图形认识初步
人教版7年级数学《图形认识初步》教学反思
《图形认识初步》教学反思一、教学目标与达成情况教学目标:1.知识与技能:学生能够识别并命名基本几何图形(如点、线、角、三角形、四边形等);理解并掌握基本几何图形的性质(如角的度量、三角形的内角和等);学会使用简单的几何工具(如量角器、直尺)进行基本的几何测量和绘图。
2.过程与方法:通过观察、操作、实验等方式,培养学生的几何直观和空间想象能力;通过小组合作和讨论,提高学生的交流和合作能力。
3.情感态度价值观:激发学生对几何图形的兴趣,培养学生认真、细致的学习态度;通过几何图形的实际应用,让学生感受到数学与生活的紧密联系,增强学习数学的自信心。
达成情况分析:•知识与技能:大部分学生能够识别并命名基本几何图形,掌握了一些基本性质,如角的度量方法和三角形的内角和。
但在使用几何工具进行精确测量和绘图时,部分学生仍显得不够熟练,需要更多的实践练习。
•过程与方法:通过观察、操作和实验,学生表现出了较高的积极性和参与度,几何直观和空间想象能力得到了初步培养。
但在小组合作中,部分学生缺乏有效沟通和合作技巧,需要教师的引导和帮助。
•情感态度价值观:学生对几何图形的兴趣较为浓厚,特别是在解决实际问题时,能够感受到数学的实用性和趣味性。
然而,部分学生在面对复杂图形或问题时,仍表现出一定的畏难情绪,需要教师的鼓励和支持。
二、教学内容与实施策略反思教学内容分析:《图形认识初步》是人教版七年级数学上册的重要章节,旨在帮助学生建立对几何图形的初步认识和理解。
教学内容包括基本几何图形的识别、性质理解以及几何工具的使用等多个方面,要求学生能够掌握基本几何知识,为后续学习打下坚实基础。
实施策略反思:1.直观教学:利用实物、模型、图片等直观材料,帮助学生建立对几何图形的直观感受。
例如,通过展示不同形状的积木、平面图形卡片等,引导学生观察、比较和分类,加深对几何图形的认识。
2.操作实践:通过动手操作活动,如使用直尺画直线、用量角器测量角度、制作几何图形模型等,帮助学生理解和掌握基本几何图形的性质。
小学一年级数学第4讲:图形的初步认识
第四讲:图形的初步认识一、知识点:1. 各种平面图形和立体图形;2. 点、线段、曲线、角、三角形、正方形、圆、立体体、球等二、课堂引入:同学们自己说说所知道的图形?你们能不能画出自己所知道的图形呢?上黑板来画出所知道的图形引入今天的课题,图形的初步认识三、教学内容:例1:认识点、直线、射线和线段。
.第一张是直线,直线没有端点,两段可以无限延伸,不可以度量第二张是射线,射线有一个端点,一端可以无限延伸,不可以度量第三张是线段,线段有两个端点两段都不可以延伸,可以度量学习了三种最基本的图形,让同学们说说自己周围有哪些东西是直线,射线,或者线段自己在纸上画一画这三种例2:认识相交、垂直和平行;(1)(2)(3)解:(1)是两条直线相交,只有一个交点;(2)是两条直线相交,只有一个交点,夹角是直角,两条直线互相垂直;(3)是两条直线平行,没有交点,永远不会相交;同学们自由讨论周围有哪些直线相交的情况,直线垂直的情况,直线平行的情况;自己画一画相交,垂直,平行。
例3:认识角;边顶点边(1)(2)(3)(4)分析:(1)是一个角,角是从一点引出的两条射线组成的图形,这个点叫做顶点(2)是一个直角,直角的两条边互相垂直;(3)是一个锐角,锐角比直角小;(4)是一个钝角,钝角比直角大。
例4:认识三角形。
顶点顶点边顶点(1)(2)(3)(4)分析:(1)是一个三角形,三角形有三条边、三个角、三个顶点;(2)是一个直角三角形,直角三角形有一个直角、两个锐角;(3)是一个锐角三角形,锐角三角形的三个角都是锐角;(4)是一个钝角三角形,钝角三角形有一个钝角、两个锐角。
说说自己身边有哪些物体是三角形的,自己动手画一画不同的三角形同步练习:说说下面的三角形都是哪种三角形?例5:认识正方形与长方形(1)(2)分析:一个四边形,四边形有四条边、四个角;(1)是一个正方形,正方形的四边相等,四个角都是直角;(2)是一个长方形,长方形两组对边分别平行而且相等,四个角都是直角;正方形和长方形都是四边形例6:(1)上图中有种不同的图形;(2有个,个;(3)给所有的三角形涂上红色。
《图形认识初步》知识点
《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(晨鸟)初一数学秋季讲义第9讲图形的认识初步
