2020最新高考模拟试题(含答案)理科数学
2020年高考_理科数学模拟试卷(含答案和解析)
【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。
2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。
客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。
4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。
则“E| =㈤"是口一2川=12。
一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。
高考理科数学模拟试题含答案及解析5套).pptx
AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为
.
f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(
)
A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:
组
号分
组频
数频
率
第一组 [145,155)
5
0.05
第二组 [155,165)
2020年高考理科数学模拟卷及答案详细解析
日平均睡眠时间分组
[4,5)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10]
频数
13
28
49
56
42
12
(1)填写下面的列联表,并根据列联表判断是否有99%的把握认为给市20岁至60岁市民的日平均睡眠时间与年龄有关;
年龄在区间[20,40)
绝密★启用前
2020年高考理科数学模拟卷及答案解析
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共12小题)
1.已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B中的元素个数为( )
A.1B.2C.3D.4
2.已知复数1+i是关于x的方程x2+mx+2的一个根,则实数m的值为( )
A.﹣2B.2C.﹣4D.4
3.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )
(1)证明:平面ABB1A1⊥平面ACC1A1;
(2)求平面AB1C1与平面ADE所成角二面角的余弦值.
2020届高考数学模拟考试试卷及答案(理科)(一)
2020届高考数学模拟考试试卷及答案(理科)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣22.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.535.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm36.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.167.直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A. B.C.2D.8.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α9.高考将至,凭借在五大学科竞赛的卓越表现,我校共有25人获得北大、清华保送及降分录取优惠政策,具体人数如右下表.若随机从这25人中任选2人做经验交流,在已知恰有1人获得北大优惠政策而另1人获得清华优惠政策的条件下,至少有1人是参加数学竞赛的概率为()学科数学信息物理化学生物北大42541清华21042A. B.C. D.10.设F是双曲线﹣=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为()A.5 B.5+4C.7 D.911.已知函数f(x)=x+sinx(x∈R),且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时,的取值范围是()A.[,]B.[0,]C.[,]D.[1,]12.设函数f是定义在正整数有序对的集合上,并满足:①f(x,x)=x;②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y);则f(12,16)+f(16,12)的值是()A.24 B.48 C.64 D.96二.填空题:本大题共4小题;每小题5分,共20分.13.已知抛物线y=ax2的准线方程是y=﹣,则实数a 的值为.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.15.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形最小值的正弦值是.16.若存在实数a、b使得直线ax+by=1与线段AB(其中A(1,0),B(2,1))只有一个公共点,且不等式+≥20(a2+b2)对于任意θ∈(0,)成立,则正实数p的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.18.已知函数(Ⅰ)求f(x)的最小正周期及对称中心;(Ⅱ)若,求f(x)的最大值和最小值.19.国家AAAAA级八里河风景区五一期间举办“管仲杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形ABCD如图所示,其中阴影区域的边界曲线近似为函数y=Asinx的图象).每队有3人“成功”获一等奖,2人“成功”获二等奖,1人“成功”获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响).(Ⅰ)求某队员投掷一次“成功”的概率;(Ⅱ)设X为某队获奖等次,求随机变量X的分布列及其期望.20.已知三棱柱ABC﹣A1B1C1中,侧面ABB1A1为正方形,延长AB到D,使得AB=BD,平面AA1C1C⊥平面ABB1A1,A1C1=AA1,∠C1A1A=.(Ⅰ)若E,F分别为C1B1,AC的中点,求证:EF∥平面ABB1A1;(Ⅱ)求平面A1B1C1与平面CB1D所成的锐二面角的余弦值.21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.22.已知函数f(x)=a(x+1)2﹣4lnx,a∈R.(Ⅰ)若a=,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若对任意x∈[1,e],f(x)<1恒成立,求实数a的取值范围.参考答案与试题解析一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣2【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵=为纯虚数,∴,解得:a=1.故选:A.2.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}【考点】1E:交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣2≤x≤1,即B=[﹣2,1],∵A={0,1,2,3,4},∴A∩B={0,1},3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】根据∥,算出=(﹣2,﹣4),从而得出=(﹣4,﹣8),最后根据向量模的计算公式,可算出的值.【解答】解:∵且∥,∴1×m=2×(﹣2),可得m=﹣4由此可得,∴2+3=(﹣4,﹣8),得==4故选:B4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.53【考点】8G:等比数列的性质;8H:数列递推式.【分析】先利用数列{1+a n}是以3为公比的等比数列以及a1=2,求出数列{1+a n}的通项,再把n=4代入即可求出结论.【解答】解:因为数列{1+a n}是以3为公比的等比数列,且a1=2所以其首项为1+a1=3.其通项为:1+a n=(1+a1)×3n﹣1=3n.当n=4时,1+a4=34=81.∴a4=80.5.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm3【考点】L!:由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.6.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.16【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=16,i=9时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16【解答】解:模拟执行程序框图,可得i=1S=0满足条件,S=1,i=3满足条件,S=4,i=5满足条件,S=9,i=7满足条件,S=16,i=9由题意,此时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16,故选:D.7.直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A. B.C.2D.【考点】JE:直线和圆的方程的应用.【分析】先根据点到直线的距离公式求出圆心到弦的距离即弦心距OD,然后根据垂径定理得到垂足为弦长的中点D,根据勾股定理求出弦长的一半BD,乘以2即可求出弦长AB.【解答】解:连接OB,过O作OD⊥AB,根据垂径定理得:D为AB 的中点,根据(x+2)2+(y﹣2)2=2得到圆心坐标为(﹣2,2),半径为.圆心O到直线AB的距离OD==,而半径OB=,则在直角三角形OBD中根据勾股定理得BD==,所以AB=2BD=故选D.8.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α【考点】LP:空间中直线与平面之间的位置关系.【分析】根据常见几何体模型举出反例,或者证明结论.【解答】解:(A)若m∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;(B)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面CDD′C′为平面β,直线BB′为直线m,直线A′B为直线n,则m⊥α,n∥β,α⊥β,但直线A′B与BB′不垂直,故B错误.(C)设过m的平面γ与α交于a,过m的平面θ与β交于b,∵m∥α,m⊂γ,α∩γ=a,∴m∥a,同理可得:m∥b.∴a∥b,∵b⊂β,a⊄β,∴a∥β,∵α∩β=l,a⊂α,∴a∥l,∴l∥m.故C正确.(D)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面ABB′A′为平面β,平面CDD′C′为平面γ,则α∩β=AB,α∩γ=CD,BC⊥AB,BC⊥CD,但BC⊂平面ABCD,故D 错误.故选:C.9.高考将至,凭借在五大学科竞赛的卓越表现,我校共有25人获得北大、清华保送及降分录取优惠政策,具体人数如右下表.若随机从这25人中任选2人做经验交流,在已知恰有1人获得北大优惠政策而另1人获得清华优惠政策的条件下,至少有1人是参加数学竞赛的概率为()学科数学信息物理化学生物北大4254121042清华A. B.C. D.【考点】CB:古典概型及其概率计算公式.【分析】先求出恰有1人获得北大优惠政策而另1人获得清华优惠政策的种数,再分类求出至少有1人是参加数学竞赛种数,根据概率公式计算即可得到.【解答】解:其中北大保送生有4+2+5+4+1=16人,清华保送生有2+1+0+4+2=9人,恰有1人获得北大优惠政策而另1人获得清华优惠政策的有C161C91=144种,故至少有1人是参加数学竞赛种数为C41C71+C21C121+C21C41=28+24+8=60种,故至少有1人是参加数学竞赛的概率P==.故选:A.10.设F是双曲线﹣=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为()A.5 B.5+4C.7 D.9【考点】KC:双曲线的简单性质.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得,|PF|﹣|PF′|=2a=4,进而根据PA|+|PF′|≥|AF′|=5,两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线定义可得,|PF|﹣|PF′|=2a=4,而|PA|+|PF′|≥|AF′|=5,两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.则|PF|+|PA|的最小值为9.故选:D.11.已知函数f(x)=x+sinx(x∈R),且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时,的取值范围是()A.[,]B.[0,]C.[,]D.[1,]【考点】3N:奇偶性与单调性的综合.【分析】判断函数f(x)的奇偶性和单调性,将不等式进行转化,利用直线和圆的位置关系,结合数形结合和的几何意义即可得到结论.【解答】解:∵f(x)=x+sinx(x∈R),∴f(﹣x)=﹣x﹣sinx=﹣(x+sinx)=﹣f(x),即f(x)=x+sinx(x∈R)是奇函数.∵f(y2﹣2y+3)+f(x2﹣4x+1)≤0,∴f(y2﹣2y+3)≤﹣f(x2﹣4x+1)=f[﹣(x2﹣4x+1)],由f′(x)=1+cosx≥0,∴函数单调递增.∴(y2﹣2y+3)≤﹣(x2﹣4x+1),即(y2﹣2y+3)+(x2﹣4x+1)≤0,∴(y﹣1)2+(x﹣2)2≤1,∵当y≥1时,=1+,∴不等式对应的平面区域为圆心为(2,1),半径为1的圆的上半部分.而的几何意义为动点P(x,y)到定点A(﹣1,0)的斜率的取值范围.设k=,(k>0),则y=kx+k,即kx﹣y+k=0.当直线和圆相切时,圆心到直线的距离d===1即8k2﹣6k=0,解得k=.此时直线斜率最大.当直线kx﹣y+k=0经过点B(3,1)时,直线斜率最小,此时3k﹣1+k=0,即4k=1,解得k=,∴≤k≤,故=1+=1+k的取值范围是[,].故选:A12.设函数f是定义在正整数有序对的集合上,并满足:①f(x,x)=x;②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y);则f(12,16)+f(16,12)的值是()A.24 B.48 C.64 D.96【考点】3P:抽象函数及其应用.【分析】由函数性质的第3条,可得f(x,x+y)=f(x,y),从而得到f(12,16)+f(16,12)=2f(12,16)=2f(12,12+4)=2××f(12,12),再利用①解.