初中数学奥林匹克竞赛教程
数学奥林匹克竞赛教程
1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得 20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.1987年全苏【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k ≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≣2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2。
2023年初中数学奥林匹克竞赛解题方法大全配版四边形的趣味问题
第十章四边形旳趣味问题第一节四边形旳分类与鉴定【知识点拨】1.四边形旳性质: 四边形旳内角和等于3600。
2、四边形旳旳分类: (1)对边平行;(2)对边不平行。
本节研究是对边不平行旳四边形。
没用措施是转化为三角形进行研究。
【赛题精选】例2.如图: 求∠A+∠B+∠C+∠D+∠E+∠F旳度数。
(1999年重庆市竞赛题)【阐明】探索存在型问题是指在一定条件下, 判断与否存在某个结论。
解答此类问题, 先假设结论存在, 从假设出发, 根据题设条件及有关性质进行推理论证, 若推出矛盾, 则不定假设, 若推出合理旳成果, 则阐明假设对旳。
这种措施叫“假设法”。
【阐明】对于四边形, 作对角是常用旳辅助线!【针对训练】第二节平行四边形旳问题【知识点拨】1.平行四边形性质: 对边平行且相等、对角相等、邻角互补、对角线互相平分。
2.矩形性质: 矩形除具有平行四边形旳性质外, 还具有对角线相等、四个角是直角。
3、菱形性质:除具有平行四边形旳性质外, 尚有四条边相等、对角线互相垂直、且每一条对角线平分一组对角。
4、平行四边形问题旳处理措施:(1)转化为三角形问题来处理;(2)常用平行四边形旳性质来处理。
【赛题精选】例2.凸四边形ABCD中, AB∥CD, 且AB+BC=CD+AD求证: ABCD是平行四边形。
(1990年芜湖市竞赛题)例3.平面上有三个正△ABD.△ACE、△BCF, 两两共有一种顶点。
求证: CD与EF互相平分。
(1990年芜湖市竞赛题)例4.在Rt△ABC中, ∠ACB=900, CD⊥AB于D, AE平分∠BAC, 交CD于K, 交BC 于E、, F是BE上一点, 且BF=CE。
求证: FK∥AB。
(大连市第八届“育英杯”竞赛题)例6.矩形ABCD中, AB=20cm, BC=10cm, 若在AC.AB上各取一点M、N, 使BM+MN旳值最小, 求这个最小值。
(1998年北京市竞赛题)例7、设P为等腰三角形ABC斜边AB上任意一点, PE⊥AC于点E, PF⊥BC于点F, PG⊥EF于G, 延长GP并在其延长线上取一点D, 使得PD=PC。
初中数学奥林匹克竞赛解题方法大全(配PDF版)一元一次方程及汇总
第四章一元一次方程及其应用第一节一元一次方程例1、在解方程的过程中,为了使得到的方程和原方程同解,可在原方程的两边()A、乘以同一个数B、乘以同一个整式C、加上同一个代数式D、都加上同一个数例2、方程甲3(x-4)=3x与方程乙x-4=4x同解,其根据是() 4A、甲方程两边都加上了同一个整式B、甲方程两边都乘以了4/3xC、甲方程两两边都乘以了4/3D、甲方程两边都乘以了3/4例3、方程1⎧1⎡1⎛1⎫⎤⎫x-1⎪-1⎥-1⎬-1=2001的根x=__________。
⎨⎢2⎩2⎣2⎝2⎭⎦⎭例4、1992+1994+1996+1998=5000- 成立,则中应当填的数是()A、5B、-900C、-1900D、-2980例5、若P、Q都是质数,以X为未知数的方程PX+5Q=97的根是1。
则P2-Q=____。
例6、有理数111xz、、8恰是下列三个方程的根,则-=________。
25yx(1)2x-110x+12x+1-=-1 (2)3(2y+1)=2(1+y)+3(y+3) 3124(3)1⎡1⎤2z-(z-1)=(z-1) ⎥2⎢2⎣⎦327例7、解方程:x-=1990的去处时,某同学误将3.57 错写成3.57,结果与正确答案例8、在计算一个正数乘以3.57相差1.4,求正确的乘积应是多少? 2829第二节列方程解应用题例1、海滩上有一堆核桃,第一天猴子吃了这堆核桃的2/5,又将4个扔到大海里;第二天猴子吃掉的核桃数加上3个就是第一天所剩核桃数的5/8。
若第二天剩下6个核桃。
问海滩上原有多少个核桃?(20个)例2、古希腊数学家丢番图的墓志铭上记载:“坟中安葬着丢番图,多幺令人惊讶,它忠实地记录了所经历的道路。
上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛。
五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。
悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途。
数学初中数学奥赛
数学初中数学奥赛教案:初中数学奥赛一、引言在初中阶段,数学奥林匹克竞赛是锻炼学生数学思维和解决问题能力的重要平台。
本教案将介绍如何进行初中数学奥赛的准备和训练,帮助学生在竞赛中取得优秀的成绩。
二、奥赛建议1. 学习兴趣:培养学生对数学的兴趣和热爱是参加数学奥林匹克竞赛的首要目标。
教师可以通过生动的讲解和有趣的数学问题激发学生的学习兴趣。
2. 积累基础知识:数学奥赛需要学生具备扎实的基础知识。
建议学生通过反复的练习和巩固,掌握数学的基本概念、定理和公式。
3. 培养逻辑思维:数学奥赛往往涉及复杂的问题解决和推理过程。
教师应该引导学生培养逻辑思维能力,通过数学建模和分析问题的方法来解决问题。
4. 解题技巧:在参加数学奥赛中,学生需要掌握一些特殊的解题技巧,如巧用数学方法、寻找规律等。
建议教师在训练中重点培养学生的解题技巧和策略。
5. 合作学习:鼓励学生之间的合作学习是数学奥赛的重要环节。
通过小组讨论和合作解题,可以提高学生解决问题的效率和能力。
三、训练计划1. 阶段划分:将数学奥赛的训练过程分为不同的阶段,逐步提高学生的能力。
可以根据学生的实际情况划分为基础阶段、提高阶段和冲刺阶段。
2. 预习和复习:在每次课堂学习前,建议学生提前预习相关内容,熟悉课堂所要学习的知识。
课后要进行及时复习,加深对知识的理解。
3. 组织比赛:定期组织内部小规模比赛,激发学生的竞争意识和解题能力。
可以将学生分为若干小组,在限定时间内解决一系列数学问题。
4. 定向训练:根据学生的实际情况,有针对性地进行训练。
可以选择一些经典的数学奥赛题目进行训练,或者根据学生的问题进行辅导和指导。
5. 模拟考试:定期举行模拟考试,帮助学生熟悉奥林匹克竞赛的考试形式和要求。
教师可以根据学生的表现评估他们的水平,并给予相应的指导。
四、笔记和总结1. 记笔记:建议学生在学习的过程中记笔记,记录重要的知识点和解题方法。
这有助于学生巩固知识和复习回顾。
初中数学奥林匹克竞赛教程
初中数学奥林匹克竞赛教程(初稿)第一讲整数问题:特殊的自然数之一A1-001求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.【题说】1956年~1957年波兰数学奥林匹克一试题1.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.A1-002假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.【题说】1953年匈牙利数学奥林匹克题2.【证】设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.A1-003试证四个连续自然数的乘积加上1的算术平方根仍为自然数.【题说】1962年上海市赛高三决赛题1.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.A1-004已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.【题说】1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项.【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.A1-005求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).【题说】1964年全俄数学奥林匹克十一年级题1.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.A1-006求所有的素数p,使4p2+1和6p2+1也是素数.【题说】1964年~1965年波兰数学奥林匹克二试题1.【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.A1-007证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.【题说】第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.第二讲整数问题:特殊的自然数之二A1-008将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.【题说】第四届(1970年)全苏数学奥林匹克八年级题4.【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b 与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!