二次根式拓展专题培优
2023年八年级数学期末专题培优训练(二次根式)【含答案】
2023年八年级数学期末专题培优训练(二次根式)一、选择题(每题2分,共16分)1可化简成 ( )A .一2B .4C .2D 2.下列计算中正确的是()A .B +=3=C .D =3=-3.下列式子一定是二次根式的是 ()A B C D .4.下列各组二次根式中,是同类二次根式的是 ()A B C D .5.下列根式中,是最简二次根式的是 ()A B c D6有意义,那么的取值范围是 ( )x A .≥0 B .≠1C .>0D .≥0且≠1x x x x x7.已知1≤的结果是 ( )a 2- A .B .C .3D . 123a -23a +8.如图所示,将一张边长为8的正方形纸片ABCD 折叠,使点D 落在BC 的中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长为 ( )A .10B .C .D .二、填空题(每题2分,共22分)9.函数中,的取值范围是 .y =x10是同类二次根式的是 .11.若=.y =12.已知:△ABC 中,,,则△ABC 的面积等于 .13 .+=14.如果,那么的取值范围是 .1a +=a15.若最简二次根式.x -x =16.若整数满足条件,则的值是 .m 1m =+m 17.实数=a 2-.18,则.0==19.已知为有理数分别表示,a b 、m 、n 7-24amn bn +=则= .2a b +三、解答题(共54分)20.计算:(每题4分,共8分)(1) 293(3)π-⨯+-(2) 2-+÷+21.化简:(每题4分,共12分)(1) ≥3((b 0)>x +0)(3)化简.40,0)a b 〉〉22.(本题6分)已知是正整数,且满足,求的平方根.x 41y x =+-x y +23.(本题6分)先化简,再求值,其中22()a b ab b a a a--÷-1a =+24.(本题6分)若实数在数轴上的位置如图所示,且,a b c 、、a b =化简.a a ++25.(本题8分)已知是△ABC 的三边,化简:a b c 、、.3a b c -+++26.(本题8分)阅读下列材料,然后回答问题:这样的式子,其实我们还可以将其进一步化简:.1=-1(1)(2)+⋅⋅⋅+27.(本题8分)现有一组有规律排列的数:1、-11、-1、……其中,1、- 1这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?参考答案一、1.C 2.B 3.C 4.A 5.C 6.D 7.A 8.B二、9.>3 10 11.12.13.一14.≤1 15.2 x 72a16.0 17.1 18. 19.4三、20.(1)4(2)521.(1) (2) (3)-- 22.∵Y 要有意义,∴2一≥0且一1≠0,∴≤2且≠l ,又∵是正整数,x x x x x∴=2,∴.当=2时,,,∴的平方根为.x 4y =6x y +=x y +23·原式,当,时,原式1a b=-1a =1b =24.由图得:,又,∴;原式0,0a b <>a b =0,0,0a b c a c +=-><=2a o c a c -+---2a c a c c =--++=2fff :一口一c+口+2c—f .25.∵a 、b 、C 是△ABC 的三边,∴,,.0a b c --<0a b c -+>0a b c +->∴原式=23a b c a b c a b c----+++-22233364a b c a b c a b c b c=-++-+-++-=-26.(1)方法一:原式=方法二:原式=(2)1-27.(1)∵50682÷= ∴第50个数是-1(2)∵2015÷6=335……5,(1(1)+-++=∴从第1个数开始的前2015(3)∵((2222221(1)12+-++++=,52012434÷= 且()222114+-+=∴ 43×6+3=261,即共有261个数的平方相加。
二次根式综合性大题训练(培优)
二次根式综合性大题训练(培优)1.阅读材料:康康在学习二次根式后、发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的康康进行了以下探索:设a+b√2=(m+n√2)2(其中a、b、m、n均为正整数),则有a+b√2=m2+2n2+2mn√2(有理数和无理数分别对应相等),∴a=m2+2n2,b=2mn,这样康康就找到了一种把式子a+b√2化为平方式的方法.请你仿照康康的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(c+d√3)2,用含c、d的式子分别表示a、b,得:a=,b=;(2)若7−4√3=(e−f√3)2,且e、f均为正整数,试化简:7−4√3;(3)化简:√7+√21−√80.2.观察下列各式:①√1+13=2√13,②√2+14=3√14;③√3+15=4√15,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.3.观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:√5049+164(仿照上式写出过程)4.小明在解决问题:已知a=2+√3,求2a2﹣8a+1的值.他是这样分析与解的:∵a=12+√3=2−√3(2+√3)(2−√3)=2−√3,∴a−2=−√3,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简√3+1+√5+√3+√7+√5+⋯+√121+√119.(2)若a=√2−1.求:①求3a2﹣6a+1的值.②直接写出代数式的值a3﹣3a2+a+1=;2a2−5a+1a+2=.5.先阅读下列的解答过程,然后作答:形如√m±2√n的化简,只要我们找到两个数a,b使a+b=m,ab=n,这样(√a)2+(√b)2=m,√a•√b=√n,那么便有√m±2√n=√(√a±√b)2=√a±√b(a>b),例如:化简√7+4√3.解:首先把√7+4√3化为√7+2√12,这里m=7,n=12;由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4)2+(√3)2=2+√3.由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.6.细心观察下图,认真分析各式,然后解答下列问题:OA 22=(√1)2+1=2,S 1=√12(S 1是Rt △OA 1A 2的面积);OA 32=(√2)2+1=3,S 2=√22(S 2是Rt △OA 2A 3的面积); OA 42=(√3)2+1=4,S 3=√32(S 3是Rt △OA 3A 4的面积);…(1)请用含有n (n 为正整数)的式子填空:OA n 2= ,S n = ; (2)求1S 1+S 2+1S 2+S 3+1S 3+S 4+⋯+1S 99+S 100的值;(3)在线段OA 1、OA 2、OA 3、…、OA 2022中,长度为正整数的线段共有 条.7.已知a ,b 均为正整数.我们把满足{x =2a +3b y =3a +2b 的点P (x ,y )称为幸福点.(1)下列四个点中为幸福点的是 ; P 1(5,5);P 2(6,6);P 3(7,7);P 4(8,8) (2)若点P (20,t )是一个幸福点,求t 的值;(3)已知点P (√m +1,√m −1)是一个幸福点,则存在正整数a ,b 满足{√m +1=2a +3b √m −1=3a +2b ,试问是否存在实数k 的值使得点P 和点Q (12a +k ,12b ﹣k )到x 轴的距离相等,且到y 轴的距离也相等?若存在,求出k 的值;若不存在,请说明理由.8.阅读下列材料,并解答问题:①√2+√4=√4−√22=2−√22;②√4+√6=√6−√42=√6−22;③√6+√8=√8−√62=2√2−√62;④√8+√10=√10−√82=√10−2√22;……(1)直接写出第⑤个等式;(2)用含n(n为正整数)的等式表示你探索的规律;(3)利用你探索的规律,求√2+√4+√4+√6+√6+√8+⋯+√198+√200的值.9.一些含根号的式子可以写成另一个式子的平方,如3+2√2=(1+√2)2.设a+b√2=(m+n√2)2(其中a、b、m、n均为正整数),则有a+b√2=m2+2n2+2mn√2,∴a=m2+2n2,b=2mn.这样可以把部分a+b√2的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(m+n√3)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+√5=(+√5)2;(3)化简√16−6√7−√11+4√710.数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S=√p(p−a)(p−b)(p−c),其中p=1 2(a+b+c).这个公式称为“海伦公式”.数学应用:如图1,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AB边上的高为h1,AC边上的高h2,求h1+h2的值;(3)如图2,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.11.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上如√5、√23、√3+1一样的式子,其实我们还可以将其进一步化简:√5=√5√5×√5=35√5;(Ⅰ)√2 3=√2×33×3=√63(Ⅱ)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−12=√3−1.(Ⅲ)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:√3+1=√3+1=√3)22√3+1=√3+1)(√3−1)√3+1=√3−1.(Ⅳ)(1)请用不同的方法化简√5+√3.①参照(Ⅲ)式得√5+√3=.②参照(Ⅳ)式得√5+√3=.(2)化简:√3+1+√5+√3+√7+√5+⋯+√2n+1+√2n−1.12.观察下列等式:①√2−1=√2+1;②√3−√2=√3+√2;③√4−√3=√4+√3;…,(1)请用字母表示你所发现的律:即√n+1+√n=.(n为正整数)(2)化简计算:1+√2+√2+√3+√3+√4+⋯+√2016+√2017.13.观察下列各式:√1+112+122=1+11−12=112;√1+122+132=1+12−13=116;√1+132+142=1+13−14=1112,…请你根据以上三个等式提供的信息解答下列问题①猜想:√1+172+182==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算√8281+1100.14.阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①√7+√6=;②√n+√n−1=;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=.15.观察图形,认真分析下列各式,然后解答问题:OA1=1OA2=√12+12=√2;S1=12×1×1=12OA3=√2+12=√3;S2=12×√2×1=√22OA4=√3+12=√4;S3=12×√3×1=√32(1)推算出OA5=;(2)若一个三角形的面积是3,则它是第几个三角形?(3)用含n(n是正整数)的等式表达上述面积变化规律,即S n=;(4)求出s12+s22+s32+⋯⋯+s1002的值.。
