形,转化为能求导的形式再求导.求下列函数的导数:(1)y =(1+x )(1+1x); (2)y =3x e x -ln x +e ; (3)y =3-x +e 2x .『解析』 (1)∵y =(1+x )(1+1x)=2+x -12+x 12,∴y ′=-12x -32+12x -12.(2)y ′=(3x )′e x +3x (e x )′-1x =3x e x ln 3+3x e x -1x=3x e x ln(3e)-1x.(3)y ′=12(3-x )-12(3-x )′+e 2x (2x )′=-12(3-x )-12+2e 2x .已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1,C 2都相切,求直线l 的方程. 『思路点拨』 从直线l 与C 1,C 2都相切入手,分别求直线l 的方程,通过比较系数求解.『尝试解答』 设l 与C 1相切于点P (x 1,x 21),与C 2相切于Q (x 2,-(x 2-2)2). 对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1), 即y =2x 1x -x 21, 对于C 2:y ′=-2(x -2), 则与C 2相切于点Q 的切线方程为 y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4. ∵两切线重合,∴2x 1=-2(x 2-2),且-x 21=x 22-4.解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 方程为y =0或y =4x -4.1.导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率.2.在求切线方程时,应先判断已知点Q (a ,b )是否为切点,若已知点Q (a ,b )不是切点,则应求出切点的坐标,其求法如下:(1)设出切点的坐标P (x 0,y 0);(2)解方程组⎩⎨⎧y 0=f (x 0),f ′(x 0)=f (x 0)-bx 0-a ,求出切点坐标; (3)利用点斜式写出切线方程.若函数f (x )=e x cos x ,则此函数图象在点(1,f (1))处的切线的倾斜角为( )A .0B .锐角C .直角D .钝角『解析』 由已知得:f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ).∴f ′(1)=e(cos 1-sin 1).∵π2>1>π4.而由正余弦函数性质可得cos 1<sin 1. ∴f ′(1)<0,即f (x )在(1,f (1))处的切线的斜率k <0. ∴切线倾斜角是钝角. 『答案』 D设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求y =f (x )的解析式;(2)证明曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 『思路点拨』『尝试解答』 (1)f ′(x )=a -1(x +b )2,于是⎩⎨⎧2a +12+b =3,a -1(2+b )2=0,解得{a =1,b =-1,或⎩⎨⎧a =94,b =-83. ∵a ,b ∈Z ,故f (x )=x +1x -1. (2)在曲线上任取一点(x 0,x 0+1x 0-1).由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=『1-1(x 0-1)2』(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为(1,x 0+1x 0-1).令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1). 从而所围三角形的面积为12|x 0+1x 0-1-1|·|2x 0-1-1|=12|2x 0-1||2x 0-2|=2. ∴所围三角形的面积为定值2.1.切点(2,f (2))既在切线上,又在曲线f (x )上,从而得到关于a ,b 的方程组.2.当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;当切点坐标不知道时,应首先设出切点坐标,再求解.(2013·惠州质检)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l 的方程; (2)求函数g (x )的解析式.『解析』 (1)∵l 是f (x )=ln x 在点(1,0)处的切线,∴其斜率k =f ′(1)=1, 因此直线l 的方程为y =x -1. (2)又l 与g (x )相切于点(1,0), ∴g ′(1)=1,且g (1)=0.因此⎩⎨⎧13+12+m +n =0,1+1+m =1,∴⎩⎨⎧m =-1,n =16,所以函数g (x )=13x 3+12x 2-x +16.一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: (1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率. (2)“过”曲线上一点的切线问题,此时该点未必是切点,故应先设切点,求切点坐标. 三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别. 3.正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.从近两年的高考试题来看,求导公式和运算法则,以及导数的几何意义是高考的热点,题型既有选择题、填空题,又可做为解答题的一问,难度中、低档为主,除了考查导数运算,几何意义,还常与函数相关知识渗透交汇命题.易错辨析之五 求导时忽视函数定义域致误(2011·江西高考)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)『错解』 ∵f ′(x )=2x -2-4x =2x 2-2x -4x,∴由f ′(x )>0,可得x 2-x -2x >0,解得x >2或-1<x <0,故选B. 『答案』 B错因分析:(1)忽视函数的定义域(0,+∞).(2)记错导数公式(ln x )′=1x ,导致盲目作答致错.防范措施:(1)树立函数定义域优先意识. (2)熟练掌握导数的计算公式与运算法则. 『正解』 函数f (x )的定义域为(0,+∞),∵f ′(x )=2x -2-4x =2x 2-2x -4x ,∴由f ′(x )>0,可得x 2-x -2>0,∴x >2. 『答案』 C1.(2013·咸阳模拟)函数y =ln x (x >0)的图象与直线y =12x +a 相切,则a 等于( )A .2ln 2B .ln 2+1C .ln 2D .ln 2-1『解析』 设切点为(x 0,y 0),∵y ′=1x ,∴y ′|x =x 0=1x 0=12,∴x 0=2,y 0=ln 2,又点(2,ln 2)在直线y =12x +a 上,∴ln 2=12×2+a ,∴a =ln 2-1.『答案』 D2.(2012·课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.『解析』 ∵y =x (3ln x +1),∴y ′=3ln x +1+x ·3x=3ln x +4,∴k =y ′|x =1=4,∴所求切线的方程为y -1=4(x -1),即y =4x -3. 『答案』 y =4x -3。
高考数学一轮复习 211变化率与导数、导数的计算课件 新人教A版
4.曲线y=x(3lnx+1)在点(1,1)处的切线方程为________. 解析 y′=3lnx+1+3=3lnx+4,所以曲线在点(1,1)处的 切线斜率为4,所以切线方程为y-1=4(x-1),即y=4x-3.
答案 y=4x-3
5.已知f(x)=x2+3xf′(2),则f′(2)=________. 解析 由题意,得f′(x)=2x+3f′(2). ∴f′(2)=2×2+3f′(2),∴f′(2)=-2.
(g(x)≠0).
5.(理)复合函数的导数
设u=v(x)在点x处可导,y=f(u)在点u处可导,则复合函数 f[v(x)]在点x处可导,且f′(x)= f′[v(x)]v′(x) ,即y′x= y′u·u′x .