因此,和的数字中必有偶数.A1-009证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.【题说】第五届(1973年)加拿大数学奥林匹克题3.【证】因为p是奇数,所以2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.于是6是p+1的因数.A1-010证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).【题说】美国第二届(1973年)数学奥林匹克题5.【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m原命题成立.A1-011设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.【题说】第十九届(1977年)国际数学奥林匹克题3.本题由荷兰提供.【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.A1-012证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.【题说】1979年英国数学奥林匹克题6.【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.A1-013如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.【题说】第十八届(1984年)全苏数学奥林匹克八年级题8.【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.A1-014设正整数d不等于2、5、13.证明在集合{2,5,13,d}中可以找到两个不同元素a、b,使得ab-1不是完全平方数.【题说】第二十七届(1986年)国际数学奥林匹克题1.本题由原联邦德国提供.【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 (1)5d-1=y2 (2)13d-1=z2 (3)其中x、y、z是正整数.由(1)式知,x是奇数,不妨设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 (4)(4)式说明d也是奇数.于是由(2)、(3)知y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d 是偶数.这与d是奇数相矛盾,故命题正确.第三讲整数问题:特殊的自然数之三A1-015求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题1.【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.A1-016已知n≣2,求证:如果k2+k+n对于整数k素数.【题说】第二十八届(1987年)国际数学奥林匹克题6.本题由原苏联提供.(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得A1-017正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.【题说】第二十九届(1988年)国际数学奥林匹克题6.本题由原联邦德国提供.a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a 的二次方程,它有一根为a.设另一根为a′,则由韦达定理(2),a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.A1-018求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.【题说】第三十届(1989年)国际数学奥林匹克题5.本题由瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.第四讲整数问题:特殊的自然数之四A1-019 n为怎样的自然数时,数32n+1-22n+1-6n是合数?【题说】第二十四届(1990年)全苏数学奥林匹克十一年级题5【解】32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,所以原数是合数.当n=1时,原数是素数13.A1-020设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.【题说】第三十二届(1991年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】显然a1=1.由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n 且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.A1-021试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.【题说】第一届(1992年)中国台北数学奥林匹克题6.【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+...+a i+9(i=1,2, (1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.第五讲整数问题:特殊的自然数之五A1-022相继10个整数的平方和能否成为完全平方数?【题说】1992年友谊杯国际数学竞赛七年级题2.【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,A1-023是否存在完全平方数,其数字和为1993?【题说】第三届(1993年)澳门数学奥林匹克第二轮题2.【解】存在,事实上,取n=221即可.A1-024能够表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?【题说】第十一届(1993年)美国数学邀请赛题6.【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+50A1-025如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?【题说】第十九届(1993年)全俄数学奥林匹克九年级一试题1.【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k -m)是合数.第六讲整数问题:特殊的自然数之六A1-026设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.【题说】1994年澳大利亚数学奥林匹克二试题2.【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.A1-027设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.【题说】第五十八届(1995年)莫斯科数学奥林匹克九年级题10.【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2所以,k>1且l>1.从而,a+b+c+d=kl为合数.A1-028 设k1<k2<k3<…是正整数,且没有两个是相邻的,又对于m=1,2,3,…,S m=k1+k2+…+k m.求证:对每一个正整数n,区间(S n,S n+1)中至少含有一个完全平方数.【题说】1996年爱朋思杯——上海市高中数学竞赛题2.【证】S n=k n+k n-1+…+k1所以从而第七讲整数问题:求解问题之一A2-001哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m³989m≡0(mod 8),m≣3又1978n-m≡1(mod 125)而1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1²1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4³25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】1980年卢森堡等五国国际数学竞赛题6.本题由荷兰提供.于是x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2²3=6,于是u=10,v=16第八讲整数问题:求解问题之二A2-007确定m2+n2的最大值,这里m和n是整数,满足m,n∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题1.【解】不妨设x≢y≢z.显然w≣z+1,因此(z+1)!≢w!=x!+y!+z!≢3²z!从而z≢2.通过计算知x=y=z=2,w=3是原方程的唯一解.A2-009求满足下式的所有整数n,m:n2+(n+1)2=m4+(m+1)4【题说】1984年匈牙利阿拉尼²丹尼尔数学竞赛(15年龄组)题1.【解】由原式得n(n+1)=m(m+1)(m2+m+2)设m2+m=k,我们有n(n+1)=k(k+2).显然,只可能两边为零.解是(0,0),(0,-1),(-1,0),(-1,1).A1-010前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)美国数学邀请赛题10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50³12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n 最大值是890.