9图形的认识初步满分晋级阶梯图形的认识 2 级推理证明初步与知识回顾图形的认识 3 级暑期班第九讲图形的认识初步图形的认识 4 级直线、射线和线段秋季班第九讲秋季班第十讲漫画释义我会回来的1知识互联网题型一:常见的几何体思路导航1.几何图形⑴几何图形:从实物中抽象出的各种图形统称为几何图形.⑵立体图形:有些几何图形(如长方体、正方体等)的各部分不都在同一平面内,他们是立体图形.⑶平面图形:有些几何图形(如线段、角、正方形等)的各部分都在同一平面内,他们是平面图形.2.点、线、面、体⑴点、线、面、体的概念①几何体也简称为体,例如长方体、正方体等.②包围着体的是面,面有平面和曲面两种.③面与面相交的地方形成线,线有直线和曲线两种.④线与线相交形成点.⑵点动成线、线动成面、面动成体.3.几何图形都是由点、线、面、体构成的,点是构成图形的基本元素.4.基本图形⑴常见的几何体常见的几何体名称特征2圆柱由三个面组成,上、下两个底面是半径相同的圆,侧面是曲面.棱柱分为直棱柱和斜棱柱,一般只讨论直棱柱,其上、下两个棱柱面为形状、大小相同的多边形,其余各面为长方形,底面为 n 边形的棱柱叫 n 棱柱.圆锥由两个面围成,有一个底面是圆形,一个顶点,侧面为曲面.由底面与侧面组成,底面为多边形,侧面为三角形,底面为n边棱锥形的棱锥叫n 棱锥.球由一个曲面围成.由三个面围成,上、下两个底面是大小不等的圆形,侧面为曲圆台面.棱台上、下两个底面为多边形,侧面均为梯形.⑵常见几何体的分类分类标准圆柱、棱柱、圆锥、棱锥、球柱圆柱、棱柱按柱、锥、球分类锥圆锥、棱锥球球按是否有曲面直面体棱柱、棱锥曲面体圆柱、圆锥、球按是否有顶点是棱柱、圆锥、棱锥否圆柱、球例题精讲【引例】所给的图形中,是棱柱的有个.3⑴⑵⑶⑷⑸⑹⑺【解析】 4 个,第⑴、⑵、⑷、⑺个图形均是.学生容易忽略第⑴、⑺个图形.典题精练【教师备选】例 1 是常见几何体的识别,例2 是点、线、面的关系以及几何体中顶点、棱和面的关系 .【例 1】如下图,柱体有个,其中是圆柱,是棱柱;锥体有个,其中是圆锥,是棱锥.【解析】柱体有 2 个,其中(b)是圆柱,(c)是棱柱.锥体有 2 个,其中(g)是圆锥,(e)是棱锥.【例 2】⑴如图,将三角尺绕着它的一条直角边旋转一周.请回答下列问题:①三角尺右下的顶点,经运动形成了一个怎样的图形?②三角尺下面的边,经运动形成了一个怎样的图形?③三角尺的面,经运动形成了一个怎样的图形?⑵ 观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 a 6 10 12棱数 b 9 12面数 c 5 8①观察上表中的结果,你能发现 a 、b、 c 之间有什么关系吗?请写出关系式.②一个多面体的面数比顶点数大 8,且有 30 条棱,则这个多面体的面数是 ____________. 【解析】⑴ ①形成一个圆.②形成一个圆面.③形成一个圆锥体.⑵4名称三棱柱四棱柱五棱柱六棱柱顶点数 a 6 8 10 12棱数 b 9 12 15 18面数 c 5 6 7 8①可以得到欧拉公式 a c b 2 .②20.设顶点数为x,则面数为x+8 ,则有:x x 8 30 2解得:x12面数为 20.【点评】⑴ 点动成线,线动成面,面动成体.⑵ 多面体是根据面数命名.比如正方体和长方体都有六个面,叫做六面体.凸多面体的顶点数、棱数、面数满足欧拉公式.题型二:三视图思路导航定义:从正面看到的图叫主视图,也叫正视图.从左面看到的图叫左视图.从上面看到的图叫俯视图.主视图、左视图、俯视图统称三视图.要求:(学生版没有)①会画一个立体图形的三视图.②会通过三视图确定立体图形.③知道三视图与特殊立体图形的表面积、体积的关系.④两种视图与分类讨论.(如:根据所给主视图、左视图判断最多或最少多少个立方体)例题精讲【引例】右图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A .B.C.D.【解析】 B .【点评】此题是对圆柱体主视图(左视图)和俯视图基础知识的简单应用.5典题精练【教师备选】例3 要求会判断并画出几何体的三视图;例4通过三视图中的两个图能还原到整个几何体并求出面积或体积;例5 根据三视图的形状判断几何体的最值情况 .【例 3】⑴如图所示几何体的左视图是()A .B.C.D.正面⑵ 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A .正视图B .左视图C.俯视图D.三种一样⑶ 一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是()A .三棱锥B .长方体C.球体D.三棱柱⑷ 一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).【解析】⑴ D;⑵ B;⑶ C;⑷ 如图所示:(说明:俯视图中漏掉圆心的黑点扣分.)【例 4】⑴长方体的主视图、俯视图如图所示(单位:m ),则其左视图面积是()2 2 2 2A .4 mB . 