【解答】解:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=f(x,y),f(12,16)+f(16,12)=2f(12,16)=2f(12,12+4)=2××f(12,12)=2×4×12=96.故选:D二.填空题:本大题共4小题;每小题5分,共20分.13.已知抛物线y=ax2的准线方程是y=﹣,则实数a的值为1.【考点】K8:抛物线的简单性质.【分析】先化抛物线y=ax2为标准方程:x2=y,得到焦点坐标为F(0,),准线方程:y=﹣,再结合题意准线方程为,比较系数可得a=1.【解答】解:∵抛物线y=ax2化成标准方程为x2=y,∴2p=,可得=,焦点坐标为F(0,),准线方程:y=﹣再根据题意,准线方程为,∴﹣=﹣,可得a=1故答案为:114.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用函数图象,计算函数的周期,再利用周期计算公式计算ω的值,最后将点(,0)代入,结合φ的范围,求φ值即可【解答】解:由图可知T=2()=π,∴ω==2∴y=sin(2x+φ)代入(,0),得sin(+φ)=0∴+φ=π+2kπ,k∈Z∵0<φ≤∴φ=故答案为15.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形最小值的正弦值是.【考点】8F:等差数列的性质.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,求出a=c+4和b=c+2,由边角关系和条件求出sinA,求出A=60°或120°,再判断A的值,利用余弦定理能求出三边长,由余弦定理和平方关系求出这个三角形最小值的正弦值.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,可得b=c+2,a=c+4,∴A>B>C,∵最大角的正弦值为,∴sinA=,由A∈(0°,180°)得,A=60°或120°,当A=60°时,∵A>B>C,∴A+B+C<180°,不成立;即A=120°,则cosA===,化简得,解得c=3,∴b=c+2=5,a=c+4=7,∴cosC===,又C∈(0°,180°),则sinC==,∴这个三角形最小值的正弦值是,故答案为:.16.若存在实数a、b使得直线ax+by=1与线段AB(其中A(1,0),B(2,1))只有一个公共点,且不等式+≥20(a2+b2)对于任意θ∈(0,)成立,则正实数p的取值范围为[1,+∞).【考点】KE:曲线与方程.【分析】直线ax+by=1与线段AB有一个公共点,可知:点A(1,0),B(2,1)在直线ax+by=1的两侧,因此(a﹣1)(2a+b﹣1)≤0.画出它们表示的平面区域,如图所示.由图可知,当原点O到直线2x+y ﹣1=0的距离为原点到区域内的点的距离的最小值,可得d min=.由于存在实数a、b使得不等式+≥20(a2+b2)对于任意θ∈(0,)成立,可得≥20(a2+b2)min=4,再利用基本不等式的性质即可得出答案.【解答】解:∵直线ax+by=1与线段AB有一个公共点,∴点A(1,0),B(2,1)在直线ax+by=1的两侧,∴(a﹣1)(2a+b﹣1)≤0,即,或;画出它们表示的平面区域,如图所示.a2+b2表示原点到区域内的点的距离的平方,由图可知,当原点O到直线2x+y﹣1=0的距离为原点到区域内的点的距离的最小值,∵d min=那么a2+b2的最小值为:d2=.由于存在实数a、b使得不等式+≥20(a2+b2)对于任意θ∈(0,)成立,∴≥20(a2+b2)min=4,∵θ∈(0,),∴sinθ,cosθ∈(0,1).∴+=(sin2θ+cos2θ)=1+p++≥1+p+2=1+p+2,当且仅当tan2θ=时取等号.∴1+p+2≥4,p>0,解得1≤p.∴tanθ=1,即时取等号.故答案为:[1,+∞).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.【考点】8E:数列的求和;84:等差数列的通项公式;85:等差数列的前n项和.【分析】(Ⅰ)设等差数列{a n}的公差为d,由于a3=7,a5+a7=26,可得,解得a1,d,利用等差数列的通项公式及其前n项和公式即可得出.(Ⅱ)由(I)可得b n==,利用“裂项求和”即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)===,∴T n===.18.已知函数(Ⅰ)求f(x)的最小正周期及对称中心;(Ⅱ)若,求f(x)的最大值和最小值.【考点】H6:正弦函数的对称性;HW:三角函数的最值.【分析】(Ⅰ)利用两角和与差的三角函数化简函数的解析式,然后求f(x)的最小正周期及对称中心;(Ⅱ)求出相位的范围,利用正弦函数的有界性求解函数的最值即可.【解答】(本题满分12分)解:(Ⅰ) (4)∴f(x)的最小正周期为, (5)令,则,∴f(x)的对称中心为; (6)(Ⅱ)∵∴ (8)∴∴﹣1≤f(x)≤2 (10)∴当时,f(x)的最小值为﹣1;当时,f(x)的最大值为2. (12)19.国家AAAAA级八里河风景区五一期间举办“管仲杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形ABCD如图所示,其中阴影区域的边界曲线近似为函数y=Asinx的图象).每队有3人“成功”获一等奖,2人“成功”获二等奖,1人“成功”获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响).(Ⅰ)求某队员投掷一次“成功”的概率;(Ⅱ)设X为某队获奖等次,求随机变量X的分布列及其期望.【考点】6G:定积分在求面积中的应用;CF:几何概型;CH:离散型随机变量的期望与方差.【分析】(Ⅰ)由题意,求出矩形和阴影部分的面积,利用几何概型公式解答;(Ⅱ)明确X的取值,分别求出随机变量对应的概率,列出分布列,求期望.【解答】解:(Ⅰ)由题意知:S矩形=10×10=100,=20,记某队员投掷一次“成功”事件为A,则P(A)=….(Ⅱ)因为X为某队获奖等次,则X取值为1、2、3、4.,P(X=2)=,P(X=3)=,P(X=4)=….即X分布列为:X1234P(X)…所以,X的期望EX=1×+2×+3×+4×=…20.已知三棱柱ABC﹣A1B1C1中,侧面ABB1A1为正方形,延长AB到D,使得AB=BD,平面AA1C1C⊥平面ABB1A1,A1C1=AA1,∠C1A1A=.(Ⅰ)若E,F分别为C1B1,AC的中点,求证:EF∥平面ABB1A1;(Ⅱ)求平面A1B1C1与平面CB1D所成的锐二面角的余弦值.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(Ⅰ)取A1C1的中点G,连结FG,EG,则EG∥A1B1,从而GE∥ABB1A1,同理得GF∥平面ABB1A1,从平面GEF∥平面ABB1A1,由此能证明EF∥平面ABB1A1.(Ⅱ)连结AC1,推导出AC1⊥AA1,从而AC1⊥平面ABB1A1,再求出AC1⊥AB,AA1⊥AB,分别以AA1,AB,AC1所在直线为x轴,y轴,z 轴,建立空间直角坐标系,利用向量法能求出平面A1B1C1与平面CB1D 所成的锐二面角的余弦值.【解答】证明:(Ⅰ)取A1C1的中点G,连结FG,EG,在△A1B1C1中,EG为中位线,∴EG∥A1B1,∴GE⊄平面ABB1A1,A1B1⊂平面ABB1A1,∴GE∥ABB1A1,同理得GF∥平面ABB1A1,又GF∩GE=G,∴平面GEF∥平面ABB1A1,∵EF⊂平面GEF,∴EF∥平面ABB1A1.解:(Ⅱ)连结AC1,在△AA1C1中,,,∴由余弦定理得=+﹣2AA1×A1C1cos∠AA1C1=,∴AA1=AC1,△A1AC1是等腰直角三角形,AC1⊥AA1,又∵平面AA1C1C∩平面ABB1A1=AA1,∴AC1⊥平面ABB1A1,∵AB⊂平面ABB1A1,∴AC1⊥AB,又∵侧面ABB1A1为正方形,∴AA1⊥AB,分别以AA1,AB,AC1所在直线为x轴,y轴,z轴,建立空间直角坐标系,设AB=1,则A(0,0,0),A1(1,0,0),B1(1,1,0),C1(0,0,1),C(﹣1,0,1),D(0,2,0),∴=(2,1,﹣1),=(1,2,﹣1),=(﹣1,0,1),=(0,1,0),设平面A1B1C1的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面CB1D的法向量=(a,b,c),则,取a=1,得=(1,1,3),cos<>===,∴平面A1B1C1与平面CB1D所成的锐二面角的余弦值为.21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.【考点】K4:椭圆的简单性质.【分析】(1)求得圆Q的圆心,代入椭圆方程,运用两点的距离公式,解方程可得a,b的值,进而得到椭圆方程;(2)讨论两直线的斜率不存在和为0,求得三角形MAB的面积为4;设直线y=kx+,代入圆Q的方程,运用韦达定理和中点坐标公式可得M的坐标,求得MP的长,再由直线AB的方程为y=﹣x+,代入椭圆方程,运用韦达定理和弦长公式,由三角形的面积公式,化简整理,由换元法,结合函数的单调性,可得面积的范围.【解答】解:(1)圆Q:(x﹣2)2+(y﹣)2=2的圆心为(2,),代入椭圆方程可得+=1,由点P(0,)到椭圆C的右焦点的距离为,即有=,解得c=2,即a2﹣b2=4,解得a=2,b=2,即有椭圆的方程为+=1;(2)当直线l2:y=,代入圆的方程可得x=2±,可得M的坐标为(2,),又|AB|=4,可得△MAB的面积为×2×4=4;设直线y=kx+,代入圆Q的方程可得,(1+k2)x2﹣4x+2=0,可得中点M(,),|MP|==,设直线AB的方程为y=﹣x+,代入椭圆方程,可得:(2+k2)x2﹣4kx﹣4k2=0,设(x1,y1),B(x2,y2),可得x1+x2=,x1x2=,则|AB|=•=•,可得△MAB的面积为S=•••=4,设t=4+k2(5>t>4),可得==<=1,可得S<4,且S>4=综上可得,△MAB的面积的取值范围是(,4].22.已知函数f(x)=a(x+1)2﹣4lnx,a∈R.(Ⅰ)若a=,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若对任意x∈[1,e],f(x)<1恒成立,求实数a的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出f(x)的最大值,结合对任意x∈[1,e],f(x)<1恒成立,求出a的范围即可.【解答】解:(Ⅰ)由得f(1)=2 (1)…3则所求切线方程为y﹣2=﹣2(x﹣1),即y=﹣2x+4 (4)(Ⅱ) (5)令g(x)=ax2+ax﹣2.当a=0时,,f(x)在[1,e]上单调递减,[f(x)]max=f(1)=0<1,恒成立,符合题意 (6)当a<0时,g(x)=ax2+ax﹣2,开口向下,对称轴为,且g(0)=﹣2<0,所以当x∈[1,e]时,g(x)<0,f′(x)<0,f(x)在[1,e]上单调递减,[f(x)]max=f(1)=0<1,恒成立,符合题意 (8)当a>0时,g(x)=ax2+ax﹣2的开口向上,对称轴为,g(0)=﹣2<0,所以g(x)=ax2+ax﹣2在(0,+∞)单调递增,故存在唯一x0∈(0,+∞),使得g(x0)=0,即f′(x0)=0 (9)当0<x<x0时,g(x)<0,f′(x)<0,f(x)单调递减;当x>x0时,g(x)>0,f′(x)>0,f(x)单调递增,所以在[1,e]上,[f(x)]max=max{f(1),f(e)}.所以,得,得.所以 (11)综上,a得取值范围是 (12)。
2020高考模拟考试试卷数学理科数学含答案
a为.y y⎪数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共 150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若 z = 2 - bi (b ∈R )为纯虚数,则 b 的值为.2 + iA .- 1B .1C .- 2D .4 2. 在等差数列 { }中, a + a = 16, a = 1 ,则 a 的值是. n5739A .15B .30C . - 31D .643.给出下列命题:① 若平面 α 内的直线 l 垂直于平面 β 内的任意直线,则α ⊥ β ; ② 若平面 α 内的任一直线都平行于平面 β ,则 α // β ; ③ 若平面 α 垂直于平面 β ,直线 l 在平面内 α ,则 l ⊥ β ; ④ 若平面 α 平行于平面 β ,直线 l 在平面内 α ,则 l // β .其中正确命题的个数是.A .4B .3C .2D .14.已知函数 f ( x ) = ⎛ 1 ⎫ x -1 - 1 ,则 f ( x ) 的反函数 f -1 ( x ) 的图像大致 ⎝ 2 ⎭y y-1ox -1 ox -1 ox -1oxABCD5.定义集合 M 与 N 的运算: M * N = {x x ∈ M 或x ∈ N , 且x ∉ M I N } ,⎪4C . π - αD . 3π - α4 B . α +π则 (M * N ) * M = A . M I NB . M Y NC . MD . N6.已知 cos(α + π ) = 1 ,其中 α ∈ (0, π ) ,则 sin α 的值为.432A . 4 - 2B . 4 + 2C . 2 2 - 1D . 2 2 - 166 6 37.已 知 平 面 上 不 同 的 四 点 A 、 B 、 C 、 D , 若DB ·DC + CD ·DC + DA ·BC = 0 ,则三角形 ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形8.直线: x + y + 1 = 0 与直线: x sin α + y cos α - 2 = 0⎛ π < α < π ⎫ 的夹⎝ 4 2 ⎭角为.A . α - π4 49.设函数 f ( x ) 是定义在 R 上的以 5 为周期的奇函数,若f (2) > 1, f (3) = a 2 + a + 3,则 a 的取值范围是.a - 3A . (-∞,-2) Y (0,3)B . (-2,0) Y (3,+∞)C . (-∞,-2) Y (0,+∞)D . (-∞,0) Y (3,+∞)10. 若 log x = log x = log 21a2a系为.(a +1)x > 0 (0 < a < 1) ,则 x 、x 、x 的大小关3 1 2 3A . x < x < x32 1D . x < x < x231B . x < x < x2 13C . x < x < x1 3211. 点 P 是双曲线 y 2 - x 2 = 1 的上支上一点,F 1、F 2 分别为双曲线9 16的上、下焦点,则∆PF F 的内切圆圆心 M 的坐标一定适合的方程是.1 2A . y = -3B . y = 3C . x 2 + y 2 = 5D . y = 3x 2 - 212. 一个三棱椎的四个顶点均在直径为 6 的球面上,它的三条侧棱两两垂直,若其中一条⎨ ⎪5 - bx, x > 1.