第九讲整数问题:求解问题之三A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】1987年匈牙利数学奥林匹克题1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≣ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)美国数学邀请赛题7.【解】显然,a、b、c都是形如2m²5n的数.设a=2m1²5n1,b=2m2²5n2,c=2m3²5n3.由[a,b]=1000=23²53,知max(m1,m2)=3,max(n1,n2)=3.同理,max(m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7³10=70种,即三元组共有70个.A2-014设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)美国数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2²10-3+3n²10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题1.【解】144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题1.【解】1989≢10n/x<1990所以10n/1990<x≢10n/1989即10n²0.000502512…<x≢10n²0.000502765…所以n=7,这时x=5026与5027是解.A2-017设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】1990年日本第1轮选拔赛题9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100-n,2n+1+2(100-n))=(100-n,201)≢201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)美国数学邀请赛题5.【解】为保证n是75的倍数而又尽可能地小,可设n=2α²3β²5γ,其中α≣0,β≣1,γ≣2,并且(α+1)(β+1)(γ+1)=75由75=52²3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24²34²52,n/75=432.第十讲整数问题;求解问题之四A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】1.例如x=1,y=8即满足要求.2.假设988≢x<y≢1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≣y>3x+1≣3³998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】1991年中国数学奥林匹克题5.【解】题给条件等价于,对一切k∈N,k2+n/k2≣1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≣0即(k2-1991/2)2+n-19912/4≣0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≣1991³322-324=1024³967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992³322-324=1024³968故n为满足1024³967≢n≢1024³967+1023的一切整数.A2-021设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】n=1,易知所求和S1=2.n≣2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≣1)位数字是1的数的个数.因为其中n个0的位置只可从2n-2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)美国数学邀请赛题6.7或8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a=9而b≠9或c≠9.则当n和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)美国数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4³1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.第十一讲:整数问题:求解问题之五A2-024数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】1992年日本数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2³9)=S(3³9)=…=S(92)=9,故9满足要求.10k≢n<10k+1又910k,故10k+1≢n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≣10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≢l≢k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是k+1位数,所以n=99…9=10k+1-1.另一方面,当n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≣1).A2-026求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】1992年友谊杯国际数学竞赛十、十一年级题2.【解】当m=1时,23m+1=9,故k≢2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3³1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≢b≢c≢d.无论a为b,c,d哪两个数的乘积,均有a≣bc,类似地,d ≢bc.从而,bc≢a≢b≢c≢d≢bc,即a=b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.第十二讲整数问题:求解问题之六A2-029对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f(19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)美国数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)美国数学邀请赛题4.【解】[long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2³1+4³2+8³3+16³4+32³5+64³6+128³7=1538.A2-031 对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p(1)+p(2)+p(3)+…+p(999),则S的最大素因子是多少?【题说】第十二届(1994年)美国数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如25可写成025),所有这样的正整数各位数字乘积的和是(0²0²0+0²0²1+0²0²2+…+9²9²8+9²9²9)-0²0²0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33²5²7²103最大的素因子是103.A2-032 求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs及p2+qr都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2,s=a+2或者q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033 求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q+2,p=r-2,其中q、r为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn-1,n)=1,所以mn-1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≣n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≣2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n+1),m=n=2.若m>n,则由于2(mn-1)≣n2+mn+n-2≣n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2从而于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.第十三讲整数问题:求解问题之七【题说】第十三届(1995年)美国数学邀请赛题7.【解】由已知得即所以A2-036一个正整数不是42的正整数倍与合数之和.这个数最大是多少?【题说】第十三届(1995年)美国数学邀请赛题10.