12 m C. 1 m D . 3 m⑵ 如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为()A .24πB .32πC.36πD.48π66 64俯视图4 4主视图左视图⑶将棱长是 1cm 的小正方体组成如图所示的几何体.① 画出这个图的三视图,并求出三视图的面积.② 求该立体图形的表面积.(包括底面积)③ 求出几何体中重叠面的面积和.正面【解析】⑴ D;⑵ A;⑶ ①三视图如下:主视图左视图俯视图主视图的面积为6cm 2 ;左视图的面积为6cm 2 ;俯视图的面积为6cm 2 .② 主视图、左视图、俯视图面积和的 2 倍: (6 6 6) 2 36(cm 2 ) .③ 24. 提示法一: (1 3 6) 6 6 6 24(cm 2 ) ;法二: (2 6) 3 24(cm 2 )【例 5】⑴如右图,是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()1 32俯视图A B C D.。
苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思
苏教版(2024)小学数学一年级上册《图形的初步认识(一)》教案及反思一、教材分析:《图形的初步认识(一)》是苏教版(2024)小学数学一年级上册的内容。
本课程旨在引导学生初步认识基本的平面图形,包括圆形、正方形、长方形和三角形。
这部分教材主要通过观察、操作等活动,让学生直观认识长方体、正方体、圆柱和球等立体图形。
通过观察、比较和操作活动,学生将学会辨识这些基本图形,并理解它们的基本特征,同时引导学生认识这些图形的特征,为后续学习几何知识奠定基础。
二、教学目标:【知识与技能目标】:1.能够正确识别并命名圆形、正方形、长方形和三角形。
2.让学生直观认识长方体、正方体、圆柱和球等立体图形,能够辨认和区分这些图形。
3.培养学生的观察能力、动手操作能力和空间观念。
【过程与方法目标】:1.能够从不同的图形中挑选出指定的图形,并能描述这些图形的基本特征。
2.通过观察、操作、交流等活动,让学生经历认识图形的过程。
3.引导学生在实际生活中寻找这些图形,感受数学与生活的联系。
【情感态度与价值观目标】:1.培养学生对数学的兴趣和好奇心,激发学生的学习积极性。
2.培养学生的合作意识和团队精神,激发学生对数学学习的兴趣,感受数学与生活的密切联系。
3.激发学生对几何图形的兴趣,培养学生的观察力和空间想象力。
三、教学重难点:【教学重点】:认识长方体、正方体、圆柱和球的形状特征,能够正确辨认和区分这些图形。
2.识别并描述圆形、正方形、长方形和三角形的基本特征。
【教学难点】:1.区别不同形状的图形,建立空间观念,培养学生的空间观念。
2.区分长方形和正方形,理解它们的相似性和差异性。
四、学情评估:一年级的学生处于形象思维阶段,对直观的事物比较感兴趣。
但对抽象概念的理解有限。
他们喜欢通过具体的操作和游戏来学习新知识;在生活中已经接触过一些立体图形,但对这些图形的特征还没有系统的认识。
在教学中,要充分利用学生的生活经验,通过直观的教学手段,引导学生认识图形的特征。
第四单元 图形的初步认识
第四章 图形初步认识第一课时 图形初步认识一、知识归纳1、几何图形:平面图形和立体图形。
都在同一平面内的图形叫做平面图形。
如:不都在同一平面内的图形叫做立体图形。
如:[1]下列物体与哪种立体图形相类似?请用直线连接起来。
2、从不同方向看立体图形(三视图) 常见几何体的三视图:立体图形 俯视图 左视图 正视图长方体圆柱体圆锥 棱锥 球长方形正方形三角形五边形圆六边形篮球 粉笔盒 金字塔易拉罐3、常见几何体的平面展开图4、点、线、面、体的关系(1)几何体简称体,包围着体的是面,面有平面和曲面;面与面相交成线,线有直线和曲线;线与线相交成点。
(2)点动成线,线动成面,面动成体。
〔3〕第二行的图形围绕红线旋转一周,便能形成第一行的某个几何体,用线连一连.二、典型题型(1)下列图形中,棱锥是 ( )(2)如图这个物体的俯视图是 ( )C(A ) (B )(C )(D )(A )(B ) (C )第二课时 线1、直线、射线、线段性质:(1)经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
(2)连接两点的线段的长,叫做两点间的距离;两点之间线段最短。
线段的中点及等分点:(1)若点C 把线段AB 分为相等的两条线段AC 和BC ,则点C 叫做线段的中点。
(2)若点B 、C 是线段AD 上的两点,且AB=BC=CD=31AD,我们称B 、C 为线段AD的三等分点。
如图:比较线段大小的方法:(1)叠合法;(2)度量法:①直尺度量;②圆规度量。