疑点清源 1.利用导数定义求导数时,要注意到x与Δx的区别,这里的 x是常量,Δx是变量. 2.利用公式求导时要特别注意除法公式中分子的符号,防 止与乘法公式混淆. 3.求曲线的切线时,要分清点P处的切线与过P点的切线的 区别,前者只有一条,而后者包括了前者.
(2)几何意义:
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上 点 (x0,f(x0)) 处的 切线的斜率. 相应地,切线方程为 y-y0=f′(x0)(x-x0).
2.函数f(x)的导函数 fx+Δx-fx
称函数f′(x)=
lim
Δx→0
Δx
函数有时也记作y′.
=axlna,其中正确的个数是( )
A.1
B.2
C.3
D.4
答案 D
2.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为( ) A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)解析令f′(x)=2x-2-
届高三数学一轮复习(知识点归纳与总结):变化率与导数、导数的计算
f′ (- 1)的值为 (
)
版权所有: 中华资源库
A.0 C.4
B.3 7
D .- 3
解析: 选 B
∵
f(
x)=
1 3
x3+
2x+
1,∴
f′
(
x)
=
x2+
2.
∴ f′ (- 1)= 3.
2.曲线 y= 2x- x3 在 x=- 1 处的切线方程为 (
)
A . x+ y+ 2= 0
复合函数 y= f(g(x)) 的导数和函数 y= f( u) ,u= g(x)的导数间的关系为 yx′= yu′·ux′, 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积.
[自测 ·牛刀小试 ]
1. (教材习题改编
)f′ (x)是函数
f
(x)=
1 3
x3+
2x+
1
的导函数,则
M ( π, 0)处的切线方程是
________ .
解析:
∵ f (x)= sin x
x,∴
f′ (x)= x·cos
x- x2
sin
x ,
∴
f′
(
-π π=) π2 =-
1 π.
∴切线方程为
y=-
1 π(x-
π,)即
x+ πy- π= 0.
答案: x+ πy- π= 0
5.(教材习题改编 )如图,函数 y= f(x)的图象在点 P 处的切线方程是 y=- x+8,则 f(5)
2.曲线 y= f(x)在点 P0(x0,y0)处的切线与过点 P0 x0 ,y0)的切线,两种说法有区别吗?
提示: (1)曲线 y= f(x)在点 P(x0, y0)处的切线是指 P 为切点,斜率为 k= f′ (x0)的切线, 是唯一的一条切线.
高三数学一轮复习 14.变化率与导数学案
【学习目标】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点 处的导数的定义和导数的几何意义,理解导函数的概念.2.熟记基本导数公式,掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.预 习 案1.导数的概念(1)f(x)在0x x =处的导数就是f(x)在0x x =处的 ,记作:0/x x y =或()0/x f即(2)当把上式中的0x 看做变量x 时,f ′(x)即为f(x)的 ,简称导数,即3.基本初等函数的导数公式(1)C ′=(C 为常数); (2)(x n )′=(n ∈Q *);(3)(sin x )′=; (4)(cos x )′=;(5)(a x )′=; (6)(e x )′=;(7)(log a x )′=; (8)(ln x )′=.4.两个函数的四则运算的导数若u (x )、v (x )的导数都存在,则(1)(u ±v )′=;(2)(u ·v )′=;(3)(u v )′=; (4)(cu )′=(c 为常数).【预习自测】1.某汽车的路程函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,汽车的加速度是() A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 22.计算:(1)(x 4-3x 3+1)′=________.(2)(ln 1x )′=________.(3)(x e 2x )′=________.(4)函数y =log 2(ax 3)的导数为________.3.曲线y =x e x +2x +1在点(0,1)处的切线方程为________.4.设正弦函数y=sin x在x =0和x =π2附近的平均变化率为k1,k2,则k1,k2的大小关系为( )A.k1>k2B.k1<k2C.k1=k2D.不确定5.若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=________.探究案题型一利用定义求系数例1 (1)用导数的定义求函数f(x)=1x在x=1处的导数.(2)设f(x)=x3-8x,则li mΔx→0f2+Δx-f2Δx=______;li mx→2f x-f2x-2=______;li mk→0f2-k-f22k=______.探究1.(1)已知f′(a)=3,则limh→0f a+3h-f a-hh=________.(2)求函数y=x2+1在x0到x0+Δx之间的平均变化率题型二导数的运算例2.求下列函数的导数:(1)y=(3x3-4x)(2x+1);(2)y=x2sin x2cosx2;(3)y=3x e x-2x+e;(4)y=ln xx2+1.(5)y=-sin x2(1-2cos2x4);(6)y=tan x;题型三复合函数的导数例3.求下列函数的导数:(1)y=e2x cos3x;(2)y=ln x2+1;(3)y=(2x-3)5.(4)f(x)=ln(x-1)2;(5)f(x)=cos(π3-2x);(6)f(x)=e-2x sin(2x).题型四导数的几何意义例4.已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.探究2.求过点(1,-1)的曲线y=x3-2x的切线方程.拓展:1.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.2.若曲线y=32x2+x-12的某一切线与直线y=4x+3平行,则切点坐标为________,切线方程为________我的学习总结:(1)我对知识的总结.(2)我对数学思想及方法的总结。
高考数学一轮复习 第三章 导数及其应用 1 第1讲 变化率与导数、导数的计算教学案
第三章导数及其应用知识点最新考纲变化率与导数、导数的计算了解导数的概念与实际背景,理解导数的几何意义.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).导数在研究函数中的应用了解函数单调性和导数的关系,能用导数求函数的单调区间.理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=c(c为常数) f′(x)=0f(x)=x n(n∈Q*)f′(x)=nx n-1(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)× [教材衍化]1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sinx .2.(选修2-2P18A 组T6改编)曲线y =1-2x +2在点(-1,-1)处的切线方程为________.解析:因为y ′=2(x +2)2,所以y ′|x =-1=2.故所求切线方程为2x -y +1=0. 答案:2x -y +1=03.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3t(t 是时间,s 是位移),则该机器人在t =2时的瞬时速度为________.解析:因为s =t 2+3t ,所以s ′=2t -3t2,所以s ′|t =2=4-34=134.答案:134[易错纠偏](1)求导时不能掌握复合函数的求导法则致误; (2)不会用方程法解导数求值.1.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则f ′(x )=________. 解析:f ′(x )=[sin ⎝ ⎛⎭⎪⎫2x +π3]′=cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2cos ⎝ ⎛⎭⎪⎫2x +π3. 答案:2cos ⎝⎛⎭⎪⎫2x +π32.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x ,f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 2导数的计算求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =3x e x -2x+e ;(4)y =ln(2x -5).【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2xln 2. (4)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5.