【解】设这数为42n+p,其中n为非负整数,p为小于42的素数或1.由于2³42+1,42+2,42+3,42³5+5,42+7,2³42+11,42+13,4³42+17,3³42+19,42+23,3³42+29,2³42+31,4³42+37,2³42+41,都是合数,所以在n≣5时,42n+p都可表成42的正整数倍与合数之和,只有42³5+5例外.因此,所求的数就是42³5+5=215.A2-038求所有正整数x、y,使得x+y2+z3=xyz,这里z是x、y的最大公约数.【题说】第三十六届(1995年)IMO预选题.【解】由原方程及y2、z3、xyz均被z2整除得出z2|x.设x=az2,y=bz,则原方程化为a+b2+z=abz2 (1)由b2、abz2被b整除得b|(a+z).于是b≢a+z.a+z+b2=abz2=(a+z)b+(a+z)b+b((z2-2)a-2z)≣a+z+b2+b((z2-2)a-2z)(2)(2)中不等式的等号只在b=1并且b=a+z时成立,而这种情况不可能出现(a+z>1),所以(2)是严格的不等式.这表明(z2-2)a-2Z<0 (3)从而z≢2(否则(3)的左边≣z2-2-2z≣z-2>0).在z=2时,2a-2z<0,即a=1,代入(1)得b=1或3,从而x=4,y=2或6.在z=1时,(1)成为a+b2+1=ab (4)从而(a-b)(b-1)=b+1=(b-1)+2这表明(b-1)|2,b=2或3.代入(4)得a=5.于是x=5,y=2或3.因此本题共有四组解:(x,y)=(4,2),(4,6),(5,2),(5,3).A2-039设m、n∈N,(m,n)=1.求(5m+7m,5n+7n).其中(m,n)表示m、n的最大公约数.【题说】1996年日本数学奥林匹克题2.【解】记H(m,n)=(5m+7m,5n+7n).则H(0,1)=(2,12)=2H(1,1)=(12,12)=12因H(m,n)=H(n,m),故可设n≣m.当n≣2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5m7m(5n-2m+7n-2m))=(5m+7m,5m7m(5n-2m+7n-2m))=(5m+7m,5n-2m+7n-2m)当m≢n<2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5n-m7n-m(52m-n+72m-n))=(5m+7m,52m-n+72m-n)记则(1)H(m′,n′)=H(m,n);(2)m′+n′≡m+n(mod 2);(3)(m′,n′)=(m,n).当(m,n)=1时,反复进行上面的操作,最后必有(m′,n′)=(1,0)或(m′,n′)=(1,1).从而有A2-040求下列方程的正整数解:(a,b)+[a,b]+a+b=ab其中a≣b,[a,b]、(a,b)分别表示a与b的最小公倍数与最大公因数.【题说】1996年日本数学奥林匹克预选赛题7.【解】记(a,b)=d,a=da′,b=db′,则[a,b]=da′b′.题设条件变为1+a′+b′+a′b′=da′b′(*)所以故1<d≢4.当d=4时,a′=b′=1,从而a=b=4;当d=3时,(*)等价于(2a′-1)(2b′-1)=3由a′≣b′得a′=2,b′-1.故a=6,b=3.当d=2时,(*)等价于(a′-1)(b′-1)=2由a′≣b′得a′=3,b′=2.从而a=6,b=4.综上所述,所求的正整数解有4,4;6,4;6,3.A2-041一个幻方中,每一行,每一列及每一对角线上的三个数之和有相同的值.图示一个幻方中的四个数,求x.【题说】第十四届(1996年)美国数学邀请赛题1.【解】幻方中两条对角线的和与第二列的和都为同一值s,这3s也是第一行的和加上第二行的和,再加上中央一数的3倍.所以中央的左下角的数为19+96-1=114.因此x=3³105-19-96=200第十四讲整数问题:求解问题之八A2-042对整数1,2,3,…,10的每一个排列a1,a2,…,a10,作和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|数.求p+q.【题说】第十四届(1996年)美国数学邀请赛题12.【解】差|a i-a j|有如下的45种:这45种的和为1³9+2³8+3³7+4³6+5³5+6³4+7³3+8³2+9³1=165.每一种出现的次数相同,而在和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|中有5种,所以A2-043设正整数a、b使15a+16b和16a-15b都是正整数的平方.求这两个平方数中较小的数能够取到的最小值.【题说】第三十七届(1996年)国际数学奥林匹克题4.本题由俄罗斯提供.【解】15a+16b=r2,16a-15b=s2于是16r2-15s2=162b+152b=481b (1)所以16r2-15s2是481=13³37的倍数.由于0,±1,±2,±3,±4,±5,±6的平方为0,±1,±3,±4(mod 13),所以15≡2(mod 13)不是任一数的平方.因此,16r2≡15s2(mod 13)时,必有13|s.同样,由于0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,±15,±16,±17,±18的平方为0,±1,±3,±4,±9,±12,±16(mod 37),所以必有37|s.于是481|s.由(1),481|r.在r=s=481时,b=(16-15)³481=481,a=(16+15)³481=31³481,满足15a+16b=r2,16a-15b=s2.所以所说最小值为481.A2-044设自然数n为十进制中的10位数.从左边数起第1位上的数恰是n的数字中0的个数,第2位上的数恰是n的数字中1的个数,一般地,第k+1位上的数恰是n的数字中k的个数(0≢k≢9).求一切这样的数n.【题说】1997年日本数学奥林匹克预选赛题7.【解】设n的左数第k+1位上的数字为n k(0≢k≢9),则数字k出现的次数为n k.因为n是10位数,所以n0+n1+n2+…+n9=10 (1)又数字k若在左数第n j+1位上出现,则数字j在n中出现k次.n k个k意味着有数字j1,j2,…,j nk,共出现k nk次.于是,又有n i+2n2+…+9n9=10 (2)由(2)显然n5,n6,n7,n8,n9,至多一个非零,且n6,n7,n8,n9均≢1.若n5=n6=n7=n8=n9=0 (3)则n0≣5.于是n中至少有一个数字≣5,与(3)矛盾.所以n5,n6,n7,n8,n9中有一个非零,其余四个为0.从而n1+2n2+3n3+4n4≢5 (4)(4)表明n1,n2,n3,n4中至少有两个为0,从而n中0的个数不少于6,即n0≣6.于是n6,n7,n8,n9中有一个为1,n5=0.若n9=1,则n0=9,n1≣1,这显然不可能.若n8=1,则n0=8,n1≣1,但无论n1>1或n1=1均不合要求.若n7=1,则n0=7,n1=1或2,前者显然不合要求.后者导致n2≣1,n0+n1+n2+n7>10也不合要求.若n6=1,则n0=6,n1=2或3.n1=2时,n2=1,数6210001000满足要求.n1=3时,n3>0,n0+n1+n3+n6>10,不合要求.综上所述,满足条件的10位数n只有6210001000.A2-045求所有的整数对(a,b),其中a≣1,b≣1,且满足等式a b2=b a.【题说】第三十八届(1997年)国际数学奥林匹克题5.本题由捷克提供.【解】显然当a、b中有一个等于1时,(a,b)=(1,1).以下设a,b≣2.设t=b2/a,则由题中等式得到b=a t,at=a2t,从而t=a2t-1.如果2t-1≣1,则t=a2t-1≣(1+1)2t-1≣1+(2t-1)=2t>t,矛盾.所以2t-1<1.于是我们有0<t<1.记K=1/t,则K=a/b2>1为有理数,由a=b k可知K=b K-2 (1)如果K≢2,则K=b K-2≢1,与前面所证K>1矛盾,因此K>2.设K=p/q,p,q∈N,p、q互质,则p>2q.于是由(1)。
初中数学奥林匹克竞赛解题方法大全(配PDF版)--二次方程与方程组
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
初中数学竞赛教程
“在数学竞赛中,我们需要掌握扎实的数学基础,包括代数、几何、数论、组 合数学等方面的知识。同时,我们还需要具备灵活的思维和敏锐的洞察力,能 够迅速找到解决问题的最佳途径。”
“数学竞赛中的题目往往非常复杂和抽象,需要我们具备扎实的数学基础和灵 活的思维。但是,只要我们能够认真思考、不断尝试,就一定能够找到解决问 题的方法。”
“在解决数学竞赛中的题目时,我们需要学会分析问题、寻找规律、建立模型, 然后运用所学的数学知识进行求解。同时,我们还需要具备严谨的逻辑推理能 力和扎实的计算能力。”
“数学竞赛不仅仅是一场考试,更是一次锻炼自己的机会。通过参与竞赛,我 们可以提高自己的数学水平、增强自信心、培养兴趣爱好。同时,我们还可以 结交更多的志同道合的朋友,一起探讨数学问题、分享学习心得。”
内容摘要
《初中数学竞赛教程》是一本非常实用的教材,可以帮助初中生提高数学能力和竞赛水平。
精彩摘录
《初中数学竞赛教程》是一本非常优秀的数学竞赛教材,它涵盖了初中数学竞 赛的所有知识点,并提供了丰富的例题和练习题,帮助学生们提高数学水平。 下面是一些精彩摘录:
“数学竞赛是锻炼数学思维和解决问题的能力的好机会,通过参与竞赛,我们 可以更加深入地了解数学,发现数学的奥秘和乐趣。”
“在数学竞赛中,我们需要保持冷静、自信和专注。即使遇到困难和挫折,我 们也不能轻易放弃。只有坚持不懈地努力,才能够取得优异的成绩。”
“我想说:数学竞赛不仅是一次考试,更是一次自我挑战和突破的机会。让我 们一起努力、共同进步!