侧棱长是另一条侧棱长的 2 倍,则这三条侧棱长之和的最大值为.A .3B . 4 3C . 2 105D . 2 21555第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共四小题,每小题4 分,共 16 分,把答案填在题中横线上.⎧2 x , 13 .设函数 f ( x ) = ⎪a,x < 1,x = 1, 在 x = 1 处连续,则实数 a, b 的值分别⎩为.14.以椭圆 x 2 + y 2 = 1 的右焦点为焦点,左准线为准线的抛物线方程 5 4为.15.如图,路灯距地面 8m ,一个身高 1.6m过路A的人沿穿灯的直路以 84m/min 的速度行走,人影1.6O NC M B长度变化速率是m/min .16.在直三棱柱 ABC - A B C 中,有下列三个条件:1 1 1① A B ⊥ AC ;② A B ⊥ B C ;③ B C = A C .11111 11 1以其中的两个为条件,其余一个为结论,可以构成的真命题是(填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 12 分)已知函数 f ( x ) = cos x( 3 sin x - cos x), x ∈ R . (Ⅰ)求函数 f ( x ) 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到y=sin x,x∈R的图像?18.(本小题满分12分)已知数列{a}的首项a=2,且2a=a+1(n∈N*).n1n+1n(Ⅰ)设b=na,求数列{b}的前n项和T;n n n n(Ⅱ)求使不等式a-a<10-9成立的最小正整数n.(已知n+1nlg2=0.3010)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为2和1,且两人每次投篮是否命中是相互独立的.32(Ⅰ)求甲、乙成平局的概率;P(Ⅱ)求甲获胜的概率.D C 20.(本小题满分12分)A B如图,四棱锥P—ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2A B=2,侧面∆APD为等边三角形,且平面APD⊥平面ABCD.(Ⅰ)若M为PC上一动点,当M在何位置时,PC⊥平面MDB,并证明之;(Ⅱ)求直线AB到平面PDC的距离;(Ⅲ)若点G为∆PBC的重心,求二面角G-BD-C的大小.21.(本小题满分12分)y M B 1A 1o A2xB2如图,已知 A 1、A 2 为双曲线 C : x 2 - y 2 = 1(a > 0, b > 0) a 2b 2的两个顶点,过双曲线上一点 B 1 作 x 轴的垂线,交双 曲线于另一点 B 2,直线 A 1B 1、A 2B 2 相交于点 M . (Ⅰ)求点 M 的轨迹 E 的方程;(Ⅱ)若 P 、Q 分别为双曲线 C 与曲线 E 上不同于A 1、A 2 的动点,且 A P + A P = m ( A Q + A Q ) ( m ∈ R ,且 m > 1),1212设直线 A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为 k 1、k 2、k 3、k 4, 试问 k 1+k 2+k 3+k 4 是否为定值?说明理由.22.(本小题满分 14 分)已知函数 f ( x ) = 1 x 3 + ax 2 - bx + 1 ( x ∈ R, a ,b 为实数)有极值,且3x = 1 在处的切线与直线 x - y + 1 = 0 平行.(Ⅰ)求实数 a 的取值范围;(Ⅱ)是否存在实数 a ,使得函数 f ( x ) 的极小值为 1,若存在,求出实数 a 的值;若不存在,请说明理由;(Ⅲ)设 a = 1 , f ( x ) 的导数为 f '( x ) ,令 g ( x ) = f '( x + 1) - 3, x ∈ (0,+∞) ,2 x求证:g n ( x ) - x n- 1≥ 2 n - 2 (n ∈ N * ) .x n=3sin2x-………………………………………(2=sin(2x-)-…………………………………………(46)有最大值1.此时函数f(x)的值最大,最大值为数学(理科)参考答案一、选择题:DABCD ADAAD BC二、填空题:13.a=2,b=3;14.y2=12(x+2);15.21;16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)f(x)=3sin x cos x-cos2x1+cos2x22分)π162分)当2x-π=2kπ+π,(k∈Z),即x=kπ+π,(k∈Z)时,623sin(2x-π1.……(6分)2(Ⅱ)将y=sin(2x-π)-1的图像依次进行如下变换:62①把函数y=sin(2x-π)-1的图像向上平移1个单位长度,得到622函数y=sin(2x-π6)的图像;…………………………………………(8分)②把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x-π)6的图像;…………………………………………(10分)③将函数y=sin(x-π)的图像向左平移π个单位长度,就得到66函数y=sin x的图2 ∴ a = ⎪⎝2⎭⎝ 2 ⎭ ⎪ ∴T = 1· ⎪ + 2· ⎪ + 3· ⎪ + Λ + n · ⎪⎝2⎭ ⎝2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭∴ T = 1· ⎪ + 2· ⎪ + Λ + (n - 1) ⎪ 1 n (n + 1) ………+ n · ⎪ + ·T = 4 - (4 + 2n) ⎪ + ⎝ 2 ⎭ - a = ⎪ < 10 -9⎝2⎭C ⨯ ⎪ ⨯ ⨯ C 2 ⨯ ⎪ =⎝3⎭ 3⎝ 2 ⎭像.…………………………………………(12 分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由 2an +1= a + 1得 ann +1 - 1 = 1 2(a - 1) n可知数列{a - 1} 是以 a - 1 = 1 为首项,公比为 1 的等比数列. n 1n⎛ 1 ⎫ n -1+ 1 (n ∈ N * ) . …………………………………………(4分)从而有 b = na = n ·⎛ 1 ⎫n -1+ n .n nT = b + b +Λ + b n 1 2n n⎛ 1 ⎫ 0 ⎛ 1 ⎫1 ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -1 + (1 + 2 + Λ + n) ………①1 ⎛ 1 ⎫1 ⎛ 1 ⎫2 ⎛ 1 ⎫ n -12 n ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎛ 1 ⎫ n⎝ 2 ⎭ 2 2②n ①⎛1⎫ n- ② 并 整 理 得n(n + 1) . ………………(8 分)2(Ⅱ) a n +1n⎛ 1 ⎫ n两边取常用对数得: n > 9 ≈ 29.9lg 2∴ 使 不 等 式 成 立 的 最 小 正 整 数30. ………………………………(12 分)19.(Ⅰ) 甲、乙各投中三次的概率:n 为⎛ 2 ⎫ 3 ⎛ 1 ⎫ 3 ⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(1 分) 27甲、 乙各投中两次的概率:23 3 ⎛ 2 ⎫ 2 1 ⎛ 1 ⎫ 3 1 , …………………………………( 2 61 ,…………………………( 3C 1 ⨯ ⎪ ⨯ ⎪ ⨯ C 1 ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭ 12⎪ ⨯ 1 - ⎪ =2 ,………( 9C ⨯ ⎪ ⨯ ⨯ ⎢C 0 ⨯ ⎪ + C 1 ⨯ ⎪ ⎥=⎝ 3 ⎭ 3 ⎢ 3 ⎝ 2 ⎭ ⎝ 2 ⎭ ⎥ 9C 1 ⨯ ⎪ ⨯ ⎪ ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭分)甲、 乙各投中一次的概率:⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 333 分)甲、 乙两人均投三次,三次都不中的概率:⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(4 216分)∴甲、乙平局的概率是: 1 + 1 + 1 + 1 = 7 . ……………27 6 12 216 24(6 分)(Ⅱ) 甲投中三球获胜的概率:⎛ 2 ⎫ 3 ⎛ 1 ⎫ 7 , …………………………………⎝ 3 ⎭ ⎝ 8 ⎭ 27(8 分)甲投中两球获胜的概率:⎛ 2 ⎫ 2 1 ⎡ ⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3 ⎤ 2 3 3分)甲投中一球获胜的概率:3⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 31 , (36)(10 分)甲获胜的概率为: 7 + 2 + 1 = 55 .………………………27 9 36 108(12 分)20.(Ⅰ) 当 M 在中点时,PC ⊥ 平面 MDB ………………………………(1 分)连结 BM 、DM ,取 AD 的中点 N ,连结 PN 、NB . ∵ PN ⊥ AD 且面 P AD ⊥ 面 ABCD , ∴ PN ⊥ 面 ABCD . 在 Rt ∆PNB 中, PN = 3, NB = 2, ∴ PB = 5,CM =又 BC = 5 . ∴ BM ⊥ PC……………………………………(3分)又 PD = DC = 2, 又 DM I BM = M ,∴ DM ⊥ PC ,∴ PC ⊥ 面 MDB . ……………………(4分)(Ⅱ) AB // CD, C D ⊂ 面 PDC , AB ⊄ 面 PDC ,∴ AB // 面 PDC .∴AB 到面 PDC 的距离即 A 到面 PDC 的距离. ………………(6 分)Θ CD ⊥ DA, C D ⊥ PN , DA I PN = N , ∴ CD ⊥ 面 PAD ,又 DC ⊂ 面 PDC ,∴面 P AD ⊥ 面 PDC .作 AE ⊥ PD ,AE 就是 A 到面 PDC 的距离,∴ AE = 3 , 即 AB 到平面 PDC 的距离为 3 .………………(8 分)(Ⅲ)过 M 作 MF ⊥ BD 于 F ,连结 CF .Θ PC ⊥ 面 MBD ,∴ ∠MFC 就是二面角 G - BD - C 的平面角. ………………(10分)在 ∆BDC 中, BD = 5, DC = 2, BC = 5,∴ CF = 4 5, 又 CM = 2,5∴ s in ∠MFC = 10 . CF 4即二面角 G - BD - C 的大小是 arcsin 10 .4……………(12分)21.(Ⅰ) 设 B ( x , y ) 、 B ( x ,- y ) 且 y ≠ 0 ,由题意 A (-a,0) 、 A (a,0) ,1212则直线 A 1B 1 的方程为: y = x + a ………①y x + a0 0直线 A 2B 2 的方程为: - y = x - a ………②…………(2y x - a0 0分)x , 由①、②可得 ⎪⎪⎨ 0⎩a 2 b 2b 2 x + a x - a x 2 - a 2 a 2 y a 2 y∴O 、P 、Q 三点共线,………………………………yy⎧ a 2 x = ⎪ y = ay . ⎪ 0 x………………………………( 4分)a 4 a 2 y 2又点 B ( x , y ) 在双曲线上,所以有 x 2 - x 2 = 1 ,1 0 0 整理得 x2 + y 2 = 1 ,a 2b 2所以点 M 的轨迹 E 的方程为 x 2 + y 2 = 1( x ≠ 0 且 y ≠ 0 ).……a 2b 2(6 分)(Ⅱ) k 1+k 2+k 3+k 4 为定值.设 P ( x , y ) ,则 x 2 - a 2 = a 2 y 12 ,1 1 1分)则 k + k = y 1 + y 1 = 2 x 1 y 1 = 2b 2 · x 1 ……③ 1 2 1 1 1 1设 Q ( x , y ) ,则同理可得 k + k = - 2b 2 · x 2 ……④ ………(82 234 2设 O 为原点,则 A P + A P = 2OP , A Q + A Q = 2OQ .1212Θ A P + A P = m ( A Q + A Q)∴ O P = mOQ1 212(10 分)∴ x 1 = x 2 , 再由③、④可得,k 1+k 2+k 3+k 4 = 0 yy12∴k 1+k 2+k 3+k 4 为定值 0.………………………………(12 分)另解:由 A P + A P = m ( A Q + A Q ) ,1212得 ( x + a , y ) + ( x - a , y ) = m [( x + a , y ) + ( x - a , y )] 111122 2 2即 ( x , y ) = m ( x , y )∴ x1 = x2 ,112212再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵ f ( x ) = 1 x 3 + ax 2 - bx + 13xx 10 0 3∴ -a + a 2 + 2a = 4∴ a = - < -2 ,- 3 = x 2 + 1= x +∴ f '( x ) = x 2 + 2ax - b由题意 f '(1) = 1 + 2a - b = 1∴ b = 2a……①………………………………………(2 分)∵ f ( x ) 有极值,∴方程 f '( x ) = x 2 + 2ax - b = 0 有两个不等实根.∴ ∆ = 4a 2 + 4b > 0∴ a 2 + b > 0 ……②由①、②可得, a 2 + 2a > 0∴ a < -2 或a > 0 .故实数 a 的取值范围是 a ∈ (-∞,-2) Y (0,+∞)…………(4 分)(Ⅱ)存在 a = - 8 ,………………………………………(5 分)3由(Ⅰ)可知 f '( x ) = x 2 + 2ax - b ,令 f '( x ) = 0 ,∴ x = -a + a 2 + 2a , x = -a - a 2 + 2a12(-∞, x )( x , x )1 12x 2( x ,+∞)2f '( x )f ( x )+ - +单调增 极大值 单调减 极小值 单调增(7 分)(8 分)∴ x = x 时, f ( x ) 取极小值, ………………………………………2则 f ( x ) = 1 x 3 + ax 2 - 2ax + 1 = 1, ∴ x = 0 或 x 2 + 3ax - 6a = 0 , 2 2 2 2 2 2若 x = 0 ,即 - a + a 2 + 2a = 0 ,则 a = 0 (舍) ………………2若 x 2 + 3ax - 6a = 0 ,又 f '( x ) = 0 ,∴ x 2 + 2ax - 2a = 0 ,22222∴ ax - 4a = 0 ,Θ a ≠ 0∴ x = 4 , 2283∴存在实数 a = - 8 , 使 得 函 数 f ( x ) 的 极 小 值 为31.…………(9 分)(Ⅲ) Θ a = 1 , f '( x ) = x 2 + x - 12 ∴ f '( x + 1) = x 2 + 3x + 1 ,∴ f '( x + 1)1 , x x x∴ g ( x ) = x + ,x ∈ (0,+∞) .…………………………………( 10= x + ⎪ - x n - = C x ⎪+ C2 x n -2 ⎪ +Λ + C n -2 x 2 ⎪ + C n -1 x ⎪ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ 2 ⎢⎣ n ⎝ x n -2 ⎭ ⎝ ⎝ x n -2 + x n -2 ⎪⎥ 2 ⎣ x n -2 x n -4⎢1 x分)g n ( x ) - x n -1 ⎛ 1 ⎫ nx n ⎝ x ⎭ 1 x n⎛ 1 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -2 ⎛ 1 ⎫ n -1 1 n -1 n n n n= 1 ⎡ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 C 1 x n -2 + ⎪ + C 2 x n -4 + ⎪ + Λ + C n -1 n n ⎫⎤ ⎭⎦≥ 1 ⎡C 1 2 x n -2 · 1 + C 2 2 x n -4 · 1 + Λ + C n -1 2 n n n 1 x n -2 ⎤·x n -2 ⎥ ⎦= C 1 + C 2 + Λ + C n -1 = 2 n - 2n n n∴其中等号成立的条件为 x = 1 .…………………………………(13 分)∴ g n ( x ) - x n - 1 ≥ 2 n - 2 (n ∈ N * )…………………………( 14x n分)。