二次根式培优提高训练
《二次根式》培优一、知识讲解1.根式中的相关概念⑴二次根式:形如)0a ≥的代数式叫做二次根式。
⑵ nn 次根式.其中若n 为偶数,则必须满足0a ≥。
⑶最简二次根式:满足以下两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有能开方的因数或因式。
⑷同类二次根式:几个二次根式化成最简二次根式之后,如果被开方数相同,则这几个根式叫做同类二次根式。
⑸设a 、b 、c 、d 、m 是有理数,且m 不是完全平方数 ,则当且仅当a c =、b d =时,时,a c +=+2. 二次根式的性质 (1)()20a a =≥. (200 0 0a a a a a a >⎧⎪===⎨⎪-<⎩当时,当时,当时. 3.二次根式的运算法则:对于二次更是的加减,先把二次根式化为最简二次根式,然后再合并同类二次根式即可. (1)(a b =+ (2)0,0a b =≥≥(3))0,0a b =≥> (4))0ma =≥(5)若0a b >>>4. 分母有理化(1)把分母中的根号化去叫做分母有理化.(2)互为有理数因式:两个含有根式的代数式相乘,如果它们的积不含有根式,则这两个代数式互为有理化因式.互为有理数因式。
分母有理化时,一定要保证有理化因式的值不为0.二、习题讲解基础巩固1.化简:(1) (2(3(4)(5(6) 解:(1)(2. (3)(4. (5)232-(6). 2. 设y =,求使y 有意义的x 的取值范围.解:由题知2102010x x x -≥⎧⎪-≥⎨⎪->⎩,解得1221x x x ⎧≥⎪⎪≤⎨⎪>⎪⎩,所以x 的取值范围为122x ≤≤.3.(1)已知最简二次根式ba = ,b = . (2)已知0=,则2mn n +-的倒数的算术平方根为 .解:(1)由题知:2322b a b b a -=⎧⎨=-+⎩,解得02a b =⎧⎨=⎩.(2)因为0≥,2160m -≥0=所以221016040n m m m -+=⎧⎪-=⎨⎪->⎩,解得49m n =-⎧⎨=-⎩.所以15===.所以2mn n +-的倒数的算术平方根为15.4. (1)若m=试确定m 的值.(2)已知x 、y为实数,13y x =-,求56x y +.解:(1)因为19901990x y x y -+≥⎧⎨--≥⎩,即199199x y x y +≥⎧⎨+≤⎩,所以199x y+=①.所以0=.又因为0≥0≥,所以3520 230 x y m x y m +--=⎧⎨+-=⎩②③.由①,②,③可得:2001m =.5.在、1999是同类二次根式的共有多少个?解:由题知:==19个. 6.计算:(1)((1617解:(1)原式((16=⎡⎤⎣⎦()(16=1211-(2)(5+解:原式(()=5555256+--(3)22-解:原式22=⎤⎤-⎦⎦=⎤⎤⎦⎦===(4)计算:(1111x x ++++解:原式((1111x x ⎡⎤⎡⎤=++⎣⎦⎣⎦()()()()222311111x x x x x x ⎡⎤=-+-=-++=-⎢⎥⎣⎦(5)(解:原式{}{}⎤⎤⎡⎡=⎦⎦⎣⎣()()523235⎡⎤⎡⎤=--+-⎣⎦⎣⎦=24=.7.化简:=..A. BCD解:()()⎣⎦=⎡⎡-+⎣⎣=-=212+==12=+8.计算:. 解:原式()()4172x x --=())())417247x x x x --=---)12=-3=-.9.设x =,y =,n 为自然数,如果22219721993x xy y ++=成立,求n的值.解:由题知:()2222197221931993x xy y x y xy ++=++=x y +=+22+==42n =+.1xy ==.当x y +==-1xy =时,()224219311993n ++⨯=,即()242900n +=. 因为n 为自然数,所以4230n +=,解得7n =.10. 若正整数a 、m 、n=a 、m 、n 的值依次是 . 解:因为0≥,即m n ≥.由题知:22=,即2a m n -=+-.所以2a m n =+=.故有8mn=.因为a 、m 、n 为正整数,所以8m =,1n =,3a =. 11.(1))))201220112010121412010--+= .解:原式)))20102112142010⎡⎤=--+⎢⎥⎣⎦)2010151242010⎡⎤=+--+⎣⎦2010=.(2)化简:解:原式==3=3=3==3===.二、拓展提高1.已知x=,y=,求22y xx y+的值.解:由题知:原式()()()()()()()2 22332223x y xy xyx y x xy yy xxyxy xy⎡⎤++-+-++⎣⎦===x y+=22+=10=,1xy==. 当10x y+=,1xy=时,原式()22101031⨯-=970=.2.(1)). 5A-1B. 5C. 1D(2)代数式.解:(1)=)21=2=,==3=-所以231=+-=,故答案选D.(2)222=+82818=+=因为0≥==3.若1x =,则54322171816x x x x x +--+-的值为 .解:因为1x =,所以()221x -=,化简的22160xx --=.原式543322216216216x x x x x x x x =+---+++-()()222161x x x x =+--+()201x x =⨯-+0=4. 已知非零实数a 、b 满足等式542b a a b ab b a ++=+. 解:由542b a a b ab b a++=+可得:22542b a a b ++=+,即()()22120b a -+-=,解得2a =,1b =.所以原式1===.5.22006= 解:令2006x =,由题知: 原式2x =2x =2x =2x =221x x x =+--1200612005x =-=-=.6. 已知2=的值为 .解:令m =n =22210m n m n -=⎧⎨-=⎩. 所以()()()22210x y x y x y x y -=+-=+=5m n =+=.7.化简:.解:原式===2=51-=-5=.8.计算:⋅⋅⋅+.解:原式=+⋅⋅⋅+=+⋅⋅⋅4512025=-1145=-4445=.9.⋅⋅⋅+解:原式=37132612=++⋅⋅⋅1111111112233420102011⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅++⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭1112010122320102011=+++⋅⋅+⨯⨯⨯111112010122320102011=+-+-+⋅⋅+-1201012011=+-201020102011=。
(完整word)二次根式培优题
二次根式培优题1. 若02=+a a ,则a 的取值范围是___________.2. 若代数式1681222+-++-x x x x 的结果是5—2x ,则x 的取值范围是__________.3. 已知ABC ∆的边长为c b a 、、(c b a 、、为整数),且满足04412=+-+-b b a ,求ABC ∆的周长.4. 若x 满足23)31(2x x --=-,则x 的整数解的个数有_____个.5. 在实数范围内分解因式: (1) 32-a ; (2)742-a ; (3))0,0(2>>++y x y xy x 。
6. 已知实数a 满足()a a a =-+-220072006,那么2006-a 的值是_______.7. 若m 满足等式y x y x m y x m y x --⋅+-=-++--+19919932253,试确定m 的值.8. 要使代数式2113----x x 有意义,实数x 的取值范围是_______________。
9. 比较大小:25 , 32 , 23---.10.化简:(1) )0(48342>+-y y y ;(2)()()()0222222>--+ab b a b a(2)161213b -; (4)23322-; (5)b a 3--;(6) )0(12122>>+-b a bab a a ;(7)32416++⨯。
11。
把下列各式中根号外的因式移到根式内:(1) x y xy -; (2)aa --⋅-11)1(。
12。
计算:(1)3232245-;(2)3612-;(3))5131(15-÷(3)()()201220112323-⨯+;(4)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212;(5)()()()()13132131322+--++-(6) ()()632632+--+(7) ba b a aba b a a a +----;(8)()()233623346++++13。
二次根式培优试卷