名 称 直 线射 线 线 段 图 形表示方法 直线AB 或直线l 射线AB 或射线l线段AB 或线段a概 念 直线是一个点在平面或者空间内沿着一定方向和其反方向运动的轨迹,不弯曲的线。
直线上的点和一旁的部分叫做射线。
直线上的两点和它们之间的部分叫做线段。
端点 没有端点 只有一个端点 有两个端点延伸性向两方向延伸向一个方向延伸不能延伸作图语言过A 、B 两点作直线AB以A 为端点作射线AB连接ABABlABlA B a · AB C A B D· C ·典型题型:一、选择题1.下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定 4.下列4.说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC 的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过一点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
图形的初步认识教案
图形的初步认识教案教案标题:图形的初步认识教学目标:1. 让学生了解不同类型的图形,如圆形、三角形、矩形等。
2. 帮助学生认识图形的特征和属性。
3. 培养学生观察和辨认图形的能力。
4. 引导学生通过图形的组合和分解来培养创造力和问题解决能力。
教学资源:1. 幻灯片或图片展示不同类型的图形。
2. 学生绘图纸和彩色铅笔。
3. 实物图形模型,如塑料几何体等。
4. 教学板书。
教学步骤:引入活动:1. 利用幻灯片或图片展示不同类型的图形,引起学生对图形的兴趣。
2. 引导学生观察并提出对图形的疑问,如它们有什么特点,有什么不同等。
探索活动:1. 让学生分组,每组给予一些实物图形模型,并要求他们观察并描述这些图形的特征和属性。
2. 学生通过讨论和展示,将不同的图形进行分类,如圆形、三角形、矩形等。
3. 引导学生发现图形的共同特征,如边数、角度等,并记录在教学板书上。
知识巩固:1. 学生利用绘图纸和彩色铅笔,绘制不同类型的图形,并在图形旁标注其名称。
2. 学生互相交换绘制的图形,通过观察和辨认图形,巩固对图形的认识。
拓展活动:1. 引导学生通过图形的组合和分解,创造出新的图形,并尝试给予这些图形命名。
2. 学生可以利用实物图形模型进行组合和分解实践,进一步培养创造力和问题解决能力。
总结:1. 教师引导学生回顾今天的学习内容,强调图形的特征和属性。
2. 学生进行简单的自我评价,如他们对图形的认识程度、学习过程中的困难等。
教学延伸:1. 学生可以通过观察周围环境中的图形,进一步应用和巩固所学的知识。
2. 教师可以设计更复杂的图形问题,引导学生进行探究和解决。
教学评估:1. 教师观察学生在探索活动中的表现,包括他们对图形的观察和描述能力。
2. 教师检查学生绘制的图形是否准确,并评估他们对图形的辨认能力。
3. 教师收集学生在拓展活动中创造的图形和命名,评估他们的创造力和问题解决能力。
教学反思:1. 教师根据学生的表现和反馈,对教学过程进行评估和反思,为今后的教学改进提供参考。
图形的初步认识ppt
正 十 二 面 体
正 二 十 面 体
从上面的填表,你 发现了什么规律?
8 6 20 12 6 8 12 20 12 12 30 30 2 2 2 2
伟大的数学家欧拉(Euler 1707—1783)证明了这一 令人惊叹的关系式,即欧
拉公式:
顶点数+面数-棱数=2.
想一想:
判断能否组成一个有22条棱、10个面、 15个顶点的棱柱或棱锥?为什么?
你还会再举出一些类似的物体吗?
• 这些物体与你小学学过的哪些立体图形相 类似?
(1)
(2)
(3) 图 4.1.1
(4)
(5)
(1)、(2)所表示的立体图形是柱体; (4)、(5)所表示的立体图形是锥体; (3)表示的图形则是球体
棱柱
圆柱
想一想
圆柱与棱柱的相同点与不同点。
几何体 图形 不同点 相同点
(1)
(2)
(3)
(4)
(4) 答案:__________
4.你能写出下列立体图形的名称吗?
圆柱
三棱柱
三棱锥
圆锥
5 把图形与对应的图形名称用线连接起来.
圆 锥
圆 柱
棱 柱
棱 锥
球
6.判断 (1)球体不是多面体. ( (2)圆锥是多面体. ( ) ) )
(3)棱柱、棱锥都是多面体. (
(4)柱体都是多面体.
第4章 图形的初步认识
4.1 生活中的立体图形
淅川县一初中:
第4章 图形的初步认识
4.1 生活中的立体图形
亲,这是个合成版的,避免了别的 网站下载不了的麻烦,自己修改吧
(一)阅读课本P124-P125 ,学生自己 尝试解决下列问题: 1 .西瓜类似于 体.