2020年高考理科数学模拟试题含答案及解析5套)
绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为()A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为()A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为() A .5 B .34C .41D .526.()()()()sin ,00,xf x x x=∈-ππ大致的图象是()A .B .C .D .此卷只装订不密封级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为() A .14B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为() A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是() A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为() A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b bb b ⎡⎤+++⎢⎥⎣⎦=()A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围() A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年高考理科数学模拟试卷(含答案解析)
2020年高考理科数学模拟试卷一、选择题1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣49.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>711.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E 的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.14.已知点(x,y)满足,则的取值范围为.15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为.16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、复数相等、几何意义即可得出.解:实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,∴a﹣b+(a+b)i=4i,可得a﹣b=0,a+b=4,解得a=b=2.若z=a+bi﹣4,=﹣2+2i,则在复平面内,复数z所对应的点(﹣2,2)位于第二象限.故选:B.2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.【分析】求出集合A,B的补集,再计算即可.解:A={x|5x2+x﹣4<0}=(﹣1,),B=,∁R B=(),则A∩(∁R B)=[),故选:B.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b【分析】首先利用指数函数的性质得到a,b的范围,然后逐一考查所给的不等式即可求得最终结果.解:由指数函数的单调性可得:a>b>0,则:,sin a与sin b的大小无法确定.故选:B.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.【分析】由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.利用表面积计算公式即可得出.解:由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.∴该几何体的表面积=+2π×1×1+42×6﹣π×12=()π+96.故选:D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 【分析】根据题意,逐项判断即可.解:对于A,其在定义域上为增函数,不符合题意,舍去;对于B,其在定义域上为偶函数,不符合题意,舍去;对于C,其是奇函数,又在(1,+∞)上单调递减,符合题意;对于D,f(2)=﹣4,f(3)=33﹣18=9,其在(1,+∞)上不为减函数,不符合题意,舍去.故选:C.6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.【分析】根据已知可分别求解圆的面积及△CEF内解:设正方形的边长为4,则正方形的面积为4×4=16的面积,然后根据几何概率求解公式即可.△CEF的面积为16﹣=7,因为圆的直径2R=即R=2,圆的面积为8π,根据几何概率的公式可得P=.故选:C.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.【分析】过B作BM⊥DC于M,根据向量的加减的几何意义和向量的数量积公式计算即可.解:过B作BM⊥DC于M,故AB=DM=2,因为BM=AD=,∠BCD=60°,故CM=1,则DF=则=(+)(+)=•+•=××(﹣1)+2×=故选:A.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣4【分析】化简函数f(x),根据三角函数的图象和性质,判断即可.解:f(x)=4sin x cos x+4sin x﹣2=2=2=4(=4sin(3x﹣),周期为,x=﹣时,sin(3x﹣)=﹣1,故A,B成立,最小值为﹣4,成立,故D成立,x∈[﹣,﹣π]时,3x﹣∈[﹣,]=[﹣4π+,﹣4π+],f(x)递减,故选:C.9.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.【分析】由排除法求解即可.解:由图象可知,函数的定义域中不含0,故排除D;若,则当x→0时,f(x)→+∞,故排除C;若,则,不符合题意,故排除A;故选:B.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>7【分析】根据条件进行模拟运算,寻找成立的条件进行判断即可.解:模拟程序的运行,可得S=0,i=1执行循环体,S=302.5,i=2,不满足判断框内的条件,执行循环体,S=315,i=3不满足判断框内的条件,执行循环体,S=327.5,i=4不满足判断框内的条件,执行循环体,S=340,i=5不满足判断框内的条件,执行循环体,S=352.5,i=6不满足判断框内的条件,执行循环体,S=365,i=7此时,应该满足判断框内的条件,退出循环,输出S的值为365.则判断框内的件为i>6?,故选:C.11.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x【分析】分别表示出直线l和两个渐近线的交点,利用=,=3,求得a 和b的关系,可得双曲线E的渐近线方程.解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,﹣),A(a,0),∵=,∴=3∴﹣a=3(﹣a),∴b=2a,∴双曲线E的渐近线方程为y=±2x.故选:D.12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30【分析】本题先设数列{a n}的前n项和为S n,则可计算出S n=﹣.然后应用公式a n=即可计算出数列{a n}的通项公式,可发现数列{a n}是一个等差数列.然后应用等差数列的性质化简整理T n=|a n+a n+1+…+a n+5|,再根据绝对值的特点可得T n的最小值.解:依题意,由,可得:=.设数列{a n}的前n项和为S n,则S n=﹣.当n=1时,a1=S1=﹣=35.当n≥2时,a n=S n﹣S n﹣1=﹣﹣[﹣]=40﹣5n.n=1也满足上式,故a n=40﹣5n,n∈N*.很明显数列{a n}是以35为首项,﹣5为公差的等差数列.∴T n=|a n+a n+1+a n+2+a n+3+a n+4+a n+5|=|5a n+2+a n+5|=|5[40﹣5(n+2)]+40﹣5(n+5)|=|165﹣30n|∴当n=5或n=6时,T n取得最小值T5=T6=15.故选:B.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.【分析】利用二项式定理的通项公式可得a,再利用微积分基本定理及其性质即可得出.解:T k+1=(2x)6﹣k=26﹣k,令6﹣=0,解得k=4.∴T5==a.∴=dx=+dx=0+=.故答案为:.14.已知点(x,y)满足,则的取值范围为[﹣2,1].【分析】首先画出可行域,利用z的几何意义:区域内的点与(﹣1,1)连接直线的斜率,因此求最值即可.解:由已知得到平面区域如图:z=表示区域内的点与原点连接的直线斜率,由解得A(2,2),由解得B(1,﹣2)当与A(2,2)连接时直线斜率最大为1,与B(1,﹣2)连接时直线斜率最小为﹣2,所以的取值范围为[﹣2,1];故答案为:[﹣2,1].15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为2().【分析】由椭圆的方程可得A,B的坐标,进而求出直线AB的方程,及|AB|的长度,当三角形ABC的面积最大时为过C点的直线与直线AB平行且与椭圆相切时面积最大,设过C的直线方程与椭圆联立,由判别式等于0可得参数的值求出两条平行线的距离的最大值,代入面积公式可得面积的最大值.解:由椭圆方程可得A(﹣2,0),B(0,2)所以直线AB的方程为:x﹣y+2=0,且:|AB|=2,由题意可得当过C的直线与直线AB平行且与椭圆相切时,两条平行线间的距离最大时,三角形ABC的面积最大,设过C点与AB平行的切线方程l为:x﹣y+m=0,直线l与直线AB的距离为d=,联立直线l与椭圆的方程可得:,整理可得:3y2﹣2my+m2﹣8=0,△=4m2﹣12(m2﹣8)=0,可得m2=12,解得m=,所以当m=﹣2时d==2+最大,这时S△ABC的最大值为:==2(),故答案为:2().16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为m <1或m>4e.【分析】由题意可得m(x0﹣1)>e x0(2x0﹣1),分别x0=1,x0>1,x0<1,运用参数分离和构造函数,求得导数和单调性、最值,结合能成立思想可得所求范围.解:不等式,即为m(x0﹣1)>e x0(2x0﹣1),若x0=1则不等式显然不成立;当x0>1时,可得m>,设f(x)=,f′(x)=,则f(x)在(1,)时递减,在(,+∞)递增,即有f(x)在x=处取得最小值4e,由题意可得m>4e,又当x0<1时,可得m<,设f(x)=,f′(x)=,则f(x)在(0,1)时递减,在(﹣∞,0)递增,即有f(x)在x=0处取得最大值1,由题意可得m<1,综上可得m的范围是m<1或m>4e,故答案为:m<1或m>4e.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.【分析】(1)由已知结合正弦定理及和差角公式进行化简可得B+C=2A,然后结合三角形的内角和定理即可求解;(2)由已知结合余弦定理可求bc,然后结合三角形的面积公式即可求解.解:(1)∵=a.∴(b+c)cos A=a cos B+a cos C,由正弦定理可得sin B cos A+sin C cos A=sin A cos B+sin A cos C,即sin(B﹣A)=sin(A﹣C),所以B﹣A=A﹣C,即B+C=2A,又因为A+B+C=π,故A=,(2)由余弦定理可得,==,∴bc=2,S△ABC===.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.【分析】(1)由这12名学生的测试成绩能绘制这12名学生体质健康测试成绩的茎叶图,并求出该组数据的中位数.(2)ξ的可能取值为0,1,2,3,分虽求出相应的概率,由此能求出ξ的分布列和数学期望E(ξ).解:(1)绘制这12名学生体质健康测试成绩的茎叶图,如下:该组数据的中位数为:=86.(2)抽取的12人中,成绩不低于76分的有9人,从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.P(ξ=3)==,∴ξ的分布列为:ξ0123P数学期望E(ξ)==.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.【分析】(1)求出B₁A⊥AB,又AB⊥AC,利用线面垂直的判定定理求出即可;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,求出平面AB1C1与平面BCB1的法向量,利用夹角公式求出即可.