第一章二次根式好题精选一.选择题1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8 B.=4a(a>0)C.=3+4=7 D.=2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确3.设a,b≠0,式子有意义,则该式等于()A.B.C.D.4.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a5.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥36.已知,则的值为()A.1 B.C.D.7.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x8.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠010.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.二.填空题(共10小题) 11.已知:x =,计算x 2﹣x +1的值是 .12.化简:()()23352325-+-+的结果为____________________13.在正方形ABCD 中,E 是边BC 上一点,如果这个正方形的面积为m ,△ABE 的面积等于正方形面积的四分之一,那么BE 的长用含m 的代数式表示为 . 14.化简:2<x <4时,﹣= .15.已知a ,b 均为正整数,如果0<﹣b <1,我们称b 是的“主要值”,那么的主要值是 .三.解答题(共15小题) 16.计算(1)﹣+(2)()()﹣(﹣)217..18.先化简,再求值 (1)(﹣),其中a =17﹣12,b =3+2(2)(a +)(a ﹣)﹣(﹣a )2,其中a =2﹣1.(3)+,其中x=19.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)20.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).21.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.22.已知a=,b=,求a2+3ab+b2﹣a+b的值23.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.参考答案与试题解析一.选择题(共15小题)1.下列计算正确的是()A.=±4 B.2×32=62=36C.(﹣5)÷(﹣2)×(﹣)=﹣5 D.﹣2×+2×(3+)+4=10【分析】根据实数与二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.=4,此选项错误;B.2×32=2×9=18,此选项错误;C.(﹣5)÷(﹣2)×(﹣)=×(﹣)=﹣,此选项错误;D.﹣2×+2×(3+)+4=﹣2+6+2+4=10,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确【分析】分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,或者运用因式分解和约分.【解答】解:甲的解法:==﹣,利用平方差公式进行分母有理化,正确;乙的解法:==﹣,利用因式分解进行分母有理化,正确;故选:C.【点评】本题主要考查了分母有理化以及二次根式的混合运算,分母有理化是指把分母中的根号化去.3.下列计算正确的是()A.=±15 B.=﹣3 C.=D.=【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=15,故此选项错误;B、=3,故此选项错误;C、=,故此选项错误;D、=,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.设a,b≠0,式子有意义,则该式等于()A.B.C.D.【分析】先根据二次根式的被开方数是非负数列出不等式﹣a3≥0,再根据公式=|a|及有理数的乘法法则得出a、b的取值范围,然后化简即可.【解答】解:由题意,得﹣a3≥0,又∵=b2≥0,b为任意数,∴﹣a3≥0,∴a≤0,∴==•=.故选:D.【点评】本题主要考查了二次根式的性质及二次根式的化简.用到的知识点有:①二次根式的被开方数是非负数;②两个公式:=(a≥0,b≥0),=|a|.5.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=【分析】根据二次根式的意义、性质逐一判断即可得.【解答】解:A.、没有意义,此选项错误;B.=2a(a>0),此选项错误;C.==5,此选项错误;D.=,此选项正确;故选:D.【点评】本题主要考查二次根式的性质与化简,解题的关键是二次根式的定义和性质.6.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a【分析】首先根据三角形的三边关系得到根号内或绝对值内的式子的符号,再根据二次根式或绝对值的性质化简.【解答】解:∵a、b、c为三角形的三边,∴a+c>b,a+b>c,即a﹣b+c>0,c﹣a﹣b<0;∴﹣2|c﹣a﹣b|=(a﹣b+c)+2(c﹣a﹣b)=﹣a﹣3b+3c.故选:B.【点评】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.7.如果f(x)=并且f()表示当x=时的值,即f()==,表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【分析】认真观察题中式子的特点,找出其中的规律,代入计算即可.【解答】解:代入计算可得,f()+f()=1,f()+f()=1…f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.【点评】解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.8.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥3【分析】等式左边为算术平方根,其结果3﹣a应该为非负数.【解答】解:∵=3﹣a∴3﹣a≥0∴a≤3故选:B.【点评】注意:算术平方根是非负数,这是解答此题的关键.9.已知,则的值为()A.1 B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.【点评】根据完全平方公式、绝对值的运算解答此题.11.的整数部分是()A.3 B.4 C.5 D.6【分析】由于=﹣1,=﹣,…,=﹣+,于是可得原式=﹣1+﹣+…﹣+,计算即可.【解答】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=9.【点评】本题考查了二次根式的加减法.解题的关键是对每一个分式分母有理化.12.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先化成最简二次根式,再合并,最后求出的范围即可.【解答】解:+=+=2=,∵2<<3,∴代数式+的运算结果在2到3之间,故选:B.【点评】本题考查了二次根式的加减法,估算无理数大小的应用,主要考查学生的计算能力.13.已知方程+3=,则此方程的正整数解的组数是()A.1 B.2 C.3 D.4【分析】先把化为最简二次根式,由+3=可知,化为最简根式应与为同类根式,即可得到此方程的正整数解的组数有三组.【解答】解:∵=10,x,y为正整数,∴,化为最简根式应与为同类根式,只能有以下三种情况:+3=+9=4+6=7+3=10.∴,,,共有三组解.故选:C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠0【分析】先判断结果的情况,再判断ab积的情况.【解答】解:∵=≥0又∵=﹣,∴﹣≥0∴ab≤0且b≠0故选:D.【点评】本题考查了二次根式的性质,解决本题需着眼于整体.本题易忽略b≠0而出错.15.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.【分析】求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可.【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=++••+,=+++…+=1+2+3+…+n=,故选:D.【点评】本题考查了二次根式的性质的应用,注意:1+2+3+…n=.二.填空题(共10小题)16.计算()=.【分析】先计算括号内的加法,再计算除法即可得.【解答】解:原式=÷(+)=÷=×=,故答案为:【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.17.如果(a,b为有理数),则a=6,b=4.【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.18.计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.19.已知:x=,计算x2﹣x+1的值是+4.【分析】先将x的值分母有理化得出x=+1,再代入原式,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x====+1,∴x2﹣x+1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=+4.故答案为:+4.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及分母有理化.20.当x=1﹣时,x2﹣2x+2028=2030.【分析】将x的值代入x2﹣2x+2028=(x﹣1)2+2027,根据二次根式的运算法则计算可得.【解答】解:当x=1﹣时,x2﹣2x+2028=(x﹣1)2+2027=(1﹣﹣1)2+2027=(﹣)2+2027,=3+2027=2030,故答案为:2030.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.21.若x=﹣1,则=2.【分析】将x的值代入原式=,计算可得.