阅读感受
《初中数学竞赛教程》是一本由浙江大学社的数学竞赛教材,旨在为初中生提 供数学竞赛的指导和帮助。在阅读这本书后,我深感其内容的丰富性和实用性, 对于提高我的数学竞赛水平有着很大的帮助。
八年级数学上册 奥赛培训教程 湘教版
初二上期奥数培训教程(一)-----平方根与算术平方根、立方根例1.下面的说法是否正确?1)0的平方根等于它的算术平方根 2)(-2)2的平方根是23)-1的算术平方根是1 4)(-5)2的平方根是-5 5)25的平方根是±5 6)0.02是0.4的算术平方根 7)4121是--的平方根 例2.化简下列各式: ①()22)2(2x x -+- ②()()2112-<+-x x 其中 ③()()1,12>---y y x y y x <其中 例3.()___________221,2=+-+--=a a a a a 化简:已知例4.的值是_____。
则已知222215219,21915x x x x ++-=--+例5.比较大小:3221++++a a a a 与例6.设x 、y 、z 适合关系式:,20022002223y x y x z y x z y x --+-+=-++--+试求x 、y 、z 的值。
例7.已知,1989119911990198919882-+⨯⨯⨯=P 那么P 的值是____(用换元法)例8.已知实数a 满足=-=-+-19992,2002|1999|a a a a 则________练习1a______1都有意义,则和、若a a - 2、)5(2-的平方根为______3、把(a-1)a-11根号外的因式移入根号内,其结果应是_______ 4、若)2(232+=+x x ,则等于______ 5、若3a 5+有意义,则a 能取的最小整数为________6、已知3y 2x 44y 3x =+=+, ,则x -y 的值为_______7、若0<x<1,则x1x x x2,,,这四个数的大小关系是_______8、任何正数的两个平方根的和都等于_______ 9、如果a a -=-1|1|,那么a 的取值范围是_______10、已知a 、b 、c 满足0412||212=+-+++-c c b b a c ,则a(b+c)的值为_______ 11、已知a 、b 为实数,且的值。
八年级奥林匹克数学竞赛超级讲义(共91页)
八年级奥林匹克数学竞赛超级讲义史瑞东吕梁高级实验中学目录本内容适合八年级学生竞赛拔高使用。
注重中考与竞赛的有机结合,重点落实在中考中难以上题、奥赛方面的基础知识和基本技能培训和提高。
本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。
另外在本次培训中,内容的编排大多大于120分钟的容量,因此在实际教学过程中可以根据学生的具体状况和层次,由任课教师适当的调整顺序和选择内容(如专题复习可以提前上)。
注:有(*) 标注的为选做内容。
第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
初中数学奥林匹克竞赛解题方法大全(配PDF版)-第11章-相汇总
第十一章相似形与面积问题第一节相似三角形【知识点拨】1、相似三角形的判定:(1)两角对应相等,两个三角形相似;(2)两边对应成比例且夹角相等,两个三角形相似;(3)三边对应成比例,两个三角形相似;(4)如果两个直角三角形的斜边和一条直角边对应成比例,这两个直角三角形相似。
2、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比;(3)相似三角形的面积比等于相似比的平方。
3、涉及的问题及解题思路:证线段成比例、线段相等、线段的和差倍分、角相等;证平行、计算线段长;求三角形的面积。
解题时,要注意抓住题设、结论的特点,设法将问题设法与证两个三角形相似联系。
【赛题精选】例1、已知正方形ABCD的边长是5厘米,EF=FG,FD=DG。
求△ECG的面积。
(2003年河北省竞赛题)【说明】在相似形中,计算线段长的主要方法是由线段成比例定理(如平行线分线段成比例定理、相似三角形的性质等)列出含待求线段的比例式,再设法求出待求线段的长。
154例2、已知在平行四边形ABCD中,M、N为AB的三等分点,DM、DN交于AC于P、Q两点。
求AP:PQ:QC的值。
(2001年河北省竞赛题)【说明】解线段a:b:c的问题,可根据相关的性质将a、b、c用同一条线段表示出来,再求几条线段的比。
若a、b、c正好可组成一条线段,常用这条线段表示这三条线段。
例3、正方形ABCD中,E是对角线AC上一点,F是边AB上一点,且AE=2EC,FB=2AF。
求∠EDF的度数(2002年河南省竞赛题)例4、如图,四边形ABCD中,AC与BD交于点O,直线l∥BD,且与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P。
求证:PM·PN=PR·PS。
(1999年山东竞赛题)【说明】证明线段成比例的方法有:证两个三角形相似、等线代换法、等比代换法。
初中奥数竞赛辅导教案
初中奥数竞赛辅导教案通过本节课的辅导,使学生掌握奥数竞赛的基本解题技巧和方法,提高学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 数论:质数与合数、最大公约数与最小公倍数、同余与欧拉函数等。
2. 几何:平面几何中的点、线、面的关系,三角形、四边形的性质,圆的性质等。
3. 代数:一元一次方程、一元二次方程、不等式、函数等。
4. 组合数学:排列组合、计数原理、图论等。
5. 数学思维:逻辑推理、归纳总结、演绎推理等。
三、教学方法1. 实例讲解:通过具体的题目实例,讲解解题思路和方法,使学生掌握解题技巧。
2. 练习巩固:布置适量的练习题,让学生在课后进行巩固练习,提高解题能力。
3. 小组讨论:组织学生进行小组讨论,分享解题心得和方法,互相学习,共同进步。
4. 竞赛模拟:定期举办模拟竞赛,检验学生的学习成果,提高学生的应试能力。
四、教学安排1. 数论:安排4课时,讲解质数与合数、最大公约数与最小公倍数、同余与欧拉函数等基本概念和性质。
2. 几何:安排6课时,讲解平面几何中的点、线、面的关系,三角形、四边形的性质,圆的性质等。
3. 代数:安排8课时,讲解一元一次方程、一元二次方程、不等式、函数等基本概念和解法。
4. 组合数学:安排4课时,讲解排列组合、计数原理、图论等基本概念和方法。
5. 数学思维:安排4课时,讲解逻辑推理、归纳总结、演绎推理等方法。
五、教学评价1. 课后练习:检查学生的课后练习情况,了解学生对知识的掌握程度。
2. 模拟竞赛:定期举办模拟竞赛,评估学生的竞赛能力和水平。
3. 学生反馈:听取学生的反馈意见,了解教学方法的适用性和改进方向。
4. 教学总结:定期进行教学总结,调整教学计划和方法,提高教学质量。
通过以上教学安排和教学方法,相信能够有效地提高学生的奥数竞赛水平,培养学生的数学思维和解决问题的能力。
初中数学奥林匹克竞赛解题方法大全(配PDF版)-第11章-相似形与面积问题
第十一章相似形与面积问题第一节相似三角形【知识点拨】1、相似三角形的判定:(1)两角对应相等,两个三角形相似;(2)两边对应成比例且夹角相等,两个三角形相似;(3)三边对应成比例,两个三角形相似;(4)如果两个直角三角形的斜边和一条直角边对应成比例,这两个直角三角形相似。
2、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比;(3)相似三角形的面积比等于相似比的平方。
3、涉及的问题及解题思路:证线段成比例、线段相等、线段的和差倍分、角相等;证平行、计算线段长;求三角形的面积。
解题时,要注意抓住题设、结论的特点,设法将问题设法与证两个三角形相似联系。
【赛题精选】例1、已知正方形ABCD的边长是5厘米,EF=FG,FD=DG。
求△ECG的面积。
(2003年河北省竞赛题)【说明】在相似形中,计算线段长的主要方法是由线段成比例定理(如平行线分线段成比例定理、相似三角形的性质等)列出含待求线段的比例式,再设法求出待求线段的长。
例2、已知在平行四边形ABCD中,M、N为AB的三等分点,DM、DN交于AC于P、Q两点。
求AP:PQ:QC的值。
(2001年河北省竞赛题)【说明】解线段a:b:c的问题,可根据相关的性质将a、b、c用同一条线段表示出来,再求几条线段的比。
若a、b、c正好可组成一条线段,常用这条线段表示这三条线段。
例3、正方形ABCD中,E是对角线AC上一点,F是边AB上一点,且AE=2EC,FB=2AF。
求∠EDF的度数(2002年河南省竞赛题)例4、如图,四边形ABCD中,AC与BD交于点O,直线l∥BD,且与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P。
求证:P M ·PN =PR ·PS 。
(1999年山东竞赛题)【说明】证明线段成比例的方法有:证两个三角形相似、等线代换法、等比代换法。
初中数学竞赛讲解教材 第五讲 三角形的五心
第五讲 三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B ,∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△A B C P P M N 'A B C QK P O O O ....S 123O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ; 同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克) 分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′.有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′.若△ABC 为正三角形,易证△∽△′.不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b a c -+, A A 'F F 'G E E 'D 'C 'P C B DAD =2222221a c b -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23 =a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列.当△中a ≥b ≥c 时,△′中CF ≥BE ≥AD .