解:(1)在三角形BB₁A中,∠BAA1=120°,得∠B₁BA=60°,由AB₁2=22+12﹣2×1×2×cos60°=3,所以BB₁2=AB2+AB₁2,B₁A⊥AB又∠BAC=90°,AB⊥AC,AC∩AB₁=A,故AB⊥平面AB1C;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,A(0,0,0),B(1,0,0),C(0,1,0),B₁(0,0,),,,设平面AB1C1的法向量为,由,,得,设平面BCB1的法向量为,由,得,由cos<>=,故平面AB1C1与平面BCB1所成二面角的余弦值20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.【分析】(1)其上顶点(0,b)到直线x+y+3=0的距离为2,利用点到直线的距离公式可得,根据椭圆O:+=1(a>b>0)过点(,﹣),解得a2.可得椭圆的标准方程为:=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).利用=2,可得k=﹣.利用两点之间的距离公式可得|MN|.(2)设∠AOD=α.由=λ,可得2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα,即可得出.【解答】(1)证明:其上顶点(0,b)到直线x+y+3=0的距离为2,∴,解得b=1.又椭圆O:+=1(a>b>0)过点(,﹣),∴=1,解得a2=4.∴椭圆的标准方程为:=1.点A在椭圆上,∴=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).∵=2,∴﹣x0=,即k=﹣.∴|MN|===3为定值.(2)解:设∠AOD=α.∵=λ,∴2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα≤3λ|OA|.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.【分析】(1)求出原函数的导函数,由f′(1)=0求解a值,则曲线y=f(x)在(1,f(1))处的切线方程可求;(2)求出函数g(x)的解析式,由g′(x)=0,构造函数h(x)=2lnx+﹣1,根据零点存在定理,可知函数的一个零点x0∈(1,2),则x0>m,再根据导数和函数的极值的关系即可证明x=m是f(x)极大值点,h()是h(x)的最小值;由g(x)有三个极值点x1<x2<x3,得h()=2ln+1<0,得m<,则m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,得x2=m,即x1,x3是函数h(x)的两个零点.构造函数φ(x)=2xlnx﹣x,求导可得φ(x)在(0,)上递减,在(,+∞)上递增,把证明ln()>﹣转化为证明φ(x3)>φ(﹣x1)即可.解:(1)f(x)=alnx﹣x,f′(x)=,∵函数f(x)在x=1处取到极值,∴f′(1)=a﹣1=0,即a=1.则f(x)=lnx﹣x,f(1)=﹣1,∴曲线y=f(x)在(1,f(1))处的切线方程为y=﹣1;(2)g(x)=(0<m<1),函数的定义域为(0,+∞)且x≠1,∴g′(x)==,令h(x)=2lnx+,∴h′(x)=,h(x)在(0,)上单调递减,在(,+∞)上单调递增;∵h(1)=m﹣1<0,h(2)=2ln2+﹣1=ln+>0,∴h(x)在(1,2)内存在零点,设h(x0)=0,∴x0>m,当g′(x)>0时,即0<x<m,或x>x0,函数单调递增,当g′(x)<0时,即m<x<x0,函数单调递减,∴当x=m时,函数有极大值,∴当0<m<1时,x=m是f(x)极大值点;h()是h(x)的最小值;∵g(x)有三个极值点x1<x2<x3,∴h()=2ln+1<0,得m<.∴m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,∴x2=m;即x1,x3是函数h(x)的两个零点.∴,消去m得2x1lnx1﹣x1=2x3lnx3﹣x3;令φ(x)=2xlnx﹣x,φ′(x)=2lnx+1,φ′(x)的零点为x=,且x1<<x3.∴φ(x)在(0,)上递减,在(,+∞)上递增.要证明ln()>﹣,即证x1+x3>,等价于证明x3>﹣x1,即φ(x3)>φ(﹣x1).∵φ(x1)=φ(x3),∴即证φ(x1)>φ(﹣x1).构造函数F(x)=φ(x)﹣φ(﹣x),则F()=0;∴只要证明在(0,]上F(x)单调递减,函数φ(x)在(0,]单调递减;∵x增大时,﹣x减小,φ(﹣x)增大,﹣φ(﹣x)减小,∴﹣φ(﹣x)在(0,]上是减函数.∴φ(x)﹣φ(﹣x)在(0,]上是减函数.∴当0<a<时,x1+x3>.即ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.【分析】(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的直角坐标方程;由代入法可得直线l的普通方程;(2)由圆关于直线的对称为半径相等的圆,由点关于直线对称的特点,解方程可得所求曲线的方程.解:(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的极坐标方程ρ=4(2cosθ+sinθ)的直角坐标方程为x2+y2=8x+4y,即为(x﹣4)2+(y﹣2)2=20;直线l的参数方程为(t为参数),消去t,可得2x﹣y+4=0;(2)可设曲线C:(x﹣4)2+(y﹣2)2=20关于直线l:2x﹣y+4=0对称曲线为圆(x ﹣a)2+(y﹣b)2=20,由可得,则曲线C关于直线l对称曲线的直角坐标方程为(x+4)2+(y﹣6)2=20,其参数方程为(θ为参数).[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.【分析】(1)先对函数化简,然后结合函数的单调性即可求解函数的最值,(2)结合基本不等式及二次函数的性质可求.解:(1)因为f(x)=|x|.所以f(x+1)+f(2x﹣4)=|x+1|+|2x﹣4|,当x≤﹣1时,f(x)=3﹣3x单调递减,当﹣1<x<2时,f(x)=﹣x+5单调递减,当x≥2时,f(x)=3x﹣3单调递增,故当x=2时,函数取得最小值M=3;(2)若a,b>0且a+2b=3,∴即ab,当且仅当a=2b即a=,b=时取等号,则+===,令t=,t,而y=的开口向上,对存在t=,在[)上单调递增,结合二次函数的性质可知,当t=,取得最小值.。
2020高考理科数学仿真模拟卷(解析版)
2020年4月开学摸底考(新课标卷)高三数学(理)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .23.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >bC .c >b >aD .b >c >a4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u vu u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n- C .113n - D .1121n -+7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2-D .{2}(1,1]--U8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .69.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17B .27C .37D .4710.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .49512.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .2B C D 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln1f x x =+,()4f a =,则()f a -=________.14.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.16.四面体A BCD -中,AB ⊥底面BCD,AB BD ==,1CB CD ==,则四面体A BCD -的外接球的表面积为______三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =. (Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ; (2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124py y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由.21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3x ty =⎧⎪⎨=⎪⎩(t 为参数),曲线1C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθθ=-.(1)分别求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)设直线l 交曲线1C 于O ,A 两点,交曲线2C 于O ,B 两点,求||AB 的长.23.(本小题满分10分)选修4-5:不等式选讲已知0a >,0b >,0c >设函数()f x x b x c a =-+++,x ∈R (I )若1a b c ===,求不等式()5f x <的解集; (II )若函数()f x 的最小值为1,证明:14918a b b c c a++≥+++(a b c ++)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{}2,1,0,1,2A =--,{|B x y ==,则A B =I ( )A .{}1,2B .{}0,1,2C .{}2,1--D .{}2,1,0--【答案】D【解析】因为{}2,1,0,1,2A =-- ,{}0B x x =≤,所以{}2,1,0A B =--I .故选D.2.已知复数()2a iz a R i+=∈+是纯虚数,则a 的值为( ) A .12-B .12C .2-D .2【答案】A【解析】()()()()221222255a i i a i a az i i i i +-++-===+++-Q 是纯虚数 2105205a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得:12a =-本题正确选项:A3.已知3ln2a π=,2ln3b π=,23ln c π=,则下列选项正确的是( ) A .a >b >c B .c >a >b C .c >b >a D .b >c >a【答案】D 【解析】a6π=ln22,b 6π=ln33,c 6π=lnππ,∵6π>0,∴a ,b ,c 的大小比较可以转化为ln22,ln33,lnππ的大小比较.设f (x )=lnx x,则f ′(x )=1−lnx x 2,当x =e 时,f ′(x )=0,当x >e 时,f ′(x )>0,当0<x <e 时,f ′(x )<0 ∴f (x )在(e ,+∞)上,f (x )单调递减,∵e <3<π<4∴ln33>lnππ>ln44=ln22,∴b >c >a ,故选:D .4.已知函数1()ln 1f x x x =--,则=()y f x 的图象大致为( )A .B .C .D .【答案】A【解析】由于12201112ln 1ln 2222f ⎛⎫==> ⎪⎝⎭---,排除B 选项. 由于()()2222,23f e f e e e ==--,()()2f e f e >,函数单调递减,排除C 选项. 由于()10010020101f ee =>-,排除D 选项.故选A. 5.在ABC ∆中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u v u u u v ,13CE AB AC μ=+u u uv u u u v u u u v ,则λμ+=( ) A .13B .13-C .76D .76-【答案】B【解析】()1111133333CE CB CA AC CB CA CD CA λμμμ+⎛⎫⎛⎫=-+=+--=+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r ,因为E 是AD 的中点, 所以1132λ+=,1132μ--=,解得15,26λμ==- ,13λμ+=-.故选B. 6.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A .112n - B .121n - C .113n - D .1121n -+【答案】B【解析】111123n n n n n n a a a a a a -+-++= ,11123n n n a a a +-+= ,1111112()n nn n a a a a +--=-, 则1111211n n n n a a a a +--=-,数列111n n a a +⎧⎫-⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1111222n n n na a -+-=⨯= ,利用叠加法,211213211111111()()......()122.......2n n n a a a a a a a --+-+-++-=++++ , 1212121n n n a -==-- ,则121n n a =-.选B. 7.已知函数()2sin()(06,)2f x x πωϕωϕ=+<<<的图象经过点(,2)6π和2(,2)3π-.若函数()()g x f x m =-在区间[,0]2π-上有唯一零点,则实数m 的取值范围是( )A .(1,1]-B .11{1}(,]22--UC .1(,1]2- D .{2}(1,1]--U【答案】D【解析】由题意得21362k T ππ⎛⎫-=+ ⎪⎝⎭,k N ∈,得21T k π=+,故242k Tπω==+,因为06ω<<,k N ∈,所以2ω=.由2sin 263f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,得232k ππϕπ+=+,因为2πϕ<,故6πϕ=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,从而当,02x π⎡⎤∈-⎢⎥⎣⎦时,52666x πππ-≤+≤,令26t x π=+,则由题意得2sin 0t m -=在5,66t ππ⎡⎤∈-⎢⎥⎣⎦上有唯一解,故由正弦函数图象可得12m =-或11222m -<≤,解得{}(]21,1m ∈-⋃-.故选D8.