图形认识初步第1讲—图形认识及直线射线线段
第一讲:图形认识与直线、射线、线段1、我们生活的世界是一个图形的世界,对于图形,在数学中我们要研究它们的:形状(如方的、圆的等)、大小(如长度、而积、体积等)和位置(如相交、垂直、平行等)。
2、几何图形:从实物中抽象出来的图形。
包括立体图形和平而图形两大类。
3、立体图形:各部分不都在同一平而内的几何图形叫做立体图形。
常见的立体图形有:长方体、正方体、圆柱、圆锥、棱柱、棱锥、球等。
多而体:是指四个或四个以上多边形所用成的图形。
4、平而图形:各部分都在同一平面内的几何图形叫做平而图形。
常见的平面图形有:三角形、平行四边形(包括:长方形、菱形、正方形)、梯形、园、五边形、六边形等。
5、平而图形与立体图形的关系:立体图形的某些部分是平面图形,对于立体图形常把它们转化为平而图形研究。
6、立体图形的三视图:从不同方向看立体图形能得到不同的平而图形,常用从正而(主视图)、左面(左视图)、上而看(俯视图)立体图形所得的平而图形来表达立体图形,称为立体图形的三视图。
7、立体图形的平而展开图:有些立体图形是由一些平而图形囤成的,将它们表而适当剪开,可以展开成平而图形。
画出:圆柱的平而展开图圆锥的平而展开图三棱柱的平面展开图8、正方体的十一种平而展开图:9、点、线、面、体百度文库•好好学习.天天向上相 交 --------- ►体:大小用体积表示。
几何体简称体。
可以由平而平移或旋转得到。
如:长方体、正方体可以看作长方形、正方形拉伸得到。
圆柱、圆锥可以看作长方刃 三角形、围绕轴旋转得到匚10、欧拉公式:数出各个图形的顶点数、面数和棱数,并填写表格,找岀其中的规律。
多而体顶点数(V )而数(F )楞数(E )V+F-E正四而体正六而体正八而体正十二面体结论:顶点数+而数■棱数=2。
即V+F ・E=2点: 无大小,点是构成图形的基本元素。
点动成线。
线.线相交处为点。
线:大小用长度表示。
由无数个点构成。
有曲线与直线。
线动成而。
图形的初步认识复习课件
ASA全等判定
两角和它们的夹边 分别相等的两个三 角形全等。
HL全等判定
斜边和一条直角边 分别相等的两个直 角三角形全等。
05 多边形及其内角和
多边形定义和分类
多边形的定义
由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。
多边形的分类
按照边数可以分为三角形、四边形、五边形等;按照形状可以分为凸多边形和凹多边形。
圆的定义
平面上到定点的距离等于定长的所有点 组成的图形。
VS
相关术语
圆心、半径、直径、弦、弧、圆周角等。
圆的基本性质
圆的对称性
圆是中心对称图形,也是 轴对称图形。
圆的旋转不变性
圆绕圆心旋转任意角度, 其形状和大小均不发生变 化。
圆的切线性质
圆的切线垂直于半径,且 切线与半径的交点是切点。
圆心角、弧、弦间关系定理
用两个大写字母表示,如线段AB; 或用一个小写字母表示,如线段a。
线段性质
线段有两个端点,可以度量长度, 是有限长的。
直线、射线和线段间关系
联系
射线、线段都是直线的一部分;任意两点确定一条直线,也 可以确定一条线段;把线段向一方无限延伸可得到射线,向 两方无限延伸可得到直线。
区别
直线没有端点,射线有一个端点,线段有两个端点;直线可 向两方无限延伸,射线可向一方无限延伸,线段不能延伸; 直线没有方向性,射线有方向性。
03 角度与角平分线
角度概念及度量单位
01
பைடு நூலகம்
02
03
角度概念
两条射线或线段在一个平 面上相交,所形成的夹角 的度量。
度量单位
角度的度量单位有度、分、 秒,其中1度等于60分,1 分等于60秒。
图形的初步认识
图形的初步认识知识点考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
图形的初步认识
• 3、最基本的图形——点和线. • 4、线段的基本性质:两点之间,线段最短. • 5、两点的距离:连结两点的线段的长度, 叫做这两点的距离。 • 6、直线的基本性质:经过两点有一条直线, 并且只有一条直线. • 7、线段的中点:把一条线段分成两条线段 的点,叫做线段的中点。
• 8、角:有公共端点的两条射线组成的图形 叫做角。这个公共端点叫做角的顶点,这 两条射线叫做角的边。 • 9、角平分线:一条射线把一个角分成两个 相等的角,这条射线叫做角的顶点,这条 射线叫做这个角的平分线。
图形的初步认识
中考考点
• 1、三视图:从正面、上面和侧面(左面和 右面)三个不同的方向看一个物体,然后 描绘三张所看到的图,就是三视图。从正 面看到的图形,称作正视图;从上面看到 的图形,称作俯视图;从侧面看到的图形 称作侧视图,根据观看额方向不同,有左 视图和右视图。
• 2、多边形:有线段首尾顺次相接组成的封 闭图形,叫做多边形。按照组成多边形的 边数,多边形可分为三角形,四边形、五 边形等。
-2 3 x2 1 A 3x-2
• 作出下面图形的三视图
• 如图所示的正四棱锥的俯视图是(
·
)
A
B
C
D
• 10、互余、互补:(1)互余:如果两个角的 和为900,那么这两个角互为余角,其中一 个角叫做另一个角的余角。 • (2)互补:如果两个角的和为1800,那么这 两个角互为补角,其中一个角叫做另一个 角的补角。 • (3)互余、互补的性质:同角(或等角)的 余角(或补角)相等。
• 11、对顶角性质:对顶角相等。 • 12、相交线:(1)垂线的定义:当两条直线相 交所成的四个角中,有一个角是直角时,就 说这两条直线互相垂直,其中一条直线叫做 另一条直线的垂线,它们的交点叫做垂足。 • (2)垂线的性质:在同一平面内,经过直线外 或直线上一点,有且只有一条直线与已知直 线垂直。 • (3)点到直线的距离:从直线外一点到这条直 线的垂线段的长度,叫做点到直线的距离。 • (4)同位角、内错角、同旁内角的定义和识别.