∵△∽△′,∴∆∆S S '=(a CF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知 .O A A A A 1234H H 1213212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外 接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABHAH ∠sin =2R ⇒AH 2=4R 2cos 2A , Aa sin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有∥=∥=H H H M A B B A A B C C C F 12111222DEA 21A =r 2+bc a c b 2222-+·bc -(4R 2-a 2) =21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2, 21CC =21(a 2+b 2+c 2)-4R 2+r 2. 故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取 △DAB ,△ABC ,△BCD ,△CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC 之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN , ∴QK =AQQN MQ ⋅ =αsin /)2(r r r R ⋅-=)2(sin r R -⋅α. 由Rt △EPQ 知PQ =r ⋅αsin . A B CD O O O 234O 1A ααMB C KN ER O Q F r P∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心.五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于 一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周.(杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2] =21ab ; (p -a )(p -b )=21(-a +b +c )·21(a -b +c ) =41[c 2-(a -b )2]=21ab . ∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得r a =AF -AC =p -b ,r b =BG -BC =p -a ,r c =CK =p .而r =21(a +b -c ) =p -c .∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p=4p -(a +b +c )=2p .由①及图形易证.K r r r r O O O 213A OE C B a b c例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =q r . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sin A =A ′B ′·'''sin 2'sin B O A B ∠·2'sin A =A ′B ′·2''sin 2'sin 2'sin B A B A +⋅, O ′E = A ′B ′·2''sin 2'cos 2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有 11q r ·22q r =2222B tg CNB tg CMA tg A tg ∠∠ =22B tg A tg =qr . 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =F A .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +F A ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACEA ...'B 'C 'O O 'E D的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE , IF =EF =F A ,IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .∴AB +BC +CD +DE +EF +F A =2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD的重心.证明OE 丄CD .(加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1. ∴DG :GK =DE :EF ⇒GE ∥MF .∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE之垂心.易证OE 丄CD .例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°, Erdos ..I P A B C D E F Q SA B C D E F O K G O A BC D E F I K 30°∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO ) =30°+21(∠BAC -60°) =21∠BAC =∠BAI =∠BEI . ∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高.同理EO 是△DIE 之垂心,OI 丄DE .由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆 半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ①∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C ,同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ②∴BCHBH sin =2, ∴HH 1=cos C ·BH =2·cos B ·cos C .同样可得HH 2,HH 3.∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③欲证结论,观察①、②、③,须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.B C O IAO G H O G H G O G H 123112233练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。
初中奥赛数学讲解教案模板
课时:2课时年级:八年级教材:《初中奥赛数学》教学目标:1. 让学生掌握奥赛数学的基本解题思路和方法。
2. 培养学生的逻辑思维能力和创新能力。
3. 提高学生对数学问题的分析和解决能力。
教学重点:1. 奥赛数学的解题思路和方法。
2. 逻辑思维和创新能力。
教学难点:1. 复杂问题的分析和解决。
2. 创新思维在解题中的应用。
教学准备:1. 教学课件。
2. 奥赛数学题目。
3. 讨论小组。
教学过程:第一课时一、导入新课1. 回顾上节课的内容,让学生谈谈自己对奥赛数学的理解。
2. 提出本节课的学习目标。
二、新课讲解1. 介绍奥赛数学的特点和常见题型。
2. 讲解解题思路和方法,如分类讨论、数形结合、归纳推理等。
3. 通过实例分析,让学生理解解题思路和方法的应用。
三、课堂练习1. 给出几道奥赛数学题目,让学生独立完成。
2. 教师巡视指导,解答学生提出的问题。
四、讨论与交流1. 将学生分成小组,讨论解题思路和方法。
2. 各小组汇报讨论成果,教师点评并总结。
五、小结1. 回顾本节课的学习内容,强调解题思路和方法的重要性。
2. 布置课后作业,巩固所学知识。
第二课时一、复习上节课内容1. 回顾奥赛数学的特点和常见题型。
2. 回顾解题思路和方法。
二、新课讲解1. 讲解复杂问题的分析和解决方法。
2. 通过实例分析,让学生理解复杂问题的解题思路。
三、课堂练习1. 给出几道复杂奥赛数学题目,让学生独立完成。
2. 教师巡视指导,解答学生提出的问题。
四、创新思维训练1. 让学生尝试从不同角度思考问题,寻找新的解题方法。
2. 教师点评并总结,鼓励学生创新思维。
五、小结1. 回顾本节课的学习内容,强调创新思维的重要性。
2. 布置课后作业,让学生巩固所学知识。
教学评价:1. 课堂表现:观察学生在课堂上的参与程度、回答问题的情况等。
2. 作业完成情况:检查学生的课后作业,了解学生对知识的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,如沟通能力、合作精神等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学奥林匹克竞赛教程初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。
目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。
除教学大纲所列内容外,本大纲补充列出以下内容。
这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数十进制整数及表示方法。
整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式含字母系数的一元一次、二次方程的解法。
一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
含绝对值的一元一次不等式。
简单的一次不定方程。
列方程(组)解应用题。
5、函数y=|ax+b|,y=|ax2+bx+c|及y=ax2+bx+c的图像和性质。
二次函数在给定区间上的最值。
简单分式函数的最值,含字母系数的二次函数。
6、逻辑推理问题抽屉原则(概念),分割图形造抽屉、按同余类造抽屉、利用染色造抽屉。
简单的组合问题。
逻辑推理问题,反证法。
简单的极端原理。
简单的枚举法。
7、几何四种命题及其关系。
三角形的不等关系。
同一个三角形中的边角不等关系,不同三角形中的边角不等关系。
面积及等积变换。
三角形的心(内心、外心、垂心、重心)及其性质。