已知()A 3,2,若点P 是抛物线2y 8x =上任意一点,点Q 是圆22(x 2)y 1-+=上任意一点,则PA PQ +的最小值为( )A .3B .4C .5D .6【答案】B【解析】抛物线28y x =的焦点()2,0F ,准线l :2x =-,圆22(2)1x y -+=的圆心为()2,0F ,半径1r =,过点P 作PB 垂直准线l ,垂足为B ,由抛物线的定义可知|PB PF =,则1PA PQ PA PF r PA PB +≥+-=+-,∴当,,A P B 三点共线时PA PB +取最小值325+=,1514PA PQ PA PB ∴+≥+-≥-=.即有PA PQ +取得最小值4,故选B .9.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则A,C 区域涂色不相同的概率为( )A .17 B .27C .37D .47【答案】D【解析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同, 根据题意,如图,设5个区域依次为A,B,C,D,E ,分4步进行分析: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E ,与A,B 区域相邻,有3种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有3种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有2种颜色可选,则区域D,C 有3+2×2=7种选择,则不同的涂色方案有5×4×3×7=420种, 其中,A,C 区域涂色不相同的情况有: ①,对于区域A ,有5种颜色可选;②,对于区域B 与A 区域相邻,有4种颜色可选; ③,对于区域E 与A,B,C 区域相邻,有2种颜色可选;④,对于区域D,C ,若D 与B 颜色相同,C 区域有2种颜色可选, 若D 与B 颜色不相同,D 区域有2种颜色可选,C 区域有1种颜色可选, 则区域D,C 有2+2×1=4种选择, 不同的涂色方案有5×4×2×4=240种,∴A,C 区域涂色不相同的概率为p =240420=47 ,故选D .10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为1234,,,x x x x ,大圆盘上所写的实数分别记为1234,,,y y y y ,如图所示.将小圆盘逆时针旋转()1,2,3,4i i =次,每次转动90︒,记()1,2,3,4i T i =为转动i 次后各区域内两数乘积之和,例如112233441T x y x y x y x y =+++. 若1234++0x x x x +<, 1234+++0y y y y <,则以下结论正确的是A .1234,,,T T T T 中至少有一个为正数B .1234,,,T T T T 中至少有一个为负数C .1234,,,T T T T 中至多有一个为正数D .1234,,,T T T T 中至多有一个为负数【答案】A【解析】根据题意可知:(12341234+++++x x x x y y y y +)()>0,又(12341234+++++x x x x y y y y +)()去掉括号即得:(12341234+++++x x x x y y y y +)() =1234T T T T +++>0,所以可知1234,,,T T T T 中至少有一个为正数,故选A11.已知集合A ={1,2,3,4,5,6,7,8,9),在集合A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a ,现将组成a 的三个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =219,则I (a )=129,D (a )=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,则输出b 的值为( )A .792B .693C .594D .495【答案】D 【解析】试题分析:A ,如果输出的值为792,则a =792, I (a )=279,D (a )=972,b =D (a )−I (a )=972−279=693,不满足题意. B ,如果输出的值为693,则a =693,,I (a )=369,D (a )=963,b =D (a )−I (a )=963−369=594,不满足题意. C ,如果输出的值为594,则a =594,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,,不满足题意.D ,如果输出的值为495,则a =495,,I (a )=459,D (a )=954,b =D (a )−I (a )=954−459=495,满足题意.故选D .12.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).ABCD【答案】B【解析】连接EF ,因为EF //面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH //BC 交CD 于点G,交AB 于H 点,则GH //EF ,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH -FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N∠=α,因为sinα=1MN A M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H,故选B二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数())ln 1f x x =+,()4f a =,则()f a -=________.【答案】2-【解析】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-214.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________. 【答案】1【解析】由正态分布的性质可得正态分布的图像对称轴为2X =,结合题意有:()()2232,12a a a -++=⇒=.故答案为1.15.已知双曲线22221(0,0)x y a b a b-=>>中,12,A A 是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得120i i PA PA ⋅=u u u u v u u u u v,则双曲线离心率的取值范围是____________.【答案】⎭【解析】设c为半焦距,则(),0F c,又()0,B b,所以:0BF bx cy bc+-=,以12A A为直径的圆的方程为Oe:222x y a+=,因为12i iPA PA⋅=u u u u r u u u u r,1,2i=,所以Oe与线段BF有两个交点(不含端点),所以ab a<>⎩即422422302c a c ac a⎧-+<⎨>⎩,故4223102e ee⎧-+<⎨>⎩,12e+<<.故填⎭.16.四面体A BCD-中,AB⊥底面BCD,AB BD==,1CB CD==,则四面体A BCD-的外接球的表面积为______【答案】4π【解析】如图,在四面体A BCD-中,AB⊥底面BCD,AB BD==1CB CD==,可得90BCD ∠=︒,补形为长方体,则过一个顶点的三条棱长分别为1,1,2=,则三棱锥A BCD -的外接球的半径为1. 其表面积为2414ππ⨯=.故答案为:4π.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.【解析】 (Ⅰ) ()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭Q ,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1n n n n n b a b b -=∴=+Q ,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =. 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n n n a ∴=. (Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ ()()111211221212121n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4. 18.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?【解析】(Ⅰ)X 所有可能的取值为0,1,2,3,4,5,6,()11101010100P X ==⨯=,()1111210525P X ==⨯⨯=,()11213225551025P X ==⨯+⨯⨯=, ()13121132210105550P X ==⨯⨯+⨯⨯=,()22317425510525P X ==⨯+⨯⨯=, ()2365251025P X ==⨯⨯=,()33961010100P X ==⨯=, ∴X 的分布列为(Ⅱ)选择延保一,所需费用1Y 元的分布列为:170009000110001300015000100502525100EY =⨯+⨯+⨯+⨯+⨯ 10720=(元). 选择延保二,所需费用2Y 元的分布列为:21000011000120001042010025100EY =⨯+⨯+⨯=(元).∵12EY EY >,∴该医院选择延保方案二较合算.19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为1B C 和1D D 的中点.(1)求证://MN 平面ABCD ;(2)求二面角11D AC B --的正弦值;(3)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭. (Ⅰ)证明:依题意,可得(0,0,1)n =r 为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭u u u u r , 由此可得,0MN n ⋅=u u u u r r,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD(Ⅱ),设1(,,)n x y z =u r 为平面1ACD 的法向量,则1110{0n AD n AC ⋅=⋅=u r u u u u r u r u u u r ,即220{20x y z x -+==,不妨设1z =,可得1(0,1,1)n =u r ,设2(,,)n x y z =u u r 为平面1ACB 的一个法向量,则2120{0n AB n AC ⋅=⋅=u u r u u u r u u r u u u r ,又1(0,1,2)AB =u u u r ,得20{20y z x +==,不妨设1z =,可得2(0,2,1)n =-u u r ,因此有121212cos ,10n n n n n n ⋅〈〉==-⋅u r u u r u r u u r u r u u r,于是12,10sin n n 〈〉=u r u u r , 所以二面角11D AC B --. (Ⅲ)依题意,可设111A E AB λ=u u u r u u u u r ,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r , 又(0,0,1)n =r 为平面ABCD 的一个法向量,由已知得1cos ,3NE n NE n NE n ⋅〈〉===⋅u u u r r u u u r r u u u r r ,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=,所以线段1A E2.20.(本小题满分12分)已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点. (1)设直线:4p l y =与y 轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4p l y =恰好平分AFB ∠,求抛物线C 的标准方程.(2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【解析】(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫ ⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p p p∆=->+==, ∵直线py 4=平分AFB ∠, ∴AF BF k k 0+=, ∴1212pp y y 440x x --+=,即:12121212p px1x1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =.(2)由题意知,直线AB 的斜率存在,且不为零,设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy =+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pk pb∆=+>+==-, ∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴pb 2=.∴直线AB 的方程为:py kx 2=+.假设存在直线AB ,使得113PA PB PQ +=,即PQPQ3PA PB +=,作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、, ∴121212p pPQPQOQOQy y p 22·PA PB AA BB y y 2y y ++=+'=+=',∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p ·4k 2p PA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 21.(本小题满分12分)已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【解析】 (1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>', 对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立. ()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数; ②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得x <或x >,0<<, ()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数.2a ⎛⎫-++∞ ⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立, ()f x ∴在()0,+∞为增函数。
2020年高考理科数学模拟试题含答案及解析5套)
绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:封号位座1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
密第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一不号场考项是符合题目要求的.ab1.已知a,b都是实数,那么“2222”是“ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件订 22.抛物线x2py(p0)的焦点坐标为()装号证考准p A.,0 218p360 xy≤p218pB.,0C.0,D.0, 3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A.24种B.16种C.12种D.10种只4.设x,y满足约束条件xy2≥0,则目标函数z2xy的最小值为()x≥0,y≥0A.4B.2C.0D.2卷5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()名姓A.5B.34C.41D.52此6.sinxfxxx,0U0,大致的图象是()A.B.C.D.级班7.函数fxsinxcosx(0)在,22 上单调递增,则的取值不可能为()A.14B.15C.12D.348.运行如图所示的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素a,则函数ayx,x0,是增函数的概率为()A.35B.45C.34D.37开始x3否x≤3是22yxx结束输出yxx11x9.已知A,B是函数y2的图象上的相异两点,若点A,B到直线y的距离相等,2则点A,B的横坐标之和的取值范围是()A.,1B.,2C.,3D.,410.在四面体ABCD中,若ABCD3,ACBD2,ADBC5,则四面体ABCD的外接球的表面积为()A.2B.4C.6D.811.设x1是函数32fxa1xaxa2x1nN的极值点,nnn数列a n满足a11,a22,b n log2a n1,若x表示不超过x的最大整数,则201820182018L=()b b bbbb122320182019A.2017B.2018C.2019D.2020ax12.已知函数fxeaR在区间0,1上单调递增,则实数a的取值范围()xeA.1,1B.1,C.1,1D.0,第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“x00,2x0mx020”的否定是_________._C2π314.在△ABC中,角B的平分线长为3,角,BC2,则AB_________._15.抛物线24yx的焦点为F,过F的直线与抛物线交于A,B两点,且满足A FBF4,点O为原点,则△AOF的面积为_________._16.已知函数fxxxx223sincos2cos0222的周期为2π3,当πx0,3 时,函gxfxm数恰有两个不同的零点,则实数m的取值范围是_________._三、解答题:共70分。
2020年高考理科数学模拟测试卷及答案解析
2020年普通高等学校招生全国统一考试模拟测试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分。
考试用时120分钟。
第Ⅰ卷(选择题 共50分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘帽在答题卡上指定位置。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试卷和答题卡一并交回一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N={b2-4b+1,-2},f:x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a+b 等于A.1B.2C.3D.42.若011<<ba ,则下列结论不正确...的是 A.a 2<b 2 B.ab <b 2 C.2>+b a a b D.|a |-|b |=|a-b |3.从8名女生,4名男生中选出6名学生级成课外小组,如果按性别比例分层抽样,则汪同的抽取方法种数为A.C 2448CB.C 3438CC.312CD.A 2448A 4.已知方程(x 2-6x+k )(x 2+62x+h )=0的4个实根经过调整后组成一个以2为首项的等比数列,则k+h =A.2-22B.2+22C.-6+62D.245.若已知tan10°=a ,求tan110°的值,那么在以下四个答案:①a a a a a 211333132--+-+;③;② ④2a 12-中,正确的是A.①和③B.① 和④C.②和③D.②和④ 6.设F 1、F 2分别为双曲线12222=-b y a x (a >0,b >0)的左、右焦点,P 为双曲线右支上任一点。
2020高考数学模拟试卷及答案理科
数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合A ={-1,0,1},{|124}x B x =≤<,则A ∩B 等于 A. {1} B. {-1,1} C. {1,0} D. {-1,0,1} 2. 如图是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若80分以上为优秀,根据图形信息可知: 这次考试的优秀率为A .25%B .30%C .35%D .40% 3.给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若a b >,则221ab >-”的否命题为“若a b ≤,则221a b ≤-”; ③“2,11x x ∀∈+≥R ”的否定是“2,11x x ∃∈+≤R ”;④若,则1E ξ=. 其中不正确...的命题的个数是A .4B .3C .2D .14. 三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形.若三棱柱的正视图(如图所示)的面积为8,则侧视图的面积为正视图11A. 8B. 4C. 43D. 35. 已知平面向量、为三个单位向量,且.满足(),则x+y 的最大值为A.1B.C.D.26. 设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a >0,b >0)的一条渐近线的一个公共点,且AF ⊥x 轴,则双曲线的离心率为 A . 5B .3C .52D . 27.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=214000400280000400x x x x ⎧-(≤≤)⎪⎨⎪(>)⎩则总利润最大时,每年生产的产品数是A .100B .150C .200D .300 8.设102m <<,若1212k m m+≥-恒成立,则k 的最大值为A. 6B. 7C. 8D. 9二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9 ~ 13题) 9.计算:34|2|x dx -+⎰=__________.10. 已知cos 31°=m ,则sin 239°·tan 149°的值是________11. 若x y 、满足不等式组5030x y x x y k -+≥⎧⎪≤⎨⎪+-≥⎩时,恒有246x y +≥-,则k的取值范围是___ .12. 在1,2,3,4,5,6,7的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有________种.(用数字作答)13. 设M 1(0,0),M 2(1,0),以M 1为圆心,| M 1 M 2 | 为半径作圆交x 轴于点M 3 (不同于M 2),记作⊙M 1;以M 2为圆心,| M 2 M 3 | 为半径作圆交x 轴于点M 4 (不同于M 3),记作⊙M 2;……;以M n 为圆心,| M n M n +1 | 为半径作圆交x 轴于点M n +2(不同于M n +1),记作⊙M n ;……当n ∈N *时,过原点作倾斜角为30°的直线与⊙M n 交于A n ,B n .考察下列论断:当n =1时,| A 1B 1 |=2; 当n =2时,| A 2B 2 |=15;当n =3时,| A 3B 3 |=23354213⨯+-;当n =4时,| A 4B 4 |=34354213⨯--;……由以上论断推测一个一般的结论:对于n ∈N *,| A n B n |= .(二)选做题(14 ~ 15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)直线112,:2x t l y t=+⎧⎨=+⎩()t 为参数与直线22cos ,:sin x s l y s αα=+⎧⎨=⎩()s 为参数平行,则直线2l 的斜率为 .14.. (几何证明选讲选做题)如图,在△ABC 中,AB =AC ,以BC 为直径的半圆O 与边AB相交于点D ,切线DE ⊥AC ,垂足为点E .则AECE=_______________. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 若23()3cos sin cos (0)2f x x x x ωωωω=-->的图像与直线)0(>=m m y 相切,并且切点横坐标依次成公差为π的等差数列.(1)求ω和m 的值;(2)在⊿ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边。
2020届全国1卷高考仿真模拟试卷理科数学含答案
2
3
3
2
令 f (x) 0 ,得 1 ex 1 , x (ln 1 ,ln 1 ), f (x) 在 (∞,ln 1)
为偶函数,得 a 2 .又 f (1) 1 b 0 ,所以 b 1 .故选 C.
4. 【答案】D
【解析】由题意知抛物线的焦点 F ( p ,0) ,则
|3 p 4| 2
p,
2
32 (4)2 2
解得 p 4 ,所以抛物线的准线方程为 x 2 .故选 D.
5. 【答案】C
【 解 析 】 (1 2x)n 展 开 式 的 通 项 Tr1 Cnr (2x)r 2r Cnr xr ,令 r 2,
又 | OF | c ,| FP |2 | OP |2 | OF |2 c2 ,所以 | FP | b .因为 M ,
N ,F 三点共线,所以 | FP | | FM | | FN | r ,所以 FM 的长为 通径长度的一半,即 | FM | | FP | b2 b ,所以 a b ,所以 a2
得 4Cn2 60 n 6 ,可知二项式系数的最大值为 C63 20 . 6. 【答案】B
【解析】因为 f (x) cos x cos sin x sin cos( x ),所以将
2
2
2
f (x) 的图象向右平移 π 个单位长度后,所得函数图象的解析式 3
g(x) cos(1 x π ) .因为 g(x) 的图象关于点 (π,0) 对称,所 26
Байду номын сангаас
以 cos( π π ) 0,即 cos( π ) 0,又 0 π ,所以 π .
26
3
6
7. 【答案】A
【解析】第一步,安排督察组组长:因为 M ,N 两地都至少有 1
2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)
2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)2020普通高等学校招生考试综合模拟预测卷数学理科注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分;2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回第I 卷一、选择题:本题共12小题,每小题5分,共60分在每小出的四个选项中只有一项是符合题目求的。
1.若a ,b 均为实数,且3i 2i 1i a b +=+-,则ab =()A .2- B .2C .3-D .3 2.已知集合2{|20}A x x x =-≥,{}1B y y =-,则A B =I ()A .(1,0]-B .11,2⎛⎛- ⎛⎛⎛C .1,2⎛⎛+∞⎛⎛⎛⎛D .(]11,0,2⎛⎛-+∞⎛⎛⎛⎛U 3.为了计算11111123420192020S =-+-++-L ,设计如图所示的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+4.已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则()A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-< 5.已知各项均为正数的等差数列{}n a 的公差为2,等比数列{}n b 的公比为-2,则()A .14n n a a b b --= B .14n n a a b b -= C .14n n a a b b --=- D .14nn a a b b -=-6.大学生小徐、小杨、小蔡通过招聘会被教育局录取并分配到一中、二中、三中去任教,这三所学校每所学校分配一名老师,具体谁被分配到哪所学校还不清楚.他们三人任教的学科是语文、数学、英语,且每个学科一名老师,现知道:(1)小徐没有被分配到一中;(2)小杨没有被分配到二中;(3)教英语的没有被分配到三中;(4)教语文的被分配到一中;(5)教语文的不是小杨.据此判断到三中任教的人和所任教的学科分别是A .小徐语文B .小蔡数学C .小杨数学D .小蔡语文7.某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
2020普通高等学校招生考试综合模拟预测卷理科数学试题(含答案)
4. 考试结束后,将本试卷和答题卡一并交回
第I 卷
一、选择题 : 本题共 12 小题,每小题 5 分,共 60 分在每小出的
四个选项中只有一项是符合题目求的。
1.若 a ,b 均为实数,且
3i 2i 1i a b +=+-,则 ab =( ) A .2- B .2
C .3-
D .3 2.已知集合 2{|20}A x x x =- ≥, {}1B y y =- ,则 A B
12. 设函数 ()(21)
x
f x e x ax a
=--+ ,其中 1 a<,若存在唯一的整数 0x 使得 0
()0
f x<,则 a 的取值范围是()
A.
3
[,1)
2eBiblioteka - B.33[,)
24 e - C. 33 [,) 24 e D. 3 [,1) 2e 第Ⅱ卷 二、填空题 : 本题共 4 小题每小题 5 分共 20 分 13.设 m为实数,若 22 250 {()|30}{()|25} xy x y x x y Rx y x y mx y -+ ≥
15.一个圆经过椭圆 22
193
y x +=的三个顶点,且圆心在 y 轴的负半轴上,则该圆的标准
方程为 _()2214x y ++=__.