[提醒] 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B.因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018, 所以2 018+ln x 0=2 018, 所以x 0=1.2.求下列函数的导数: (1)y =x n e x;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x .(3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,属中低档题.主要命题角度有:(1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程(或斜率)求参数值. 角度一 求切线方程(1)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.【解析】 (1)因为y ′=2x -1x2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1, 所以切线方程为y -2=x -1,即y =x +1. (2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0). 又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以切点为(1,0),所以f ′(1)=1+ln 1=1. 所以直线l 的方程为y =x -1. 【答案】 (1)y =x +1 (2)y =x -1 角度二 已知切线方程(或斜率)求切点坐标若曲线y =e-x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【解析】 设P (x 0,y 0),因为y =e -x, 所以y ′=-e -x,所以点P 处的切线斜率为k =-e -x 0=-2, 所以-x 0=ln 2,所以x 0=-ln 2, 所以y 0=eln 2=2,所以点P 的坐标为(-ln 2,2). 【答案】 (-ln 2,2)角度三 已知切线方程(或斜率)求参数值(1)(2020·宁波调研)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2(2)(2020·绍兴调研)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =________.【解析】 (1)依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.(2)依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -12.【答案】 (1)C (2)2e -12(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线的切线方程需注意两点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解.1.(2020·杭州七校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2B .4e 2C .2e 2D .e 2解析:选D.因为y ′=12e 12x ,所以k =12e 12×4=12e 2,所以切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,所以所求面积为S =12×2×|-e 2|=e 2.2.已知函数f (x )=(x 2+ax -1)e x(其中e 是自然对数的底数,a ∈R ),若f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,则a =________.解析:f ′(x )=(x 2+ax -1)′e x +(x 2+ax -1)(e x )′=(2x +a )e x +(x 2+ax -1)e x =[x 2+(a +2)x +(a -1)]e x,故f ′(0)=[02+(a +2)×0+(a -1)]e 0=a -1.因为f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,故f ′(0)=1,即a -1=1,解得a =2.答案:23.(2020·台州高三月考)已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017的值为________.解析:f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1. 所以x 1·x 2·…·x 2 017=12×23×34×…×2 0162 017×2 0172 018=12 018.则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 01812 018=-1.答案:-1两条曲线的公切线若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【解析】 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x+ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1), 依题意⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.【答案】 1-ln 2求两条曲线的公切线的方法(1)利用其中一曲线在某点处的切线与另一条曲线相切,列出关系式求解. (2)利用公切线得出关系式.设公切线l 在y =f (x )上的切点P 1(x 1,y 1),在y =g (x )上的切点P 2(x 2,y 2),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.1.已知函数f (x )=x 2-4x +4,g (x )=x -1,则f (x )和g (x )的公切线的条数为( ) A .三条 B .二条 C .一条D .0条解析:选A.设公切线与f (x )和g (x )分别相切于点(m ,f (m )),(n ,g (n )),f ′(x )=2x-4,g ′(x )=-x -2,g ′(n )=f ′(m )=g (n )-f (m )n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f (x )=8x 3-8x 2+1,f ′(x )=8x (3x -2),原函数在(-∞,0)上单调递增,在⎝ ⎛⎭⎪⎫0,23上单调递减,在⎝ ⎛⎭⎪⎫23,+∞上单调递增,极大值f (0)>0,极小值f ⎝ ⎛⎭⎪⎫23<0,故函数和x 轴有3个交点,方程8n 3-8n 2+1=0有三个解,故切线有3条.故选A.2.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=0[基础题组练]1.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1D .1解析:选B.因为y ′=(x 2cos x )′=(x 2)′cos x +x 2·(cos x )′=2x cos x -x 2sin x ,所以y ′|x =1=2cos 1-sin 1.2.(2020·衢州高三月考)已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:选C.依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,所以f ′(-1)=3+2t -4=0,即t =12.3.(2020·温州模拟)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12 B .1C.32D .2解析:选B.因为x 1<x 2<0,f (x )=x 2+2x , 所以f ′(x )=2x +2,所以函数f (x )在点A ,B 处的切线的斜率分别为f ′(x 1),f ′(x 2), 因为函数f (x )的图象在点A ,B 处的切线互相垂直, 所以f ′(x 1)f ′(x 2)=-1. 所以(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,所以x 2-x 1=12[-(2x 1+2)+(2x 2+2)]≥-(2x 1+2)(2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32,x 2=-12时等号成立.所以x 2-x 1的最小值为1.故选B.4.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3解析:选B.因为定义域为(0,+∞),令y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2.7.已知f (x )=ln x x 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.