【解答】解:当x=﹣1时,原式====2,故答案为:2.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.22.已知:m+n=10,mn=9,则=±.【分析】先求所求的代数式的完全平方形式,然后直接开平方即可求得的值.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.【点评】考查了二次根式的化简求值,需要掌握完全平方公式,属于基础计算题.23.在正方形ABCD中,E是边BC上一点,如果这个正方形的面积为m,△ABE的面积等于正方形面积的四分之一,那么BE的长用含m的代数式表示为.【分析】首先根据正方形的面积,表示出△ABE的面积,然后利用三角形的面积的公式表示出线段BE的长即可.【解答】解:∵正方形的面积为m,△ABE的面积等于正方形面积的四分之一,∴正方形的边长AB=,△ABE的面积为,∵S△ABE=AB•BE=BE=,∴BE=,故答案为:.【点评】本题考查了二次根式的应用,解题的关键是表示出正方形的边长及直角三角形的面积.24.化简:2<x<4时,﹣=2x﹣6.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.25.已知a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,那么的主要值是4.【分析】根据a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,可以求得的主要值.【解答】解:∵0<﹣4<1,∴的主要值是4,故答案为:4.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,可以估算出处于哪两个整数之间.三.解答题(共15小题)26.计算(1)﹣+(2)()()﹣(﹣)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=﹣2+10=;(2)原式=2﹣6﹣(2﹣2+)=﹣4﹣=﹣4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.27.当t=2时,求二次根式的值.【分析】将t的值代入==|3﹣t|计算可得.【解答】解:当t=2时,==|3﹣t|=|3﹣2|=3﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的基本性质.28.已知a,b,c为△ABC三边,化简+|b﹣a﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定a﹣b﹣c以及绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解∵a,b,c为△ABC三边,∴原式=|a﹣b﹣c|+|b﹣a﹣c|=b+c﹣a+a+c﹣b=2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.29..【分析】根据二次根式的定义得出x﹣8≥0,8﹣x≥0,求出x,代入求出y,把所求代数式化简后代入求出即可.【解答】解:要使y=++9有意义,必须x﹣8≥0,且8﹣x≥0,解得:x=8,把x=8代入得:y=0+0+9=9,∴=,=+,=+,=.【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x、y的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.30.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.31.化简求值:已知:x=,y=,求(x+3)(y+3)的值.【分析】将x和y的值分母有理化,再代入到原式xy+3x+3y+9=xy+3(x+y)+9计算可得.【解答】解:当x===,y===时,原式=xy+3x+3y+9=xy+3(x+y)+9=×+3×(+)+9=+3×+9=+3+9=+3.【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.32.先化简,再求值:(﹣),其中a=17﹣12,b=3+2【分析】将原式利用二次根式的性质和运算法则化简为,由a=17﹣12=(3﹣2)2、b=3+2=(+1)2,代入计算可得.【解答】解:原式=(﹣)•=[﹣]•=•=,∵a=17﹣12=32﹣2××(2)2=(3﹣2)2,b=3+2=()2+2+1=(+1)2,∴原式====.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质和运算法则.33.先化简,再求值:(a+)(a﹣)﹣(﹣a)2,其中a=2﹣1.【分析】先利用平方差公式和完全平方公式展开,再合并同类项即可化简二次根式,最后将a的值代入计算可得.【解答】解:原式=a2﹣5﹣3﹣a2+2a=2a﹣8.∵a=2﹣1,∴原式=2×(2﹣1)﹣8=4﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和二次根式的性质.34.先化简,再求值:已知x=,求+的值.【分析】先将x的值分母有理化,再根据二次根式的性质和运算法则化简原式,从而得出答案.【解答】解:∵x==3﹣2,∴x﹣2=1﹣2<0,则原式=x﹣1+=x﹣1﹣1=x﹣2=1﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握分母有理化与分式的混合运算顺序与运算法则、二次根式的性质.35.观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=1(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:=1+;(3)利用上述规律计算:(仿照上式写出过程)【分析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【解答】解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).【点评】本题考查了二次根式的性质与化简,解决本题的关键是关键信息,找到规律.36.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵5+2=3+2+2=()2+()2+2××=(+)2,∴==+;(2)∵7﹣4=4+3﹣4=22+()2﹣2×2×=(2﹣)2,∴==2﹣.【点评】此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.37.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与3+互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.【分析】(1)根据题意可以得到所求式子的分母有理化因式,并将题目中的二次根式化简;(2)根据分母有理化的方法可以化简题目中的式子;(3)根据题意,对所求式子变形即可求得a、b的值.【解答】解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴a(﹣1)+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.【点评】本题考查二次根式的混合运算,分母有理化,解答本题的关键是明确二次根式的混合运算的计算方法.38.已知a=,b=,求a2+3ab+b2﹣a+b的值【分析】先由a、b的值计算出a+b、a﹣b、ab的值,再代入到原式=a2+3ab+b2﹣a+b=(a+b)2﹣(a﹣b)+ab.【解答】解:∵a=,b=,∴a+b=2,a﹣b=﹣2,ab=1,∴原式=a2+3ab+b2﹣a+b=a2+2ab+b2﹣a+b+ab,=(a+b)2﹣(a﹣b)+ab=(2)2﹣(﹣2)+1=13+2.【点评】本题考查的是二次根式的化简求值,在解答此题类目时要根据各题的特点灵活解答.39.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.【分析】根据两边之和大于第三边可将各二次根式求出,从而可得出化简后的答案.【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.【点评】本题考查二次根式的化简及三角形的三边关系,掌握三角形两边之和大于第三边是关键.40.现有一组有规律的数:1,﹣1,,﹣,,﹣,1,﹣1,,﹣,,﹣…其中1,﹣1,,﹣,,﹣这六个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加起来,如果和为520,那么一共是多少个数的平方相加?【分析】(1)首先根据这列数的排列规律,可得每6个数一个循环:1,﹣1,,﹣,,﹣,然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2017除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)++(﹣)=0,再加上剩下的数,求出把从第1个数开始的前2015个数相加,结果是多少即可;(3)首先求出1,﹣1,,﹣,,﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.【解答】解:(1)这列数每6个数一个循环:1,﹣1,,﹣,,﹣,∴50÷6=8…2,∴第50个数是﹣1.(2)∵2017÷6=336…1,且1+(﹣1)++(﹣)++(﹣)=0,∴从第1个数开始的前2017个数的和是:336×0+1=1.(3)∵12+(﹣1)2+()2+(﹣)2+()2+(﹣)2=12,520÷12=43…4,而且12+(﹣1)2+()2=4,∴43×6+3=261,即共有261个数的平方相加.【点评】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数每6个数一个循环:1,﹣1,,﹣,,﹣,而且每个循环的6个数的和是0.。
八年级数学二次根式培优专题
解答为:原式 =a+ (1 a)2 =a+( a-1) =2a-1=17.