16.在数列 {}n a 中, 1111,,(*)2019(1)
n n a a a n N n n +==+∈+,则 2019a 的值为 __1___. 三、
解答题 : 共 70 分. 解答应写出文字说明 , 证明过程或清算步 . 第
(2)若 3sin 13cos 0A C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考虽然延迟,但是练习一定要跟上,加油!本试卷分为第Ⅰ卷和第Ⅱ卷两部分. 第I 卷1至3页,第Ⅱ卷4至9页.满分150分, 考试用时120分钟, 考试结束后,将第Ⅱ卷交回.第I 卷注意事项:1.考生务必将自己的姓名、准考证号填写在第Ⅱ卷上. 2.每小题选出答案后,将所选答案填在第二卷的答题卡处,不能答在第I 卷上.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A + B ) = P ( A ) + P ( B )24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P ( A · B ) = P ( A ) · P ( B )如果事件A 在一次试验中发生的概率是 球的体积公式P ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率 k n k kn n P P C k P --=)1()( 其中R 表示球的半径一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的中四选项中,只有一项是符合题目要求的) 1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U I 则≥-+=≥= ( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2} 2.满足ii z-++=313111的复数z 是 ( )A .2+iB .-2+3iC .2+2iD .2-i3.已知等比数列{a n }的前n 项和是S n ,S 5=2,S 10=6,则a 16+a 17+a 18+a 19+a 20= ( ) A .8B .12C .16D .244.已知b OB a OA ==, ,C 为线段AB 上距A 较近的于个三等分点,D 为线段CB 上距C较近的一个三等分点,则用a 、b 表示OD 的表达式为 ( )A .)54(91+ B .)79(161+ C .)2(31+ D .)3(41+5.已知y=f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -1,那么不等式f (x )<21的解集是( )A{x |0<x <23}B{x |-21<x <0} C{x |-21<x <0或0<x <23} D{x |x <-21或0≤x <23}6.设函数f (x )是偶函数,且对于任意正实数x 满足f (2+x )=-2f (2-x ),已知f (-1)=4,那么f (-3)的值是( ) A .2B .-2C .8D .-8 7.在长方体ABCD —A 1B 1C 1D 1中,A 1A=AB=2,若棱AB 上存在一点P ,使得D 1P ⊥PC ,则棱AD 的长的取值范围是( ) A .]2,1[B .]2,0(C .)2,0(D .]1,0(8.已知,1sin ,1sin ,0]2,2[,2a a -=-=<+-∈βαβαππβα若且则实数a 的取值范围 是( )A .(-∞,-2)∪(1,+∞)B .(-2,1)C .]2,1(D .]2,0(9.设实数y x ,满足条件y x y x y x y x y x 22033,02204222+++⎪⎩⎪⎨⎧≤--≥-+≥+-则的最大值为( )A .23B .25C .23D .510.已知函数]2,2[,)(23-∈+++=x c bx ax x x f 表示的曲线过原点,且在1±=x 处的切线斜率均为-1,给出以下结论:①)(x f 的解析式为]2,2[,4)(3-∈-=x x x x f ;②)(x f 的极值点有且仅有一个;③)(x f 的最大值与最小值之和等于0,其中正确的结论有( )A .0个B .1个C .2个D .3个11.若对于任意的],[b a x ∈,函数101|)()()(|)(),(≤-x f x g x f x g x f 满足,则称在[a ,b]上)(x g 可以替代)(x f .若x x f =)(,则下列函数中可以在[4,16]替代)(x f 是( )A .2-xB .4xC .56+x D .62-x12.ABCD —A 1B 1C 1D 1是单位正方体,黑白两个蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→……,黑蚂蚁爬行的路是AB →BB 1→……,它们都遵循如下规则:所爬行的第i i 与第2+段所在直线必须是异面直线(其中i 是正整数).设白、黑蚂蚁都走完2006段后各停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( ) A .1B .2C .3D .0二、填空题(本大题共4小题,每小题4分,共16分.请将答案填在题中的横线上)13.设,)1()1()1()32(1010221010-++-+-+=-x a x a x a a x K 则10210a a a a ++++K =14.设P 是双曲线14222=-by x 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则点P 到双曲线右准线的距离是 .15.6个不同大小的数按如图形式随机排列,设★ ……第一行第一行这个数为M 1,M 2、M 3分别表示第二、 ★★ ……第二行三行中的最大数,则满足M 1<M 2<M 3的所有 ★ ★★ ……第三行排列的个数是 .16.购买手机的“全球通”卡,使用须付“基本月租费”(每月需交的固定费用)50元,在市内通话时每分钟另收话费0.40元;购买“神州行”卡,使用时不收“基本月租费”,但在市内通话时每分钟话费为0.60元,若某用户每月手机费预算为120元,则它购买卡才合算.第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中。
2.答卷前将密封线内的项目填写清楚。
一、选择题答题卡:二、填空题答题卡:⒔。
⒕。
⒖。
⒗。
填空题答题卡:13.14.15. 16.三、解答题(本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤)(17)(本大题满分12分)设)0,0)(sin ,(cos ),sin )1(,(cos πβαλββαλα<<<>=-=b a 是平面上的两个向量,且b a b a -+与互相垂直 (1)求λ的值;(2)若αβtan ,34tan ,54求==⋅b a 的值.函数f(x)=1-2a cosx-2sin2x的最小值为g(a)(a ∈R)1,求a及此时f(x)(1)求g(a)的表达式;(2)若g(a)=2的最大值(19)(本大题满分12分)如图是一个方格迷宫,甲、乙两人分别位于迷宫的A 、B 两处,现以每分钟一格的速度同时出发,在每个路口只能向东、西、南、北四个方向之一行走。
若甲向东、向西行走的概率均为41,向南、向北行走的概率分别为31和p ,乙向东、南、西、北四个方向行走的概率均为q(1)求p 和q 的值;(2)设至少经过t 分钟,甲、乙两人能首次相遇,试确定t 的值,并求t 分钟时,甲、乙两人得分评卷人相遇的概率.(20)(本大题满分12分)如图,△ABC 中,AC=BC ,AE 和CD 都垂直平面ABC ,且AE=AB=2,F 为BE 的中点,DF//平面ABC. (1)求CD 的长; (2)求证:AF ⊥BD ; (3)求平面ADF 与平面ABC所成的较小的二面角的大小.得分评卷人(21)(本大题满分12分)已知函数)10(22)(22<<--+=x xx x x x f 的反函数)(1x f -.(1)已知数列*),)((,1}{111N n a f a a a n n n ∈==-+满足求数列}{n a 的通项公式;(2)已知数列*),)(()1(,21}{1211N n b f b b b b n n n n ∈⋅+==-+满足求证:对一切n ≥2的正整数2121112211<++++++<nn b na b a b a K(22)(本大题满分14分)已知椭圆14222=+y x 两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足21PF PF ⋅=1,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点, (1)求P 点坐标;(2)求证直线AB 的斜率为定值; (3)求△PAB 面积的最大值.得分评卷人参考答案及评分标准一、选择题二、填空题13.1 14.13131415.240 16.神州行 三、解答题: 17.解:(1))4(,2),(020sin sin )1(,sin sin )1(sin cos sin )1(cos ||||)()(2222222222222分垂直与时即当舍或K K K K K K K K K K K Θ-+====--∴--=---+=-=-⋅+λλλααλααλββαλα(2)当b a b a -+与垂直时,)cos(sin sin cos cos βαβαβα-=+=⋅b aπβαβα<<<=-∴0,54)cos(Θ,则02<-<-βαπ247tan )tan(1tan )tan(])tan[(tan 43)tan(,53)sin(=--+-=+-=∴-=--=-∴ββαββαββααβαβα18.解:(1)f (x )=1-2a cosx-2sin 2x=2 cos 2x-2a cosx -2a-1设h (t )=2t 2-2a t -2a-1=2(t-2a )2 -22a -2a-1,t= cosx ∈[]1,1-。
①当2a<-1时,即a<-2时,g (a )=h (t )min = h (-1)=1。
②当-1≤2a ≤1时,即-2≤a ≤2时,g (a )=h (t )min = h (2a )=-22a -2a-1。
③当2a>1时,即a>2时,g (a )=h (t )min = h (1)=1-4 a 。
(2)当a<-2时,g (a )=1≠21;当a>2时,g (a )=h (t )min = h (1)=1-4 a=21,得a=81;当-2≤a ≤2时,g (a )=-22a -2a-1=21,则a= -3(舍)或a= -1。
∴当a= -1时,f (x )=2 cos 2x+2 cosx +1=2(t-21)2 +21。
当cosx= 1时,f (x )有最大值为5。
19.解:(1)41,14611314141=∴==∴=+++q q p p ΘΘ……(2分) (2)t=2甲、乙两人可以相遇(如图,在C 、D 、E 三处相遇)……(4分)设在C 、D 、E 三处相遇的概率分别为P C 、P D 、P E ,则:…………(12分) …………(2分)…………(6分)…………(10分)…………(12分)P C =5761)4141()6161(=⨯⨯⨯……………………(6分) P D =961)4141(2)4161(2=⨯⨯⨯……………………(8分) P E =2561)4141()4141(=⨯⨯⨯……………………(10分) P C +P D +P E =230437 即所求的概率为230437………………(12分) 20.方法一:(1)取AB 中点G ,连FG 、CG ,则FG//AE ,又AE 和CD 都垂直平面ABC ,所以AE//CD ,所以FG//CD ,所以F 、G 、C 、D 四点共面.又平面FGCD ∩平面ABC=CG ,DF//平面ABC ,所以DF//CG ,所以四边形FGCD 是平行四边形,所以CD=FG=21AE=1.………………(4分)(2)直角三角形ABE 中,AE=AB ,F 是BE 的中点,所以AF ⊥BE ,又△ABC 中,AC=BC ,G 是AB 中点,所以CG ⊥AB ,又AE 垂直于平面ABC ,所以AE ⊥CG ,又AE ∩AB=A ,所以CG ⊥面ABE.因为DF//CG ,所以DF ⊥面ABE ,AF ⊥BE ,由三垂线定理得AF ⊥BD. ……(8分)(3)设面ADF ∩面ABC=L ,因为DF//平面ABC ,所以DF//L ,又DF ⊥面ABE ,所以L ⊥面ABE ,所以L ⊥AF ,L ⊥AB ,所以∠EAB 即为二面角的平面角.直角三角形ABE 中,易得∠FAB=45°,所以平面ADF 与平面ABC 所形成的较小的二面角为45° (12)方法二:取AB 的中点G ,∵AB=BC ,∴CG ⊥AB又∵AE ⊥平面ABC ,∴GF ⊥平面ABC 以G为原点,GB 、GC 、GF 所在的直线为x , y, z建立空间直角坐标系,则A (-1,0,0)B (1,0,0),E (-1,0,2)F (0,0,1),设C (0,t ,0)∵DF//平面ABC ,则D (0,t ,1) ∴1||=CD 即CD 的长为1…………………………(4分) (2)AF =(1,0,1),BD =(-1,t ,1)∵AF ·BD =-1+1=0,∴AF ⊥BD (8分)(3)∵AF =(1,0,1),AD =(0,t ,0),设n =(x , y, z)是平面ADF 的一个法向量,∴)1,0,1(,1),,0,(0000-==-=∴⎩⎨⎧==+⎪⎩⎪⎨⎧=⋅=⋅n x x x n ty z x n AD n AF 得令即 GF ⊥平面ABC ,则v =(0,0,1)是平面ABC 的一个法向量,设平面ADF 与平面ABC 所成的二面角(锐角)为θ,则,22|121|cos =⋅-==θ所以θ=45° 即:平面ADF 与平面ABC 所成的较小的二面角为45°……………………(12分)21.(1)解:0(1)()(,122)(122>+=∴-=--+=-x x x x f x f xx x x x x x f 的反函数Θ) 111,111,1),(11111=-+=+==+++-+nn n n n n n n n a a a a a a a a f a 即得则Θ ∴数列}1{n a 是以1为首项,公差为1的差数列,a n =n 1………………(4分)(2)证明:n n n n n n b b b b b b )1(1)1(21+=+⋅+=+ 则111111,111)1(11++-=++-=+=n n n n n n n n b b b b b b b b 则………………(6分) )12(212)11()11()11(1111111211)8(1212674324311211111111211,111114321212211212211分分则K K K K K K K K K K K K K K K K K K K K K K K K K K K K Θ<-=-+-+-=++++++=++++++>=+=+++=+++>+++++++=+++n n n n n n n n n n n b b b b b b b b b b b na b a b a b b b na b a b a b b na22.解:(1)由题可得F 1(0, 2), F 2(0, -2), 设P(x 0, y 0)(x 0>0, y 0->0) 则)2,(),2,(001001y x PF y x PF ---=--=),(,1)2(00202021y x P y x PF PF 点Θ=--=⋅∴在曲线上,则21)2(24:24,1420202020202020==----=∴=+y y y y x y x 得从而 则点P 的坐标为(1,2)………………………………(2分)(2)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为k(k>0)则BP 的直线方程为:y -2=k(x -1)222222222222228)1()1(,2242)222222212)2(2,2)2(21),,(04)2()2(2)2(142)1(2k k x k x k y y k k x x k k k x k k k k k k x k k k x y x B k x k k x k y x x k y B A B A B A A B B B B +=----=-+=-+-+=+--=-+-=+-=+=--+-++⎪⎩⎪⎨⎧=+-=-则同理可得则设得由 所以:AB 的斜率2=--=BA B A AB x x y y k 为定值…………………………(8分) (4)设AB 的直线方程:m x y +=22)28(81)8(813||3)214(21||213||22220)4(16)22(04224:1422222222222222=+-≤+-=⋅⋅-=⋅==<<->--=∆=-++⎪⎩⎪⎨⎧=++=∆m m m m m m d AB S m d AB P m m m m mx x y x m x y PAB 则的距离为到得由得当且仅当m=±2∈(-22,22)取等号∴三角形PAB面积的最大值为2………………………………(14分)。