解析:因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2, g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x .答案:x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x8.(2020·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.解析:设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 答案:29.(2020·金华十校高考模拟)函数f (x )的定义域为R ,f (-2)=2 018,若对任意的x ∈R ,都有f ′(x )<2x 成立,则不等式f (x )<x 2+2 014的解集为________.解析:构造函数g (x )=f (x )-x 2-2 014,则g ′(x )=f ′(x )-2x <0,所以函数g (x )在定义域上为减函数,且g (-2)=f (-2)-22-2 014=2 018-4-2 014=0,由f (x )<x2+2 014有f (x )-x 2-2 014<0,即g (x )<0=g (-2),所以x >-2,不等式f (x )<x 2+2 014的解集为(-2,+∞).答案:(-2,+∞)10.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________. 解析:g ′(x )=⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2.由题图可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12.由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,故f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316. 答案:-31611.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18, 即切点坐标为(1,-14)或(-1,-18),切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.12.已知函数f (x )=ax +bx(x ≠0)在x =2处的切线方程为3x -4y +4=0. (1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.解:(1)由f (x )=ax +b x ,得f ′(x )=a -b x2(x ≠0). 由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎪⎨⎪⎧a -b 4=34,5-2⎝ ⎛⎭⎪⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝ ⎛⎭⎪⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20,曲线在P 处的切线方程为y -⎝⎛⎭⎪⎫x 0+1x 0=⎝ ⎛⎭⎪⎫1-1x 20(x -x 0).即y =⎝⎛⎭⎪⎫1-1x20x +2x 0.当x =0时,y =2x 0.即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎪⎫0,2x 0.由⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2.即切线l 与l 1,l 2围成的三角形的面积为定值.[综合题组练]1.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.(2020·金华十校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D.令f (x )=x 2,f ′(x )=2x ,f (x 0)=x 20,所以直线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20,因为l 也与函数y =ln x (x ∈(0,1))的图象相切,令切点坐标为(x 1,ln x 1),y ′=1x ,所以l 的方程为y =1x 1x +ln x 1-1,这样有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,所以1+ln(2x 0)=x 20,x 0∈(1,+∞),令g (x )=x 2-ln(2x )-1,x ∈(1,+∞),所以该函数的零点就是x 0,又因为g ′(x )=2x -1x =2x 2-1x,所以g (x )在(1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,从而2<x 0<3,选D.3.(2020·宁波四中高三月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x ; ②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:①中,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4<0在区间⎝ ⎛⎭⎪⎫0,π2上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间⎝⎛⎭⎪⎫0,π2上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间⎝ ⎛⎭⎪⎫0,π2上恒小于0.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x(x +2)>0在区间⎝⎛⎭⎪⎫0,π2上恒成立,故④中函数不是凸函数.故①②③为凸函数.答案:①②③4.(2020·浙江省十校联合体期末检测)已知函数f (x )=a e x+x 2,g (x )=cos (πx )+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b=________,直线l 的方程为________.解析:f ′(x )=a e x+2x ,g ′(x )=-πsin (πx )+b ,f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a1-0=a ,即a =b =-1,则a +b =-2; 所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②-2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去).所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.④将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4. 6.(2020·绍兴一中月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9. ②由f ′(x )=12得-6x 2+6x +12=12, 解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
2019届高考理科数学一轮复习精品学案:第13讲变化率与导数、导数的运算(含解析)
第 13 讲变化率与导数、导数的运算考试说明 1 .认识导数观点的实质背景.2.经过函数图像直观理解导数的几何意义.3.能依据导数定义求函数y=C( C为常数), y=x, y= , y=x2, y=x3, y=的导数.4.能利用基本初等函数的导数公式和导数的四则运算法例求简单函数的导数 , 并认识复合函数求导法例 , 能求简单的复合函数 ( 仅限于形如f ( ax+b) 的复合函数 ) 的导数.考情剖析考点考察方向考例考察热度导数的定利用定义求导数☆☆☆义导数的运计算导数、求某点导数全部导数试题★★☆算值等导数的几求切线斜率、方程、根几乎全部导数试题( 见据切线求参数值、导数何意义下边例子 ) ★★★几何意义的应用等真题再现■[2017 - 2013] 课标全国真题再现1. [ 2014·全国卷Ⅱ]设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则 a= ()A.0B.1C.2D.3[ 分析 ] D y'=a-, 依据已知得 , 当x=0 时 , y'= 2, 代入解得a=3.2. [ 2017·全国卷Ⅰ]曲线y=x2+在点(1,2)处的切线方程为.[ 答案 ]y=x+1[ 分析 ]对y=x2+求导得y'=2x-, 当x=1 时 , y'= 2×1- 1=1, 所以曲线y=x2+在点 (1,2) 处的切线方程为 y- 2=x- 1,即 y=x+1.3. [ 2016·全国卷Ⅱ] 若直线y=kx+b 是曲线y=ln x+2的切线, 也是曲线y=ln ( x+1)的切线, 则 b= .