第04章-图形认识初步
第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体:{ } 棱柱体:{ }圆柱体:{ } 球体:{ }圆锥体:{ }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D图像是______号摄像机所拍。
12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:颜色红黄蓝白紫绿花朵数 1 2 3 4 5 6现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如下图所示,那么长方体的下底面共有______朵花.18.如果图(1)~(10)均是正方体A的展开图,正方体的每一面分别有1,2,3,4,5,6六个数,请你在图(2)~(10)的空格上填上相应的数.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)19.有一个长方形的硬纸正好可以分成15个小正方形,如图,试把它剪成3份,每份有5个小正方形相连,折起来都可以成为一个无盖的正方体纸盒,应该怎样剪?测试2点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.课堂学习检测一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是().(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是().(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?编号多面体名称顶点数(V) 面数(F) 棱数(E)Ⅰ立方体Ⅱ三棱柱Ⅲ三棱锥Ⅳ五棱锥Ⅴ三棱台Ⅵ楔体Ⅶ截角立方体Ⅷ八面体Ⅸ“塔顶”体(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考18.填表:直线上的点的个图例射线总条数线段总条数数n2 4 1345┆n19.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1.(1)把一条线段二等分的______叫做这条线段的______.(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4.在下列说法中,正确的是()(A)任何一条线段都有中点(B)射线AB和射线BA是同一射线(C)延长线段AB就得到直线AB(D)连接A,B就得到AB的距离5.如图,下列关系式中与右图不符合的是()(A)AC+CD=AB-BD(B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合、运用、诊断一、选择题 6.如下图,从A 地到B 地有多条道路,人们会走中间的直路,而不会走其他的曲折的路,这是因为( ).(A)两点确定一条直线(B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7.对于线段的中点,有以下几种说法:①因为AM =MB ,所以M 是AB 的中点;②若AM =MB =21AB ,则M 是AB 的中点;③若AM =21AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM =MB ,则M 是AB 的中点.以上说法正确的是 ). (A)①②③ (B)①③ (C)②④ (D)以上结论都不对8.已知A ,B ,C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那A ,C 两点间的距离是( ). (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9.已知线段OA =5cm ,OB =3cm ,则下列说法正确的是( ) (A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度. 10.已知线段AB =10cm ,AP +BP =20cm .下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11.能判定A ,B ,C 三点共线的是( )(A)AB =3,BC =4,AC =6 (B)AB =13,BC =6,AC =7 (C)AB =4,BC =4,AC =4 (D)AB =3,BC =4,AC =512.已知数轴上的三点A ,B ,C 所对应的数a ,b ,c 满足a <b <c ,abc <0和a +b +c =0,那么线段AB与BC 的大小关系是( ). (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二、解答题13.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长.14.已知C ,D 两点将线段AB 分为三部分,且AC ∶CD ∶DB =2∶3∶4,若AB 的中点为M ,BD 的中点为N ,且MN =5cm ,求AB 的长.15.如图,延长线段AB 到C ,使,21AB BCD 为AC 的中点,DC =2,求AB 的长.拓展、探究、思考16.已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=6,BC=4,求线段MN的长度;(2)若AB=a,求线段MN的长度;(3)若将(1)小题中“点C在线段AB上”改为“点C在直线AB上”,(1)小题的结果会有变化吗?求出MN的长度.17.如图,这是一根铁丝围成的长方体,长、宽、高分别为6cm、5cm、4cm.有一只蚂蚁从A点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到A点时,最多爬行多少厘米?把蚂蚁所走的路线用字母按顺序表示出来.测试5角的度量学习要求理解角的概念,掌握角的表示方法,能利用画图工具作一个角,会度量一个角的大小(在角度制下),能进行简单的计算.理解周角、平角的概念.课堂学习检测一、填空题1.(1)____________的图形叫做角,____________________叫做角的顶点,_____________________叫做角的边.(2)角也可以看作是由一条___________绕着它的___________而形成的图形,这条射线的起始位置叫做角的______,其终止位置叫做角的__________.(3)一条射线绕其端点O按逆时针方向旋转得到∠AOB,当角的终边OB旋转到与角的始边OA成一条直线时,称∠AOB为______;若角的终边继续旋转,当角的终边OB与角的始边OA重合时,称∠AOB 为______.(4)以度、分、秒为单位的角度制规定,把一个周角______,每一份叫做1度,记作______;把1度的角______,每一份叫做1分,记作______;把1分的角______,每一份叫做1秒,记作______.这样,1周角是______°,1平角是______°,1°=______',1′=______″.2.用三个字母表示图中所注的∠1、∠2、∠3:(1)(2)(3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________.12.