两种解答中, _______的解答是错误的,错误的原因是
2. 若-3≤ x≤ 2 时,试化简│ x-2│ + (x 3)2 + x2
__________.
10x 25 。
七、其他
1.等式 x 1g x 1 x2 1成立的条件是( )
( 2)二次根式的除法法则:两个数的算术平方根的商,等 于这两个数的商的算术平方根。反过来就是商的算术平方根的性质。
x
2.把二次根式
( y>0)化为最简二次根式结果是(
).
y
注意:此性质可作公式记住,后面根式运算中经常用到. ( 2) . ( a) 2 aa( 0) .注意:此性质既可正用,也可反用, 反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式: a ( a) 2 ( a 0)
8. 2 + 3 的 有 理 化 因 式 是 ________ ; x- y 的 有 理 化 因 式 是 _________. - x 1 - x 1 的有理化因式是 _______.
2. 把下列各式的分母有理化
( 1) 1 ; ( 2) 1 ; ( 3) 2 ; (4)3 3 4 2 .
51
1 23
; ②b
( 3)分母有理化的方法与步骤: ①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式
【典例解析】
一、概念
7、二次根式的运算: ( 1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。 反过来就是积的算术平方根的性质。
《二次根式》培优试题及答案精编版
《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………()(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n nm)÷a 2b 2m n ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn-m ab mn +m n n m )·221ba n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy yx +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|x y y x -|∵ x =41,y =21,∴yx<xy .∴ 原式=x y y x +-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
数学二次根式的专项培优练习题(附解析
数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。
第十六章 二次根式(培优卷)(原卷版)
第十六章二次根式(培优卷)一、单选题1.(2021·山东河东·七年级期末)2021=0的值为()A.0B.2021C.-1D.12.(2021·福建南安·九年级期中)若x=y=222x xy y++的值为().A.2B.2021C.-D.8 3.(2021·=.=关于解答过程,下列说法正确的是().A.两人都对B.甲错乙对C.甲对乙错D.两人都错4.(2021·河北八年级期中)墨迹覆盖了等式“=中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷5.(2021·湖北)已知按照一定规律排成的一列实数:﹣1﹣2,﹣,…则按此规律可推得这一列数中的第2021个数应是()A B C D.20216.(2021·山东青州·八年级期末)如图是一个无理数生成器的工作流程图,根据该流程图,下列说法:①当输出值y x为5或25;②当输入值为64时,输出值y③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的有( )A.4个B.3个C.2个D.1个.7.(2021·山东河东·八年级期末)我们把形如b(a,b型无理数,如12属于无理数的类型为().A型B C型D8.(2021·浙江滨江·八年级期中)对式子m,正确的结果是()A B.C.D9.(2021·全国·九年级专题练习)=x、y、z为有理数.则xyz=()A.34B.56C.712D.131810.(2021·广西钦州·七年级期末)如图是一张正方形的纸片,下列说法:①若正方形纸片的面积是1,则正方形的长为1;②若一圆形纸片的面积与这张正方形纸片的面积都是2π,设圆形纸片的周长为C圆,正方形纸片的周长为C正,则C圆<C正;③若正方形纸片的面积是16,沿这张正方形纸片边的方向可以裁出一张面积为12的长方形纸片,使它的长和宽之比为3:2,其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题11.(2021·山东青州·八年级期末)已知2x=,则代数式24x++的值等于___.12.(2021·江西·景德镇一中七年级期中)_______13.(2021·山东商河·八年级期中)计算:)20142)2015=______.14.(2021·河北·平泉市教育局教研室八年级期末)==a b =______.15.(2021·浙江金华市·八年级期末)对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:--2-=※________.16.(2021·安徽八年级期中)在数学课上,老师将一长方形纸片的长增加,宽增加,就成为了一个面积为2192cm 的正方形,则原长方形纸片的面积为________2cm .17.(2020·全国·八年级课时练习)已知x 、y 满足:1<x <y <100,且+.18.(2021·浙江杭州市·八年级模拟)比较下列四个算式结果的木小:(在横线上选填“>”、“<”或“=”)(1)①________;②__________;③_________.(2)通过观察归纳,写出反映这一规律的一般结论 .三、解答题19.(2021·山东·枣庄市台儿庄区教育局教研室八年级期中)(1(2)(3(41)20.(2021·洛阳市第五中学八年级期中)2)2)=1a (a≥0)、+1)﹣1)=b ﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有22(+2(22+2´22+2+1﹣1,次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1(2)计算:(3的大小,并说明理由.21.(2021·湖北沙区·三模)小颖利用平方差公式,自己探究出一种解某一类根式方程的方法.下面是她解5的过程.m,与原方程相乘得:×5m,x﹣2﹣(x﹣7)=5m,解之得m=1,1,与原方程相加得:+5+1,6,解之得,x=11,经检验,x=11是原方程的根.1.22.(2021·江西)1=-;==2==.试求:(1(2n为正整数)的值.(3)计算:)1L.23.(2021·四川大邑·八年级期中)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方.如,善于思考的小明进行了以下探索,若设a+ba,b,m,n均为整数),则有a=m2+2n2,b=2mn,这样小明就找到一种把类似a+(1)若a+,当a,b,m,n均为整数时,用含m,n的式子分别表示a,b,得:a= ,b= .(2)若a,当a,m,n均为正整数时,求a的值.(3.24.(2020·江苏省初二月考)甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.2(1=222(22m m n=+=++2(m=+2(m=+细心观察图形,认真分析下列各式,然后解答问题:)2+1=2,S 1)2+1=3,S 2;)2+1=4,S 3;….(1)请用含有n (n 是正整数)的等式表示上述变化规律,并计算出OA 10的长;(2)求出的值.25.(2021·北京·八年级单元测试),3,…按下面的方式进行排列:,,那么(1所在的位置应记为;(2)在的位置上的数是,所在的位置应记为;(3)这组数中最大的有理数所在的位置应记为.222123210S S S S +++¼+ 3,M(1,5)(2,3)(4,1)。
中考数学数学二次根式的专项培优练习题(及解析
一、选择题1.下列二次根式中是最简二次根式的为( ) ABCD2.a 的值可能是( ) A .2-B .2C .32D .83.已知x 1x 2,则x₁²+x₂²等于( ) A .8 B .9C .10D .114.化简) ABCD5.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .536.已知a 满足2018a -a ,则a -2 0182=( ) A .0B .1C .2 018D .2 0197.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()123A .BC .D8.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题11.比较实数的大小:(1)5?-______3- ;(2)514-_______12 12.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________16.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154173219254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是(用含 n 的代数式表示). 17.把 18.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____. 19.3y =,则2xy 的值为__________.20.下列各式:是最简二次根式的是:_____(填序号)三、解答题21.计算及解方程组: (1-1-)(2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的: 因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题: (1)计算:= - .(2)…(3)若a ,求4a 2-8a +1的值. 【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.一样的式子,其实我3====,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=.