第一讲整数问题:特殊的自然数之一A1-001求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.【题说】1956年~1957年波兰数学奥林匹克一试题1.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.A1-002假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.【题说】1953年匈牙利数学奥林匹克题2.【证】设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.A1-003试证四个连续自然数的乘积加上1的算术平方根仍为自然数.【题说】1962年上海市赛高三决赛题1.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.A1-004已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.【题说】1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项.【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.A1-005求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).【题说】1964年全俄数学奥林匹克十一年级题1.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.A1-006求所有的素数p,使4p2+1和6p2+1也是素数.【题说】1964年~1965年波兰数学奥林匹克二试题1.【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.A1-007证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.【题说】第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.第二讲整数问题:特殊的自然数之二A1-008将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.【题说】第四届(1970年)全苏数学奥林匹克八年级题4.【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b 与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!因此,和的数字中必有偶数.A1-009证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.【题说】第五届(1973年)加拿大数学奥林匹克题3.【证】因为p是奇数,所以2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.于是6是p+1的因数.A1-010证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).【题说】美国第二届(1973年)数学奥林匹克题5.【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m原命题成立.A1-011设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.【题说】第十九届(1977年)国际数学奥林匹克题3.本题由荷兰提供.【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.A1-012证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.【题说】1979年英国数学奥林匹克题6.【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.A1-013如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.【题说】第十八届(1984年)全苏数学奥林匹克八年级题8.【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.A1-014设正整数d不等于2、5、13.证明在集合{2,5,13,d}中可以找到两个不同元素a、b,使得ab-1不是完全平方数.【题说】第二十七届(1986年)国际数学奥林匹克题1.本题由原联邦德国提供.【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 (1)5d-1=y2 (2)13d-1=z2 (3)其中x、y、z是正整数.由(1)式知,x是奇数,不妨设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 (4)(4)式说明d也是奇数.于是由(2)、(3)知y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d 是偶数.这与d是奇数相矛盾,故命题正确.第三讲整数问题:特殊的自然数之三A1-015求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题1.【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.A1-016已知n≣2,求证:如果k2+k+n对于整数k素数.【题说】第二十八届(1987年)国际数学奥林匹克题6.本题由原苏联提供.(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得A1-017正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.【题说】第二十九届(1988年)国际数学奥林匹克题6.本题由原联邦德国提供.a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a 的二次方程,它有一根为a.设另一根为a′,则由韦达定理(2),a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.A1-018求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.【题说】第三十届(1989年)国际数学奥林匹克题5.本题由瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.第四讲整数问题:特殊的自然数之四A1-019 n为怎样的自然数时,数32n+1-22n+1-6n是合数?【题说】第二十四届(1990年)全苏数学奥林匹克十一年级题5【解】32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,所以原数是合数.当n=1时,原数是素数13.A1-020设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.【题说】第三十二届(1991年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】显然a1=1.由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n 且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.A1-021试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.【题说】第一届(1992年)中国台北数学奥林匹克题6.【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+...+a i+9(i=1,2, (1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.第五讲整数问题:特殊的自然数之五A1-022相继10个整数的平方和能否成为完全平方数?【题说】1992年友谊杯国际数学竞赛七年级题2.【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,A1-023是否存在完全平方数,其数字和为1993?【题说】第三届(1993年)澳门数学奥林匹克第二轮题2.【解】存在,事实上,取n=221即可.A1-024能够表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?【题说】第十一届(1993年)美国数学邀请赛题6.【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+50A1-025如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?【题说】第十九届(1993年)全俄数学奥林匹克九年级一试题1.【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k -m)是合数.第六讲整数问题:特殊的自然数之六A1-026设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.【题说】1994年澳大利亚数学奥林匹克二试题2.【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.A1-027设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.【题说】第五十八届(1995年)莫斯科数学奥林匹克九年级题10.【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2所以,k>1且l>1.从而,a+b+c+d=kl为合数.A1-028 设k1<k2<k3<…是正整数,且没有两个是相邻的,又对于m=1,2,3,…,S m=k1+k2+…+k m.求证:对每一个正整数n,区间(S n,S n+1)中至少含有一个完全平方数.【题说】1996年爱朋思杯——上海市高中数学竞赛题2.【证】S n=k n+k n-1+…+k1所以从而第七讲整数问题:求解问题之一A2-001哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m³989m≡0(mod 8),m≣3又1978n-m≡1(mod 125)而1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1²1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4³25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】1980年卢森堡等五国国际数学竞赛题6.本题由荷兰提供.