[答案]1 - ln 2[ 分析 ]曲线y=ln x+2的切线为 y= ·x+ln x1+1(此中 x1为切点横坐标),曲线 y=ln (x+1) 的切线为 y=·x+ln (x2+1) -( 此中x2为切点横坐标) .由题可知解得∴b=ln x1+1=1- ln 2 .4 [ 2016·全国卷Ⅲ] 已知 f ( x )为偶函数 , 当0 时, f ( x ) ln ( -x ) 3 ,则曲线( x ) 在点. x< = + x y=f(1, - 3) 处的切线方程是.[答案] y=- 2x- 1[ 分析 ]设x>0,则-x<0.∵x<0时,f(x)=ln (-x)+3x,∴f(-x)=ln x-3x,又∵f(-x)=f(x),∴当x>0时, f ( x) =ln x- 3x,∴f' ( x) = - 3,即 f' (1) =- 2,∴曲线 y=f ( x)在点(1, - 3)处的切线方程为y+3=- 2( x- 1),整理得 y=- 2x- 1.5. [ 2015·全国卷Ⅰ改编 ]已知函数 f ( x) =x3+ax+ ,当 a 为什么值时, x 轴为曲线 y=f ( x)的切线 .解: 设曲线y=f (x) 与x轴相切于点 (x0,0),则f(x0) 0, (x0) 0,即解得= f' =x0= , a=- .所以 , 当a=-时 , x轴为曲线y=f ( x)的切线 .6 [ 2015·全国卷Ⅰ改编 ] 在直角坐标系xOy中, 曲线: 与直线l: ( 0)交于,. C y= y=kx+a a> M N 两点 . 当 k=0时,分别求 C在点 M和 N处的切线方程 .解: 由题设可得M(2, a), N( - 2 , a) 或M( - 2 , a), N(2, a) .又y'=, 故y=在x=2处的导数值为在 x=- 2, 所以曲线处的导数值为C在点(2, a) 处的切线方程为y-a=( x- 2-, 所以曲线C在点( - 2, a) 处的切线方程为),即x-y-a= 0.y= y-a=- ( x+2 ),即 x+y+a=0.故所求切线方程为x-y-a= 0和x+y+a=0.7. [ 2014·全国卷Ⅰ改编 ]设函数f(x)=a e x ln x+, 曲线y=f ( x) 在点 (1, f (1))处的切线方程为 y=e( x- 1) +2,求 a, b.解: 函数f ( x) 的定义域为 (0, +∞),f' ( ) e x lnx+e x-e x- 1 e x- 1. x =a +由题意可得 f (1) =2, f' (1) =e,故 a=1, b=2.8 [ 2013·全国卷Ⅰ改编 ] 设函数 f ( ) 2 , ( ) e x( ) 若曲线y=f ( x ) 和曲线( ) . x =x +ax+b g x = cx+d . y=g x 都过点 P(0,2),且在点 P 处有同样的切线y=4x+2,求 a, b, c, d 的值 .x解: 由已知得 f (0) =2, g (0) =2, f' (0) =4, g' (0) =4. 而 f' ( x ) =2x+a , g' ( x ) =e ( cx+d+c ), 故 b=2, d=2, a=4, d+c=4. 进而 a=4, b=2, c=2, d=2. ■ [2017 - 2016] 其余省份近似高考真题1. [ 2016·山东卷 ] 若函数 y=f ( x ) 的图像上存在两点 , 使得函数的图像在这两点处的切线互相垂直 , 则称 y=f ( x ) 拥有 T 性质 . 以下函数中拥有 T 性质的是()A .y= sin xB .y= ln xxD .y=x 3C .y= e[分析]A 由函数图像上两点处的切线相互垂直 , 可知函数在这两点处的导数之积为 -1,经查验,选项 A 切合题意 .2. [ 2016·四川卷 ] 设直线 l 1, l 2 分别是函数 f ( x ) =图像上点 P 1, P 2 处的切线 , l 1 与 l 2垂直订交于点 P , 且 l , l 2 分别与 y 轴订交于点 A , B , 则△ PAB 的面积的取值范围是1( ) A (0,1) B. (0,2). C . (0, +∞ ) D . (1, +∞)[分析]A不如设 P ( x , y ), P ( x , y ), 此中 0<x <1<x . 由 l , l2分别是点 P , P 处的切线 , 且11122212112f' ( x ) = 得 l 1 的斜率 k 1=- , l 2 的斜率 k 2= . 又 l 1 与 l 2 垂直 , 且 0<x 1<x 2, 所以k 1·k 2=- · =- 1? x 1·x 2=1,l 1: y=- ( x-x 1) - ln x 1①,l 2: y= ( x-x 2) +ln x 2②,则点 A 的坐标为 (0,1 - ln x 1), 点 B 的坐标为 (0, - 1+ln x 2), 由此可得 |AB|= 2- ln x 1- ln x 2=2- ln( x 1 ·x 2) =2. 联立 ①② 两式可解得交点 P 的横坐标 x P = =,所以 S △ PAB = |AB| ·|x P |= ×2× = ≤ 1, 当且仅当 x 1= , 即 x 1=1 时 , 等号建立 .而 0<x1<1, 所以 0<S△PAB<1, 应选 A.3 [ 2017·浙江卷改编 ] 已知函数f ( ) ( )e -x ≥ , 求f(x) 的导函数.. x = x- x解:由于(x- )'=1 ,(e -x )'=-e-x , -所以 f' ( x) =-x- ( x--x= .e ) · e4. [ 2017·北京卷改编 ] 已知函数 f ( x) =e x cos x-x ,求曲线 y=f ( x)在点(0, f (0)) 处的切线方程.解: 由于f ( x) =e x cos x-x ,所以 f' ( x) =e x(cos x- sin x) - 1, f' (0) =0.又由于 f (0) =1,所以曲线 y=f ( x)在点(0, f (0)) 处的切线方程为 y=1.5 [ 2017·山东卷改编 ] 已知函数f ( ) 3- ax2, ∈R当2时, 求曲线y=f(x) 在点 (3,f(3)). x = x a . a=处的切线方程 .解: 由题意f' ( x) =x2-ax ,所以当 a=2时, f (3) =0, f' ( x) =x2- 2x,所以 f' (3) =3,所以曲线 y=f ( x)在点(3, f (3))处的切线方程是y=3( x- 3),即 3x-y- 9=0.【课前双基稳固】知识聚焦1. (1) 均匀斜率均匀(2) x=x0斜率y-f ( x0) =f' ( x0)( x-x 0)刹时速度2.nx n- 1cos x- sin x a x ln a f' ( x)±g' ( x)f' ( x)· g( x) +f ( x)· g' ( x)y' u ·u' x对点操练1. 0. 16 dm/L [ 分析 ] 易知 r ( V ) = , 故气球中空气的体积从 1 L 增添到 2 L 时, 气球半径r 的均匀变化率为≈ 0 16(dm/L)..2. 1321 元/ 吨 [ 分析 ] c' ( x ) = , 代入 x=98 计算可得 .3. π cos( πx+φ ) [分析] y'= π cos( π x+φ ) .4.2 [分析] y'=x' e x- 1+x e x- 1·( x- 1) '= ( x+1)e x- 1, 所以 y'| x=1=2, 即曲线在点 (1,1) 处的切线的斜率为 2.5 3 4 [分析] 函数 f ( )2在区间 [1,2] 上的均匀变化率为3 由于f' ( ) 2 ,所以. x =x= . x = xf ( x ) 在 x=2 处的导数为 2×2=4.6. 2cos 2 x [ 分析 ] 方法一 : y'= (2sin x cos x ) '= 2(sin x ) ' cos x+2sin x (cosx ) '= 2cos 2x- 2sin 2x=2cos 2 x.方法二 : y'= cos 2 x ·(2 x ) '= 2cos 2 x.7.- 8 [ 分析 ] 由于 f'( x ) =2x+3f' (2), 令 x=2, 得 f' (2) =-2, 所以 f ( x ) =x 2- 6x , 所以 f (2) =- 8.8. 3(2 x+3) 2 6(2 x+3) 2 [分析]f' ( x ) =3x 2, 所以f' (2 x+3) =3(2 x+3) 2,[ f (2 x+3)] '= [(2 x+3) 3] '= 3(2 x+3) 2(2 x+3) '= 6(2 x+3) 2.【讲堂考点研究】例 1 [ 思路点拨 ] (1)先求导 , 在导函数中令 x=2 得 f' (2) 的值 ;(2)先将函数化简 , 再求导 .(1)B (2)[ 分析 ] (1)( )23(2) - ln , ∴f' ( ) 2 3 (2) - , 令 2, 得∵f x=x + xf' x x = x+ f'x=f' (2) =4+3f' (2) - , 解得 f' (2) =- . 应选 B .(2)f ( )=-sin sin · 2cos2-1 sin · cos=sinx, 所以x = =f' ( x) ='= cos x,于是 f'= cos= .变式题(1)(2)26[ 分析 ] (1)∵y=, ∴y'==.