考点:分母有理化.27.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4 =+4 =-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D =故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用最简二次根式的定义分析得出答案. 【详解】∴a ≥0,且a故选项中-2,32,8都不合题意, ∴a 的值可能是2. 故选:B . 【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.3.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.4.C解析:C 【解析】根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .5.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数,∴x >0,y <0.将x=-y 代入原式得:原式=()()()()2222313x x x x x x x x +---=--+-. 故选B .【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.6.D解析:D【解析】【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可.【详解】解:等式2018a -=a 成立,则a ≥2019,∴,,∴a-2019=20182,∴a-20182=2019.故选D .【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.7.B解析:B【解析】【分析】由图形可知,第n(n =案.【详解】由图形可知,第n (n=∴第8=, 则第9行从左至右第5=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x <0,y <0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可. 【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x <0,y <0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 12.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x −a)=(y+b)(y −b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换.15.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键. 18.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.19.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式,③4故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级数学二次根式培优专题
《二次根式》培优习题训练 【知识要点】1.二次根式的定义:形如的式子叫二次根式,其中 叫被开方数,只有当是一个非负数时,才有意义.2. ()()a aa 20=≥.3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系.(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.(2).()()a aa 20=≥性质既可正用,也可反用, 反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()20(3) a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.(2)同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们 的积不含有二次根式,就说这两个代数式互为有理化因式。
有 理化因式确定方法如下:①单项二次根式:a =来确定,如:,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a -,,分别互为有理化因式。
(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算:(1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。
(完整版)二次根式培优练习题.doc
二次根式培优练习题一.选择题(共14 小题)1.使代数式有意义的自变量 x 的取值范围是()A. x≥ 3 B. x>3 且 x≠4 C. x≥ 3 且 x≠4 D.x>32.若=3﹣a,则 a 与 3 的大小关系是()A. a< 3B. a≤3 C.a>3 D.a≥33.如果等式( x+1)0=1 和=2﹣3x 同时成立,那么需要的条件是()A. x≠﹣ 1 B. x<且 x≠﹣ 1 C.x≤或 x≠1 D.x≤且 x≠﹣ 14.若 ab<0,则代数式可化简为()A. a B.a C.﹣ a D.﹣ a5.已知 xy<0,则化简后为()A.B.C.D.6.如果实数 a、b 满足,那么点( a, b)在()A.第一象限B.第二象限 C.第二象限或坐标轴上D.第四象限或坐标轴上7.化简二次根式,结果正确的是()A.B.C.D.8.若 a+ =0 成立,则 a 的取值范围是()A.a≥0 B.a>0 C.a≤0 D.a< 0 9.如果 ab> 0, a+b<0,那么下面各式:①= ,②× =1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③10.下列各式中正确的是()A.B.=±3 C.(﹣)2=4 D.3 ﹣ =2 11.在二次根式、、、、中与是同类二次根式的有()A. 2 个 B.3 个 C.4 个 D. 5 个12.若是一个实数,则满足这个条件的 a 的值有()A. 0 个 B.1 个 C.3 个 D.无数个13.当 a<0 时,化简的结果是()A.B.C.D.14 .下列计算正确的是() A .B.C.D.二.填空(共13 小)15.二次根式与的和是一个二次根式,正整数 a 的最小;其和.16.已知 a、b 足=a b+1, ab 的.17.已知 | a 2007|+ =a, a 20072的是.18.如果的是一个整数,且是大于 1 的数,那么足条件的最小的整数a= .19.已知 mn=5, m +n = .20.已知 a<0,那么 | 2a| 可化.21.算:的果.22.若最二次根式与是同二次根式, x= ..若,x= ;若 2 2, x= ;若( x 1)2 ,.23 x =( 3)=16 x=24.化 a 的最后果.25.察分析,探求出律,然后填空:,2,,2 ,,,⋯,(第n 个数).26.把根号外的因式移到根号内:=27.若 a 是的小数部分, a(a+6)= .三.解答(共7 小)28.下列解程:= = = = 2;===.回答下列:(1)察上面的解程,直接写出式子=;(2)察上面的解程,直接写出式子=;(3)利用上面所提供的解法,求++++⋯+的.29.一个三角形的三分、、(1)求它的周(要求果化);(2)你一个适当的x ,使它的周整数,并求出此三角形周的.30.如,数 a、b 在数上的位置,化:.31.先下列的解答程,然后作答:形如的化,只要我找到两个数a、b 使 a+b=m,ab=n,()2+()2=m,? = ,那么便有= = ±( a> b)例如:化解:首先把化,里 m=7, n=12;由于 4+3=7,4×3=12,即()2+()2=7,? =,∴===2+由上述例的方法化:(1);(2);(3)..已知x=2 ,求代数式(2+(2+ )x+ 的.32 7+4 )x33.数 a、b 在数上的位置如所示,化:| a| .34.察下列各式:;;⋯,你猜想:(1)=,=.(2)算(写出推程):(3)你将猜想到的律用含有自然数n(n≥1)的代数式表达出来.参考答案一.选择题(共14 小题)1.C;2.B;3.D;4.C;5.B;6.C;7.D;8.C;9.B;10.A;11.B;12.B;13.A;14.D;二.填空题(共13 小题)15.6;﹣;16.±;17.2008;18.1;19.±2;20.﹣3a;21.1;22.0;23.±5;± 3;5 或﹣ 3; 24.﹣ 2;25.2;;26.;27.2;三.解答题(共7 小题)28.﹣;﹣;29.;30.;31.;32.;33.;34.5;6;;。
二次根式12套培优练习题及答案
二次根式练习(03)一、选择题(每小题2分,共30分) 1、25的平方根是( )A 、5B 、–5C 、5±D 、5± 2、2)3(-的算术平方根是( )A 、9B 、–3C 、3±D 、3 3、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–3 4、下列等式中,错误的是( ) A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=-5、下列各数中,无理数的个数有( ) 10.1010017231642π--,, , ,, 0, - A 、1 B 、2 C 、3 D 、4 6、如果x -2有意义,则x 的取值范围是( ) A 、2≥xB 、2<xC 、2≤xD 、2>x7、化简1|21|+-的结果是( ) A 、22-B 、22+C 、2D 、28、下列各式比较大小正确的是( ) A 、32-<-B 、6655->- C 、14.3-<-π D 、310->-9、用计算器求得333+的结果(保留4个有效数字)是( )A 、3.1742B 、3.174C 、3.175D 、3.1743 10、如果mm m m -=-33成立,则实数m 的取值范围是( )A 、3≥mB 、0≤mC 、30≤<mD 、30≤≤m 11、计算5155⨯÷,所得结果正确的是( )A 、5B 、25C 、1D 、5512、若0<x ,则xx x 2-的结果为( )A 、2B 、0C 、0或–2D 、–213、a 、b 为实数,在数轴上的位置如图所示,则2a b a +-的值是( ) A .