图中共有______个小于平角的角,它们分别是__________________,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______';(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C,则蚂蚁共转了____________的角.19.如图,(1)中有______个角,(2)中有______个角;(3)中有______个角.以此类推,若一个角内有n条射线,则可有______个角.测试6 角的比较与运算学习要求会比较两个角的大小,能进行角的运算(和、差、倍、分).理解角的平分线以及直角、锐角、钝角的概念.课堂学习检测一、填空题1.要比较∠α 和∠β 的大小,可先让∠α 的顶点与∠β 的顶点______,∠α 的始边与∠β 的始边也______,并且∠α 的终边与∠β 的终边都在它们的始边的同一侧. 若∠α 的终边落在∠β 的内部,则称∠α ______∠β ; 若∠α 的终边落在∠β 的外部,则称∠α ______∠β ; 若∠α 的终边恰与∠β 的终边重合,则称∠α ______∠β .(如图所示,∠AOB =α ;∠AOC =β )2.如图,若OC 是∠AOB 的平分线,则______=______;或______=______21=______; 或______=2______=2______.3.如图,OM 是∠AOB 的平分线且∠AOM =30°,则∠BOM =______;∠AOB =______.4.如图,在横线上填上适当的角:(1)∠AOC =______+______; (2)∠AOD -∠BOD =______; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______. 5.按图填空:(1)∠ABC 是∠ABD 与∠DBC 的______; (2)∠BDC 是∠ADC 与∠ADB 的_______. 6.如图,(1)若∠AOB =∠COD ,则∠AOC =∠______. (2)若∠AOC =∠BOD , 则∠______=∠______.二、选择题7.在小于平角的∠AOB 的内部取一点C ,并作射线OC ,则一定存在( ). (A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8.如图,∠AOB =∠COD ,则( ).(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9.射线OC 在∠AOB 的内部,下列四个式子中不能判定OC 是∠AOB 的平分线的是( ). (A)∠AOB =2∠AOC (B)∠BOC =∠AOC(C)∠AOC 21∠AOB (D)∠AOC +∠BOC =∠AOB 10.不能用一副三角板拼出的角是( ).(A)120° (B)105° (C)100° (D)75°11.如图,OC 是∠AOB 的平分线,OD 平分∠AOC ,且∠COD =25°,则∠AOB =( ).(A)100° (B)75° (C)50° (D)20°12.如果∠AOB =34°,∠BOC =18°,那么∠AOC 的度数是( ).(A)52° (B)16° (C)52°或16° (D)52°或18°13.如图,射线OD 是平角∠AOB 的平分线,∠COE =90°,那么下列式子中错误的是( ).(A)∠AOC =∠DOE (B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC 14.已知α 、β 是两个钝角,计算)(61β+a 的值,四位同学算出了四种不同的答案,分别为24°,48°,76°,86°,其中只有一个答案是正确的,那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三、解答题15.下面是小马虎解的一道题.题目:在同一平面上,若∠BOA =70°,∠BOC =15°,求∠AOC 的度数. 解:根据题意可画出下图.∵∠AOC =∠BOA -∠BOC=70°-15° =55°,∴∠AOC =55°.若你是老师,会给小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.综合、运用、诊断16.如图,OT 平分∠AOB ,也平分∠COD ,那么∠AOT =∠______,∠AOC =∠______, ∠AOD =∠______17.如图,OA ⊥OB ,OC ⊥OD ,∠AOD =146°,则∠BOC =______.18.读语句画图并填空:画平角∠AOC ,用量角器画∠AOC 的平分线OB ,因为OB 平分∠AOC ,所以∠AOB =∠=AOC 21_______,再用量角器画∠BOC 的平分线OD ,图中∠AOD =∠______+∠______=______°.19.作图.(1)用一副三角板可以画出多少个小于平角的角?请用一副三角板画出15°,75°角.(2)作∠MPQ 的平分线PR ,则∠______=∠______21=∠______.(3)利用圆规和直尺画一个角.已知:∠AOB ,求作:∠A ′O ′B ′,使得∠A ′O ′B ′=∠AOB .20.如图,OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°,求∠AOB 的度数.解:∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠AOC =2∠AOD , ∠BOC =2∠______.∵∠AOD =40°,∠BOE =25°,∴∠BOC =______, ∠AOC =______. ∴∠AOB =____.21.已知:如图,∠ABC =∠ADC ,DE 是∠ADC 的平分线,BF 是∠ABC 的平分线.求证:∠2=∠3.证明:∵DE 是∠ADC 的平分线,∴∠2=______.∵BF 是∠ABC 的平分线, ∴∠3=______.又∵∠ABC =∠ADC , ∴∠2=∠3.拓展、探究、思考22.已知:∠AOB =31.5°,∠BOC =24.3°,求∠AOC 的度数.23.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA 度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.(2)若OE 平分∠BOC ,OF 、OG 三等分∠COD ,求∠EOG .24.如图,∠AOB 的平分线为OM ,ON 为∠MOA 内的一条射线,OG 为∠AOB 外的一条射线,某同学经过认真的分析,得出一个关系式是∠MON =21(∠BON -∠AON ),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来。
图形的初步认识PPT教学课件
垂线的性质2:直线外一点与直线上各点连 结的所有线段中,垂线段最短。
简称:“垂线段最短”
点到直线的距离:
直线外一点到直线的 垂线段的长度,叫做 点到直线的距离。
如上图中垂线段DB的长度,就是点D到直线 AC的距离。
如图:直线 EF截直线AB、CD
像∠1与∠5,处于直线EF 的同一侧,直线AB、CD 的同一方,这样位置的一 对角就是同位角.
• 由定义可得:角平分线是在角的内部的一 条射线,同时还有:
•
①∠AOC=∠COB= 1/2∠AOB
•
②∠AOB=2∠AOC=2∠COB
•
③∠AOC=∠BOC.
6、互为补角、互为余角、对顶角的 概念及其性质。
• (1)概念 • 如果两个角的和等于 180°(平角),
就说这两个角互为补角,也就是说其中一 个角是另一个角的补角,如图所示.