(2)f ( x) =( x+1)( x+2)( x+a) =( x2 +3x+2)( x+a) =x3+( a+3) x2+(3 a+2) x+2a,所以 f' ( x) =3x2+2( a+3) x+3a+2,所以 f' ( - 1) =3×( - 1)2+2( a+3)×( - 1) +3a+2=2,解得 a=3,所以 f' ( x)=3x2+12x+11,所以 f' (1) =3×12+12×1+11=26.例 2 [ 思路点拨 ] 先利用导数求出在x=0处的导数值,再联合导数的几何意义即可求出切线的斜率 , 进而问题解决.y=x [ 分析] ( ) e x· sin , ∴f' ( ) e x(sin cos ), f' (0) 1, f (0) 0, ∴函数f ( x ) 的∵f x = x x = x+x = =图像在点 (0, f (0)) 处的切线方程为 y- 0=1×( x- 0), 即 y=x.例 3 [ 思路点拨 ] 对函数 f ( x) 求导 , 由f' ( x) 是奇函数得a的值 , 令f' ( x0) =得切点横坐标.A [分析] 对f ( ) e x -xf'( ) x -xf'(x)是奇函数 ,故f'(0) 1-a=0, 解得·e 求导得 e e , 又x = +a x = -a =a=1,故 f' ( x) =e x- e-x . 设切点坐标为( x0, y0),则 f' ( x0) = -= ,得=2或=- (舍去),得x0=ln 2 .例 4 [ 思路点拨 ]求出函数的导数, 联合两直线垂直的条件, 即斜率之积为- 1,可得b-a= +( -a- 1)( a+1<0), 运用基本不等式即可获得所求最小值.A [分析] 由题意可得曲线y=x2+2x 上存在两点处的切线相互垂直, 由y=x2+2x的导数为y'= 2 2, 可得 (2 2)(2 2)=-1, 由 1 1,可得 1 0,且b= -1,b-a=( 1) x+ a+ b+ a+ <b+ a+ < + -a-≥2=2× =1,当且仅当=( -a- 1),即 a=- , b=- 时等号建立,所以 b-a 的最小值为 1.加强操练1 B [分析] 由于点 (0, - 1) 不在曲线( x ) 上 , 所以设切点坐标为 ( x 0, y 0) . 又由于.y=ff' ( x ) =1+ln x , 所以解得所以切点坐标为 (1,0), 所以f' (1) =1+ln 1 =1, 所以直线 l 的方程为 y=x- 1, 即 x-y- 1=0.2. C [ 分析 ] 依题意知 , y'= 3x 2 +a , 则解得 所以 2a+b=1, 选 C .3. B [ 分析 ] ∵f ( x ) =a ln x+x , ∴f' ( x ) = +1, ∴f' ( a ) = +1=2. ∵f (a ) =a ln a+a , ∴ 曲线 y=f ( x )在 x=a 处的切线方程为 y-a ln a-a= 2( x-a ), ∵f (x ) =a ln x+x 的图像在 x=a 处的切线过原点,∴-a ln a-a=- 2a , 解得 a=e .4. (e,e) [分析] 由题意得 y'= ln x+x · =1+ln x , 直线 2x-y+ 1=0 的斜率为 2. 设 P ( m , n ), 则 1 ln2, 解得e, 所以eln e e, 即点 P 的坐标为 (e,e).+ m=m= n= =5[ 分析] f' ( ) e x e x e x ( 1),∴ 切线斜率k=f' (1) 2e, ∴ 曲线 y=f ( x ) 在 (1,e) 处的切. x = +x = x+ =线方程为 y- e =2e( x- 1), 即 y=2e x- e . ∵y=2e x- e 与坐标轴交于点(0, - e), ,0, ∴y=2e x- e与坐标轴围成的三角形面积S= ×e × = .【备选原因】例 1 考察的是曲线过某点的切线方程问题 , 此点可能是切点也可能不是切点 ,注意过某点的切线和曲线上某点处的切线的差别 ; 例 2 考察两个曲线的切线问题 , 拥有综合性.1 [ 配合例2 使用 ]曲线 y= x 2 过点 4,的切线方程为 .[ 答案 ] 14 x- 4y- 49=0 或 2x- 4y- 1=0[ 分析 ] 易知点 4,不在曲线 y= x 2 上 , 所以设所求切线与曲线相切于点 P x 0, . 易知y'= x , 则y'. 故 = x 0,整理得 - 8 0 7 0,解得7 或1, ∴ 点 P 7,或= xx + = x = x =P 1,, 由两点式得切线方程为 14x- 4y- 49=0 或 2x- 4y- 1=0.2[配合例 4使用] 设函数22 2 的图像为1,函数2的图像为2 已知过y=x - x+Cy=-x +ax+bC.C 与 C 的一个交点的两条切线相互垂直, 求 a , b 之间的关系 .12解: 对 C 1 的方程 y=x 2- 2x+2 求导 , 有 y'= 2x- 2.对 C 2 的方程 y=-x 2+ax+b 求导 , 有 y'=- 2x+a. 设 C 1 与 C 2 的一个交点坐标为 ( x 0, y 0) .由题意知过交点 ( x 0, y 0) 的两条切线相互垂直 ,则(2 x 0- 2)( - 2x 0+a ) =- 1, 即 4 - 2( a+2) x 0+2a- 1=0①.又点 (x 0, y 0)在 1与 2上,故有 ? 2- ( 2)02 0C Ca+ x + -b= ②.联立 ①② , 消去 x 0, 得 a+b= .。
高考数学一轮复习第三篇导数及其应用第1讲 变化率与导数导数的运算教案理试题
第1讲 变化率与导数、导数的运算创 作人: 历恰面 日 期: 2020年1月1日【2021年高考会这样考】1.利用导数的几何意义求曲线在某点处的切线方程. 2.考察导数的有关计算,尤其是简单的函数求导. 【复习指导】本讲复习时,应充分利用详细实际情景,理解导数的意义及几何意义,应能灵敏运用导数公式及导数运算法那么进展某些函数求导.根底梳理1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f x 2-f x 1x 2-x 1.假设Δx =x 2-x 1,Δy =f (x 2)-f (x 1),那么平均变化率可表示为ΔyΔx .2.函数y =f (x )在x =x 0处的导数 (1)定义称函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx= li mΔx →0 f x 0+Δx -f x 0Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或者y ′|x=x 0,即f ′(x 0)=li mΔx →0 Δy Δx . (2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li mΔx →0 f x +Δx -f xΔx为f (x )的导函数,导函数有时也记作y ′.4.根本初等函数的导数公式 假设f (x )=c ,那么f ′(x )=0; 假设f (x )=x α(α∈R ),那么f ′(x )=αxα-1;假设f (x )=sin x ,那么f ′(x )=cos x ; 假设f (x )=cos x ,那么f ′(x )=-sin x ;假设f (x )=a x(a >0,且a ≠1),那么f ′(x )=a xln_a ; 假设f (x )=e x,那么f ′(x )=e x;假设f (x )=log a x (a >0,且a ≠1),那么f ′(x )=1x ln a; 假设f (x )=ln x ,那么f ′(x )=1x.5.导数四那么运算法那么(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).6.复合函数的求导法那么复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.一个区别曲线y =f (x )“在〞点P (x 0,y 0)处的切线与“过〞点P (x 0,y 0)的切线的区别:曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,假设切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P可以是切点,也可以不是切点,而且这样的直线可能有多条. 两种法那么(1)导数的四那么运算法那么. (2)复合函数的求导法那么. 三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别. 3.正确分解复合函数的构造,由外向内逐层求导,做到不重不漏.双基自测1.以下求导过程中①⎝ ⎛⎭⎪⎫1x ′=-1x 2;②(x )′=12x ;③(log a x )′=⎝ ⎛⎭⎪⎫ln x ln a ′=1x ln a;④(a x )′=(eln a x )′=(e x ln a )′=e x ln a ln a =a xln a 其中正确的个数是( ). A .1 B .2 C .3 D .4 答案 D2.(人教A 版教材习题改编)函数f (x )=(x +2a )(x -a )2的导数为( ). A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2) D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2). 答案 C3.(2021·)曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ). A .