-b B .b C .b -2a D .2a -b 14、下列算式中正确的是( )A 、333n m n m -=-B 、ab b a 835=+C 、1037=+x xD 、52523521=+15、在二次根式:①1281827中,与3是同类二次根式的是( )A 、①和③B 、②和③C 、①和④D 、③和④ 二、填空题(每小题2分,共20分)16、–125的立方根是_____. 17、如果9=x ,那么x =________;如果92=x ,那么=x ________.18、要使53-x 有意义,则x 可以取的最小整数是 . 19、平方根等于本身的数是________;立方根等于本身的数是_______ 20、x 是实数,且02122=-x ,则.____=x 21、若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22、计算:①____;)32(2=-②._____1964522=-23 2.645=== .24、计算:._____1882=++25、已知正数a 和b ,有下列命题:(1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23 (3)若6=+b a ,则ab ≤3根据以上三个命题所提供的规律猜想:若9=+b a ,则ab ≤________. 三、解答题(共50分) 26、直接写出答案(10分)② ④⑦348- ⑧()225+ ⑨27、计算、化简:(要求有必要的解答过程)(18分) ①8612⨯ ②)7533(3-③32 -321+2④123127+- ⑤(2⑥2363327⨯-+28、探究题(10=____,,=______. 根据计算结果,回答:(1a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算 ①若2x 〈②=_____29、(6分)已知一个正方形边长为3cm ,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长。
二次根式培优专题讲座
2 .代数式2x3 . 4x 13的最小值是( )(A )0 ( B ) 3 ( C ) 3.5 ( D )13 .若m 适合关系式.3x 5y 2 m 2x 3y m 、x 199 y . 199 x y ,求 m 的值.6.已知:y E 贡〒扌,求弟;22的值.5. 化简:23 610 4 3 2 26. 化简:\ 13 2 5 2 7 2 35二、二次根式的化简技巧 (一)构造完全平方第16章二次根式培优专题1.化简所得的结果为(拓展)计算 一、二次根式的非负性 1.若|2004 a Ja 2005 a ,则 a 20042= ______________________ :111I “ 22 32 I 1 32 4212003212200424 .已知x 、y 为实数,且y x 9 . 9 y 4,求x y 的值.3.化简:.23 6 6 4 23 <25 .已知y ■ x 88 x 18,求代数式一x —y — V x <'y 2xy x 、y y . x 的值.4.化简:2 T 2 3 .2 .2 32.化简;612 -24 .(二)分母有理化 1•计算J”5、3 3.57.55.74.化简:L L 的值.49.4747\ 49,35 .5 .. 73 2 5,7°5.化简:3 .3、62=2「6 .2.分母有理化: 2 6 2 .35 .6.化简:.10 . 14 .15 .21 '3.计算::2 31 I 37.化简:、6 4 3 3 2 18 . 12 2 .6(三)因式分解(约分) V2 V5 v 32、30 6 2 4.3 ° 1 .化简:8.化简:2.化简: ,6显,6 .3 2 13.化简: 6 43 3 2;6 、3 .32三、二次根式的应用 (一)无理数的分割 1.设a ,为3535的小数部分,b 为6 3 3. 6 3 3的小数部分,则——的值为()b a(A ) 6 2 1 (B ) -(C ) — 1(D ) 2、3 —4282 .设,5 1的整数部分为x,小数部分为y,试求x2 3丄xy y2的值.45 1 23 .设.19 8 3的整数部分为a ,小数部分为b,试求a b -的值b 为___________ .4 .若x . 2^1 x 『2x—1 .2 成立,贝U( )1 1 3(A) x - (B) - x 1 (C) x 1 (D) x -2 2 25. 已知3 1.732 , . 30 5.477,求2.7 的值.(二)最值问题1. 设a、b、c均为不小于3的实数,贝a 2 .. b 1 |2 . c 1 |的最小值是_______ .2 .代数式vx2 4 v(12 x)29的最小值是______________ .3 .若x,y为正实数,且x y 4那么x2 1 y2 4的最小值是4.实数a,b满足a2 2a 12. 设x 2 2 2 ,y(A) x y (B) x y (C)3 .已知-15 x2、19 x2.36 12a a210 |b 3| |b 2|,则a b的最大值为________________ .(三)性质的应用1 .设m、x、y均为正整数,且6. 已知x,y都为正整数,且x . y 1998,求x y的值.7. 是否存在正整数x、y(x y),使其满足x ... y 1476 ?若存在, 请求出x、y的值;若不存在,请说明理由.(四)因式分解I'm 28 x y,则x y m2 2 2 ,则( )x y (D) 不能确定2 ,贝U 15 x219 x2的值(1) x44 (2) 4x252(3) 16x49(五)有二次根式的代数式化简1. 已知2“)yy(6Jx 5“),求一x——的值.2x 5 xy 3y2.已知扳 仮j y 4j y 仮2五,求空_华E —到的值。
第1讲:二次根式的运算培优竞赛题
第一讲 二次根式及化简一、典例解析例1(1)下列二次根式a 45、30、213、240b 、54、中最简二次根式是 。
(2)已知y=42-x +24x -,+3,则x y = .(3)(华师一中招生)把(a-b)a b -1根号外的因式移到根号内结果为( )A .b a -B .a b -C . -a b - D. -b a -变式训练:1.(2010广东湛江)下列二次根式是最简二次根式的是( ) A .21B .4C .12+a D. -y x 22.(2010.湖北荆门)计算1-x +x -1= 。
3.代数式a a 1-化简为( )A .a -B . -a -C .a D. -a例2.若x +y +z +3=2﹙x +1+y +1-z ﹚,求﹙x +y +z ﹚y-x 的值。
变式训练:4.(2010.荆门)若a,b 为实数,且满足︳a -2︳+2b -=0,则b -a 的值为( )A .2B . 0C .-2 D. 以上都不对5.已知△ABC 的三边a,b,c 满足a 2+b +︳1-c -2︳=10a +24-b -22,则△ABC 为()A .等腰三角形B . 等边三角形C .直角三角形 D. .等腰直角三角形例3.已知n -17是整数,求自然数n 的值。
变式训练:6.(2010.湖北孝感)使n 12是整数的最小整数n= 。
7.(2010.自贡)已知n 是一个正整数,n 135是 整数,则n 的最小值是( )A . 3B . 5C . 15 D. 25例4.(2010.全国初中数学联赛)若实数a,b,c 满足2a +3︳b ︳=6,4a -9︳b ︳=6c, C 可能取的最大值为﹙ ﹚A . 0B . 1C . 2 D. 3变式训练:8.(武汉竞赛)已知实数a 满足|2006-a|+2007-a =a,那么a -20062的值是( )A . 2005B . 2006C .2007 D. 20089.((华师一中招生)已知实数满足c b a +++)6)(2008(2-+b a +|10-2b =2|,则代数式 ab +bc 的值为 。
八年级数学二次根式培优专题
第 1 页 共 2 页《二次根式》培优习题训练【知识要点】 1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义. 2. ()()a aa 20=≥. 3. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系. (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 4、性质:(1)非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. (2).()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完 全平方的形式:a a a =≥()()2(3) a a a aa a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替. (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外. 5、(1)最简二次根式:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式; 分母中不含根号.(2)同类二次根式(可合并根式): 几个二次根式化成最简二次根式后,如果被开方数相同, 这几个二次根式就叫做同类二次根式,即可以合并的两个根式。
6、(1)分母有理化:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有 理化因式确定方法如下: ①单项二次根式:利用a =来确定,如:,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a,(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式; ②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式 7、二次根式的运算: (1)二次根式的乘法法则:两个因式的算术平方根的积, 等于这两个因式积的算术平方根。
(完整word版)二次根式拓展专题培优.doc
二次根式的专题提高一、二次根式的双重非负性例题: 1、使式子x 2有意义的 x 的取值范围是x2、无论 x 取任何实数,x2 6x m 都有意义,则m的取值范围是3、已知yx2 4 8 2x 2,求 x+y 的值4、已知实数a,b,c满足2 a 3 4 b 0 ,c24b 4c 12 0 ,求a+b+c的值。