• 2、由一个物体的三视图,描述该物体的形 状,关键是能想象出三视图和立体图形之 间的联系,从而描述该物体的形状.
(三)、平面图形的初步认识
• 1、立体图形是由平面图形所围成的. • 2、圆是由曲线围成的封闭图形. • 3、多边形:由几条线段首尾顺次相连组成
的封闭图形叫做多边形. • 4、每一个多边形都可以分割成若干个三角
• 互为邻补角的两个角既有数量关系又有位 置关系。
3、方向角
• 以测点为原点,以正北方向或正南方向 为始边,旋转到目标方向线所成的锐角, 叫做这个目标方向所成的方向角,方向角 在 0°~90°范围内。
4、方位角
• 轮船、飞机等物体运动的方向与正北方向 之间的夹角称为方位角。
立体图形
图形的初步认识
形. • 5、n边形从一个顶点出发可以作(n-3)
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
图形认识初步
《图形认识初步》复习资料一、多姿多彩的图形 (一)知识回顾1.立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥等都是立体图形。
2.平面图形:三角形、四边形、多边形、圆等都是平面图形。
3.三视图:从正面看到的图形称为正视图;从上面看到的图形称为俯视图;4.立体图形的平面展开图,正方体的展开图方式 (二) 、例题与练习: 1. 画出下列几何体的三视图2. 下列几何体的展开图是什么3.(1)以长方形的一边为轴把长方形绕轴一周得到的立体图形是什么?(2)把直角三角形以直角边为轴旋转一周得到的几何体又是什么?以斜边呢? 7、填空题.(1)在立体图形中,面与面相交成 ,线与线相交成 .(2)圆柱体由 个面围成,圆锥是 个面围成,它们的底面都是 ,侧面都是 .(3)三棱柱有 个顶点, 条棱.(4)圆锥的侧面与底面相交成 条线,这条线是线.(填“曲”、“直”) 8.一个三面带有标记的正方体: 如果把它展开,应是下列展开图形中的( )9.下列哪个图形经过折叠不能围成一个立方体是( )10.如图,这是一个由小立方体搭成 的几何体的俯视图,小正方形中的数 字表示在该位置的小立方体的个数, 请你画出它的主视图每与左视图11.一个多边形都可以按图甲的方法分割成若干个三角形。
( 图甲) (图乙) 根据图甲的方法,图乙中的七边形能分割成 个三角形,那么 n 边形能分割成 个三角形. 二、 直线、射线和线段 (一) 、知识回顾2. 点的表示方法:常用英文大写字母表示,一个大写 字母表示一点,不同的点要用不同的字母来表示 3.直线的表示方法:①一条直线可以用在这条直线上的两个点来表示,如"直线AB ”;②一条直线可以用一个小写字母来表示,如"直线a ”4.射线的表示方法:①一条射线可用它的端点和射线 上的另一点来表示,端点必须写在前面,如射线OA ;② 一条射线也可用一个小写字母来表示,如射线b .5.直线的性质:经过过两点有一条直线,并且只有一 条直线。
《点、线、面、体》图形认识初步精品ppt课件
3.(07课标卷)右图所示是一个三棱柱纸盒,在下面四 个图中,只有一个是这个纸盒的展开图,那么这个展开
图是(D )
A
B
C
D
4.(10北京) 美术课上,老师要求同学们将右图所示的 白纸只沿虚线剪开,用裁开 的纸片和白纸上的阴影部
份围成一个立体模型,然后放在桌面上,下面四个示 意图中,只有一个符合上述要求,那么这个示意图是
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
六面体
八面体
探究二
你能够将一个正方形的纸片折叠 成一个三棱锥吗?试一试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正好能通过(A).(B)中的两个空洞的, 可能是什么样的图形?你能画出它们的草图 吗?
(A) ?
(B) ?
作 业:
• 教材第149页标准实验教科书
数学
七年级 上册
第三章 图形认识初步
兆麟初级中学 王 群
从左面看
从上面看
从正面看
正方体
图常 见 几 何 体 的 三 视
长方体 圆锥 圆柱
球
主视图 主视图
左视图
俯视图
左视图
俯视图
主视图
左视图
俯视图
主视图
左视图
俯视图
主视图
左视图
俯视图
如图,从上往下看A、B、C、D、E、F 六个物体,分别能得到什么图形?把上下两 行中对应的图形与物体连接起来.
总
左视图:从左面看到的图形;
俯视图:从上面看到的图形.
结 常见几何体的三视图
正方体、长方体、圆柱、圆锥、球.
数学的转化思想
立体图形
平面图形
视图的应用价值
“横看成岭侧成峰,远近高 低各不同。不识庐山真面目, 只缘身在此山中。”这是宋代 诗人苏轼的著名诗句(《题西 林壁》). 你能说出“横看成岭 侧成峰”中蕴含的数学道理吗?
如图,桌上放着一摞书和一个 茶杯,下面A、B、C、D、E、这 五幅图分别是从什么方向看到的?
画出下面由小立方块搭 成的几何体的三视图.
下面是一个几何体的三视图, 请根据这个三视图用小立方块搭 出原来的几何体.
主视图
左视图
俯视图
本节课我们一起探索了哪 方面的知识?
你有什么收获?
几何视图知识
主视图:从正面看到的图形;