-12 B.12 C .-22 D.22解析 本小题考察导数的运算、导数的几何意义,考察运算求解才能.y ′=cos x sin x +cos x -sin x cos x -sin x sin x +cos x 2=11+sin 2x ,把x =π4代入得导数值为12.答案 B4.(2021·)假设f (x )=x 2-2x -4ln x ,那么f ′(x )>0的解集为( ). A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0) 解析 令f ′(x )=2x -2-4x=2x -2x +1x>0,利用数轴标根法可解得-1<x <0或者x >2,又x >0,所以x >2.应选C. 答案 C5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),那么f (f (0))=______;li mΔx →0 f 1+Δx -f 1Δx=________(用数字答题).答案 2 -2考向一 导数的定义【例1】►利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处切线与曲线f (x )=x 3的交点.[审题视点] 正确理解导数的定义是求解的关键.解 f ′(x 0)=lim x →x 0 f x -f x 0x -x 0=lim x →x 0 x 3-x 30x -x 0=lim x →x 0 (x 2+xx 0+x 20)=3x 20.曲线f (x )=x 3在x =x 0处的切线方程为y -x 30=3x 20·(x -x 0),即y =3x 20x -2x 30,由⎩⎪⎨⎪⎧y =x 3,y =3x 20x -2x 30,得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0. 假设x 0≠0,那么交点坐标为(x 0,x 30),(-2x 0,-8x 30); 假设x 0=0,那么交点坐标为(0,0).利用定义求导数的一般过程是:(1)求函数的增量Δy ;(2)求平均变化率ΔyΔx;(3)求极限li mΔx →0 ΔyΔx. 【训练1】 利用导数的定义证明奇函数的导数是偶函数,偶函数的导数是奇函数. 证明 法一 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x )f ′(x )=li m Δx →0 f x +Δx -f x Δx那么f ′(-x )=li mΔx →0 f -x +Δx -f -xΔx=li mΔx →0 f x -Δx -f x-Δx=f ′(x )因此f ′(x )为偶函数,同理可证偶函数的导数是奇函数. 法二 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x ),即f (x )=-f (-x )因此f ′(x )=[-f (-x )]′=- [f (-x )]′=f ′(-x ) 那么f ′(x )为偶函数同理可证偶函数的导数是奇函数.考向二 导数的运算【例2】►求以下各函数的导数:(1)y =x +x 5+sin xx 2;(2)y =(x +1)(x +2)(x +3); (3)y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =11-x +11+x ; [审题视点] 先把式子化为最简式再进展求导.解 (1)∵y =x 12+x 5+sin xx2=x -32+x 3+sin x x2,∴y ′=⎝ ⎛⎭⎪⎫x -32′+(x 3)′+(x -2sin x )′=-32x -52+3x 2-2x -3sin x +x -2cos x .(2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)· (x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.(3)∵y =sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,∴y ′=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(4)y =11-x +11+x =1+x +1-x1-x 1+x =21-x, ∴y ′=⎝⎛⎭⎪⎫21-x ′=-21-x ′1-x 2=21-x 2.(1)熟记根本初等函数的导数公式及四那么运算法那么是正确求导的根底.(2)必要时对于某些求导问题可先化简函数解析式再求导. 【训练2】 求以下函数的导数: (1)y =x n e x; (2)y =cos x sin x ;(3)y =e xln x ; (4)y =(x +1)2(x -1). 解 (1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1, ∴y ′=3x 2+2x -1.考向三 求复合函数的导数【例3】►求以下复合函数的导数. (1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). [审题视点] 正确分解函数的复合层次,逐层求导. 解 (1)设u =2x -3,那么y =(2x -3)5, 由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2 =10u 4=10(2x -3)4.(2)设u =3-x ,那么y =3-x . 由y =u 12与u =3-x 复合而成.y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,那么y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2 =4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,那么y x ′=y u ′·u x ′y ′=12x +5·(2x +5)′=22x +5. 由复合函数的定义可知,中间变量的选择应是根本函数的构造,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开场,由外向内,一层一层地分析,把复合函数分解成假设干个常见的根本函数,逐步确定复合过程. 【训练3】 求以下函数的导数: (1)y =x 2+1; (2)y =sin 22x ; (3)y =e -xsin 2x; (4)y =ln 1+x 2. 解 (1)y ′=12 x 2+1·2x =x x 2+1, (2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x (3)y ′=(-e -x)sin 2x +e -x(cos 2x )×2 =e -x(2cos 2x -sin 2x ). (4)y ′=11+x2·121+x2·2x =x1+x2.标准解答6——如何求曲线上某一点的切线方程【问题研究】 利用导数的几何意义求函数在某一点的坐标或者某一点处的切线方程是高考常常涉及的问题.这类问题最容易出现的错误就是分不清楚所求切线所过的点是不是切点而导致错误.,【解决方案】 解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程〞还是“过某点的切线方程〞,然后求某点处的斜率,用点斜式写出切线方程. 【例如】►(此题满分是12分)(2021·)函数f (x )=ln x -ax +1-a x-1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当a ≤12时,讨论f (x )的单调性.(1)求出在点(2,f (2))处的斜率及f (2),由点斜式写出切线方程;(2)求f ′(x ),再对a 分类讨论.[解答示范] (1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分)因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分)(2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-ax2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞). ①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;(6分)②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a-1>1>0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝ ⎛⎭⎪⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a-1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 函数f (x )在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝⎛⎭⎪⎫1,1a-1上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫1a-1,+∞上单调递减.