于是x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2²3=6,于是u=10,v=16第八讲整数问题:求解问题之二A2-007确定m2+n2的最大值,这里m和n是整数,满足m,n∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题1.【解】不妨设x≢y≢z.显然w≣z+1,因此(z+1)!≢w!=x!+y!+z!≢3²z!从而z≢2.通过计算知x=y=z=2,w=3是原方程的唯一解.A2-009求满足下式的所有整数n,m:n2+(n+1)2=m4+(m+1)4【题说】1984年匈牙利阿拉尼²丹尼尔数学竞赛(15年龄组)题1.【解】由原式得n(n+1)=m(m+1)(m2+m+2)设m2+m=k,我们有n(n+1)=k(k+2).显然,只可能两边为零.解是(0,0),(0,-1),(-1,0),(-1,1).A1-010前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)美国数学邀请赛题10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50³12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n 最大值是890.第九讲整数问题:求解问题之三A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】1987年匈牙利数学奥林匹克题1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≣ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)美国数学邀请赛题7.【解】显然,a、b、c都是形如2m²5n的数.设a=2m1²5n1,b=2m2²5n2,c=2m3²5n3.由[a,b]=1000=23²53,知max(m1,m2)=3,max(n1,n2)=3.同理,max(m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7³10=70种,即三元组共有70个.A2-014设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)美国数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2²10-3+3n²10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题1.【解】144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题1.【解】1989≢10n/x<1990所以10n/1990<x≢10n/1989即10n²0.000502512…<x≢10n²0.000502765…所以n=7,这时x=5026与5027是解.A2-017设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】1990年日本第1轮选拔赛题9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100-n,2n+1+2(100-n))=(100-n,201)≢201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)美国数学邀请赛题5.【解】为保证n是75的倍数而又尽可能地小,可设n=2α²3β²5γ,其中α≣0,β≣1,γ≣2,并且(α+1)(β+1)(γ+1)=75由75=52²3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24²34²52,n/75=432.第十讲整数问题;求解问题之四A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】1.例如x=1,y=8即满足要求.2.假设988≢x<y≢1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≣y>3x+1≣3³998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】1991年中国数学奥林匹克题5.【解】题给条件等价于,对一切k∈N,k2+n/k2≣1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≣0即(k2-1991/2)2+n-19912/4≣0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≣1991³322-324=1024³967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992³322-324=1024³968故n为满足1024³967≢n≢1024³967+1023的一切整数.A2-021设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】n=1,易知所求和S1=2.n≣2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≣1)位数字是1的数的个数.因为其中n个0的位置只可从2n-2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)美国数学邀请赛题6.7或8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a=9而b≠9或c≠9.则当n和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)美国数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4³1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.第十一讲:整数问题:求解问题之五A2-024数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】1992年日本数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2³9)=S(3³9)=…=S(92)=9,故9满足要求.10k≢n<10k+1又910k,故10k+1≢n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≣10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≢l≢k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是k+1位数,所以n=99…9=10k+1-1.另一方面,当n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≣1).A2-026求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】1992年友谊杯国际数学竞赛十、十一年级题2.【解】当m=1时,23m+1=9,故k≢2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3³1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≢b≢c≢d.无论a为b,c,d哪两个数的乘积,均有a≣bc,类似地,d ≢bc.从而,bc≢a≢b≢c≢d≢bc,即a=b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.第十二讲整数问题:求解问题之六A2-029对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f(19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)美国数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)美国数学邀请赛题4.【解】[long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2³1+4³2+8³3+16³4+32³5+64³6+128³7=1538.A2-031 对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p(1)+p(2)+p(3)+…+p(999),则S的最大素因子是多少?【题说】第十二届(1994年)美国数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如25可写成025),所有这样的正整数各位数字乘积的和是(0²0²0+0²0²1+0²0²2+…+9²9²8+9²9²9)-0²0²0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33²5²7²103最大的素因子是103.A2-032 求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs及p2+qr都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2,s=a+2或者q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033 求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q+2,p=r-2,其中q、r为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn-1,n)=1,所以mn-1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≣n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≣2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n+1),m=n=2.若m>n,则由于2(mn-1)≣n2+mn+n-2≣n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2从而于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.第十三讲整数问题:求解问题之七【题说】第十三届(1995年)美国数学邀请赛题7.。