练习:1、使式子x 1有意义的 x 的取值范围是x 12、若a2 4a b 3 4 ,则 a2 2b =3、若2014 a a 2015 a ,则a 20142 =二、简单的二次根式的化简例题: 1、如果式子( x 1)2 x 2 2 x 3 ,则x的取值范围是12、把( a b)根号外的因式移到根号内的结果为b a练习:1、化简( 1)a 1( 2)xx 2 a2x2、已知 a,b,c 为 ?ABC的三边,化简( a b c) 2 (a b c)2 (b a c)2 (c b a)2 的结果为是3、若1 x 1 x ,则(x 1) 2=三、二次根式的运算与规律探究例: 1、察下列各式: 1 1 2 3 4 12 3 1 1 , 1 2 3 4 5 22 3 2 1,1 3 4 5 6 323 3 1,猜 1 2014 2015 2016 20172、算2015 2016 2017 2018 1 20162的果:1、 n,k 正整数,,,,已知,2、小明做数学,,,,, 按上述律 , 第 n 个等式是3、 S=++⋯ +,求不超S 的最大整数四、分母有理化例:黑白双雄、横江湖;双合璧,天下无.是武侠小中常的描述,其意是指两人合在一起,取短,威力无比.在二次根式中也有种相相成的“ 子”如:,与的不含有根号,我就两个式子互有理化因式,其中一个是另一个的有理化因式.于是二次根式可以解:,像,通分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决:①的有理化因式是,1分母有理化得12② 算:③ 算:.④已知,,⑤已知 :,,, 试比较 a、b、 c 的大小 .练习:1、计算( 1 1 1 1 )( 2004 1) =2 23 3 2 20031 20042、已知则3、已知实数x,y 满足, 则的值为五、二次根式的计算综合题例题:计算:(1)6 4 3 3 2( 2)2 6( 3)2 3 2 217 12 2 ( 6 3)( 3 2) 3 2 5练习:计算( 1)( 3 1)20012( 3 1)20002( 3 1)19992001(2)(3)(4)863 8 63 ( 5)1 14 59 30 2 3 66 40 2六、二次根式的求值例题: 1、先化简 , 再求值, 其中,.2、设 m>0,x 3x 1 m ,求代数式x 3x 1 的值3、若,, 求 xy.4、设 a=,求a5+2a4-17a3-a2+18a-17的值.5、正数 m,n 满足, 求的值.练习: 1、已知1x 1 ,那么1x 值是x x2、若,, 则3、当时,多项式的值为4、正实数a,b 满足, 且满足, 求的值5、如果, 求的值.。
二次根式拓展专题培优(完整资料).doc
【最新整理,下载后即可编辑】二次根式的专题提高一、二次根式的双重非负性例题:1、使式子xx 2-有意义的x 的取值范围是2、无论x 取任何实数,m x x +-62都有意义,则m 的取值范围是3、已知22284x x y -+-=,求x+y 的值4、已知实数a,b,c 满足0432=-++b a ,012442=--+c b c ,求a+b+c 的值。
练习: 1、使式子11--x x 有意义的x 的取值范围是2、若4342-=-+-b a a ,则b a 22-=3、若a a a =-+-20152014,则22014-a =二、简单的二次根式的化简例题:1、如果式子322)1(2-=-+-x x x ,则x 的取值范围是 2、把ab b a --1)(根号外的因式移到根号内的结果为练习: 1、化简(1)aa1- (2)22x x x--2、已知a,b,c 为∆ABC 的三边,化简2222)()()()(a b c c a b c b a c b a -----+--+++的结果为是3、若x1,则2)1-1=x+x=(-三、二次根式的运算与规律探究例题:1、观察下列各式:121312+1431⨯+,⨯=⨯⨯+5463333+⨯+,猜测⨯⨯⨯=12++,1542312⨯3⨯⨯2=+12+⨯2015120142016⨯⨯⨯+2017练习:1、设n,k为正整数,,,,已知,则2、小明做数学题时,发现,,,,按上述规律,第n个等式是3、设S=++…+,求不超过S的最大整数四、分母有理化例题:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”如:,与的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式.于是二次根式可以这样解:,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.1分母有理化解决问题:①的有理化因式是,12得②计算:③计算:.④已知,,则⑤已知:,,,试比较a、b、c的大小.21++++3220032004232、已知则3、已知实数x,y满足,则的值为五、二次根式的计算综合题(2)(3)(4)638638-++(5)24066312305941--+++六、二次根式的求值例题:1、先化简,再求值,其中,.2 3、若,,求xy.4、设a=,求a 5+2a 4-17a 3-a 2+18a-17的值.5、正数m,n 满足,求的值.x x2、若,,则3、当时,多项式的值为4、正实数a,b满足,且满足,求的值5、如果,求的值.。
(完整word版)二次根式拓展专题培优
二次根式的专题提高一、二次根式的双重非负性例题:1、使式子xx 2-有意义的x 的取值范围是 2、无论x 取任何实数,m x x +-62都有意义,则m 的取值范围是3、已知22284x x y -+-=,求x+y 的值4、已知实数a,b ,c 满足0432=-++b a ,012442=--+c b c ,求a+b+c 的值。
练习:1、使式子11--x x 有意义的x 的取值范围是 2、若4342-=-+-b a a ,则b a 22-=3、若a a a =-+-20152014,则22014-a = 二、简单的二次根式的化简例题:1、如果式子322)1(2-=-+-x x x ,则x 的取值范围是2、把a b b a --1)(根号外的因式移到根号内的结果为 练习: 1、化简(1)a a 1- (2)22xx x --2、已知a ,b ,c 为∆ABC 的三边,化简2222)()()()(a b c c a b c b a c b a -----+--+++的结果为是3、若x x +=-11,则2)1(-x =三、二次根式的运算与规律探究例题:1、观察下列各式:1131432112+⨯+=⨯⨯⨯+,1232543212+⨯+=⨯⨯⨯+,1333654312+⨯+=⨯⨯⨯+,猜测=⨯⨯⨯+201720162015201412、计算2201612018201720162015-+⨯⨯⨯的结果为 练习:1、设n,k 为正整数,,, ,已知,则 2、小明做数学题时,发现,,,,按上述规律,第n 个等式是3、设S=++…+,求不超过S 的最大整数四、分母有理化例题:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子"如:,与的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式.于是二次根式可以这样解:,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:①的有理化因式是 ,121分母有理化得 ②计算:③计算:. ④已知,,则⑤已知:,,,试比较a 、b 、c 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的专题提高
1、二次根式的双重非负性
例题:1、使式子
有意义的x 的取值范围是 x
x 2
-2、无论x 取任何实数,都有意义,则m 的取值范围是
m x x +-62
3、已知,求x+y 的值
22284x x y -+-=4、已知实数a,b,c 满足,,求a+b+c 的值。
0432=-++b a 012442
=--+c b c 练习:
1、使式子
有意义的x 的取值范围是 1
1
--x x 2、若,则=
4342
-=-+-b a a b a 22
-3、若,则=
a a a =-+-201520142
2014-a 二、简单的二次根式的化简
e a
n d
A
l l t 例题:1、如果式子,则x 的取值范围是
322)1(2
-=-+-x x x 2、把根号外的因式移到根号内的结果为 a
b b a --1
)
(练习:
1、化简(1) (2)a a 1-
2
2x x x --2、已知a,b,c 为∆ABC 的三边,化简
的结果为是
2222)()()()(a b c c a b c b a c b a -----+--+++3、若,则=
x x +=-112
)1(-x 三、二次根式的运算与规律探究
例题:1、观察下列各式:,,
1131432112
+⨯+=⨯⨯⨯+1232543212
+⨯+=⨯⨯⨯+,猜测
1333654312+⨯+=⨯⨯⨯+=⨯⨯⨯+201720162015201412练习:
1、设n,k 为正整数,
,
,
,已知
,则
2、小明做数学题时,发现
,
,
,
,按上述规律,第n 个等式是
d
A
l l t h i n
g s
i b e
i n g
a r
e s o
3、设S=++…+,求不超过S 的最大
整数
4、分母有理化
例题:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”如:
,与的积不含有根号,我们就说这两个式子互为
有理化因式,其中一个是另一个的有理化因式.于是二次根式
可以这样解:
,像这样,通过分子、分母同乘以一个式
子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:①的有理化因式是②计算:③计算:
.
④已知
,,则
⑤已知:
,,
,试比较
a 、
b 、
c 的大小.
练习:
1
2、已知则
3、已知实数x,y 满足
,则
的值为
五、二次根式的计算综合题
练习:
(2)
(3)
a
l l t h s
i n
a r
e (4) (5)
638638-++2
406631
2
305941--+
++六、二次根式的求值
例题:1、先化简,再求值,其中
,
.
23、若,
,求xy.
4、设a=,求a 5+2a 4-17a 3-a 2+18a-17的值.
5、正数m,n 满足
,求
的值.
n
t h
n g
a 2、若,,则
3、当时,多项式的值为
4、正实数a,b 满足,且满足
,求
的值
5、如果
,求
的值.。