(12分)求解切线问题的关键是切点坐标,无论是切线斜率还是切线经过某一点,切点坐标都是化解难点的关键所在.创作人:历恰面日期:2020年1月1日创作人:历恰面日期:2020年1月1日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算一.学习目标:1.了解导数概念的实际背景,理解导数的几何意义;2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1x的导数;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.二.学习重、难点:1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数;2.学习难点:理解导数的几何意义.三.学习方法:讲练结合四.自主复习:1.导数的概念(1)函数在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0Δy Δx, 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.(2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________.(3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.2.基本初等函数的导数公式3.运算法则(1)[f(x)±g(x)]′=_________________;(2)[f(x)·g(x)]′=________________________;(3)[f(x)g(x)]′=_______________________ (g(x)≠0).五.复习前测:1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1C.cos1-1 D.-1-cos12.函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x3.某汽车的路程函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,汽车的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 24.已知函数f (x )=⎩⎨⎧x ,x >0cos x ,x ≤0,则f ′(1)f (0)=__________.5.已知函数f (x )=x e x ,则f ′(x )=__________;函数f (x )图象在点(0,f (0))处的切线方程为__________.要点点拨:1.对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线的切线的求法若已知曲线过点P (x 0,y 0),求曲线的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)点P (x 0,y 0)是切点的切线方程y -y 0=f ′(x 0)(x -x 0).(2)当点P (x 0,y 0)不是切点时可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1)).第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1). 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1.第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)·(x -x 1)可得过点P (x 0,y 0)的切线方程.六.复习过程:题型一:利用导数的定义求函数的导数 [例1](1)求函数y =x 2的导数.(2)求函数y =x 在x =1处的导数.[思路点拨] 解决本题的关键是正确的求出Δy ,ΔyΔx ,然后求出极限即可..[规律总结] 注意[f (x 0)]′,f ′(x 0)与f ′(x )的区别:f ′(x 0)代表函数f (x )在x =x 0处的导数值,不一定为0;而[f (x 0)]′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数值,其导数一定为0,即[f (x 0)]′=0,而f ′(x )是函数f (x )的导函数,是一个函数,是f (x )求导后的函数关系.变式训练1一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法).题型二:导数的计算 [例2] 求下列函数的导数: (1)y =(2x 2-1)(3x +1); (2)y =x +x 5+sin xx 2;(3)y =-sin x 2(1-2cos 2x4).[规律总结] 导数运算时应注意的问题:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.变式训练2求下列函数的导数:(1)y =3x e x -2x +e ;(2)y =ln xx 2+1题型三:导数的几何意义 [例3] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.[规律总结] 求解过曲线上某点的切线方程时,应注意到这条切线与曲线的切点不一定是该点.变式训练3曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1,x ∈[1,2]上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为__________.题型四:导数几何意义的综合应用[例4] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7变式训练4(2013·惠州质检)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l的方程;(2)求函数g(x)的解析式.创新探究——导数几何意义规范解答[例题](2012·重庆)设f(x)=a ln x+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.[思路点拨](1)对f(x)求导,运用f′(1)=0求出a的值;(2)由f′(x)=0解得x值,结合函数定义域,讨论在各区间上f′(x)的符号,从而确定极值.链接高考:1.(2012·广东)曲线y=x3-x+3在点(1,3)处的切线方程为__________.2.(2012·辽宁)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__________.七.反馈练习:1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln22.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12B.12C .-22D.223.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)4.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)5.已知点P (2 013π3,-1)在函数f (x )=a 2cos x 的图象上,则该函数的图象在x =3π4处的切线方程是( )A .2x +2y -42-32π2=0B .2x -2y +42-32π4=0 C .2x -2y -42-32π4=0 D.2x +2y +42-32π4=06.(2013·泰安模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A .1B. 2C.22 D. 37.已知函数f (x )=f ′(π2)sin x +cos x ,则f (π4)=__________.8.若曲线y =g (x )在点(1,g (1))处的切线的方程为y =2x +1,则曲线f (x )=g (x )+ln x 在点(1,f (1))处切线的斜率为__________,该切线方程为________.9.已知f 1(x )=sin x +cos x ,记f 2(x )=f ′1(x ),f 3(x )=f ′2(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1(π2)+f 2(π2)+…+f 2 012(π2)=__________.10.求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1.11.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于P 的直线方程.12.设函数f (x )=ln x -12ax 2-bx . (1)当a =b =12时,求f (x )的最大值; (2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a的取值范围.八.思维总结:九.自我评价:1.你对本章的复习的自我评价如何?A.很好B.一般C.不太好2.你认为在这章复习中还有哪些知识漏洞?。